2013年各地中考题类型尺规作图

合集下载

2013年全国中考数学试题分类解析汇编专题57探索规律型问题(图形类)

2013年全国中考数学试题分类解析汇编专题57探索规律型问题(图形类)

专题57探索规律型问题(图形类)一、选择题1. (2012重庆市4分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为【】A.50 B.64 C.68 D.72【答案】D。

【考点】分类归纳(图形的变化类)。

【分析】寻找规律:每一个图形左右是对称的,第①个图形一共有2=2×1个五角星,第②个图形一共有8=2×(1+3)=2×22个五角星,第③个图形一共有18=2×(1+3+5)=2×32个五角星,…,则第⑥个图形中五角星的个数为2×62=72。

故选D。

2. (2012广东深圳3分)如图,已知:∠MON=30o,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为【】A.6 B.12 C.32 D.64【答案】C。

【考点】分类归纳(图形的变化类),等边三角形的性质,三角形内角和定理,平行的判定和性质,含30度角的直角三角形的性质。

【分析】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°。

∴∠2=120°。

∵∠MON=30°,∴∠1=180°-120°-30°=30°。

又∵∠3=60°,∴∠5=180°-60°-30°=90°。

∵∠MON=∠1=30°,∴OA1=A1B1=1。

∴A2B1=1。

∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°。

∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3。

山东省17市2013年中考数学试题分类解析汇编 专题09 三角形

山东省17市2013年中考数学试题分类解析汇编 专题09 三角形

山东17市2013年中考数学试题分类解析汇编专题09 三角形一、选择题1. (2013年山东东营3分)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值【】A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个2. (2013年山东莱芜3分)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为【】【答案】B。

【考点】动点问题的函数图象, 等边三角形的性质。

【分析】分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:3. (2013年山东聊城3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:AB的长为【】A.12米B. C. D.4. (2013年山东聊城3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为【】A.a B.1a2C.1a3D.2a3【答案】C。

【考点】相似三角形的判定和性质。

【分析】∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA。

5. (2013年山东临沂3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=AD B.AC平分∠BCD C.AB=BD D,△BEC≌△DEC6. (2013年山东青岛3分)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为【】A、mn2⎛⎫⎪⎝⎭, B、(m,n) C、nm2⎛⎫⎪⎝⎭, D、m n22⎛⎫⎪⎝⎭,7. (2013年山东日照3分)四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(-1,-2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7其中正确的是【】A. ①②B.①③C.②③D.③④8. (2013年山东威海3分)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是【】A. ∠C=2∠AB. BD平分∠ABCC. S△BCD=S△BODD. 点D为线段AC 的黄金分割点∴BD是∠ABC的角平分线,正确,故本选项错误。

中考数学试题分类汇总《尺规作图》练习题

中考数学试题分类汇总《尺规作图》练习题

中考数学试题分类汇总《尺规作图》练习题(含答案)作角平分线1.如图,在△ABC中,∠B=30°,∠C=50°,通过观察尺规作图的痕迹,∠DAE的度数是35°.【分析】由线段垂直平分线的性质和等腰三角形的性质求得∠BAD=30°,结合三角形内角和定理求出∠CAD,根据角平分线的定义即可求出∠DAE的度数.【解答】解:∵DF垂直平分线段AB,∴DA=DB,∴∠BAD=∠B=30°,∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣30°﹣50°=100°,∴∠CAD=∠BAC﹣∠BAD=100°﹣30°=70°,∵AE平分∠CAD,∴∠DAE=∠CAD=×70°=35°,2.如图,在△ABC中,∠ABC>∠ACB.(1)尺规作图:在∠ABC的内部作射线BD,交AC于E,使得∠ABE=∠ACB;(不写作法,保留作图痕迹)(2)若(1)中AB=7,AC=13,求AE的长.【解答】解:(1)如图,射线BE即为所求作.(2)∵∠A=∠A,∠ABE=∠C,∴△ABE∽△ACB,∴=,∴=,∴AE=.3.如图,在△ABC中,∠C=90°.(1)求作:射线AD,使它平分∠BAC交BC于点D(请用尺规作图,保留作图痕迹,不写作法);(2)若BD:DC=2:1,BC=7.8cm,求点D到AB的距离.【分析】(1)是基本作图,利用直尺和圆规即可作出;(2)过点D作DE⊥AB于E.根据BD:DC=2:1,BC=7.8cm,可得DC,进而即可求点D到边AB的距离.【解答】解:(1)如图所示:(2)过点D作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE,∵BD:DC=2:1,BC=7.8cm,∴DC=7.8÷(2+1)=7.8÷3=2.6cm.∴DE=DC=2.6cm.∴点D到AB的距离为2.6cm.4.如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连接EF,BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,AC=2.判断△BEF的形状,并说明理由,再求出其面积.【解答】解:(1)如图所示:∠CAD的平分线AF即为所求;(2)△BEF是等边三角形;理由如下:∵∠BAD=45°,且∠CAD=2∠BAC,∴∠BAC=∠F AC=∠DAF=15°,∴∠BAF=30°,∵AC=AD,AF是∠CAD的平分线,∴AF⊥CD,∵点E是AC的中点,∴EF=AC=1,∵∠ABC=90°,∴BE=AC=1,∴BE=EF,∠BEC=∠BAE+∠ABE=2∠BAE=30°,∠FEC=∠F AE+∠AFE=2∠F AE=30°,∴∠BEF=60°,∴△BEF是等边三角形;S△BEF=×12=.5.如图,在Rt△ABC中,∠C=90°.(1)尺规作图:作∠A的角平分线AP交BC于点P;(保留作图痕迹,不写作法)(2)在(1)所作的图中,若AC=5,BC=12,求CP的长.【解答】解:(1)如图,AP即为所求;(2)在Rt△ABC中,∠C=90°.∵AC=5,BC=12,∴AB==13,过点P作PD⊥AB于点D,∵AP是∠CAB的平分线,PC⊥AC,PD⊥AB,∴PC=PD,在Rt△APC和Rt△APD中,,∴Rt△APC≌Rt△APD(HL),∴AC=AD=5,∴BD=AB﹣AD=13﹣5=8,∵BP=BC﹣CP=12﹣CP,在Rt△PBD中,根据勾股定理得PB2=PD2+BD2,∴(12﹣CP)2=CP2+82,∴CP=.作一个角等于另一个角6.如图,在△ABC中,∠ABC>∠C.(1)用直尺和圆规在∠ABC的内部作射线BM,使∠ABM=∠ACB(不要求写作法,保留作图痕迹);(2)若(1)中的射线BM交AC于D,AB=4,AC=6,求CD长.【分析】(1)利用基本作图(作一个角等于已知角)作∠ABM=∠ACB即可;(2)先证明△ABD∽△ACB,利用相似比求出AD,然后计算AC﹣AD即可.【解答】解:(1)如图,BM为所作;(2)∵∠ABD=∠C,∠BAD=∠CAB,∴△ABD∽△ACB,∴AB:AC=AD:AB,即4:6=AD:4,∴AD=,∴CD=AC﹣AD=6﹣=.7.观察用直尺和圆规作一个角等于已知角的示意图,能得出∠CPD=∠AOB的依据是()A.由“等边对等角”可得∠CPD=∠AOBB.由SSS可得△OGH≌△PMN,进而可证∠CPD=∠AOBC.由SAS可得△OGH≌△PMN,进而可证∠CPD=∠AOBD.由ASA可得△OGH≌△PMN,进而可证∠CPD=∠AOB【解答】解:由作法得OG=OH=PM=PN,GH=MN,根据“SSS”可判断△OGH≌△PMN,所以∠CPD=∠AOB.尺规作高、作垂线8.如图,已知钝角△ABC.(1)过钝角顶点B作BD⊥AC,交AC于点D(使用直尺和圆规,不写作法,保留作图痕迹);(2)若BC=8,∠C=30°,,求AB的长.【分析】(1)利用尺规作出BD⊥AC,垂足为D即可.(2)在Rt△BCD中求出BD,再在Rt△ABD中,求出AB即可.【解答】解:(1)如图,线段BD即为所求.(2)解:在Rt△BCD中,∵BC=8,∠C=30°∴BD=BC•sin30°=4,在Rt△ABD中,AB===10.作线段的垂直平分线9.如图,在▱ABCD中,AD>AB.(1)尺规作图:作DC边的中垂线MN,交AD边于点E(要求:保留作图痕迹,不写作法);(2)连接EC,若∠BAD=130°,求∠AEC的度数.【解答】解:(1)如图,直线MN,点E即为所求;(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=130°,∴∠D=50°∵MN垂直平分线段CD,∴ED=EC,∴∠D=∠ECD=50°,∴∠AEC=∠D+∠ECD=100°.10.(2022·广州从化区一摸)已知,如图,在Rt△ABC中,∠C=90°,AD平分∠CAB.(1)按要求尺规作图:作AD的垂直平分线(保留作图痕迹);【解答】解:(1)如图:分别以A、D为圆心,大于AD的长为半径作弧,两弧交于M、N,作直线MN,则直线MN即为AD的垂直平分线;11.如图,在△ABC中,AB=9,BC=6.(1)在AB上求作点E,使得EA=EC;(不写作法,保留作图痕迹)(2)若∠ACB=2∠A,求AE的长.【分析】(1)作线段AC的垂直平分线交AB于点E,连接EC即可;(2)证明△BCE∽△BAC,推出BC2=BE•BA,求出BE,可得结论.【解答】解:(1)如图,点E即为所求;(2)∵EA=EC,∴∠A=∠ECA,∵∠ACB=2∠A,∴∠BCE=∠A,∵∠B=∠B,∴△BCE∽△BAC,∴BC2=BE•BA,∴BE==4,∴AE=AB=EB=9﹣4=5.12.如图,在△ABC中,按以下步骤作图:①分别以点A,B为圆心,大于AB长为半径作弧,两弧交于M,N两点;②作直线MN交AC于点D,连接BD.若BD=BC,∠A=36°,则∠C的度数为()A.72°B.68°C.75°D.80°【解答】解:由作法可得MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=36°,∵∠BDC=∠A+∠DBC,∴∠BDC=72°,∵BD=BC,∴∠C=∠BDC=72°,即∠C的度数为72°.13.如图,在△ABC中,分别以A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点,直线PQ 交BC于点D,连接AD;再分别以A、C为圆心,大于AC的长为半径画弧,两弧交于M,N两点,直线MN交BC于点E,连接AE.若CD=11,△ADE的周长为17,则BD的长为6.【解答】解:由作法得PQ垂直平分AB,MN垂直平分AC,∴DA=DB,EA=EC,∵△ADE的周长为17,∴DA+EA+DE=17,∴DB+DE+EC=17,即BC=17,∴BD=BC﹣CD=17﹣11=6.14.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为5+5.【解答】解:∵AD的垂直平分线交AC于点F,∴F A=FD,∵AD平分∠BAC,∠BAC=60°,∴∠DAE=30°,∴DE=AD=5,∴AE===5,∴△DEF周长=DE+DF+EF=DE+F A+EF=DE+AE=5+5,复杂作图15.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.【分析】(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠P AB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的判定即可证得结论.【解答】解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC,∴PD∥AB.16.如图1,在△ABC中,D是AB边上的一点,小明用尺规作图,做法如下:如图2,①以B为圆心,任意长为半径作弧,交BA于F、交BC于G;②以D为圆心,BF为半径作弧,交DA于M;③以M为圆心,FG为半径作弧,两弧相交于N;④过点D作射线DN交AC于点E.若∠ADE=52°,∠C=78°,则∠A 的度数是50度.【解答】解:由作图可知DE∥BC,∴∠AED=∠C=78°,∴∠A=180°﹣∠ADE﹣∠AED=180°﹣52°﹣78°=50°,。

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题复习导学案尺规作图》(含答案)

中考数学专题练习《尺规作图》【知识归纳】一)尺规作图1.定义只用没有刻度的和作图叫做尺规作图.2.步骤①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.二)五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.三)基本作图的应用1.利用基本作图作三角形(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.2.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆).(2)作三角形的内切圆.【基础检测】1.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( )A .a =bB .2a +b =﹣1C .2a ﹣b =1D .2a +b =12.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm3.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)4.如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C .(1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A′B′C′D′.6.已知:线段a 及∠ACB .求作:⊙O ,使⊙O 在∠ACB 的内部,CO=a ,且⊙O 与∠ACB 的两边分别相切.7.如图,OA=2,以点A 为圆心,1为半径画⊙A 与OA 的延长线交于点C ,过点A 画OA 的垂线,垂线与⊙A 的一个交点为B ,连接BC(1)线段BC 的长等于 ; (2)请在图中按下列要求逐一操作,并回答问题:A B C①以点为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.【达标检测】一、选择题1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D 两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=.4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是。

2012、2013两年全国各地市中考数学模拟试题分类汇编 尺规作图

2012、2013两年全国各地市中考数学模拟试题分类汇编 尺规作图

图13CBA尺规作图一、选择题1、(2013年济宁模拟)某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A .小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法: 方法一:在底边BC 上找一点D ,连接AD 作为分割线; 方法二:在腰AC 上找一点D ,连接BD 作为分割线;方法三:在腰AB 上找一点D ,作DE ∥BC ,交AC 于点E ,DE 作为分割线;方法四:以顶点A 为圆心,AD 为半径作弧,交AB 于点D ,交AC 于点E ,弧DE 作为分割线.这些分割方法中分割线最短的是( )A .方法一B .方法二C .方法三D .方法四答案:A二、解答题1、(广东省2013初中学业水平模拟三)如图,要在一块形状为直角三角形(∠C 为直角)的铁皮上裁出一个半圆形的铁皮,需先 在这块铁皮上画出一个半圆,使它的圆心在线段AC 上, 且与AB 、BC 都相切.请你用直尺和圆规画出来(要求 用尺规作图,保留作图痕迹,不要求写作法).答案:(作出角平分线得3分,作出半圆再得2分,小结1分,共6分)解:如图即为所求作图形。

O BCA2、(2013年杭州一模)(本小题满分8分)已知线段a和直角∠α:(1)用尺规作△ABC,使得∠C= ,BC=a , AB=2a(保留作图痕迹,不写画法);(2)用尺规作△ABC的中线CD和角平分线CE(保留作图痕迹,不写画法);(3)求出∠DCE的度数.答案:(1)∠C 线段BC=a ,AB= 2a(2)中线;角平分线;(3)求出∠C一半45°;求出∠ACD=30°(或∠DCB=60°);结论∠DCE=15°3、(.2013江西省新余市一摸).新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A 和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)答案:4. 已知:如图,点C 、E 均在直线AB 上. (1)在图中作∠FEB ,使∠FEB =∠DCB (保留作图痕迹,不写作法); (2)请说出射线EF 与射线CD 的位置关系. 答案:(1)在图中作∠FEB ,使∠FEB =∠DCB 有两种情况:即射线EF 与射线CD 在直线AB 的同侧,另一个则在直线AB 的两侧,如图所示.作出一种得3分,两种都作出的得5分,若没有作图痕迹则扣1分.(2)若射线EF 与射线CD 在直线AB 的同侧,则直线EF 与直线CD 平行;--------7分 若射线EF 与射线CD 在直线AB 的两侧,则直线EF与直线CD 相交.-------- ---------8分5、(2013·湖州市中考模拟试卷10)如图,利用尺规求作所有点P ,使点P 同时满足下列两个条件:○1点P 到B A ,两点的距离相等;②点P 到直线21,l l 的距离相等.(要求保留作图痕迹, 不必写出作法)答案:作图略,即作AB 的垂直平分线和∠AOB 及其补角的角平分线,它们的交点即为21,P P , 每条线作出得3分,定出每点1分,共8分.6、(2013年广西南丹中学一摸)如图,已知△ABC ,且∠ACB =90°。

2013年全国各地中考数学试卷分类汇编:阅读理解-图表信息

2013年全国各地中考数学试卷分类汇编:阅读理解-图表信息

阅读理解、图表信息一.选择题1.(2013广西钦州,12,3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()2.1=,2.(2013·潍坊,12,3分)对于实数x,我们规定[]x表示不大于x的最大整数,例如[]1[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ). A .40 B .45 C .51 D .56答案:C考点:新定义问题.点评:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力.3.(2013•东营,6,3分)若定义:(,)(,)f a b a b =-, (,)(,)g m n m n =-,例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( )A .(2,3)-B .(2,3)-C .(2,3)D .(2,3)--答案:B 解析:由题意得f(2,3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),故选B .4.(2013浙江湖州,10,3分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为点是抛物线的内接格点三角形.......的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )A .16B .15C .14D .13【答案】C【解析】如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=-x 2+4x ,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y 轴的抛物线条数是:7+7=14.故选C .【方法指导】本题是二次函数综合题型,主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.根据在OB 上的两个交点之间的距离为3 可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.二.填空题1.(2013·鞍山,14,2分)刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m ,再将实数对(m ,1)放入其中后,得到实数是 .考点:代数式求值.专题:应用题.分析:观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解. 解答:解:根据所给规则:m =(-1)2+3-1=3∴最后得到的实数是32+1-1=9.点评:依照规则,首先计算m 的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.2.(2013·潍坊,12,3分)对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ). A .40 B .45 C .51 D .56答案:C考点:新定义问题.点评:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力.3.(2013•东营,6,3分)若定义:(,)(,)f a b a b =-, (,)(,)g m n m n =-,例如(1,2)(1,2)f =-,(4,5)(4,5)g --=-,则((2,3))g f -=( )A .(2,3)-B .(2,3)-C .(2,3)D .(2,3)--答案:B 解析:由题意得f(2,3)=(-2,-3),所以g(f(2,-3))=g(-2,-3)=(-2,3),故选B .4.(2013山东临沂,19,3分)对于实数a 、b ,定义运算“*”:a *b =22()().a ab a b ab b a b ⎧-⎪⎨-⎪⎩≥,<例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=_________________.【答案】3或-3.【解析】可以用公式法求出方程x 2-5x +6=0的两个根是2和3,可能是x 1=2,x 2=3,也可能是x 1=3,x 2=2,根据所给定义运算可知原题有两个答案.【方法指导】用公式法或因式分解法求出方程对两个根.【易错点分析】忽视讨论思想,会少一种情况.5.(2013浙江台州,16,5分)任何实数a ,可用[]a 表示不超过a 的最大整数,如[]4=4, []3=1,现对72进行如下操作:72 第1次 []72=8第2次 []8=2第3次 []2=1,这样对72只需进行3次操作后变为1,类似地,①对81只需进行 次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是 .【答案】:3;255.【解析】①首先理解[]a 的意义,它表示不超过a 的最大整数,然后仿照“72”的操作,81 =9=3第=1,,所以对81只需进行 3次操作后变为1;②只需进行3次操作后变为1的所有正整数中找出最大的,需要进行逆向思维,若=1,则a可以取的最大整数为3;若=3,则a可以取的最大整数为15;若=15,则a可以取的最大整数为255,∴最大为255.【方法指导】本题考查学生的阅读理解能力和算术平方根的计算,本题定义了一种新的运算,需要学生清楚如何计算,并且能够结合算术平方根的运算,进行求值计算。

2013年中考数学试卷说明

2013年中考数学试卷说明

2013年中考数学试卷说明总体原则上与去年保持一致。

即选择题8个,每个3分,填空题6个,每个3分,作图题一个,4分,解答题9个,共74分;具体说明如下:出题原则,参考三个方面:1、6本教科书,2、升学复习指导,3、九年级的同步与探究;原则上不拔高。

难度:低:中:高=4:4:21、关注基础,面向全体,只要付出努力,都会得到一个基础分。

2、适当增加中高档题目的思维含量。

各题分析1-14题,为选择题、填空题,要考察如下内容:1、一个数的相反数、倒数、绝对值、平方根、立方根等2、三视图3、近似数及有效数字4、中心对称轴对称5、圆中:(1)圆周角圆心角(2)垂径定理(3)圆锥弧长侧面积(4)直线与圆、圆与圆的位置关系(5)圆心角弦弧之间关系(6)切线(垂直)(7)直径与圆周角(考2-3个题)6、估算(摸球)7、坐标变换8、一次函数与反比例函数9、列方程解应用题(只列方程,要用原始数据,不用化简)10、图形的旋转平移折叠等11、方差(不计算)极差平均数众数中位数12、实数的计算13、找规律15题作图题,主要考察四种基本作图:1.做一条线段等于已知线段,2.做一个角等于已知角,3.做线段的垂直平分线,4.做一个角的平分线。

本题无计算,仅为以上四种基本作图的组合。

除本题的作图用铅笔画图外,其他题目包括本题结论必须用你答其他题的钢笔或签字笔答题。

做圆时,必须做出圆心和半径,内切圆的半径可以用三角板直接做垂直,标上一个垂直符号就行。

其他如中垂线必须用尺规,不能用三角板直接做垂直。

16题主要考察1.方程(组)(一元一次、一元二次、二元一次、分式),其中一元二次方程要求用配方法解,分式方程需要检验。

2.一元一次不等式组。

3分式的简单加减乘除化简运算(不超过2个分式)。

(8分)17题考察扇形、折线、条形统计图,理解同样数据不同的抽样有不同的结果,知道样本、总体、个体的意义,会计算平均数、极差,会有方差的值考虑数据的稳定性(不需要记住方差计算公式);会读信息,会处理信息。

重庆2013年中考20题作图

重庆2013年中考20题作图

重庆2013年中考数学作图题专训一.对称平移类1.(11·绍兴)分别按下列要求解答:(1)在图1中,作出⊙O 关于直线l 成轴对称的图形;(2)在图2中,作出△ABC 关于点P 成中心对称的图形.l图1m图22.(11·湛江)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣4,3),C (﹣1,1).(1)作出△ABC 向右平移5个单位的△A 1B 1C 1; (2)作出△ABC 关于x 轴对称的△A 2B 2C 2,并写出点C 2的坐标.3.(11·绥化)如图,每个小方格都是边长为1个单位长度的小正方形:(1)将△ABC 向右平移3个单位长度,画出平移后的△△A 1B 1C 1;(2)将△ABC 绕点O 旋转180°,画出旋转后的△A 2B 2C 2;(3)画出一条直线将△AC 1A 2的面积分成相等的两部分.二.旋转类1.(12·济宁)如图,在平面直角坐标系中,有一Rt △ABC ,且A (﹣1,3),B (﹣3,﹣1),C (﹣3,3),已知△A 1AC 1是由△ABC 旋转得到的. (1)请写出旋转中心的坐标是 ,旋转角是 度;(2)以(1)中的旋转中心为中心,分别画出△A 1AC 1顺时针旋转90°、180°的三角形;2.(12·阜新)如图,在由边长为1的小正方形组成的网格中,三角形ABC 的顶点均落在格点上. (1)将△ABC 绕点O 顺时针旋转90°后,得到△A 1B 1C 1.在网格中画出△A 1B 1C 1;(2)求线段OA 在旋转过程中扫过的图形面积;(结果保留π)3.(11·凉山州)在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (-1,2),B (-3,4),C (-2,9)。

(1)画出△ABC ,并求出AC 所在直线的解析式。

中考数学尺规作图题型大全

中考数学尺规作图题型大全

尺规作图题型大全1.已知,如图,在Rt△ABC中,∠C=90º,∠BAC的角平分线AD交BC边于D。

(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;2, 求线段BD、BE与劣弧DE (2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=3所围成的图形面积。

(结果保留根号和 )【答案】(1)如图,作AD的垂直平分线交AB于点O,O为圆心,OA为半径作圆。

判断结果:BC是⊙O的切线。

连结OD。

∵AD平分∠BAC ∴∠DAC=∠DAB∵OA=OD ∴∠ODA=∠DAB∴∠DAC=∠ODA ∴OD∥AC ∴∠ODB=∠C∵∠C=90º∴∠ODB=90º即:OD⊥BC∵OD是⊙O的半径∴ BC是⊙O的切线。

(2) 如图,连结DE。

设⊙O的半径为r,则OB=6-r,在Rt△ODB中,∠ODB=90º,2)2∴ 0B2=OD2+BD2 即:(6-r)2= r2+(3∴r=2 ∴OB=4 ∴∠OBD=30º,∠DOB=60º∵△ODB 的面积为3223221=⨯⨯,扇形ODE 的面积为ππ322360602=⨯⨯ ∴阴影部分的面积为32—π32。

2. 根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A 与∠B 有怎样的数量关系时才能完成以上作图?更多学习方法和资料免费下载,添加微信youshuxue 并举例验证猜想所得结论。

(1)如图①△ABC 中,∠C=90°,∠A =24°①作图: ②猜想: ③验证:(2)如图②△ABC 中,∠C =84°,∠A =24°.①作图: ②猜想: ③验证:CB A(第23题图①)(第23题图②)CBA【答案】(1)①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,在边AB上找出所需要的点D,则直线CD即为所求………………2分②猜想:∠A+∠B=90°,………………4分③验证:如在△ABC中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。

尺规作图(中考典型题例)

尺规作图(中考典型题例)

AA
CD
C
尺规作图----中考典型题例
P
【典型例题】如图,⊙O与直线l相离,请用尺规
在⊙O上找一点P,使其到直线l的距离最长。
O
(保留作图痕迹,不写作法)
C
l
【规范解答】解:如图,所得点P即为求作的点。
尺规作图----中考典型题例
【典型例题】如图,已知△ABC,请用尺规作图法,
A
在BC边上求作点D,使得点D到边AB和AC的距离相等。
N B
A
M C
尺规作图----中考典型题例
【典型例题】如图,在△ABC中,请用尺规在边 AB上作一点D,使∠ADC=2∠B. (保留作图痕迹,不写作法)
B 【规范解答】解:如图,所得点D即为求作的点。
A D
C
尺规作图----中考典型题例
【典型例题】如图,点B在AD上,点C在AD外,连接 AC,BC. 请用尺规作图法,过点B作直线BP,使BP∥AC。 (保留作图痕迹,不写作法)
AA
E
F
【规范解答】解:如图,菱形AEDF即为求作图形。 B B
DD CC
尺规作图----中考典型题例
【典型例题】如图,点D为△ABC的边AB的中点。
请用尺规在AC上找一点E,
使������△������������������
=
������ ������
������△������������������。
【规范解答】解:如图,所得直线BP即为求作。
A
C
P
B
D
尺规作图----中考典型题例
【典型例题】如图,在△ABC中,请用尺规作图法, 在AC上求作一点D,使△ABC∽△BDC。 (保留作图痕迹,不写作法)

陕西中考题尺规作图题(含答案)

陕西中考题尺规作图题(含答案)

尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。

五种基本作图:1、作一条线段等于已知线段;2、作一个角等于已知角;3、作已知线段的垂直平分线;4、作已知角的角平分线;5、过一点作已知直线的垂线;题目一:作一条线段等于已知线段。

已知:如图,线段a .求作:线段AB,使AB = a .作法:①作射线AP ;②在射线AP上截取AB=a . 则线段AB就是所求作的图形。

B P 〔作线段等于已知线段)题目二:作已知线段的中点。

已知:如图,线段MN.求作:点0,使M0=N0 (即0是MN的中点).作法:①分别以M、N为圆心,大于1/2MN 的相同线段为半径画弧,两弧相交于P, Q ;②连接PQ交MN于0 .则点0就是所求作的MN的中点。

(试问:PQ与MN有何关系?)Q (作线段的中点)题目三:作已知角的角平分线。

已知:如图,/ A0B,求作:射线0P,使/AOP = Z BOP (即0P平分/ 作法:①以0为圆心,任意长度为半径画弧,分别交0A,0B于M, N ;②分别以M、N为圆心,大于1/2MN的相同线段为半径画弧,两弧交 / A0B内于P;③作射线0P。

则射线0P就是/ A0B的角平分线。

AOB )。

(作角平分线)题目四:作一个角等于已知角。

(请自己写岀已知”求作”并作岀图形,不写作法):已知两边及夹角作三角形)题目七:已知两角及夹边作三角形。

已知:如图,Z ,Z ,线段m .求作:△ ABC ,使 Z A= Z ,Z B= Z ,AB=m. 作法:① 作线段AB=m ;② 在AB 的同旁作Z A= Z ,作Z B= Z ,Z A 与Z B 的另一边相交于C o则厶ABC 就是所求作的图形(三角形)。

(已知两角及夹边作三角形)题目五:已知三边作三角形。

已知:如图,线段 a , b , c. 求作:△ ABC ,使 AB = c , AC = b , BC = a. 作法: ① 作线段AB = c ; ② 以A 为圆心b 为半径作弧,以B 为圆心 a 为半径作弧与前弧相交于 C ; ③ 连接AC ,BC o 则厶ABC 就是所求作的三角形。

尺规作图-历届中考真题汇总专题(含解析答案)(原卷版)

尺规作图-历届中考真题汇总专题(含解析答案)(原卷版)

备战2015中考系列:数学2年中考1年模拟第四篇图形的性质专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种基本作图1.画一条线段等于已知线段会用尺规作图法完成五种基本作图,了解五种基本作图的理由,会使用精练、准确的作图语言叙述画图过程.2.画一个角等于已知角3.画线段的垂直平分线4.过已知点画已知直线的垂线5.画角平分线会利用基本作图画较简单的图形.1.画三角形会利用基本作图画三角形较简单的图形.2.画圆会利用基本作图画圆.☞2年中考[2014年题组]1. (2014·安顺)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( )A.SAS B.SSS C.ASA D.AAS2.(2014涉县一模)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:甲:①作OD的垂直平分线,交⊙O于B,C两点.②连接AB,AC.△ABC即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断( )A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确3.(2014·玉林)如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是.4. (2014•河南)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为5. (2014•梅州)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE,则:(1)∠ADE= ;(2)AE EC;(填“=”“>”或“<”)(3)当AB=3,AC=5时,△ABE的周长=[2013年题组]1. (2013年江苏南通3分)如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是【】A.以点B为圆心,OD为半径的弧B.以点C为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧2. (2013年山西省8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。

2013年全国各地中考数学试卷分类汇编:尺规作图

2013年全国各地中考数学试卷分类汇编:尺规作图

尺规作图一.选择题1.(2013四川遂宁,10,4分)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.2.(2013湖北省咸宁市,1,3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为(). 3(2013福建福州,8,4分)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A .2.5cmB .3.0cmC .3.5cmD .4.0cm 【答案】B【解析】首先根据题意画出图形,由“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD 是平行四边形,再根据平行四边形的性质对角线相等,得出AD =BC .最后利用刻度尺进行测量即可. 【方法指导】此题主要考查了复杂作图以及平行四边形的判定和性质,关键是正确理解题意,画出图形.二.填空题三.解答题1.(2013白银,21,8分)两个城镇A 、B 与两条公路l 1、l 2位置如图所示,电信部门需在C 处修建一座信号反射塔,要求发射塔到两个城镇A 、B 的距离必须相等,到两条公路l 1,l 2的距离也必须相等,那么点C 应选在何处?请在图中,用尺规作图找出所有符合条件的点C .(不写已知、求作、作法,只保留作图痕迹)A B C2.(2013兰州,22,8分)如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)考点:作图—应用与设计作图.分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB 的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解答:解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.3.(2013贵州省六盘水,24,10分)(1)观察发现如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.(2)实践运用如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.(3)拓展延伸如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN 的值最小,保留作图痕迹,不写作法.CE=的度数为的中点得到∠OA=CE=BE=故答案为的度数为的中点,OA=,故答案为4.(2013湖北宜昌,18,7分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的性状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)考点:作图—复杂作图.分析:先作一个角等于已知角,即∠MBN=∠O,在边BN上截取BC=a,以射线CB为一边,C为顶点,作∠PCB=2∠O,CP交BM于点A,△ABC即为所求.解答:解:如图所示:.点评:本题主要考查了基本作图,关键是掌握作一个角等于已知角的基本作图方法.6. (2013杭州8分)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.【思路分析】根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.【解析】如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.【方法指导】此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.2. 2013•嘉兴12分)小明在做课本“目标与评定”中的一道题:如图1,直线a,b所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图2,画PC∥a,量出直线b与PC的夹角度数,即直线a,b所成角的度数.(1)请写出这种做法的理由;(2)小明在此基础上又进行了如下操作和探究(如图3):①以P为圆心,任意长为半径画圆弧,分别交直线b,PC于点A,D;②连结AD并延长交直线a于点B,请写出图3中所有与∠PAB相等的角,并说明理由;(3)请在图3画板内作出“直线a,b所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹.【思路分析】1)根据平行线的性质得出即可;(2)根据题意,有3个角与∠PAB相等.由等腰三角形的性质,可知∠PAB=∠PDA;又对顶角相等,可知∠BDC=∠PDA;由平行线性质,可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出线段AB的垂直平分线EF,由等腰三角形的性质可知,EF是顶角的平分线,故EF即为所求作的图形.【解析】(1)PC∥a(两直线平行,同位角相等);(2)∠PAB=∠PDA=∠BDC=∠1,如图,∵PA=PD,∴∠PAB=∠PDA,∵∠BDC=∠PDA(对顶角相等),又∵PC∥a,∴∠PDA=∠1,∴∠PAB=∠PDA=∠BDC=∠1;(3)如图,作线段AB的垂直平分线EF,则EF是所求作的图形.【方法指导】本题涉及到的几何基本作图包括:(1)过直线外一点作直线的平行线,(2)作线段的垂直平分线;涉及到的考点包括:(1)平行线的性质,(2)等腰三角形的性质,(3)对顶角的性质,(4)垂直平分线的性质等.本题借助实际问题场景考查了学生的几何基本作图能力,是一道好题.题目篇幅较长,需要仔细阅读,理解题意,正确作答.7.(2013山西,21,8分)(本题8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。

中考尺规作图及衍生题型

中考尺规作图及衍生题型

中考尺规作图及衍⽣题型尺规作图及衍⽣题型1、垂直平分线上任意⼀点到线段两端点的距离相等2、⾓平分线上任意⼀点到⾓两边的距离相等3、轴对称4、旋转5、圆6、等腰三⾓形、直⾓三⾓形(等腰两圆⼀线,,直⾓画圆,点到直线的距离判断点的个数)7、固定⾓(两定点,⼀动点形成固定⾓,常⽤⼿段确定圆⼼、半径画圆)8、⾯积等分9、黄⾦分割 10、相似及位似类型⼀1、为了推进农村新型合作医疗制度改⾰,准备在某镇新建⼀个医疗点P ,使P 到该镇所属A 村、B 村、C 村的村委会所在地的距离都相等(A 、B 、C 不在同⼀直线上,地理位置如下图),请你⽤尺规作图的⽅法确定点P 的位置.要求:写出已知、求作;不写作法,保留作图痕迹.2、如图,在平⾯直⾓坐标系中,点A (0,8),点B (6,8).(1)只⽤直尺(没有刻度)和圆规,求作⼀个点P ,使点P 同时满⾜下列两个条件(要求保留作图痕迹,不必写出作法)①点p 到A ,B 两点的距离相等;②点P 到∠xoy 的两边的距离相等. (2)直接写出点P 的坐标.3、尺规作图:某学校正在进⾏校园环境的改造⼯程设计,准备在校内⼀块四边形花坛内栽上⼀棵黄桷树。

如图,要求黄桷树的位置点P 到边AB 、BC 的距离相等,并且点P 到点A 、D 的距离也相等.请⽤尺规作图作出栽种黄桷树的位置点P (不写作法,保留作图痕迹).x y O B A D CBA4、如图,在ABC ?中,分别以点A 和点B 为圆⼼,⼤于12AB 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交BC 于点D ,连接AD .若ADC ?的周长为10,7AB =,则ABC ?的周长为()A.7B.14C.17D.20A类型⼆1、如图所⽰,AB//CD,∠ACD=072.⑴⽤直尺和圆规作∠C 的平分线CE ,交AB 于E ,并在CD 上取⼀点F ,使AC =AF ,再连接AF ,交CE 于K ;(要求保留作图痕迹,不必写出作法)⑵依据现有条件,直接写出图中所有相似的三⾓形﹒(图中不再增加字母和线段,不要求证明)2、(1)如图1,已知∠AOB ,OA =OB ,点E 在OB 边上,四边形AEBF 是平⾏四边形,请你只⽤..⽆刻度的直尺......在图中画出∠AOB 的平分线.(保留作图痕迹,不要求写作法)(2)如图2,在10×10的正⽅形⽹格中,点A (0,0)、B (5,0)、C (3,6)、D (-1,3),①依次连结A 、B 、C 、D 四点得到四边形ABCD ,四边形ABCD 的形状是▲ . ②在x 轴上找⼀点P ,使得△PCD 的周长最短(直接画出图形,不要求写作法);此时,点P 的坐标为▲,最短周长为A F O EB ABC D3、已知:如图1,⼀次函数y=mx+5m的图像与x轴、y轴分别交于点A、B,与函数y=-23x的图像交于点C,点C的横坐标为-3.(1) 求点B的坐标;(2) 若点Q为直线OC上⼀点,且S△QAC=3S△AOC,求点Q的坐标;(3) 如图2,点D为线段OA上⼀点,∠ACD=∠AOC.点P为x轴负半轴上⼀点,且点P到直线CD和直线CO的距离相等.①在图2中,只利⽤圆规.....作图找到点P的位置;(保留作图痕迹,不得在图2中作⽆关元素.)②求点P的坐标.类型三A、B两所学校在⼀条东西⾛向公路的同旁,以公路所在直线为x轴建⽴如图所⽰的平⾯直⾓坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)⼀辆汽车由西向东⾏驶,在⾏驶过程中是否存在⼀点C,使C点到A、B两校的距离相等,如果有?请⽤尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建⼀游乐场P,使游乐场到两校距离之和最⼩,通过作图在图中找出建游乐场P的位置,并求出它的坐标.COA xyB(图1)COA D xyB(图2)COA D xyB(备⽤图)类型四1、我们学习过:在平⾯内,将⼀个图形绕⼀个定点沿着某⼀个⽅向转动⼀个⾓度,这样的图形运动叫做旋转,这个定点叫旋转中⼼.(1)如图①,△ABC≌△DEF,△DEF能否由△ABC通过⼀次旋转得到?若能,请⽤直尺和圆规画出旋转中⼼,若不能,试简要说明理由.图①(2)如图②,△ABC≌△MNK,△MNK能否由△ABC通过⼀次旋转得到?若能,请⽤直尺和圆规画出旋转中⼼,若不能,试简要说明理由.(保留必要的作图痕迹)图①图②4,点D的坐标是(5,0)∠BDO=15o,将△BDE旋转2、如图,在△BDE中,∠BDE=90o,BD=2到△ABC的位置,点C在BD上,则旋转中⼼的坐标是____________类型五1、如图,要在⼀块形状为直⾓三⾓形(∠C为直⾓)的铁⽪上裁出⼀个半圆形的铁⽪,需先在这块铁⽪上画出⼀个半圆,使它的圆⼼在线段AC上,且与AB、BC都相切.(1)请你⽤直尺圆规画出来(要求⽤直尺和圆规作⽤,保留作图痕迹,不要求写作法).(2)若AC=BC=4,求半圆的半径.2、如图,在单位长度为1的正⽅形⽹格中,⼀段圆弧经过⽹格的交点A 、B 、C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2a﹣b=1
D.
2a+b=1
考点:
作图—基本作图;坐标与图形性质;角平分线的性质.
分析:
根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.
解答:
解:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,
故2a+b+1=0,
整理得:2a+b=﹣1,
故选:B.
点评:
此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.
二、填空题
2.(2013湖北十堰,16,3分)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当 ≤r<2时,S的取值范围是 ﹣1≤S< ﹣ .
故答案为: ﹣1≤S< ﹣ .
点评:
本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式,并分析其增减性.
S=2(S扇形CDE﹣S△CDG)=2( ﹣ ×1× )= ﹣ ,
∴S= ﹣ .
当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.
当r= 时,DG= =1,∵CG=1,故θ=45°,
∴S= ﹣ = ﹣1;
若r=2,则DG= = ,∵CG=1,故θ=60°,
∴S= ﹣ = ﹣ .
∴S的取值范围是: ﹣1≤S< ﹣ .
考点:
扇形面积的计;等边三角形的性质.
分析:
首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值范围.
解答:
解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1.
在Rt△CDG中,由勾股定理得:DG= = .
设∠DCG=θ,则由题意可得:
尺规作图
一、选择题
1.(2013湖北咸宁,8,3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于 MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
A.
a=b
B.
2a+b=﹣1
C.
相关文档
最新文档