拉格朗日中值定理说课讲稿2

合集下载

拉格朗日中值定理

拉格朗日中值定理

实用标准拉格朗日中值定理引言众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ⋂AB 上至少有一点()(),Cf ζζ ,曲线在C 点的切线平行于x 轴,如图1,注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的.2拉格朗日()lagrange 中值定理若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()ab a f b f f--=ζ'拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧⋂AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2,从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理3.1 教材证法证明 作辅助函数 ()()()()f b f a F x f x x b a-=--显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使()()()()0''=---=ab a f b f f F ζζ.即()()()ab a f b f f --=ζ'.3.2 用作差法引入辅助函数法证明 作辅助函数 ()()()()()()⎥⎦⎤⎢⎣⎡---+-=a x a b a f b f a f x f x ϕ 显然,函数()x ϕ在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ϕϕ,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得()()()()0''=---=ab a f b f f ζζϕ,即 ()()()ab a f b f f --=ζ'推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ϕ,因为直线OT 的斜率与直线AB 的斜率相同,即有:()()ab a f b f K K AB OT --==,OT 的直线方程为:()()x ab a f b f y --=,于是引入的辅助函数为:()()()()x ab a f b f x f x ---=ϕ. (证明略)推广2 如图4过点()O a ,作直线''B A ∥AB ,直线''B A 的方程为:()()()a x ab a f b f y ---=,由()x f 与直线函''B A 数之差构成辅助函数()x ϕ,于是有:()()()()()a x ab a f b f x f x ----=ϕ. (证明略) 推广3 如图5过点作()O b ,直线''B A ∥AB ,直''B A 线的方程为()()()b x ab a f b f y ---=,由()x f 与直线A B ''函数之差构成辅助函数()x ϕ,于是有:()()()()()b x ab a f b f x f x ----=ϕ. 事实上,可过y 轴上任已知点()m O ,作//B A ∥AB 得直线为()()m x ab a f b f y +--=,从而利用()x f 与直线的''B A 函数之差构成满足罗尔中值定理的辅助函数()x ϕ都可以用来证明拉格朗日中值定理. 因m 是任意实数,显然,这样的辅助函数有无多个.3.3 用对称法引入辅助函数法在第二种方法中引入的无数个辅助函数中关于x 轴的对称函数也有无数个,显然这些函数也都可以用来证明拉格朗日中值定理.从几何意义上看,上面的辅助函数是用曲线函数()x f 减去直线函数,反过来,用直线函数减曲线函数()x f ,即可得与之对称的辅助函数如下:⑴ ()()()()()()x f a x a b a f b f a f x -⎥⎦⎤⎢⎣⎡---+=ϕ ⑵ ()()()()x f x ab a f b f x ---=ϕ⑶ ()()()()()x f a x a b a f b f x ----=ϕ ⑷ ()()()()()x f b x ab a f b f x ----=ϕ 等等.这类能用来证明拉格朗日中值定理的辅助函数显然也有无数个. 这里仅以⑵为例给出拉格朗日中值定理的证明.证明 显然,函数()x ϕ满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;()3()()()()ab a bf b af b a --==ϕϕ.由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()()()0''=---=ζζϕf a b a f b f ,从而有()()()ab a f b f f --=ζ',显然可用其它辅助函数作类似的证明.3.4 转轴法由拉格朗日中值定理的几何图形可以看出,若把坐标系xoy 逆时针旋转适当的角度α,得新直角坐标系XOY ,若OX 平行于弦AB ,则在新的坐标系下()x f 满足罗尔中值定理,由此得拉格朗日中值定理的证明.证明 作转轴变换ααsin cos Y X x -=,ααcos sin Y X y +=,为求出α,解出Y X ,得()()x X x f x y x X =+=+=ααααsin cos sin cos ① ()()x Y x f x y x Y =+-=+-=ααααcos sin cos sin ② 由()()b Y a Y =得()()ααααcos sin cos sin b f b a f a +-=+-,从而()()ab a f b f --=αtan ,取α满足上式即可.由()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,知()x Y 在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()b Y a Y =,因此,由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()0cos s in '=+-=αζαζf Y ,即()()()ab a f b f f --==αζtan ' 3.5 用迭加法引入辅助函数法让()x f 迭加一个含待顶系数的一次函数m kx y +=,例如令()()()m kx x f x +-=ϕ或()()m kx x f x ++-=ϕ,通过使()()b a ϕϕ=,确定出m k ,,即可得到所需的辅助函数.例如由 ()()()m kx x f x +-=ϕ,令()()b a ϕϕ=得()()()()m kb b f m ka a f +-=+-,从而()()ab a f b f k --=,而m 可取任意实数,这样我们就得到了辅助函数()()()m x ab a f b f x ---=ϕ,由m 的任意性易知迭加法可构造出无数个辅助函数,这些函数都可用于证明拉格朗日中值定理.3.6 用行列式引入辅助函数法证明 构造一个含()x f 且满足罗尔中值定理的函数()x ϕ,关键是满足()()b a ϕϕ=.我们从行列式的性质想到行列式()()()111xf x af a b f b 的值在,x a x b ==时恰恰均为0,因此可设易证()()()()111xf x x af a bf b ϕ=,展开得 ()()()()()()()x f b x bf a af x af b f a x bf x ϕ=++---.因为()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,所以()x ϕ在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()0a b ϕϕ==,所以由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()0'=ζϕ. 因为()()()()()0''=---=ζζϕf b a b f a f即: ()()()ab a f b f f --=ζ'3.7 数形相结合法引理 在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为()(),A a f a ,()(),B b f b ,()(),C c f c ,则ABC ∆面积为()()()1112ABCa f a Sb f b a cf c ∆=, 这一引理的证明在这里我们不做介绍,下面我们利用这一引理对拉格朗日中值定理作出一种新的证明. 这种方法是将数形相结合,考虑实际背景刻意构造函数使之满足罗尔中值定理的条件.如图, 设()(),c f c 是直线AB 与()y f x =从A 点开始的第一个交点,则构造()()()()211141af a x cf c xf x ϕ=, 易验证()x ϕ满足罗尔中值定理的条件:在闭区间[],a c 上连续,在开区间(),a c 内可导,而且()()b a ϕϕ=,则至少存在一点()b a ,∈ζ,使()/0ϕζ=,即:()()()()()()01111111'=ζζζf c f c a f a f c f ca f a但是()()()1101a f a cf c f ζζ≠,这是因为,如果 ()()()1101a f a c f c f ζζ=, 则()()()()f f c f c f a c c aζζ--=--,这样使得()(),f ζζ成为直线AB 与()y f x =从A 点的第一个交点,与已知矛盾).故()()()0111=ζζf c f ca f a,即()()()()()ac a f c f a b a f b f f --=--=ζ'. 若只从满足罗尔中值定理的要求出发,我们可以摈弃许多限制条件,完全可以构造()()()()111af a x bf b xf x ϕ=来解决问题,从而使形式更简洁,而且启发我们做进一步的推广:可构造()()()()()()()111g a f a x g b f b g x f x ϕ=来证明柯西中值定理. 3.8 区间套定理证法证明 将区间[],I a b =二等分,设分点为1ζ,作直线1x ζ=,它与曲线()y f x = 相交于1M ,过1M 作直线11L M ∥弦b a M M . 此时,有如下两种可能:⑴ 若直线11M L 与曲线()y f x =仅有一个交点1M ,则曲线必在直线11M L 的一侧.否则,直线11M L 不平行于直线a bM M . 由于曲线()y f x =在点1M 处有切线,根据曲线上一点切线的定义,直线11M L 就是曲线()y f x =在点1M 处的切线,从而()()()ab a f b f f --=1ζ.由作法知,1ζ在区间(),a b 内部,取ζζ=1于是有 ()()()ab a f b f f --=ζ ⑵ 若直线11M L 与曲线()y f x =还有除1M 外的其他交点,设()111,N x y 为另外一个交点,这时选取以11,x ξ为端点的区间,记作[]111,I a b =,有1,112b al I b a -⊇-<, ()()()()1111f b f a f b f a b a b a--=--,把1I 作为新的“选用区间”,将1I 二等分,并进行与上面同样的讨论,则要么得到所要求的点ζ,要么又得到一个新“选用区间”2I .如此下去,有且只有如下两种情形中的一种发生:(a) 在逐次等分“选用区间”的过程中,遇到某一个分点k ζ,作直线k x ζ=它与曲线()y f x =交于k M ,过点k M 作直线k k L M ∥弦b MM , 它与曲线()y f x =只有一个交点k M ,此时取ζζ=k 即为所求.(b) 在逐次等分“选用区间”的过程中,遇不到上述那种点,则得一闭区间序列{n I },满足:① 12I I I ⊇⊇⊇ []n n n b a I ,=② ()02n n n b ab a n --<→→∞ ③()()()()n n n n f b f a f b f a b a b a--=-- 由①②知,{n I }构成区间套,根据区间套定理,存在唯一的一点() 3,2,1=∈n I n ζ,此点ζ即为所求. 事实上ζ==∞→∞→n n n n b a lim lim ,()fξ存在()()()ζf a b a f b f nn n n n =--∞→lim ,由③lim n →∞()()()()n n n n f b f a f b f a b a b a--=--,所以()()()a b a f b f f --=ζ,从“选用区间”的取法可知,ζ确在(),a b 的内部. 3.9 旋转变换法证明 引入坐标旋转变换A : cos sin x X Y αα=- ⑴ ααcos sin Y X y += ⑵因为 22cos sin cos sin 10sin cos αααααα-∆==+=≠所以A 有逆变换/A :()()cos sin cos sin X x y x f x X x αααα=+=+= ⑶()()sin cos sin cos Y x y x f x Y x αααα=-+=-+= ⑷ 由于()x f 满足条件: ()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导,因此⑷式中函数()Y x 在闭区间[]b a ,上连续,在开区间()b a ,内可导.为使()Y x 满足罗尔中值定理的第三个条件,只要适当选取旋转角α,使()()Y a Y b =, 即()()sin cos sin cos a f a b f b αααα-+=-+,也即()()tan f b f a b aα-=-.这样,函数()Y x 就满足了罗尔中值定理的全部条件,从而至少存在一点()b a <<ζζ,使()()0cos si n =+=αζαζf Y 即()αζtan =f . 由于所选取旋转角α满足()()a b a f b f --=αt a n ,所以()()()ab a f b f f --=ζ.结论本论文仅是对拉格朗日中值定理的证明方法进行了一些归纳总结其中还有很多方法是我没有想到的,而且里面还有很多不足之处需要进一步的修改与补充. 通过这篇论文我只是想让人们明白数学并不是纯粹的数字游戏,里面包含了很多深奥的内容. 而且更重要的是我们应该学会去思考,学会凡是多问几个为什么,不要让自己仅仅局限于课本上的内容,要开动脑筋学会举一反三,不要单纯为了学习而学习,让自己做知识的主人!总之,数学的发展并非是无可置疑的,也并非是反驳的复杂过程,全面的思考问题有助于我们思维能力的提高,也有助于创新意识的培养.参考文献[1] 华东师范大学数学系. 数学分析(上册)(第二版)[M].北京:高等教育出版社.1991:153-161[2] 吉林大学数学系. 数学分析(上册)[M].北京:人民教育出版社.1979:194-196 [3] 同济大学应用数学系. 高等数学(第一册)[M].北京:高等教育出版社(第五版).2004:143-153[4] 周性伟,刘立民. 数学分析[M].天津:南开大学出版社.1986:113-124 [5] 林源渠,方企勤. 数学分析解题指南[M].北京:北京大学出版社.2003:58-67 [6] 孙清华等. 数学分析内容、方法与技巧(上)[M].武汉:华中科技大学出版社.2003:98-106[7] 洪毅. 数学分析(上册)[M].广州:华南理工大学出版社.2001:111-113[8] 党宇飞. 促使思维教学进入数学课堂的几点作法[J].上海:数学通报.2001,1:15-18 [9] 王爱云. 高等数学课程建设和教学改革研究与实践[J].西安:数学通报.2002,2:84-88 [10] 谢惠民等. 数学分析习题课讲义[M].北京:高等教育出版社.2003:126-135 [11] 刘玉莲,杨奎元等. 数学分析讲义学习指导书(上册)[M].北京:高等教出版社.1994:98-112[12] 北京大学数学力学系. 高等代数. 北京:人民教育出版社. 1978:124-135 [13] 裴礼文. 数学分析中的典型问题与方法[M].北京:高等教育出版社.1993:102-110 [14] 郑琉信.数学方法论[M].南京:广西教育出版社.1996:112-123 [15] 陈传璋等. 数学分析(上册)[M].北京:人民教育出版社.1983:87-92 [16] 李成章,黄玉民. 数学分析(上)[M].北京:科学出版社.1995:77-86附 录柯西中值定理若 ⑴ 函数()f x 与()g x 都在闭区间[]b a ,上连续; ⑵ ()x f '与()x g '在开区间()b a ,内可导;⑶ ()x f' 与()x g '在()b a ,内不同时为零;⑷ ()()g a g b ≠,则在()b a ,内至少存在一点ζ,使得()()()()a b a f b f g f --=ζζ''. 区间套定理若[]{},n n a b 是一个区间套,则存在唯一一点ζ,使得[],n n a b ζ∈,1,2,n = 或 n n a b ζ≤≤,1,2,n =。

说课:拉格朗日中值定理

说课:拉格朗日中值定理

二. 教法分析
(四)具体措施
根据以上的分析,本节课采用教师引导与学生 自主探究相结合,交流与练习相穿插的活动课 形式,以学生为主体,教师创设和谐、愉快的 环境及辅以适当的引导。同时,利用多媒体形 象动态的演示功能提高教学的直观性和趣味性, 以提高课堂效率。教学中注重数形结合,从形 的角度对概念理解和运用。在这个过程中培养 学生分析解决问题的能力,培养学生讨论交流 的合作意识。
情景 引入
几何 意义 具体 运用
复习 引入
2、时间安排:
新课引入约10分钟, 探索求知约10分钟, 灵活运用约20分钟, 小结提高约5分钟。
概念 建构
演 练
作业
过程反思
本节课设计为一节“科学探究 — 合作学习”的活 动课,在整个教学过程中学生以探索者的身份学 习,在问题解决过程中,通过自身的体验对知识 的认识从模糊到清晰,从直观感悟到精确掌握。 力求使学生体会微积分的基本思想,感受近似与精 确的统一,运动和静止的统一,感受量变到质变的 转化。希望利用这节课渗透辨证法的思想精髓。 教师在这个过程中始终扮演学生学习的协作者和 指导者。学生通过自身的情感体验,能够很快的 形成知识结构,并将其转化为数学能力。
教学过程 (三)灵活运用 透析内涵 求函数 f ( x) x 在[0,2]上满足拉 格朗日中值定理条件的 ?
2
设计意图
' f 解: ( x) 2 x,
由拉格朗日中值定理得:
22 02 2 (2 0)
这是学生思维上升的 又一个层次,设计该 题目的在于加深学生 对导数刻画函数单调 性的理解,通过它及 时发现学生的问题, 及时纠正,能对学生 情况给予及时评价。
拉格朗日中值定理,建立了函数值与导数值之间的定量 联系,因而可用中值定理通过导数去研究函数的性态,如单 调性、变化快慢和极值等性态,这是本章的关键内容。

拉格朗日中值定理讲课稿

拉格朗日中值定理讲课稿

尊敬的评委老师:大家下午好!我们知道,导数是研究函数以及曲线的某些形态的重要工具,而微分中值定理则是导数应用的理论基础,因此对微分中值定理的理解和掌握是非常必要的。

下面请同学们回忆一下我们上一节课所学的罗尔定理的基本内容和数学意义,罗尔定理有三个条件分别是在闭区间上连续、在开区间内可导和区间端点的函数值相等,结论是至少存在一点属于开区间,使得函数在这个点的导数值等于零,它的代数意义是方程函数的导数等于零在开区间内至少有一个实根;几何意义是,在曲线段AB上有平行于弦AB的切线存在,那么请大家思考这样一个问题:如果罗尔定理中第三个条件(也就是函数在区间端点的函数值不相等)不成立的话,在曲线段AB上还会有平行于弦AB的切线存在吗?带着这个问题,让我们走进今天的新课:拉格朗日中值定理及其应用。

首先我们来认识一下数学家拉格朗日,拉格朗日是一位法国数学家,他在方程论、解析函数论以及数论等方面做出了重要贡献,是对分析数学产生全面影响的数学家之一。

拉格朗日中值定理就是他的诸多成果中的一个。

下面我们来看一下拉格朗日中值定理的条件和结论,定理的条件是函数满足在闭区间上连续、在开区间内可导,结论是在开区间内至少存在一点,使得函数在该点的导数值等于……,该式也称为拉格朗日中值公式或微分中值公式。

我们来分析一下拉格朗日中值定理的数学意义,首先来看几何意义,通过图示可以看到弦AB的斜率为……,设曲线上两个点……处的切线分别为……,对应的横坐标为……,那么对应切线的斜率分别为……,如果满足……,可以直观的看到两条切线是和弦AB平行的,也就是说拉格朗日中值定理的几何意义是在曲线弧AB上有平行于弦AB的切线存在,这就回答了我们最初提出的问题,很容易知道,罗尔定理就是拉格朗日中值定理在区间的两个端点的函数值相等时的特殊情形。

这个定理的代数意义是方程在开区间内至少有一个实根。

下面我们来证明一下这个定理,首先来看一下该定理的证明思路,我们可以从它的代数意义出发,假设存在一个函数……,那么要证明的结论就化为证明方程……在开区间内至少有一个实根,而这恰恰与罗尔定理的结论不谋而合,因此可以考虑对函数在闭区间上应用罗尔定理加以证明,如何找到满足罗尔定理条件的函数就成为了证明中的一个难点,所以大家必须注意这个函数的构造方法,下面就是函数构造的思路,注意到待构造的函数满足……,而……,由导数的四则运算法则,……,因此可以选取……,其中…为任意常数。

拉格朗日(Lagrange)中值定理讲义

拉格朗日(Lagrange)中值定理讲义

拉格朗日(Lagrange )中值定理教学目的:1.熟练掌握中值定理及其几何意义2.能应用拉格朗日中值定理证明不等式3.了解拉格朗日中值定理的推论1和推论2教学重点:1.拉格朗日中值定理,拉格朗日中值定理的应用2.拉格朗日中值定理证明中辅助函数的引入。

3.利用导数证明不等式的技巧。

教学难点:中值定理的应用技巧 教学内容:1.罗尔定理的回顾与拉格朗日中值定理的引入我们简单回顾一下罗尔定理的内容:若函数满足下列条件: )(x f ①在闭区间[连续; ②在开区间]b a ,()b a ,可导; ③)()(b f a f = 则在(内至少存在一点)b a ,ξ,使得'()0f ξ=图1 图2罗尔定理的几何意义大家都清楚了如图1,现在我们把坐标系统绕原点在平面内的旋转α角,使在新坐标系如图2,大家看看有什么不同?2.拉格朗日中值定理 拉格朗日中值定理如果函数满足(1)在闭区间上连续, (2)在开区间内可导, 那么在内至少有一点)(x f (a <],[b a ),(b a ),(b a )b <ξξ, 使得等式成立。

)a )(()('b f a f −=−ξ)(b f 注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。

b 、若加上,则)()(b f a f =()()'()0f b f a f b a b aξ−===−−,即:,拉格朗日定理变为罗尔定理,换句话说罗尔定理是拉格朗日定理的特例。

'()0f ξ=拉格朗日(微分)中值定理几何意义我们从几何的角度看一个问题,如下:设连续函数()y f x =,a 与是它定义区间内的两点(a b b <),假定此函数在(,上处处可导,也就是在(,内的函数图形上处处有不垂直于)a b )a b x 轴的切线,那么我们从图2上容易看到,差商()y f x b =(f a)a b Δ−Δ−就是割线的斜率,若我们把割线作平行于自身的移动,那么至少有一次机会达到离割线最远的一点AB AB ()C x ξ=处成为曲线的切线,而切线的斜率为()f ξ′,由于切线与割线是平行的,因此()()()f b f a f b aξ−′=−成立。

拉格朗日中值定理证明及其应用

拉格朗日中值定理证明及其应用

拉格朗日中值定理证明及其应用1. 引言1.1 拉格朗日中值定理的引入拉格朗日中值定理是微积分中一个非常重要的定理,它由法国数学家约瑟夫·拉格朗日在18世纪提出并证明。

这个定理在微积分的发展中具有重要的地位,被广泛应用于函数的性质研究和最值问题的求解中。

拉格朗日中值定理可以理解为函数在某个区间上的平均变化率等于某个点的瞬时变化率。

具体地说,如果一个函数在闭区间[a, b]上连续且可导,那么在开区间(a, b)内一定存在一个点c,使得函数在点c处的导数等于函数在区间[a, b]上的平均变化率。

这个定理的引入可以帮助我们更好地理解函数的变化规律。

在实际问题中,我们经常需要研究函数在某个区间上的性质,比如函数的波动情况、增减性、极值等。

拉格朗日中值定理提供了一个有效的工具,可以帮助我们准确地描述函数在某个区间上的特征,进而推导函数的性质并解决相关问题。

拉格朗日中值定理的引入为我们理解函数的变化规律提供了一种新的视角,为函数求值、曲线求导和最值问题等提供了重要的理论支撑。

在接下来的文章中,我们将深入探讨拉格朗日中值定理的数学表述、证明过程以及在不同领域中的应用。

1.2 拉格朗日中值定理的重要性拉格朗日中值定理作为微积分中的重要定理,具有非常重要的数学意义和实际应用价值。

在数学分析领域,拉格朗日中值定理是连接微积分中的微分和积分两个重要概念的桥梁,它可以帮助我们更深入地理解函数的性质和求值方法。

拉格朗日中值定理的重要性在于它提供了一种有效的方法来处理函数的平均变化率和瞬时变化率之间的关系。

通过该定理,我们可以准确地计算函数在某一区间上的平均斜率,并将其与函数在该区间某一点的瞬时斜率联系起来。

这对于研究函数的变化规律,求解函数的最值以及解决相关实际问题都具有重要作用。

拉格朗日中值定理还为我们提供了一种重要的数学工具,可以帮助我们证明一些关于函数的重要性质和定理。

通过应用拉格朗日中值定理,我们可以简化复杂的数学问题,减少证明的难度,提高证明的效率。

第四章中值定理与导数的应用(2)97679共75页

第四章中值定理与导数的应用(2)97679共75页

1 O 1 x
2
例7 求f(x)(x21)3的极.值
解 f(x)的定义 x( 域 ,: ),
f(x)2(x21 ) 1 32x 4x
3
33(x1 )x (1 )
令 f(x)0,得驻 x0,点
又x 1 ,x 1 时 ,f(x)不,存在
故极值可 x 1 疑 ,x0 点 ,x1 为 .
列表讨论单调性, 判别极值:
极大(小)值点 , 则该点就是函数的最大(小)值点 .
实际判断原则:
在处理实际问题f时 (x), C若 (I),且 在区I间 上只有唯一的可 一疑 个 x点 0,极值 而由实际问题函 可数 以 f(x断 )在定 区I间 上 存在 (小 )值 最 , x 0 大 必 则 为 f(x 点 )的 函最 数 大(小)值点.
例5. 设 f (x) 在 x0的某邻域内连续, 且 f(0)0,
lim f(x) 2,则在点 x0处 x01coxs
f(x)( D
).
(A) 不可导 ;
(B) 可导, 且 f(0)0;
(C) 取得极大值 ; (D) 取得极小值 .
提示: 利用极限的保号性 .
定理 可微f函 (x)在 数 x点 0处取极值的 f(x0必 )0.要
第二判别法
定理 设 f(x) C(U x0)(,)在 x0有二阶 , 导数
且 x 0 为 f( x ) 的 ( 即 f 驻 ( x 0 ) 0 ) ,点 则 (1 )f(x 0) 0 时 ,x 0为 f(x)的极 ; 大点 (2 )f(x 0) 0 时 ,x 0为 f(x)的极 ; 小点 ( 3 )f( x 0 ) 0 时 ,不x 能 0 是 f判 ( x 否 )的 定 为 .极
(3)确定 f (在x) 各子区间内的符号, 从而定出ƒ(x) 在各子区间的单调性。

拉格朗日中值定理

拉格朗日中值定理

一拉格朗日中值定理拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。

拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。

在现实应用当中,拉格朗日中值定有着很重要的作用。

拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。

拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻陈旧,出现创新的一个进程。

发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。

用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即这就是非常著名的费马定律,当一个函数在x=a处可以取得极值,并且函数是可导函数,则′。

著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。

在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。

最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]内任取两点和,并且函数在此闭区间内是连续的,′的最大值为A,′最小值为B,则的值必须是A和B之间的一个值。

这是拉格朗日定理最初的证明。

下述就是拉格朗日中值定理所要求满足的条件。

如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)内可导;那么这个函数在此开区间内至少存在着一点,使得′ξ.拉格朗日中值定理是导数的一个延伸概念,在导数运算中是的很基本概念。

例1:函数,即′。

当在开区间∞时,有′,在开区间∞单调递增;当在开区间∞时,有′,f(x)在开区间∞单调递减。

在,有′,。

由上述例子说明,想要确定一个函数的单调性可以通过求得这个函数的一阶导数来求得判断单调区间。

试讲拉格朗日中值定理

试讲拉格朗日中值定理

…则在()b a ,内至少存在一点ξ,使得()0'=ξf 。

2、新课讲解1797年,法国著名的数学家拉格朗日又给出了一个 微分中值定理,史称拉格朗日中值定理或微分中值定理, 但未证明。

拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础,我们首先看一下拉格朗日中值定理的内容: 2.1 拉格朗日中值定理 若函数()x f 满足下列条件:① 在闭区间[]b a ,连续 ②在开区间()b a ,可导则在开区间()b a ,内至少存在一点ξ,使得…………………………装………………………订………………………线…………………………ξ()x f y =()()()a b a f b f f --=ξ'注意:(1)深刻认识定理,是两个条件,而罗尔定理是三个条件。

(2)若加上()()b f a f =,则()()()00'=-=--=ab a b a f b f f ξ即()0'=ξf ,拉格朗日定理变为罗尔定理,换句话说罗尔定理是拉格朗日定理的特例。

(3)形象认识(几何意义),易知()()ab a f b f --为过B A 、两点的割线的斜率,()ξ'f 为曲线()x f 上过ξ点的切线的斜率:若()()()ab a f b f f --=ξ'即是说割线的斜率等于切线的斜率。

几何意义:若在闭区间[]b a ,上有一条连 续的曲线,曲线上每一点都存在切线,则曲线上至少有一点()()ξξf C ,,使得过点C 的切线平行于割线AB 。

它表明“一个可微函数的曲线段,必有一点的切线平行于曲线…………………………装………………………订………………………线…………………………CyOABMN()x f y =a ξxb……………山西水利职业技术学院教案纸…………………………装………………………订………………………线……………………………Array……………………装………………………订………………………线……………………………Array……………………装………………………订………………………线……………………………Array……………………装………………………订………………………线…………………………。

(完整版)拉格朗日中值定理

(完整版)拉格朗日中值定理

一拉格朗日中值定理拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。

拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。

在现实应用当中,拉格朗日中值定有着很重要的作用。

拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。

拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻陈旧,出现创新的一个进程。

发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。

用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即f(x+1)−f(x)≈01这就是非常著名的费马定律,当一个函数f(x)在x=a处可以取得极值,并且函数是可导函数,则f′(x)=0。

著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。

在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。

最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]内任取两点x0和x1,并且函数f(x)在此闭区间内是连续的,f′(x)的最大值为A,f′(x)最小值为B,则f(x1)−f(x0)的值必须是A和B之间的一个x1−x0值。

这是拉格朗日定理最初的证明。

下述就是拉格朗日中值定理所要求满足的条件。

如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)内可导;那么这个函数在此开区间内至少存在着.一点,使得f′(ξ)=f(b)−f(a)b−a拉格朗日中值定理是导数的一个延伸概念,在导数运算中是的很基本概念。

例1:函数f(x)=2x2−8,即f′(x)=4x。

当x在开区间(0,+∞)时,有f′(x) >0,f(x)在开区间(0,+∞)单调递增;当x在开区间(−∞,0)时,有f′(x)<0,f(x)在开区间(−∞,0)单调递减。

拉格朗日中值定理

拉格朗日中值定理
拉格朗日中值定理
-
1 定理的表述 3 定理的应用 5 定理的哲学意义
2 定理的证明 4 定理的推广 6 总结
1
定理的表述
定理的表述
拉格朗日中值定理,又被称为拉氏定理、有限增量定理,是微分学中的基本 定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点 的局部变化率的关系
定理的现代形式如下
如果函数f(x)在闭区间上
[
a,b]连续,在开区间(a,b)上可导,那么在开区间(a,b)内至少 存在一点ξ使得f'(ξ)=(f(b)-f(a))/(b-a)
2
定理的证明
定理的证明
以下是使用罗尔 中值定理来证明 拉格朗日中值定
理的步骤
定理的证明
01
02
03
构造新的函数:我们构造一 个新的函数F(x),该函数为 f(x)在[a,b]上的每一点的 值的两倍减去f(a)和f(b)的 差。即,F(x)=2f(x)-f(a)-
f(b)
使用罗尔中值定理:根据罗 尔中值定理,如果函数F(x) 在[a,b]上连续且在(a,b)上 可导,并且F(a)=F(b),那 么在(a,b)之间至少存在一
点ξ使得F'(ξ)=0
应用罗尔中值定理的结果: 根据我们在第一步构造的函 数,F'(x)=2f'(x)。所以,
F'(ξ)=0意味着 f'(ξ)=(f(b)-f(a))/(b-a)
能更好地理解和解释世界
6
总结
总结
1
总结
2
3
拉格朗日中值定理是微分学中的基本定理之一,它反 映了可导函数在闭区间上的整体的平均变化率与区间 内某点的局部变化率的关系
这个定理在数学和其他领域有着广泛的应用,同时也 具有深远的哲学意义

应用数学基础下课件第十五章导数的应用2

应用数学基础下课件第十五章导数的应用2

答案
2.确定函数y = x2 2x 3的单减区间.
答案
第二节 函数的极值及判定
定义
如果对x 附近的任意x(x x )都有f (x) f (x )成立,则f (x )
0
0
0
0
为极大值;若f (x) f (x )成立,则f (x )为极小值.
0
0
函数的极大,极小值统称极值,使函数取得极值的点极值点. 函数的极值是局部性的,它只限于x0的某一邻域内,通过函数 相比较才能显示出来.在一个区间上,函数可能有几个极大,
3
2
函数的图形如图15 4所示,在
1
点(1,2),(2,1)处有水平切线.
x
1
2
3
图154 例6示意图
例7 确定函数y 3 x2的单调区间.
解 因为
y'
23
1 x13
所以当x0时, y'为无穷大不存大;当x0时, y'0
区间(,0)上函数y 3 x2为单调减;当x 0时,
y' 0,区间(0,)上函数y 3 x2为单调增,函数的
图形如155所示
y
y 2 x2
O
x
图155 例7示意图
思考题
1.罗尔定理的三个条件是充要条件吗?能否去掉某个条
件?
答案
2.拉格朗日定理的结论有哪些形式?(举例至少写三种形式) 答案
3.请思考并写出罗尔定理与拉格朗日定理有何关系? 答案
课堂练习题
1.验证罗尔定理对y
=
lnsinx在
6
,
5
6
上的正确性.
例1 求函数y x2ex的极值. 解 因为, y' 2xex x2ex xex(2 x),令y' 0得驻点x 0,x 2. 当x0时, y'0;当0 x2时, y'0,当x2时y'0. 所以函数在x0处取得极小值y 0;在x2取得极大值y 4e2. 当函数在驻点处二阶导数存大时,有以下判定定理.

第三章第一讲---中值定理(2)

第三章第一讲---中值定理(2)


四、内容小结
(1) 微分中值定理的条件、结论及关系
Fermat引理
f (b) f (a)
Lagrange中值定理
F(x) x
Rolle定理
f (b) f (a) F(x) x
(2) 微分中值定理的应用
① 证明恒等式
② 证明不等式
③ 证明有关中值问题的结论
Cauchy中值定理
关键: 利用逆向思维
及 满足 : (1) 在闭区间 [ a , b ] 上连续
(2) 在开区间 ( a , b ) 内可导
(3)在开区间 ( a , b ) 内
至少存在一点
使 f (b) f (a) f ( ) . F (b) F (a) F( )
分析: F(b) F(a) F()(b a) 0 a b
设辅助函数
ba
即定理结论成立 .
思路: 利用逆向思维,通过寻找原函数的方法,找出一个满足罗尔定理条件 的函数。
拉格朗日中值定理的有限增量形式:
令 推论: 若函数
则 y f (x0 x)x (0 1)
在区间 I 上满足
则 在 I 上必为常数.
证: 在 I 上任取两点
氏中值公式 , 得
0
由ቤተ መጻሕፍቲ ባይዱ
的任意性知, 在 I 上为常数 .
上面两式相比即得结论. 错!
两个 不
一定相同
柯西定理的几何意义:
弦的斜率 切线斜率
x F (t)
y
f (t)
注意:
d d
y x
f (t) F (t )
y
f (b)
f (a)
o F(a)F( )
F(b) x
例4. 设

ch030104

ch030104
拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 若函数 f ( x) 在闭区
间 [a,b] 上连续, 在开区间 (a,b) 内可导,则在(a,b)
内至少有一点 (a b), 使得 f (a) f ( )(b a)
分析:条件中与罗尔定理相差 f (a) f (b).
由此可证得定理.
设 f ( x)在 (a,b) 内可导, x0, x0 x (a,b), 则有
f ( x0 x) f ( x0 ) f ( x0 x) x (0 1).

y f ( x0 x) x (0 1).
增量 y 的精确表达式
f
( )
f
(b) f ba
(a)

0

f (b) f (a) f ( )(b a).
拉格朗日中值公式
由此可证得定理.
拉格朗日(Lagrange)中值定理
f
( )
f
(b) f ba
(a)

0

f (b) f (a) f ( )(b a).
拉格朗日中值公式
在区间 I 上 f ( x) g( x) C (C 为常数).

拉格朗日(Lagrange)中值定理
f ( x0 x) f ( x0 ) f ( x0 x) x (0 1).

y f ( x0 x) x (0 1).
增量 y 的精确表达式
拉格朗日中值公式又称有限增量公式.
推论1 如果函数 f ( x) 在区间 I 上的导数恒为零,
存在一点 , 使 F ( ) 0, 即

拉格朗日中值定理洛必达法则综述

拉格朗日中值定理洛必达法则综述

讨论分析
这种通过分子与分母分别求导来确定未定式的
极限值的方法称作洛必达法则. 说明:如果把极限过程换成:
x x0 , x x0 , x , x , x
结论仍然成立.
讨论分析
例7 求 lim
x 0
e
3x
1 x
0 解 这是 型未定式. 由洛必达法则,得 0
lim

显然,f ( x ) 在 [ x1 , x2 ] 上满足拉格朗日中值定理的条件,
所以
f ( x2 ) f ( x1 ) f ( )( x2 x1 )( x1 x2 )
由于 f ( ) 0, 则 f ( x2 ) f ( x1 ) 0, 即 f ( x2 ) f ( x1 ) 即函数f (x)在区间 I 上任意两点的函数值相等, 故 f (x) 在区间 I 上为一常数.
曲线弧 AB内部每一点处都有不垂直于 x 轴的切线. 连接端点 A 和 B 作弦 AB , 则 f ( ) K AB f (b ) f (a ) . ba
讨论分析
2 f x x 2 x 在 [0, 2] 上满足拉格朗日定理么? 函数 例1
如果满足,求出使定理成立的 的值。 解
讨论分析
2、 型未定式
定理3-8 设
f ( x ), g( x ) 在点 x0
的左右近旁可导,且
g( x ) 0, 又满足条件:
(1) lim f ( x ) , lim g( x ) ;
x x0 x x0

f ( x ) (2) lim 存在(或为无穷大), x x0 g ( x )
2

2 ln x 1 = lim = 2 lim 0 x x x x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lagrange中值定理与函数的单调 性
说课稿
说课内容
说教材 说学生 说教学目标 说教学重点、难点 说教学方法 说教学过程
一、说教材
微分学的基本定理有Rolle、Lagrange、 cauchy中值定理。
Lagrange中值定理是其中最重要的定理, 是应用导数研究函数在区间上整体性态的有 力工具。
六、说教学过程
遵循着“复习旧知---讲授新知---总结归纳” 的原则,本节课的教学内容由以下六部分组 成:
导入
Fermat引理
Rolle定理
Lagrange中值定理
单调性定理
总结
费尔马引理与罗尔( Rolle )定理
x
f(x0)0
o
a bx
f()0.
罗尔(Rolle)定理与Lagrange中值定 理
Lagrange中值定理是建立函数单调性与导 数之间的关系的有力工具。
二、说学生
打好基础,够用为度,少讲推理,多讲应用
三、说教学目标
1.知识目标:记忆Lagrange中值定理的条 件和结论,了解其几何意义,并用它来建立 导数与函数单调性之间的关系。
2.能力目标:会求满足Lagrange中值定理
中的 值并应用Lagrange中值定理进行简
单的不等式、等式证明,会用单调性定理求 函数的单调区间。
四、说教学重点、难点
1.教学重点:
Lagrange中值定理及其推论的应用,会用单调 性定理求函数的单调区间。
2.教学难点:
Lagrange中值定理的证明。
五、说教学方法
讲授法 探究法 练习法 启发式
f()f(b)f(a).
ba
f()0.
令 a x 0 ,b x 0 x ,
f()f(b)f(a).
ba
y f ( x 0 x ) x ( 0 1 )
总结归纳
知识点总结:三个定理各自的条件和结论 方法总结:形象思维---抽象思维,特殊---
一般 课后作业:P99-4(1)、7
掌 握 行 政 事业 单位内 控建设 与实施 情况, 更好地 发挥信 息公开 对单位 内控建 设 的 促 进 和 监督作 用。下 面是美 文阅读 网小编 整理的 2017内 控建设 自查报 告,欢 迎 大 家 阅 读 参考! 【 2017内 控 建 设 自查报 告1】按 照省财 政厅《 关于报 送2017 年 下 半 年 行 政事业 单位内 部控制 工作总 结的通 知》的 要求, 为进一 步规范 内部控 制 工 作 , 加 强廉政 风险防 控机制 建设, 我办对 今年上 半年内 部控制 进行了 全面梳 理 与 总 结 , 现将有 关情况 汇报如 下: 一 、 动 员部 署 1、 认 真 组织学习《行 政 事 业 单 位 内部控 制规范 》和《 财政部 关于全 面推进 行政事 业单位 内部控 制建设 的 指 导 意 见 》,对 我办系 统贯彻 实施《 内控规 范》工 作进行 全面动 员部署 ,要求 全 体 人 员 按 照《行 政事业 单位内 部控制 规范》 目标和 原则, 规范工 作与管 理,完 善 单 位 内 部 控制建 设。通 过学习 使全体 人员认 识到实 施内控 规范是 落实党 十八大 精 神 的 重 要 举措, 是推进 财务管 理规范 化、科 学化的 积极实 践。它 可以提 升单位 财 务 管 理 水 平,提 高财政 资金的 使用效 益。 2、 部 署 机关 和下属单位认真贯彻 落 实 。 一 是 要求各 单位在 单位层 面须建 立决策 、执行 和监督 分离的 机制, 即决算 过 程 、 执 行 过程和 监督过 程相互 分离、 相互独 立、相 互影响 和制约 ;二是在 业务
相关文档
最新文档