2018年最新整理全国卷理科数学模拟试题(一)
【全国通用-2018高考推荐】高三数学(理科)高考一模测试题及答案解析
2018年高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数a﹣(a∈R,i是虚数单位)是纯虚数,则实数a的值为()A.﹣4 B.﹣1 C.1 D.42.以下四个命题,正确的是()①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在回归直线方程=0.2x+12中,当变量x每增加一个单位时,变量y一定增加0.2单位;④对于两分类变量X与Y,求出其统计量K2,K2越小,我们认为“X与Y有关系”的把握程度越小.A.①④ B.②③ C.①③ D.②④3.在如图所示的程序框图中,若输出i的值是3,则输入x的取值范围是()A.(4,10] B.(2,+∞)C.(2,4] D.(4,+∞)4.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64 C.96 D.1285.将函数f(x)的图象向左平移φ(0<φ<)个单位后得到函数g(x)=sin2x的图象,若对满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则φ=()A.B.C.D.6.长郡中学早上8点开始上课,若学生小典与小方匀在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为()A.B.C.D.7.已知函数f(x)=klnx+1(k∈R),函数g(x)=f(x2﹣4x+5),若存在实数k使得关于x的方程g(x)+sin x=0有且只有6个实数根,则这6个根的和为()A.3πB.6 C.12 D.12π8.在菱形ABCD中,A=60°,AB=,将△ABD折起到△PBD的位置,若三棱锥P﹣BCD的外接球的体积为,则二面角P﹣BD﹣C的正弦值为()A.B.C.D.9.已知双曲线﹣=1的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的离心率为()A.B.C. D.10.已知点A(1,﹣1),B(4,0),C(2,2),平面区域D由所有满足(1<λ≤a,1<μ≤b)的点P(x,y)组成.若区域D的面积为8,则a+b的最小值为()A.B.2 C.4 D.811.已知数列{a n}满足a n+a n﹣1=n(﹣1),S n是其前n项和,若S2017=﹣1007﹣b,且a1b>0,则+的最小值为()A.3﹣2B.3 C.2 D.312.设函数f(x)=x3+bx+c,η,ξ是方程f(x)=0的根,且f′(ξ)=0,当0<ξ﹣η<1时,关于函数g(x)=x3﹣x2+(b+2)x+(c﹣b+η)lnx+d在区间(η+1,ξ+1)内的零点个数的说法中,正确的是()A.至少有一个零点B.至多有一个零点C.可能存在2个零点D.可能存在3个零点二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知集合A={x∈R|x2﹣2x﹣3<0},B={x∈R|﹣1<x<m},若x∈A是x∈B的充分不必要条件,则实数m的取值范围为.14.在等差数列{a n}中,S n为数列{a n}的前n项和,d为数列{a n}的公差,若对任意n∈N*,都有S n>0,且a2a4=9,则d的取值范围为.15.设椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,若点P在椭圆C上,且直线PA2的斜率的取值范围[﹣2,﹣1],那么直线PA1斜率的取值范围是.16.已知kC n k=nC n﹣1k﹣1(1≤k≤n,且k,n∈N*)可以得到几种重要的变式,如:C n k,将n+1赋给n,就得到kC n+1k=(n+1)C n k﹣1,…,进一步能得到:1C n1+2C n2•21+…+nC n n•2n﹣1=nC n﹣10+nC n﹣11•21+nC n﹣12•22+…+nC n﹣1n﹣1•2n﹣1=n(1+2)n ﹣1=n•3n﹣1.请根据以上材料所蕴含的数学思想方法与结论,计算:C n0×+C n1×()2+C n2×()3+…+C n n×()n+1= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.18.《环境空气质量指标(AQI)技术规定(试行)》如表1:表1:空气质量指标AQI分组表AQI 0~5051~100101~150151~200201~300>300级别Ⅰ级Ⅱ级Ⅲ级Ⅳ级Ⅴ级Ⅵ级类别优良轻度污染中度污染重度污染严重污染表2是长沙市某气象观测点在某连续4天里的记录,AQI指数M与当天的空气水平可见度y(km)的情况.表2:AQI指数900 700 300 100空气可见度(千米)0.5 3.5 6.5 9.5表3是某气象观测点记录的长沙市2016年1月1日至1月30日AQI指数频数统计表.表3:AQI指数[0,200](201,400](401,600](601,800](801,1000]频数 3 6 12 6 3(1)设x=,根据表2的数据,求出y关于x的回归方程;(2)小李在长沙市开了一家小洗车店,经小李统计:AQI指数不高于200时,洗车店平均每天亏损约200元;AQI指数在200至400时,洗车店平均每天收入约400元;AQI指数大于400时,洗车店平均每天收入约700元.(ⅰ)计算小李的洗车店在当年1月份每天收入的数学期望.(ⅱ)若将频率看成概率,求小李在连续三天里洗车店的总收入不低于1200元的概率.(用最小二乘法求线性回归方程系数公式=,=﹣x)19.如图所示,异面直线AB,CD互相垂直,AB=,BC=,CD=1,BD=2,AC=3,截面EFGH分别与BD,AD,AC,BC相交于点E,F,G,H,且AB∥平面EFGH,CD ∥平面EFGH.(1)求证:BC⊥平面EFGH;(2)求二面角B﹣AD﹣C的正弦值.20.如图,抛物线C:x2=2py(p>0)的焦点为F(0,1),取垂直于y轴的直线与抛物线交于不同的两点P1,P2,过P1,P2作圆心为Q的圆,使抛物线上其余点均在圆外,且P1Q⊥P2Q.(1)求抛物线C和圆Q的方程;(2)过点F作倾斜角为θ(≤θ≤)的直线l,且直线l与抛物线C和圆Q依次交于M,A,B,N,求|MN||AB|的最小值.21.已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图,AB是圆O的直径,弦CE交AB于D,CD=4,DE=2,BD=2.(I)求圆O的半径R;(Ⅱ)求线段BE的长.选修4-4:坐标系与参数方程23.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.选修4-5:不等式选讲24.关于x的不等式lg(|x+3|﹣|x﹣7|)<m.(Ⅰ)当m=1时,解此不等式;(Ⅱ)设函数f(x)=lg(|x+3|﹣|x﹣7|),当m为何值时,f(x)<m恒成立?参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数a﹣(a∈R,i是虚数单位)是纯虚数,则实数a的值为()A.﹣4 B.﹣1 C.1 D.4【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义即可得出.【解答】解:复数a﹣=a﹣=a﹣(4+i)=(a﹣4)﹣i是纯虚数,∴a﹣4=0,解得a=4.故选:D.2.以下四个命题,正确的是()①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;③在回归直线方程=0.2x+12中,当变量x每增加一个单位时,变量y一定增加0.2单位;④对于两分类变量X与Y,求出其统计量K2,K2越小,我们认为“X与Y有关系”的把握程度越小.A.①④ B.②③ C.①③ D.②④【考点】两个变量的线性相关;线性回归方程.【分析】①抽样是间隔相同,故①应是系统抽样;②根据相关系数的公式可判断;③由回归方程的定义可判断;④k越小,“X与Y有关系”的把握程度越小.【解答】解:根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;在回归直线方程=0.2x+12中,当变量x每增加一个单位时,预报变量平均增加0.2个单位,故③为假命题相,若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小,故④为真命题.∴正确的是②④,故选:D.3.在如图所示的程序框图中,若输出i的值是3,则输入x的取值范围是()A.(4,10] B.(2,+∞)C.(2,4] D.(4,+∞)【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:设输入x=a,第一次执行循环体后,x=3a﹣2,i=1,不满足退出循环的条件;第二次执行循环体后,x=9a﹣8,i=2,不满足退出循环的条件;第三次执行循环体后,x=27a﹣26,i=3,满足退出循环的条件;故9a﹣8≤82,且27a﹣26>82,解得:a∈(4,10],故选:A4.某几何体的主视图和左视图如图(1),它的俯视图的直观图是矩形O1A1B1C1如图(2),其中O1A1=6,O1C1=2,则该几何体的侧面积为()A.48 B.64 C.96 D.128【考点】由三视图求面积、体积.【分析】由已知中的三视图可得该几何体是一个四棱柱,计算出底面的周长和高,进而可得几何体的侧面积.【解答】解:由已知中的三视图可得该几何体是一个四棱柱,∵它的俯视图的直观图是矩形O1A1B1C1,O1A1=6,O1C1=2,∴它的俯视图的直观图面积为12,∴它的俯视图的面积为:24,∴它的俯视图的俯视图是边长为:6的菱形,棱柱的高为4故该几何体的侧面积为:4×6×4=96,故选:C.5.将函数f(x)的图象向左平移φ(0<φ<)个单位后得到函数g(x)=sin2x的图象,若对满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则φ=()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数g(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数f(x)=sin(2x﹣2φ)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨设:x2=,x1=,即f(x)在x1=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=+kπ,k∈Z,由于0<φ<,不合题意,不妨设:x2=,x1=﹣,即f(x)在x1=﹣,取得最小值,sin[2×(﹣)﹣2φ]=﹣1,此时φ=﹣kπ,k∈Z,当k=0时,φ=满足题意.故选:D.6.长郡中学早上8点开始上课,若学生小典与小方匀在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为()A.B.C.D.【考点】几何概型.【分析】设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|40≤x≤60,40≤y≤60}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|40≤x≤60,40≤y≤60}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(55,60),由得B(40,45),则S△ABC=×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率为=,故选:A.7.已知函数f(x)=klnx+1(k∈R),函数g(x)=f(x2﹣4x+5),若存在实数k使得关于x的方程g(x)+sin x=0有且只有6个实数根,则这6个根的和为()A.3πB.6 C.12 D.12π【考点】根的存在性及根的个数判断.【分析】根据条件,先判断g(x)关于x=2对称,然后利用函数与方程之间的关系转化为两个函数的交点问题进行求解即可.【解答】解:∵y=x2﹣4x+5的对称轴为x=2,∴由g(x)=f(x2﹣4x+5),得g(x)关于x=2对称,由g(x)+sin x=0得g(x)=﹣sin x,作出函数y=﹣sin x的图象,若程g(x)+sin x=0只有6个根,则六个根两两关于x=2对称,则关于对称的根分别为x1和x2,x3和x4,x5和x6,则=2,=2,=2则x1+x2=4,x3+x4=4,x5+x6=4则这6个根之和为4+4+4=12,故选:C.8.在菱形ABCD中,A=60°,AB=,将△ABD折起到△PBD的位置,若三棱锥P﹣BCD的外接球的体积为,则二面角P﹣BD﹣C的正弦值为()A.B.C.D.【考点】二面角的平面角及求法.【分析】取BD中点E,连接AE,CE,则∠PEC是二面角P﹣BD﹣C的平面角,由此能求出二面角P﹣BD﹣C的正弦值.【解答】解:取BD中点E,连接AE,CE,则∠PEC是二面角P﹣BD﹣C的平面角,PE=CE=,三棱锥P﹣BCD的外接球的半径为R,则,解得R=,设△BCD的外接圆的圆心F与球心O的距离为OF=h,则CF==1,则R2=1+h2,即,解得h=,过P作PG⊥平面BCD,交CE延长线于G,过O作OH∥CG,交PG于H,则四边形HGFO是矩形,且HG=OF=h=,PO=R=,∴,解得GE=,PH=,∴PG=,CG=,∴PC==,∴cos∠PEC==﹣,∴sin∠PEC==.∴二面角P﹣BD﹣C的正弦值为.故选:C.9.已知双曲线﹣=1的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的离心率为()A.B.C. D.【考点】双曲线的简单性质.【分析】过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,可得|BF1|=2a,求出B的坐标,代入双曲线方程,可得a,b的关系,再由a,b,c的关系可得a,c的关系.由离心率公式计算即可得到.【解答】解:∵过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B 、C ,且|BC|=|CF 2|, ∴|BF 1|=2a ,设切点为T ,B (x ,y ),则利用三角形的相似可得==∴x=,y=,∴B (,)代入双曲线方程,整理可得b=(+1)a ,则c==a ,即有e==.故选C .10.已知点A (1,﹣1),B (4,0),C (2,2),平面区域D 由所有满足(1<λ≤a ,1<μ≤b )的点P (x ,y )组成.若区域D 的面积为8,则a+b 的最小值为( )A .B .2C .4D .8【考点】简单线性规划.【分析】如图所示,以AB ,AC 为邻边作平行四边形ABCD .分别作=,=,则由所有满足(1<λ≤a ,1<μ≤b )表示的平面区域D 为平行四边形DEQF.=,=,由于=(3,1),=(1,3),=6.可得==.=.由于S 平行四边形DEQF ==8(λ﹣1)(μ﹣1)=8,化为λμ=λ+μ,利用基本不等式的性质可得λ+μ≥4.由(1<λ≤a ,1<μ≤b ),可得,于是x+y=4(λ+μ)≤4(a+b ).即可得出.【解答】解:如图所示,以AB ,AC 为邻边作平行四边形ABCD .分别作=, =, 则由所有满足(1<λ≤a ,1<μ≤b )表示的平面区域D 为平行四边形DEQF .=,=,=(3,1),=(1,3),=6.∴=,∴==.∴==.∴S平行四边形DEQF==(λ﹣1)(μ﹣1)×=8(λ﹣1)(μ﹣1)=8,化为(λ﹣1)(μ﹣1)=1,∴λμ=λ+μ≥,可得λμ≥4,∴λ+μ≥4,当且仅当λ=μ=2时取等号.∵(1<λ≤a,1<μ≤b),∴==(1,﹣1)+λ(3,1)+μ(1,3),∴,∵1<λ≤a,1<μ≤b,∴x+y=4(λ+μ)≤4(a+b).∴a+b≥λ+μ≥4,∴a+b的最小值为4.故选:C.11.已知数列{a n}满足a n+a n﹣1=n(﹣1),S n是其前n项和,若S2017=﹣1007﹣b,且a1b>0,则+的最小值为()A.3﹣2B.3 C.2 D.3【考点】基本不等式.【分析】由已知递推式得到:a3+a2=3,a5+a4=﹣5,…a2017+a2016=﹣2017,累加可求S2017﹣a1,结合S2017=﹣1007﹣b,求得a1+b=1,代入+,展开后利用基本不等式求最值.【解答】解:由已知得:a3+a2=3,a5+a4=﹣5,…a2017+a2016=﹣2017,把以上各式相加得:S2017﹣a1=﹣1008,即:a1﹣1008=﹣1007﹣b,∴a1+b=1,∴+=+=3++2≥3+2,故选:D.12.设函数f(x)=x3+bx+c,η,ξ是方程f(x)=0的根,且f′(ξ)=0,当0<ξ﹣η<1时,关于函数g(x)=x3﹣x2+(b+2)x+(c﹣b+η)lnx+d在区间(η+1,ξ+1)内的零点个数的说法中,正确的是()A.至少有一个零点B.至多有一个零点C.可能存在2个零点D.可能存在3个零点【考点】函数零点的判定定理.【分析】由题意可得f(x)=x3+bx+c=(x﹣η)(x﹣ξ)2,进一步得到η+2ξ=0,2ηξ+ξ2=b,﹣ηξ2=c,且x∈(﹣2ξ,ξ),把函数g(x)求导,用η,ξ表示b,c,二次求导可得在区间(η+1,ξ+1)内h′(x)<0,则答案可求.【解答】解:∵η,ξ是方程f(x)=0的根,且f′(ξ)=0,∴f(x)=x3+bx+c=(x﹣η)(x﹣ξ)2,即得η+2ξ=0,2ηξ+ξ2=b,﹣ηξ2=c,且x∈(﹣2ξ,ξ),由0<ξ﹣η<1,得0<ξ,η<0,则g′(x)=x2﹣3x+(b+2)+=,令h(x)=x3﹣3x2+(b+2)x+c﹣b+η=x3﹣3x2+(2﹣3ξ2)x+2ξ3+3ξ2﹣2ξ=(x﹣1)3﹣(1+3ξ2)(x﹣1)+2ξ2﹣2ξ,则h′(x)=3(x﹣1)2﹣(3ξ2+1),当x∈(﹣2ξ+1,ξ+1)时,h′(x)<h′(﹣2ξ+1)=(3ξ+1)(3ξ﹣1)<0.∴h(x)在(η+1,ξ+1)上为减函数,而h(﹣2ξ+1)=﹣8ξ3+2ξ(3ξ2+1)+(2ξ3﹣2ξ)=0,当x∈(﹣2ξ+1,ξ+1)时,h′(x)<h′(﹣2ξ+1)=0,即当x∈(﹣2ξ+1,ξ+1)时,h′(x)<0,∴g(x)在(η+1,ξ+1)上为减函数,至多有一个零点.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知集合A={x∈R|x2﹣2x﹣3<0},B={x∈R|﹣1<x<m},若x∈A是x∈B的充分不必要条件,则实数m的取值范围为(3,+∞).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义建立条件关系即可求出m的取值范围.【解答】解:A={x∈R|x2﹣2x﹣3<0}={x|﹣1<x<3},若“x∈A”是“x∈B”的充分不必要条件,则A⊊B,则m>3,故答案为:(3,+∞)14.在等差数列{a n}中,S n为数列{a n}的前n项和,d为数列{a n}的公差,若对任意n∈N*,都有S n>0,且a2a4=9,则d的取值范围为.【考点】等差数列的通项公式.【分析】对任意n∈N*,都有S n>0,可得:a1>0,d≥0.由于a2a4=9,化为3d2+4a1d+﹣9=0,△>0,而且两根之和=﹣4d<0,而必须至少有一个正实数根.可得3d2﹣9≤0,d≥0,解出即可得出.【解答】解:对任意n∈N*,都有S n>0,∴a1>0,d≥0.∵a2a4=9,∴(a1+d)(a1+3d)=9,化为+4a1d+3d2﹣9=0,△=16d2﹣4(3d2﹣9)=4d2+36>0,∴方程有两个不相等的实数根,并且两根之和为﹣4d<0,而必须至少有一个正实数根.d=时,a1=0,舍去.则d的取值范围为.故答案为:.15.设椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,若点P在椭圆C 上,且直线PA2的斜率的取值范围[﹣2,﹣1],那么直线PA1斜率的取值范围是.【考点】椭圆的简单性质.【分析】椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,可知:A1,A2两点关于原点对称,设A1(x1,y1),A2(﹣x1,﹣y1),P(x0,y0),分别代入椭圆方程可得:=.由于直线PA2的斜率k1的取值范围[﹣2,﹣1],可得﹣2≤≤﹣1,==k2,可得k1k2=.即可得出.【解答】解:∵椭圆C:+=1与函数y=tan的图象相交于A1,A2两点,∴A1,A2两点关于原点对称,设A1(x1,y1),A2(﹣x1,﹣y1),=1,=.设P(x0,y0),则=1,可得:=.∴=.∵直线PA2的斜率k1的取值范围[﹣2,﹣1],∴﹣2≤≤﹣1,==k2,∴k1k2===.∴,∴﹣1,解得.那么直线PA1斜率的取值范围是.故答案为:.16.已知kC n k=nC n﹣1k﹣1(1≤k≤n,且k,n∈N*)可以得到几种重要的变式,如:C n k,将n+1赋给n,就得到kC n+1k=(n+1)C n k﹣1,…,进一步能得到:1C n1+2C n2•21+…+nC n n•2n﹣1=nC n﹣10+nC n﹣11•21+nC n﹣12•22+…+nC n﹣1n﹣1•2n﹣1=n(1+2)n ﹣1=n•3n﹣1.请根据以上材料所蕴含的数学思想方法与结论,计算:C n0×+C n1×()2+C n2×()3+…+C n n×()n+1= .【考点】组合及组合数公式;类比推理.【分析】由,可得,即,再利用二项式定理即可得出.【解答】解:由,得,,∴==.故案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知,a=2,,求△ABC的面积.【考点】两角和与差的正弦函数;正弦函数的单调性;正弦定理.【分析】(Ⅰ)利用两角和差的正弦公化简函数的解析式为sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可求得f(x)的单调递增区间.(Ⅱ)由已知,可得sin(2A+)=,求得A=,再利用正弦定理求得b的值,由三角形内角和公式求得C的值,再由S=ab•sinC,运算求得结果.【解答】解:(Ⅰ)=sin2xcos+cos2xsin+cos2x=sin2x+cos2x=(sin2x+cos2x)=sin(2x+).令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,函数f(x)的单调递增区间为[kπ﹣,kπ+],k∈z.(Ⅱ)由已知,可得sin(2A+)=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得sinC=,…∴S=ab•sinC==.18.《环境空气质量指标(AQI)技术规定(试行)》如表1:表1:空气质量指标AQI分组表AQI 0~5051~100101~150151~200201~300>300级别Ⅰ级Ⅱ级Ⅲ级Ⅳ级Ⅴ级Ⅵ级类别优良轻度污染中度污染重度污染严重污染表2是长沙市某气象观测点在某连续4天里的记录,AQI指数M与当天的空气水平可见度y(km)的情况.表2:AQI指数900 700 300 100空气可见度(千米)0.5 3.5 6.5 9.5表3是某气象观测点记录的长沙市2016年1月1日至1月30日AQI指数频数统计表.表3:AQI指数[0,200](201,400](401,600](601,800](801,1000]频数 3 6 12 6 3(1)设x=,根据表2的数据,求出y关于x的回归方程;(2)小李在长沙市开了一家小洗车店,经小李统计:AQI指数不高于200时,洗车店平均每天亏损约200元;AQI指数在200至400时,洗车店平均每天收入约400元;AQI指数大于400时,洗车店平均每天收入约700元.(ⅰ)计算小李的洗车店在当年1月份每天收入的数学期望.(ⅱ)若将频率看成概率,求小李在连续三天里洗车店的总收入不低于1200元的概率.(用最小二乘法求线性回归方程系数公式=,=﹣x)【考点】线性回归方程;列举法计算基本事件数及事件发生的概率.【分析】(1)利用公式计算线性回归方程系数,即可得到y关于x的线性回归方程;(2)(ⅰ)由表2知AQI指数不高于200的频率为0.1,AQI指数在200至400的频率为0.2,AQI指数大于400的频率为0.7,确定饭馆每天的收入的取值及概率,从而可求分布列及数学期望;(ⅱ)由(ⅰ),“连续三天洗车店收入不低于1200元包含1A2C,3B,2B1C,1B2C,3C 五种情况”,即可求出小李在连续三天里洗车店的总收入不低于1200元的概率.【解答】解:(1),,,,所以,,所以y关于x的回归方程是.(2)由表3知AQI不高于200的频率为0.1,AQI指数在200至400的频率为0.2,AQI 指数大于400的频率为0.7.设“洗车店每天亏损约200元”为事件A,“洗车店每天收入约400元”为事件B,“洗车店每天收入约700元”为事件C,则P(A)=0.1,P(B)=0.2,P(C)=0.7,(ⅰ)设洗车店每天收入为X元,则X的分布列为X ﹣200 400 700P 0.1 0.2 0.7则X的数学期望为EX=﹣200×0.1+400×0.2+700×0.7=550(元).(ⅱ)由(ⅰ),“连续三天洗车店收入不低于1200元包含1A2C,3B,2B1C,1B2C,3C 五种情况”,则“连续三天洗车店收入不低于1200元”的概率:.19.如图所示,异面直线AB,CD互相垂直,AB=,BC=,CD=1,BD=2,AC=3,截面EFGH分别与BD,AD,AC,BC相交于点E,F,G,H,且AB∥平面EFGH,CD ∥平面EFGH.(1)求证:BC⊥平面EFGH;(2)求二面角B﹣AD﹣C的正弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)推导出AB∥EF,CD∥HE,AB⊥BC,BC⊥DC,BC⊥EF,BC⊥EH,由此能证明BC⊥平面EFGH.(2)作,以C为原点,CD为x轴,CB为y轴,Cz为z轴,建立空间直角坐标系C﹣xyz,利用向量法能求出二面角B﹣AD﹣C的正弦值.【解答】证明:(1)∵AB∥平面EFGH,又∵AB⊂平面ABD,平面ABD∩平面EFGH=EF,∴AB∥EF,同理CD∥HE,∵,∴AB2+BC2=AC2,∴AB⊥BC,同理BC⊥DC,∴BC⊥EF,同理BC⊥EH,又∵EF,EH是平面EFGH内的两相交直线,∴BC⊥平面EFGH.(2)由(1)及异面直线AB,CD互相垂直知,直线AB,BC,CD两两垂直,作,以C 为原点,CD 为x 轴,CB 为y 轴,Cz 为z 轴,建立空间直角坐标系C ﹣xyz ,如图所示,则,∵x 轴⊂平面ACD ,∴平面ACD 的一个法向量可设为,∵,∴,得:,即,又∵z 轴∥平面ABD ,∴平面ABD 的一个法向量可设为,∴,得,即,设二面角B ﹣AD ﹣C 的大小为θ,那么,∴,∴二面角B ﹣AD ﹣C 的正弦值为.20.如图,抛物线C :x 2=2py (p >0)的焦点为F (0,1),取垂直于y 轴的直线与抛物线交于不同的两点P 1,P 2,过P 1,P 2作圆心为Q 的圆,使抛物线上其余点均在圆外,且P 1Q ⊥P 2Q .(1)求抛物线C 和圆Q 的方程;(2)过点F 作倾斜角为θ(≤θ≤)的直线l ,且直线l 与抛物线C 和圆Q 依次交于M ,A ,B ,N ,求|MN||AB|的最小值.【考点】抛物线的简单性质.【分析】(1)由抛物线的焦点坐标求出p值,可得抛物线方程,再由,代入抛物线方程有,抛物线在点P2处切线的斜率为.由,知,求出r,b,可得圆Q的方程;(2)设出直线方程y=kx+1且,和抛物线方程联立,利用抛物线的焦点弦长公式求得|MN|,再由圆心距、圆的半径和弦长的关系求得|AB|,从而求得|MN|•|AB|的最小值.【解答】解:(1)因为抛物线C:x2=2py(p>0)的焦点为F(0,1),所以,解得p=2,所以抛物线C的方程为x2=4y.由抛物线和圆的对称性,可设圆Q:x2+(y﹣b)2=r2,∵P1Q⊥P2Q,∴△P1QP2是等腰直角三角形,则,∴,代入抛物线方程有.由题可知在P1,P2处圆和抛物线相切,对抛物线x2=4y求导得,所以抛物线在点P2处切线的斜率为.由,知,所以,代入,解得b=3.所以圆Q的方程为x2+(y﹣3)2=8.(2)设直线l的方程为y=kx+1,且,圆心Q(0,3)到直线l的距离为,∴,由,得y2﹣(2+4k2)y+1=0,设M(x1,y1),N(x2,y2),则,由抛物线定义知,,所以,设t=1+k2,因为,所以,所以,所以当时,即时,|MN||AB|有最小值.21.已知函数f(x)=(1+x)e﹣2x,g(x)=ax++1+2xcosx,当x∈[0,1]时,(I)求证:;(II)若f(x)≥g(x)恒成立,求实数a的取值范围.【考点】利用导数研究函数的单调性;函数恒成立问题;利用导数研究函数的极值.【分析】(I)①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h (x)=(1+x)e﹣x﹣(1﹣x)e x,利用导数得到h(x)的单调性即可证明;②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,利用导数得出h(x)的单调性即可证明.(II)利用(I)的结论得到f(x)≥1﹣x,于是G(x)=f(x)﹣g(x)≥=.再令H(x)=,通过多次求导得出其单调性即可求出a的取值范围.【解答】(I)证明:①当x∈[0,1)时,(1+x)e﹣2x≥1﹣x⇔(1+x)e﹣x≥(1﹣x)e x,令h(x)=(1+x)e﹣x﹣(1﹣x)e x,则h′(x)=x(e x﹣e﹣x).当x∈[0,1)时,h′(x)≥0,∴h(x)在[0,1)上是增函数,∴h(x)≥h(0)=0,即f(x)≥1﹣x.②当x∈[0,1)时,⇔e x≥1+x,令u(x)=e x﹣1﹣x,则u′(x)=e x﹣1.当x∈[0,1)时,u′(x)≥0,∴u(x)在[0,1)单调递增,∴u(x)≥u(0)=0,∴f(x).综上可知:.(II)解:设G(x)=f(x)﹣g(x)=≥=.令H(x)=,则H′(x)=x﹣2sinx,令K(x)=x﹣2sinx,则K′(x)=1﹣2cosx.当x∈[0,1)时,K′(x)<0,可得H′(x)是[0,1)上的减函数,∴H′(x)≤H′(0)=0,故H(x)在[0,1)单调递减,∴H(x)≤H(0)=2.∴a+1+H(x)≤a+3.∴当a≤﹣3时,f(x)≥g(x)在[0,1)上恒成立.下面证明当a>﹣3时,f(x)≥g(x)在[0,1)上不恒成立.f(x)﹣g(x)≤==﹣x.令v(x)==,则v′(x)=.当x∈[0,1)时,v′(x)≤0,故v(x)在[0,1)上是减函数,∴v(x)∈(a+1+2cos1,a+3].当a>﹣3时,a+3>0.∴存在x0∈(0,1),使得v(x0)>0,此时,f(x0)<g(x0).即f(x)≥g(x)在[0,1)不恒成立.综上实数a的取值范围是(﹣∞,﹣3].四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图,AB是圆O的直径,弦CE交AB于D,CD=4,DE=2,BD=2.(I)求圆O的半径R;(Ⅱ)求线段BE的长.【考点】与圆有关的比例线段.【分析】(I)由相交弦定理可得CD•DE=AD•DB,求出AD,即可求圆O的半径R;(Ⅱ)求出cos∠DOE,即可求线段BE的长.【解答】解:(I)由相交弦定理可得CD•DE=AD•DB,∵CD=4,DE=2,BD=2,∴4×2=2AD,∴AD=8∴AB=10,∴圆O的半径R=5;(Ⅱ)△ODE中,DE=2,OD=3,OE=5,∴cos∠DOE==,∴BE==.选修4-4:坐标系与参数方程23.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直l的参数方程是(t是参数)(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且|AB|=,求直线的倾斜角α的值.【考点】参数方程化成普通方程.【分析】本题(1)可以利用极坐标与直角坐标互化的化式,求出曲线C的直角坐标方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【解答】解:(1)∵ρcosθ=x,ρsinθ=y,ρ2=x2+y2,∴曲线C的极坐标方程是ρ=4cosθ可化为:ρ2=4ρcosθ,∴x2+y2=4x,∴(x﹣2)2+y2=4.(2)将代入圆的方程(x﹣2)2+y2=4得:(tcosα﹣1)2+(tsinα)2=4,化简得t2﹣2tcosα﹣3=0.设A、B两点对应的参数分别为t1、t2,则,∴|AB|=|t1﹣t2|==,∵|AB|=,∴=.∴cos.∵α∈[0,π),∴或.∴直线的倾斜角或.选修4-5:不等式选讲24.关于x的不等式lg(|x+3|﹣|x﹣7|)<m.(Ⅰ)当m=1时,解此不等式;(Ⅱ)设函数f(x)=lg(|x+3|﹣|x﹣7|),当m为何值时,f(x)<m恒成立?【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)当m=1时,原不等式可变为0<|x+3|﹣|x﹣7|<10,通过两边平方和绝对值不等式的性质,即可得到解集;(Ⅱ)设t=|x+3|﹣|x﹣7|,则0<t≤10,f(x)<m恒成立,只需m>f(x)max,求得最大值即可.【解答】解:(Ⅰ)当m=1时,原不等式可变为0<|x+3|﹣|x﹣7|<10,由|x+3|>|x﹣7|,两边平方,解得,x>2,由于||x+3|﹣|x﹣7||≤|(x+3)﹣(x﹣7)|=10,即有﹣10≤|x+3|﹣|x﹣7|≤10,且x≥7时,|x+3|﹣|x﹣7|=x+3﹣(x﹣7)=10.则有2<x<7.故可得其解集为{x|2<x<7};(Ⅱ)设t=|x+3|﹣|x﹣7|,则由对数定义及绝对值的几何意义知,0<t≤10,因y=lgx在(0,+∞)上为增函数,则lgt≤1,当t=10,即x=7时,lgt=1为最大值,故只需m>1即可,即m>1时,f(x)<m恒成立.2016年9月3日。
2018年全国卷理科数学模拟测试题、月考测试题(最新整理含答案共六套)
2018届高三理科数学模拟测试题(一)(时间:120 分钟;满分:150分)注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U R =,集合2{|20}A x x x =--≥,3{|log (2)1}B x x =-≤,则()U A C B =( )A .{|2}x x <B .{|1x x <-或2}x ≥C .{|2}x x ≥D .{|1x x ≤-或2}x >2.设复数12,z z 在复平面内的对应点关于虚轴对称,若112z i =-,i 是虚数单位,则21z z 的虚部为( ) A .45-B .45C .35-D .353.阅读下列程序框图,运行相应程序,则输出的S 值为( )A .18-B .132C .116D .184.若6(n x +的展开式中含有常数项,则n 的最小值等于( )A .3B .4 C. 5 D .65.若实数,x y 满足不等式组5,23010,y x y x y ≤⎧⎪-+≤⎨⎪+-≥⎩,则||2z x y =+的最大值是( )A .15B .14 C.11 D .106.已知点(2,0)A -,(2,0)B ,若圆222(3)(0)x y r r -+=>上存在点P (不同于点,A B )使得PA AB ⊥,则实数r 的取值范围是( )A .[3,5]B .(1,3] C.[1,5] D .(1,5)7.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为抛物线21144y x =+与双曲线的渐近线相切,则双曲线C 的方程为( )A .22182x y -=B .22128x y -= C.2214x y -= D .2214y x -= 8.三棱锥P ABC -中,已知3APC BPC APB π∠=∠=∠=,点M 是ABC ∆的重心,且9PA PB PB PC PC PA ++=,则||PM 的最小值为( )A .2 BD.9.命题:p “||||1a b +≤”;命题:q “对任意的x R ∈,不等式sin cos 1a x b x +≤恒成立”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是( )A .3122π+B .1π+ C. 126π+ D .12π+ 11.从1,2,3,4,5中挑出三个不同数字组成五位数,则其中两个数字各用两次(例如,12332)的概率为( ) A .25 B .35 C. 47 D .5712.已知2()3f x x =-,()xg x me =,若方程()()f x g x =有三个不等的实根,则m 的取值范围是( ) A .36(0,)e B .36(3,)e - C.36(2,)e e - D .(0,2)e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若()xxf x e ae -=+为偶函数,则21(1)e f x e+-<的解集为_____________.14.在一项田径比赛中,甲、乙、丙三人的夺冠呼声最高.观众A B C 、、做了一项预测: A 说:“我认为冠军不会是甲,也不会是乙”. B 说:“我觉得冠军不会是甲,冠军会是丙”. C 说:“我认为冠军不会是丙,而是甲”. 比赛结果出来后,发现A B C 、、三人中有一人的两个判断都对,一人的两个判断都错,还有一人的两个判断一对一错,根据以上情况可判断冠军是__________.15.设a b ,为单位向量,若向量c 满足|()|||c a b a b -+=-,则||c 的最大值是____________.16.对于给定的正整数n 和正数R ,若等差数列123,,a a a ,…满足22121n a a R ++≤,则21222341n n n n S a a a a ++++=+++的最大值为___________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(I )若34ADC π∠=,求AD 的长;(II )若2BD DC =,ACD ∆sin sin BADCAD∠∠的值. 18. (本小题满分12分)语文成绩服从正态分布2(100,17.5)N ,数学成绩的频率分布直方图如下:(I )如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)(II )如果语文和数学两科都特别优秀的共有6人,从(I )中的这些同学中随机抽取3人,设三人中两科都特别优秀的有X 人,求X 的分布列和数学期望. (附参考公式)若2(,)XN μσ,则()0.68P X μσμσ-<≤+=, (22)0.96P X μσμσ-<≤+=.19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60ABC ∠=,侧面PBC 是边长为2的等边三角形,点E 是PC 的中点,且平面PBC ⊥平面ABCD .(I )求异面直线PD 与AC 所成角的余弦值;(II )若点F 在线段PC 上移动,是否存在点F 使平面BFD 与平面APC 所成的角为90?若存在,指出点F 的位置,否则说明理由. 20.(本小题满分12分)已知点P 是直线2y x =+与椭圆222:1(1)x y a aΓ+=>的一个公共点,12,F F 分别为该椭圆的左右焦点,设12||||PF PF +取得最小值时椭圆为C . (I )求椭圆C 的方程;(II )已知,A B 是椭圆C 上关于y 轴对称的两点,Q 是椭圆C 上异于,A B 的任意一点,直线,QA QB 分别与y 轴交于点(0,)(0,)M m N n ,,试判断mn 是否为定值,并说明理由. 21.(本小题满分12分) 已知函数21()ln(1)(0)2f x ax x b x a =--+>,()1x g x e x =--,曲线()y f x =与()y g x =在原点处有公共切线.(I )若0x =为函数的极大值点,求()f x 的单调区间(用a 表示); (II )若0x ∀≥,21()()2g x f x x ≥+,求a 的取值范围. 请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数);在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ=. (I )求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(II )若射线:(0)l y kx x =≥与曲线1C ,2C 的交点分别为,A B (,A B 异于原点),当斜率k ∈时,求||||OA OB 的取值范围.23.(本小题满分10分)选修4-5:不等式选讲 设函数2()3f x x x =-.(I )若1(,0)λμλμ+=>,求证1212()()()f x x f x f x λμλμ+≤+;(II )若对任意12,[0,1]x x ∈,都有1212|()()|()f x f x L x x -≤-,求L 的最小值.数学(理)参考答案一、选择题1-5:BADCB 6-10:DCAAB 11、12:BA 二、填空题13. (0,2) 14. 甲 15.三、解答题17.解:(I )在三角形中,∵1cos 3B =,∴sin 3B =.………………2分又ADC S ∆=ABC S ∆=,………………7分 ∵1sin 2ABC S AB BC ABC ∆=∠,∴6BC =,∵1sin 2ABD S AB AD BAD ∆=∠,1sin 2ADC S AC AD CAD ∆=∠,2ABD ADC S S ∆∆=,∴sin 2sin BAD ACCAD AB∠=∠,………………9分 在ABC ∆中,由余弦定理得2222cos AC AB BC AB BC ABC =+-∠.∴AC = ∴sin 242sin BAD ACCAD AB∠==∠………………12分18. 解:(I )语文成绩特别优秀的概率为11(135)(10.96)0.022p P X =≥=-⨯=,………………1分 数学成绩特别优秀的概率为230.0016200.0244p =⨯⨯=,………………3分语文成绩特别优秀人数为5000.0210⨯=人,数学成绩特别优秀人数为5000.02412⨯=人.……………………5分 (II )语文数学两科都优秀的6人,单科优秀的有10人,X 所有可能的取值为0,1,2,3.3103163(0)14C P X C ===,2110631627(1)56C C P X C ===, 1210631615(2)56C C P X C ===,363161(3)28C P X C ===,………………10分 分布列略………………11分 数学期望3271519()0123145656288E X =⨯+⨯+⨯+⨯=.………………12分 19.解:(I )因为平面PBC ⊥平面ABCD ,底面ABCD 是菱形,60ABC ∠=, 故2AB BC AC PC PB =====,取BC 中点O ,则AO BC ⊥,PO BC ⊥,PO AO ⊥. 以O 为坐标原点,OP 为x 轴,OC 为y 轴建立平面直角坐标系(0,0,0)O,A ,(0,1,0)B -,(0,1,0)C,P,(0,D,1,0)22E .………………2分(PD =-,(0,1,AC =,则||3PD =+=,||12AC =+=,231PD AC =-=-. 设异面直线PD 与AC 所成角为θ,cos ||||||||2PD AC PD ACθ===, 所以异面直线PD 与AC 所成角的余弦值为20.………………6分(II )设存在点F ,使平面BFD 与平面APC 所成的角为90,设(,,0)E a b ,因为,,P C F 三点共线,PF PC λ=,(,0)PF a b =-,(PC =-,所以(1a λ=-b λ=,((1,0)F λλ-,设平面BFD 的一个法向量为1111(,,)m x y z =,1111110300(1(1)0m BD y m BF y λλ⎧⎧=+=⎪⎪⇒⎨⎨=-++=⎪⎪⎩⎩,令1y =,11(3)1m λλ+=--,1||(m λλ=.………………8分 设平面APC 的一个法向量为2222(,,)m x y z=,2222220000m AP m PC y ⎧==⎪⇒⎨=+=⎪⎪⎩⎩, 令21x =,2(1,3,1)m=,2||1m =+=,又12113311m m λλλλ++=+-=--.………………10分 若平面BFD 与平面APC 所成的角为90,则12121cos90||||5m m m m λ+== 故101λλ+=-,即1λ=-,此时1,0)E -,点F 在CP 延长线上, 所以在PC 边上不存在点F 使平面BFD 与平面APC 所成的角为90.………………12分20.解:(I )将2y x =+代入椭圆方程2221x y a+=,得2222(1)430a x a x a+++=,∵直线2y x =+与椭圆有公共点,∴422164(1)30a a a ∆=-+⨯≥,得23a ≥,∴a ≥3分又由椭圆定义知12||||2PF PF a +=,故当a =12||||PF PF +取得最小值,此时椭圆C 的方程为2213x y +=.………………4分 (II )设11(,)A x y ,11(,)B x y -,00(,)Q x y ,且(0,)(0,)M m N n ,, ∵QA QM k k =,∴010010y y y m x x x --=-,即001001()x y y y m x x --=-,∴001011000101()x y y x y x y m y x x x x --=-=--.………………6分同理可得011001x y x y n x x +=+.………………7分∴222201100110011022010101x y x y x y x y x y x y mn x x x x x x -+-==-+-,………………9分 又220013x y +=,221113x y +=,∴220013x y =-,221113x y =-, ∴22220122010122220101(1)(1)331x x x x x x mn x x x x ----===--,则mn 为定值1.………………12分 21. 解:(I )由题意知:()f x 的定义域为(1,)x ∈-+∞,且'()1bf x a x x =--+,'()1x g x e =-,因为曲线()f x 与()g x 在原点处有公共的切线,故'(0)'(0)f g =, 解得:a b =,………………2分 所以21()ln(1)2f x ax x a x =--+, 2(1)[(1)]'()111a x a x x x a f x a x x x x -+----=--==+++.………………3分1a =时,'()0f x ≤,函数()f x 在定义域上是减函数,故不满足题意;4分1a ≠时,因为0x =为函数()f x 的极大值点,故由2(1)y x a x =-+-的图象可知10a -<, 由'()0f x <得:(1,1)(0,)x a ∈--+∞,由'()0f x >得:(1,0)x a ∈-.所以函数()f x 的单调递增区间为(1,0)a -,单调递减区间为(1,1)a --,(0,)+∞.………………6分(II )因为'()1xg x e =-,且10x -<<时'()0g x <,0x >时'()0g x >, 故0x =时,()g x 取得最小值0,所以()0g x ≥,即1x e x ≥+,从而ln(1)x x ≥+. 设21()()()ln(1)(1)12x F x g x f x x e a x a x =--=++-+-, 则'()(1)1x aF x e a x =+-++.………………7分 ①当1a =时,因为0x ≥,所以1'()1(1)12011a F x x a x x x ≥++-+=++-≥++,所以()F x 在[0,)+∞上单调递增,从而()(0)0F x F ≥=,即ln(1)210xe x x ++-->,所以21()()2g x f x x ≥+.………………9分 ②当01a <<时,由①知ln(1)210xe x x ++-->, 所以()1ln(1)(ln(1))x g x e x x x a x x =--≥-+≥-+,故()0F x ≥,即21()()2g x f x x ≥+.……11分 ③当1a >时,令()(1)1x ah x e a x =+-++,则2'()(1)x a h x e x =-+,显然'()h x 在[0,)+∞上单调递增,又'(0)10h a =-<,1)10h =->,所以'()h x 在1)上存在唯一零点0x ,当0(0,)x x ∈时,'()0h x <,所以()h x 在0[0,)x 上单调递减,从而()(0)0h x h <=,即'()0F x <,所以()F x 在0[0,)x 上单调递减, 从而当0(0,)x x ∈时,()(0)0F x F <=,即210()()2g x f x x <+,不合题意.………………13分综上,实数a 的取值范围为(0,1].………………14分22.解:(I )1C 的极坐标方程为2cos ρθ=.………………3分2C 的直角坐标方程为2x y =.………………5分(II )设射线:(0)l y kx x =≥的倾斜角为α,则射线的极坐标方程为θα=,且tan k α=∈,联立2cos ρθθα=⎧⎨=⎩得1||2cos OA ρα==,………………7分联立2cos sin ρθθθα⎧=⎨=⎩,得22sin ||cos OB αρα==,………………9分所以122sin ||||2cos 2tan 2cos OA OB k αρρααα====∈,即||||OA OB 的取值范围是(2,.………………10分 23.解:(I )∵222121212121122()[()()]()3()[(3)(3)]f x x f x f x x x x x x x x x λμλμλμλμλμ+-+=+-+--+-222211221122(1)2(1)2x x x x x x x x λλλμμμλμλμλμ=-++-=-+- 212()0x x λμ=-≤,∴1212()()()f x x f x f x λμλμ+≤+.………………5分(II )∵221211221212|()()||33||||3|f x f x x x x x x x x x -=--+=-+-,∵120,1x x ≤≤,∴1202x x ≤+≤,∴12331x x -≤+-≤-,∴12|3|3x x +-≤, ∴使1212|()()|()f x f x L x x -≤-恒成立的L 的最小值是3.………………10分2018届高三理科数学模拟测试题(二)(时间:120 分钟;满分:150分)注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
泄露天机2018高考押题卷理科数学(一)
泄露天机2018高考押题卷理科数学(一) 2018年普通高等学校招生全国统一考试理科数学(一)注意事项:1.在答题卡上填写姓名和准考证号。
2.选择题用铅笔在答题卡上标记选项,非选择题在答题卡上作答。
3.考试结束后将试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。
1.复数z=a+ai(a∈R)的共轭复数为z,满足z=1,则复数z 为()A。
2+iB。
2-iC。
1+iD。
i解析】根据题意可得,z=a-ai,所以z^2=a^2+1=1,解得a=0,所以复数z=i。
2.集合A={θ|0<θ<π/2.2<sinθ≤1},B={φ|4/5<φ<1},则集合AB={θ|π/4<θ<π/2.4/5<sinθ≤1}。
解析】A可以化为{θ|π/6<θ<π/2},所以AB为{θ|π/4<θ<π/2.4/5<sinθ≤1}。
3.从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为3/4.解析】分别设一对白色斑块的野生小鼠为A,a,另一对短鼻子野生小鼠为B,b,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12种,拿出的野生小鼠不是同一表征的事件为(A,a),(a,A),(B,b),(b,B),所以概率为3/4.1.将函数f(x)=2sin(ωx+ϕ)的图像向左平移π/6个单位长度后得到函数y=sin2x+3cos2x的图像,求ϕ的可能值。
解析:将函数y=sin2x+3cos2x=2sin(2x+π/3)的图像向右平移π/6个单位长度,得到函数y=2sin2x的图像。
因此,ϕ=π/6.2.在XXX墓中发掘出堆积如山的“汉五铢”铜钱,假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为多少?解析:构成一个以首项为70缗,末项为31缗,项数为40层,公差为1的等差数列,则和为S=40×(70+31)=2020缗,这一堆铜钱的数量为2020×1000=2.02×106枚。
2018年全国卷一 理科数学(精品解析版)
20.(12 分)某工厂的某种产品成箱包装,每箱 200 件,每一箱产品在交付用户之前要对产品作 检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取 20 件作检验,再根 据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为 p(0 p 1) , 且各件产品是否为不合格品相互独立. (1)记 20 件产品中恰有 2 件不合格品的概率为 f ( p) ,求 f ( p) 的最大值点 p0 .
A.
3
AB
1
AC
C.
4 3
4
AB
4 1
4
AC
B.
1
AB
3
AC
4
D.
1 4
AB
4 3
4
AC
7.某圆柱的高为 2,底面周长为 16,其三视图如图。圆柱表面上的点 M 在正视图上的对应点为 A ,
圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短
C.1 )
B.x 1 x 2
D. 2
C.x | x 1 x | x 2
D.x | x 1 x | x 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地 区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如 下饼图:
建设前经济收入构成比例
18.(12 分)如图,四边形 ABCD 为正方形, E, F 分别为 AD, BC 的中点,以 DF 为折痕把△DFC 折起,使点 C 到达点 P 的位置,且 PF BF . (1)证明:平面 PEF 平面 ABFD ; (2)求 DP 与平面 ABFD 所成角的正弦值.
2018年高考全国卷1理科数学试题及答案
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i|z| z1iA.0B.12C.1D.22.已知集合220A x x x,则e R AA.x1x2B.x1x2C.x|x1x|x2D.x|x1x|x23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设S n 为等差数列a n 的前n项和,若3S3 S2 S4 ,a1 2,则a5A.12 B.10 C.10 D.125.设函数 3 2f x x a x ax ,若 f ( x) 为奇函数,则曲线y f (x) 在点(0,0) 处的切线方程为( ) ( 1)A.y2x B.y x C.y2x D.y x6.在△ABC中,AD为B C 边上的中线, E 为A D 的中点,则EBA.3 1AB AC B.4 41 3AB AC C.4 43 1AB AC D.4 41 3AB AC4 47.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为 A ,圆柱表面上的点N 在左视图上的对应点为 B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A.2 17 B.2 5 C.3 D.28.设抛物线C:y2=4x 的焦点为F,过点(–2,0)且斜率为2=4x 的焦点为F,过点(–2,0)且斜率为23的直线与 C 交于M,N 两点,则FM FN =A.5 B.6 C.7 D.89.已知函数f (x)x xe 0,,g x f x x a .若g(x)存在 2 个零点,则 a 的取值范围是( ) ( )ln ,0,x xA.[–1,0)B.[0,+∞)C.[ –1,+∞)D.[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为I,黑色部分记为II,其余部分记为III .在整个图形中随机取一点,此点取自I,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2 B.p1=p3C.p2=p3 D.p1=p2+p311.已知双曲线C:2x32 1y ,O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点分别为M、N.若△OMN 为直角三角形,则|MN |=A .32B.3 C.2 3 D.412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A .3 34B.2 33C.3 24D.32二、填空题:本题共 4 小题,每小题 5 分,共20 分。
2018年高考全国卷1理科数学(含答案)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C 的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018全国卷1数学(理)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p311.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国1卷理科数学试题及答案详细解析(word版-精校版)
.
y ≤ 0,
14.记 Sn 为数列{an} 的前 n 项和. 若 Sn 2an 1 ,则 S6
.
15.从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的
选法共有
种.(用数字填写答案)
16.已知函数 f (x) 2sin x sin 2x ,则 f (x) 的最小值是
12.已知正方体的棱长为1 ,每条棱所在直线与平面 所成的角都相等,则 截此正方
体所得截面面积的最大值为
A. 3 3 4
B. 2 3 3
C. 3 2 4
D. 3 2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
x 2 y 2 ≤ 0,
13.若
x
,
y
满足约束条件
x
y
1≥
0,
则 z 3x 2y 的最大值为
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.设 z 1 i 2i ,则 | z | 1 i
A. 0
B. 1 2
C.1 D. 2
2.已知集合 A {x | x2 x 2 0} ,则 R A
ln x, x 0,
取值范围是
A. [1,0)
B. [0,)
C. [1, )
D.[1, )
10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个 半圆的直径分别为直角三角形 ABC 的斜边 BC,直角边 AB,AC.△ABC 的三边所围 成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点, 此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p1 , p2 , p3 ,则
2018年高考全国卷1理科数学试题及答案
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。
2018年高考理科数学全国卷1(含详细答案)
理科数学试题A 第1页(共26页)理科数学试题A 第2页(共26页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码张贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液,不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121i z i i-=++,则z =( )A .0B .12C .1 D2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<< B .{}|12x x -≤≤ C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为( )A. B. C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a的取-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________理科数学试题A 第3页(共26页)理科数学试题A 第4页(共26页)值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
2018年全国普通高等学校高考数学模拟试卷理科一参考答案与试题解析
2018年全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.6.(5分)已知函数则()A.2+πB.C.D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣6310.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.3212.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.14.(5分)已知x,y满足约束条件则目标函数的最小值为.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣116.(5分)如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E是线段CD上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF 的位置,并使PF⊥AF,则五棱锥P﹣ABCEF的体积的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}【解答】解:A={x|﹣x2+4x≥0}={x|0≤x≤4},={x|3﹣4<3x<33}={x|﹣4<x<3},则A∪B={x|﹣4<x≤4},C={x|x=2n,n∈N},可得(A∪B)∩C={0,2,4},故选C.2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i【解答】解:由,得x+yi==2+i,∴复数x+yi的共轭复数是2﹣i.故选:A.3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数【解答】解:∵等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,∴a4+a5+a6+a7=2(a1+a10)=18,∴a1+a10=9,∴=45.故选:D.4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:设AB=2,则BC=CD=DE=EF=1,∴S=××=,△BCIS平行四边形EFGH=2S△BCI=2×=,∴所求的概率为P===.故选:A.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a 与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.【解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.6.(5分)已知函数则()A.2+πB.C.D.【解答】解:∵,=∫cos2tdt===,∴=()+(﹣cosx)=﹣2.故选:D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.【解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3;第3次循环后,S==2,不满足退出循环的条件,k=4;…第n次循环后,S=,不满足退出循环的条件,k=n+1;…第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S==2,满足退出循环的条件,故输出的S值为2,故选:C8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得【解答】解:函数=sin(2ωx)﹣•+=sin(2ωx﹣)(ω>0)的相邻两个零点差的绝对值为,∴•=,∴ω=2,f(x)=sin(4x﹣)=cos[(4x﹣)﹣]=cos(4x﹣).故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B.9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣63【解答】解:展开式中所有各项系数和为(2﹣3)(1+1)6=﹣64;=(2x﹣3)(1+++…),其展开式中的常数项为﹣3+12=9,∴所求展开式中剔除常数项后的各项系数和为﹣64﹣9=﹣73.故选:A.10.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.【解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设△PAF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.12.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.【解答】解:根据题意,对于函数f(x),当x∈[0,2)时,,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1==,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.【解答】解:根据题意,向量,,若,则•=2sinα﹣cosα=0,则有tanα=,又由sin2α+cos2α=1,则有或,则=(,)或(﹣,﹣),则||=,则=2+2﹣2•=;故答案为:14.(5分)已知x,y满足约束条件则目标函数的最小值为.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),=,令t=5x﹣3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,t有最小值为﹣2.∴目标函数的最小值为.故答案为:.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n ﹣a2n,n∈N*,则数列{b n}的前2n项和为.﹣1【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:,整理得:,解得:.则:,所以:b n=a2n﹣1﹣a2n==﹣22n﹣4,则:T 2n ==.故答案为:.16.(5分)如图,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,,点E 是线段CD 上异于点C ,D 的动点,EF ⊥AD 于点F ,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF ,则五棱锥P ﹣ABCEF 的体积的取值范围为 (0,) .【解答】解:∵PF ⊥AF ,PF ⊥EF ,AF ∩EF=F , ∴PF ⊥平面ABCD .设PF=x ,则0<x <1,且EF=DF=x .∴五边形ABCEF 的面积为S=S 梯形ABCD ﹣S △DEF =×(1+2)×1﹣x 2=(3﹣x 2). ∴五棱锥P ﹣ABCEF 的体积V=(3﹣x 2)x=(3x ﹣x 3),设f (x )=(3x ﹣x 3),则f′(x )=(3﹣3x 2)=(1﹣x 2), ∴当0<x <1时,f′(x )>0,∴f (x )在(0,1)上单调递增,又f (0)=0,f (1)=. ∴五棱锥P ﹣ABCEF 的体积的范围是(0,). 故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC 的内角A ,B ,C 的对边a ,b ,c 分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.【解答】解:(1)由2bcosA+acosC+ccosA=0及正弦定理得﹣2sinBcosA=sinAcosC+cosAsinC,即﹣2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB>0,所以.又A∈(0,π),所以.在△ABC中,c=2b=2,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2+bc=7,所以.(2)由,得=,所以.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.【解答】解:(1)连接A1B,A1D,AC,因为AB=AA1=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D.设AC与BD的交点为O,连接A1O,则A1O⊥BD,又四边形ABCD是正方形,所以AC⊥BD,而A1O∩AC=O,所以BD⊥平面A1AC.又AA1⊂平面A1AC,所以BD⊥AA1,又CC1∥AA1,所以BD⊥CC1.(2)由,及,知A 1B⊥A1D,于是,从而A1O⊥AO,结合A1O⊥BD,AO∩AC=O,得A1O⊥底面ABCD,所以OA、OB、OA1两两垂直.如图,以点O为坐标原点,的方向为x轴的正方向,建立空间直角坐标系O ﹣xyz,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),C(﹣1,0,0),,,,由,得D1(﹣1,﹣1,1).设(λ∈[0,1]),则(x E+1,y E+1,z E﹣1)=λ(﹣1,1,0),即E(﹣λ﹣1,λ﹣1,1),所以.设平面B1BD的一个法向量为,由得令x=1,得,设直线DE与平面BDB1所成角为θ,则,解得或(舍去),所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(,)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=,P(μ﹣2σ<Z≤μ+2σ)=.【解答】解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵Z服从正态分布N(μ,σ2),且μ=,σ≈,∴P(<Z<)=P(﹣<Z<+)=,∴Z落在(,)内的概率是.②根据题意得X~B(4,),;;;;.∴X的分布列为X01234P∴.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.【解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.【解答】解:(1)根据题意,函数f(x)=e2﹣2(a﹣1)x﹣b,其导数为f'(x)=e x﹣2(a﹣1),当函数f(x)在区间[0,1]上单调递增时,f'(x)=e x﹣2(a﹣1)≥0在区间[0,1]上恒成立,∴2(a﹣1)≤(e x)min=1(其中x∈[0,1]),解得;当函数f(x)在区间[0,1]单调递减时,f'(x)=e x﹣2(a﹣1)≤0在区间[0,1]上恒成立,∴2(a﹣1)≥(e x)max=e(其中x∈[0,1]),解得.综上所述,实数a的取值范围是.(2)函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,则g'(x)=e x﹣2(a﹣1)x﹣b,分析可得f(x)=g'(x).由g(0)=g(1)=0,知g(x)在区间(0,1)内恰有一个零点,设该零点为x0,则g(x)在区间(0,x0)内不单调,所以f(x)在区间(0,x0)内存在零点x1,同理,f(x)在区间(x0,1)内存在零点x2,所以f(x)在区间(0,1)内恰有两个零点.由(1)知,当时,f(x)在区间[0,1]上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题意.当时,f(x)在区间[0,1]上单调递减,故f(x)在(0,1)内至多有一个零点,不合题意;所以.令f'(x)=0,得x=ln(2a﹣2)∈(0,1),所以函数f(x)在区间[0,ln(2a﹣2)]上单调递减,在区间(ln(2a﹣2),1]上单调递增.记f(x)的两个零点为x1,x2(x1<x2),因此x1∈(0,ln(2a﹣2)],x2∈(ln(2a﹣2),1),必有f(0)=1﹣b>0,f (1)=e﹣2a+2﹣b>0.由g(1)=0,得a+b=e,所以,又f(0)=a﹣e+1>0,f(1)=2﹣a>0,所以e﹣1<a<2.综上所述,实数a的取值范围为(e﹣1,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.【解答】解:(1)圆C1:(θ是参数)消去参数θ,得其普通方程为(x+1)2+(y+1)2=a2,将x=ρcosθ,y=ρsinθ代入上式并化简,得圆C1的极坐标方程,由圆C2的极坐标方程,得ρ2=2ρcosθ+2ρsinθ.将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入上式,得圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)由(1)知圆C1的圆心C1(﹣1,﹣1),半径r1=a;圆C 2的圆心C2(1,1),半径,,∵圆C1与圆C2外切,∴,解得,即圆C1的极坐标方程为.将代入C1,得,得;将代入C2,得,得;故.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.【解答】解:(1)此不等式等价于或或解得或或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mn,,即m+2n ≥8,当且仅当即时取等号.∴f(m)+f(﹣2n)=|2m+1|+|﹣4n+1|≥|(2m+1)﹣(﹣4n+1)|=|2m+4n|=2(m+2n)≥16,当且仅当﹣4n+1≤0,即时,取等号.∴f(m)+f(﹣2n)≥16.。
2018届全国统一招生高考押题卷理科数学(一)试卷(含答案)
绝密 ★ 启用前 2018年普通高等学校招生全国统一考试理 科 数 学(一)注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数()i z a a =+∈R 的共轭复数为z ,满足1z =,则复数( ) A .2i +B .2i -C .1i +D .i2.集合()1=0,sin 12A θθ⎧⎫∈π⎨⎬⎩⎭<≤,14B ϕϕ⎧⎫π=<<⎨⎬⎩⎭,则集合AB =( )A .42θθ⎧⎫ππ<<⎨⎬⎩⎭B .16θθ⎧⎫π<<⎨⎬⎩⎭C .62θθ⎧⎫ππ<<⎨⎬⎩⎭D .14θθ⎧⎫π<<⎨⎬⎩⎭3.2018年3月7日《科学网》刊登“动物可以自我驯化”的文章表明:关于野生小鼠的最新研究,它们在几乎没有任何人类影响的情况下也能表现出进化的迹象——皮毛上白色的斑块以及短鼻子.为了观察野生小鼠的这种表征,从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为( ) A .14B .13C .23D .344.已知函数()()2sin f x x ωϕ=+的图象向左平移6π个单位长度后得到函数sin 22y x x =+的图象,则ϕ的可能值为( )A .0B .6π C .3π D .12π 5.在海昏侯墓中发掘出堆积如山的“汉五铢”铜钱.汉代串铜钱的丝绳或麻绳叫“缗”,后来演变为计量铜钱的单位,1000枚铜钱用缗串起来,就叫一缗.假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为( ) A .6210⨯枚B .62.0210⨯枚C .62.02510⨯枚D .62.0510⨯枚6.一个几何体的三视图如图所示,则该几何体的体积为( )正视图侧视图A .2π+B .1+πC .2+2πD .12π+7.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( ) A .1x ≤B .2x ≤C .3x ≤D .4x ≤8.已知某函数图象如图所示,则图象所对应的函数可能是( )A .2xx y =B .22xy =-C .e xy x =-D .|2|2x y x =﹣此卷只装订不密封班级 姓名 准考证号 考场号 座位号9.若双曲线C :()222210,0x y a b a b-=>>的一条渐近线被抛物线24y x =,则双曲线C 的离心率为( ) A .14B .1C .2D .410.若x 错误!未找到引用源。
2018年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
2502018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CBABD ABDCA BA第Ⅱ卷(非选择题 90分)二、填空题(共20分)13.6 14.63- 15.16 16.2-三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分) 解:(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52sin 45sin ADB=︒∠,∴sin =5ADB ∠.由题设知,90ADB ∠<︒,∴cos ADB ∠==.(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD ∆中,由余弦定理得2222cos BC BD DC BD DC BDC=+-⋅∠25825255=+-⨯⨯=.∴5BC =.18.(本小题满分12分) 解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,∴BF ⊥平面PEF .又BF ⊂平面ABFD , ∴平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,∴PE.又PF =1,EF =2,∴PE ⊥PF .可得3,22PH EH ==,且3(0,0,0),(0,0,1,,0)22H P D -,3(1,22DP =.3(0,0,)2HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin 4HP DP HP DPθ⋅==⋅. ∴DP 与平面ABFD所成角的正弦值为4. 19.(本小题满分12分) 解:(1)由已知得(1,0)F ,l 的方程为x =1. 由已知可得,点A的坐标为(1,)2或(1,2-. ∴AM 的方程为20x -=或20x --=.(2)当l 与x 轴重合时, 0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴OMA OMB ∠=∠.251当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,且11(,)A x y ,22(,)B x y,则12x x MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y kx k y kx k =-=-得 []()()12121223()422MA MB k x x x x k k x x -+++=--.将(1)(0)y k x k =-≠代入2212x y +=得 2222(21)4220k x k x k +-+-=. ∴22121222422=,2121k k x x x x k k -+=++,∴[]121223()4k x x x x -++3332441284021k k k k k k --++==+. 从而0MA MB k k +=,∴MA ,MB 的倾斜角互补, ∴OMA OMB ∠=∠. 综上,OMA OMB ∠=∠. 20.(本小题满分12分) 解:(1)20件产品中恰有2件不合格品的概率为221820()(1)f p C p p =-,且 21821720()[2(1)18(1)]f p C p p p p '=---217202(110)(1)C p p p =--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>; 当(0.1,1)p ∈时,()0f p '<. ∴()f p 的最大值点为0.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B ,202254025X Y Y =⨯+=+.∴(4025)4025490EX E Y EY =+=+=.(ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,∴应该对余下的产品作检验. 21.(本小题满分12分)解:(1)()f x 的定义域为(0,)+∞,且22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2,1a x ==时,()0f x '=, ∴()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x -=或2a x +=.当2a a x ⎛⎛⎫+∈+∞⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x∈⎝⎭时,()0f x '>. ∴()f x 在⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点时,当且仅当2a >.由于()f x 的两个极值点12,x x 满足21=0x a x -+,∴121x x =,不妨设12x x <,则21x >. 1212()()f x f x x x --121212ln ln 11x x a x x x x -=--+-1212ln ln 2x x a x x -=-+-2522222ln 21x ax x -=-+-,∴1212()()2f x f x a x x -<--等价于 22212ln 0x x x -+<. 设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)=0g ,从而当(1,)x ∈+∞时,()0g x <. ∴22212ln 0x x x -+<,即 1212()()2f x f x a x x -<--.(二)选考题:22. (本小题满分10分)[选修4—4:坐标系与参数方程]解:(1)由cos ,sin x y ρθρθ==得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为2,2=,解得43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为423y x =-+.23.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当1a =时,()11f x x x =+--,即2(1),()2(11),2(1).x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩∴不等式()1f x >的解集为1,2⎛⎫+∞⎪⎝⎭. (2)当(0,1)x ∈时11x ax x +-->成立等价于当(0,1)x ∈时1ax -<1成立. 若0a ≤,则当(0,1)x ∈时1ax -≥1; 若a >0,1ax -<1的解集为20x a<<,∴21a≥,∴02a <≤. 综上,a 的取值范围为(]0,2.2532018年普通高等学校招生全国统一考试(全国卷Ⅱ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 DABBA ABCCA CD第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.2y x = 14.9 15.12-16.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)解:(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.∴{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16.∴当n =4时,S n 取得最小值,最小值为–16.18.(本小题满分12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(i )从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =–30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii )从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 19.(本小题满分12分)解:(1)由已知得(1,0)F ,l 的方程为为(1)(0)y k x k =-≠. 设11(,)A x y ,22(,)B x y .由2(1),4y k x y x =-⎧⎨=⎩得22222(2)0k x k x k -++=. ∴ 216160k ∆=+>,212224=k x x k++. ∴AB AF BF =+212244(1)(+1)=k x x k +=++.由题设知2244=8k k+,解得k =–1(舍去),k =1.∴l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),∴AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为(x 0,y 0),则00220005,(1)(1)16,2y x y x x =-+⎧⎪⎨-++=+⎪⎩ 解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩∴所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.(本小题满分12分) 解:(1)∵4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =254连结OB .因为2AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知OP OB ⊥. 由OP OB ⊥,OP AC ⊥知 OP ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0)O B A -,(0,2,0)C,(0,0,P ,(0,2,AP =.取平面P AC 的法向量(2,0,0)OB =. 设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-.设平面P AM 的法向量为(,,)x y z m =.由0,0,AP AM ⎧⋅=⎪⎨⋅=⎪⎩m m即20,(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩得,).y a x z a ⎧=⎪⎨-=⎪⎩可取),,)a a -m =.所以cos OB <>=m,由已知得cos 2OB <>=m,.=. 解得4a =或4a=-(舍去).∴4(,)333-m =.又∵(0,2,PC =-,∴3cos PC <>=m, ∴PC 与平面P AM 所成角的正弦值为4. 21.(本小题满分12分)解:(1)当a =1时,()1f x ≥等价于2(1)10x x e -+-≤.设函数2()(1)1xg x x e-=+-,则22()(21)(1)x x g x x x e x e --'=--+=--. 当1x ≠时,()0g x '<, ∴()g x 在(0,)+∞单调递减. 而(0)0g =,∴当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当a >0时,()(2)x h x ax x e -'=-.当(0,2)x ∈时,()0h x '<;当(2,)x ∈+∞时,()0h x '>.∴()h x 在(0,2)单调递减,在(2,)+∞单调递增.∴2(2)14h ae -=-是()h x 在[0,)+∞的最小值.①若(2)0h >,即214a e <,()h x 在255(0,)+∞没有零点;②若(2)0h =,即214a e =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即214a e >,由于(0)1h =,∴()h x 在(0,2)内有一个零点, 由(1)知,当0x >时,2x e x >,∴334221616(4)11()a a a a h a e e =-=-34161110(2)a a a>-=->.∴()h x 在(2,4)a 内有一个零点, ∴()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,214a e =.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)[选修4-4:坐标系与参数方程] 解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为 (tan )2tan y x αα=+-. 当cos 0α=时,l 的直角坐标方程为x =1. (2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos t αα+++ sin )80t α-=.①∵曲线C 截直线所得线段的中点(1,2)在C 内,∴方程①有两个解12,t t ,且1224(2cos sin )13cos t t ααα++=-+. 由参数t 的几何意义得120t t +=.∴2cos sin 0αα+=,于是直线的斜率tan 2k α==-. 22.(本小题满分10分) [选修4—5:不等式选讲] 解:(1)当a =1时,24(1),()2(12),26(2).x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩当1x ≤-时,由()240f x x =+≥得2x ≥-,即21x -≤≤-;当12x -<≤时,()20f x =>; 当2x >时,由()260f x x =-+≥得 3x ≤,即23x <≤. 综上可得()0f x ≥的解集为[]2,3-. (2)()1f x ≤等价于24x a x ++-≥. 而22x a x a ++-≥+,且当x=2时等号成立.∴()1f x ≤等价于24a +≥. 由24a +≥可得6a ≤-或2a ≥. ∴a 的取值范围是(][),62,-∞-+∞.2562018年普通高等学校招生全国统一考试(全国卷Ⅲ)理科数学参考答案 第Ⅰ卷(选择题 60分)一、选择题(共60分) 1-12 CDABC ADBCB CB第Ⅱ卷(非选择题 90分)二、填空题(共20分) 13.1214.3- 15.3 16.2 (一)必考题:共60分. 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.C解:∵{}[)101,A x x =-≥=+∞,{}012B =,,, ∴ {}1,2AB =,∴选C .2.D解:∵()()212223i i i i i i +-=-+-=+, ∴选D . 3.A解:选A . 4.B解:由已知条件,得2217cos 212sin 1239αα⎛⎫=-=-= ⎪⎝⎭,∴选B .5.C解:由已知条件,得 251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令1034r -=,解得2r =, x 4的系数为22552240rr C C ==, ∴选C .6.A解:由已知条件,得(2,0),(0,2)A B --,∴||AB == 圆22(2)2x y -+=的圆心为(2,0),∴圆心到直线20x y ++=的距离为= ∴点P 到直线20x y ++=的距离的取值范围为d ≤≤+d ≤≤,∴1||[2,6]2ABP S AB d ∆=⋅∈.∴选A . 7.D解:令0x =,得2y =,∴A,B 不能选. 令321424()02y x x x x '=-+=-->,得2x <-或02x <<,即函数在0⎛ ⎝⎭内单调递增, ∴选D . 8.B解:由已知条件知,X ~B (10,p ),且 10p (1-p )=2.4,解得p =0.6或p =0.4. 又由P (X=4)< P (X=6)得,即4466641010(1)(1)C p p C p p -<-,0.5p >,∴p =0.6. ∴选B . 9.C解:由已知条件,得2222cos 44ABC a b c ab CS ∆+-==cos 1sin 22ab C ab C ==,即tan 1C =,∴4C π=.∴选C . 10.B解:如图,ABC ∆为等边三角形,点O 为,,,A B C D 外接球的球心,E 为ABC ∆的重心,点F 为边BC 的中点.当点D 在EO 的延长上,即DE ⊥面ABC 时,三棱锥D ABC -体积取得最大值.V =,5分,.1=2,x,且196π.257258当366x πππ≤+≤时有1个零点,3,629x x πππ+==;当326x πππ<+≤时有1个零点,343,629x x πππ+==; 当192366x πππ<+≤时有1个零点,573=,629x x πππ+=. ∴零点个数为3,∴填3. 16.2解:由已知条件知,抛物线C 的焦点为(1,0)F . 设22121212(,),(,)()44y yA yB y y y ≠,则由A ,F ,B 三点共线,得221221(1)(1)44y y y y -=-,∴12=4y y -. ∵∠AMB =90º,∴221212(1,1)(1,1)44y y MA MB y y ⋅=+-⋅+-,221212(1)(1)(1)(1)44y y y y =+++-⋅-2121(2)04y y =+-=, ∴12=2y y +.∴212221124244y y k y y y y -===+-,∴填2. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17─21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. 17.(本小题满分12分) 解:(1)设数列{}n a 的公比为q ,则由534a a =,得2534a q a ==,解得2q =±. ∴12n n a -=或1(2)n n a -=-.(2)由(1)知,122112nn n S -==--或1(2)1[1(2)]123n n n S +-==--+,∴2163mm S =-=或1[1(2)]633m m S =--=(舍), ∴6m =.18.(本小题满分12分) 解:(1)第一种生产方式的平均数为184X =,第二种生产方式平均数为274.7X =,∴12X X >,∴第一种生产方式完成任务的平均时间大于第二种,即第二种生产方式的效率更高. (2)由茎叶图数据得到中位数80m =,∴列联表为(3)()()()()()22n ad bc K a b c d a c b d -=++++,()24015155510 6.63520202020⨯-⨯==>⨯⨯⨯,∴有99%的把握认为两种生产方式的效率有差异. 19.(本小题满分12分) 解:(1)由已知条件知,在正方形ABCD 中,AD CD ⊥.∵正方形ABCD ⊥半圆面CMD ,平面ABCD 半圆面CMD CD =, ∴AD ⊥半圆面CMD .∵CM 在平面CMD 内,∴AD CM ⊥,即CM AD ⊥.259OM (0,0,1)(0,-1,0)0)又∵M 是CD 上异于C ,D 的点, ∴CM MD ⊥.又∵AD DM D =, ∴CM ⊥平面AMD , ∵CM 在平面BMC 内,∴平面AMD ⊥平面(2)由条件知,2ABC S ∆=是常数, ∴当点M 到平面ABCD 的距离.最大,即点M 为弧CD 的中点时,三棱锥M – ABC 体积最大.如图,以CD 中点O 为原点,过点O 且平行于AD 的直线为x 轴,OC ,OM 所在直线为y ,Z 轴建立空间直角坐标系O-xyz ,则由已知条件知,相关点的坐标为 A(2,-1,0),B(2,1,0),M(0,0,1) ,且(0,2,0)AB =,(2,1,1)MA =--.由(1)知,平面MCD 的法向量为(1,0,0)=m .令平面MXB 的法向量为(,,)x y z =n ,则(,,)(0,2,0)=20,(,,)(2,1,1)20AB x y z y MA x y z x y z ⎧⋅=⋅=⎪⎨⋅=⋅--=--=⎪⎩,n n 即0,2y z x ==, ∴取(1,0,2)=n.∴cos ,⋅<>==⋅m nm n m n ,∴sin ,5<>=m n ,即面MAB 与MCD 所成二面角的正弦值.为5.20.(本小题满分12分)解:(1)设直线l 的方程为y kx t =+,则由22,143y kx t x y =+⎧⎪⎨+=⎪⎩消去y ,得222(43)84120k x ktx t +++-=,①由22226416(43)(3)0k t k t ∆=-+->,得2243t k <+.②设1122(,),(,)A x y B x y ,则12,x x 是方程①的两个根,且122843ktx x k -+=+,121226()243ty y k x x t k +=++=+. ∵线段AB 的中点为()()10M m m >,, ∴1228243ktx x k -+==+,121226()2243ty y k x x t m k +=++==+. ∵0m >,∴0t >,0k <,且2434k t k+=-.③由②③得22243434k k k ⎛⎫+-<+ ⎪⎝⎭,解得12k >或12k <-.∵0k <,∴12k <-.(2)∵点()()10M m m >,是线段AB 的中点,且FP FA FB ++=0,∴2FP FM +=0,即2FP FM =-.④ 由已知条件知,()()10M m m >,,()10F ,.令(,)P x y ,则由④得:(1,)2(0,)x y m -=-,即1,2x y m ==-, ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得26034m =或34m =-(舍去),且3(1,)2P -.又222211221,14343x y x y +=+=, ∴两式相减,得2112211234y y x xx x y y -+=--+. 又12123=2,22x x y y m ++==,∴21122112314y y x xk x x y y -+==-=--+, 243744k t k +=-=,∴直线l 的方程为74y x =-+. 将71,4k t =-=代入方程①,得 2285610x x -+=,解得121,11414x x =-=+,1233414414y y =+=-.∴3(2FA x ==+, 32FP =,3(2FB x == ∴=2FA FB FP +,即,,FA FP FB 成等差数列,且该数列的公差28d =±. 另解:(1)设1122(,),(,)A x y B x y ,则222211221,14343x y x y +=+=, 两式相减,得2112211234y y x xk x x y y -+==--+. ∵线段AB 的中点为()()10M m m >,, ∴122x x +=,122y y m +=,34k m=-. 由点()()10M m m >,在椭圆内得21143m +<,即302m <<. ∴12k <-.(2)由题设知(1,0)F .令(,)P x y ,则由FP FA FB ++=0得1122(1,)(1,)(1,)(0,0)x y x y x y -+-+-=,∴1212=3(),()x x x y y y -+=-+. 由得=1,2x y m =-<0. ∴P 的坐标为(1,2)m -.由于点P 在椭圆上,得214143m +=,解得34m =或34m =-(舍去),且3(1,)2P -,且32FP =. (FA x =122x=-,同理222xFB =-.∴12=2222x xFA FB +-+-124322x xFP +=-==,即,,FA FP FB 成等差数列.把34m =代入34k m =-得1k =-,且3(1,)4M∴直线l 的方程为74y x =-+. 把直线方程与椭圆方程联立,消去y 得:2285610x x -+=,于是有121212,28x x x x +==.设成等差数列的公差为d ,则26121122d FB FA x x =-=-==, d =±21.(本小题满分12分)解:由条件知,函数()f x 的定义域为(1,)-+∞.(1)若0a =,则函数()(2)ln(1)2f x x x x =++-,且1()ln(1)11f x x x'=++-+, 2211()1(1)(1)xf x x x x ''=-=+++. ∴(0)0f =,(0)0f '=,(0)0f ''=. ∴当10x -<<时,()0f x ''<,∴当10x -<<时,()f x '单调递减. ∴()(0)0f x f ''>=,∴当10x -<<时,()f x 单调递增, ∴()(0)0f x f <=,即()0f x <. 当x > 0时,()0f x ''>,∴当x > 0时, ()f x '单调递增.∴()(0)0f x f ''>=,∴当x > 0时,()f x 单调递增, ∴()(0)0f x f >=,即()0f x >. 综上可得,当10x -<<时,()f x <0; 当x > 0时,()0f x >. (2)(i )若0a ≥,由(1)知,当x >0时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与x=0是()f x 的极大值点矛盾.(ii )若0a <,设函数2()()2f x g x x ax =++22ln(1)2xx x ax =+-++. 由于当min x ⎧⎪<⎨⎪⎩时,220x ax ++>, ∴()g x 与()f x 符号相同. 又(0)(0)0g f ==,∴0x =是()f x 的极大值点当且仅当0x =是()g x 的极大值点.22212(2)2(12)()12x ax x ax g x x x ax ++-+'=-+++() 22222(461)(1)(2)x a x ax a x x ax +++=+++. 如果610a +>,则当6104a x a+<<-,且m i n 1,x ⎧⎪<⎨⎪⎩时,()0g x '>,∴0x =不是()g x 的极大值点.如果610a +<,则22461=0a x ax a +++存在根10x <.∴当1(,0)x x ∈,且m in 1,x ⎧⎪<⎨⎪⎩时,()0g x '<,∴0x =不是()g x 的极大值点. 如果61=0a +,则322(24)()(1)(612)x x g x x x x -'=+--.当(1,0)x ∈-时,()0g x '>; 当(0,1)x ∈时,()0g x '<. ∴0x =是()g x 的极大值点,从而0x =是()f x 的极大值点.综上,16a =-.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
(完整版)2018全国高考理科数学[全国一卷]试题及答案解析,推荐文档
精心整理2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
)1、设z=,则∣z∣=()2345 A.y=-2xB.y=-xC.y=2xD.y=x6、在?ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=()→EB A.- B.- C.+ D.+ 34→AB 14→AC 14→AB 34→AC 34→AB 14→AC 14→AB 34→AC7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为()A.217B.25C.3D.28.设抛物线C :y2=4x 的焦点为F ,过点(-2,0)且斜率为的直线与C 交于M ,N 两点,则·23→FM=()→FN9.是()A.[-110.p 1,p 211.A.B.3C.3212.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.若x ,y 满足约束条件则z=3x+2y 的最大值为.14.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.三.解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(,求18.(点C19.(设椭圆交于A,B两点,点M的坐标为(2,0).(1(220、(结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为P(0<P<1),且各件产品是否为不合格品相互独立。
2018年高考全国卷1理科数学试题及答案
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,则A.B.C.D.2.已知集合,则A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.设为等差数列的前项和,若,,则A.B.C.D.5.设函数,若为奇函数,则曲线在点处的切线方程为A.B.C.D.6.在中,为边上的中线,为的中点,则A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A.B.C.3 D.28.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则= A.5 B.6 C.7 D.89.已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考数学(理科)模拟试卷一附答案解析
2018 年高考数学 (理科 )模拟试卷 (一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分 150 分,考试时间 120 分钟 )第Ⅰ卷(选择题满分60分)一、选择题:本大题共12 小题,每题 5 分,满分60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.(2016 年四川)设会合A= {x|1≤x≤ 5},Z 为整数集,则会合A∩Z 中元素的个数是() A. 6 B. 5C. 4D. 3分析:由题意,A∩Z= {1,2,3,4,5} ,故此中的元素的个数为 5.应选 B.2. (2016 年山东 )若复数 z 知足 2z+ z =3-2i, 此中 i 为虚数单位,则z= ()A. 1+ 2i B. 1- 2iC.- 1+ 2i D.- 1- 2i2.B 分析:设 z= a+ bi(a ,b∈ R),则 2z+ z =3a+ bi= 3- 2i,故 a= 1,b=- 2,则z =1 -2i.应选 B.3. (2015 年北京 )某四棱锥的三视图如图M1-1 ,该四棱锥最长棱的棱长为()图 M1-1A.1D.23. C 分析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面 ABCD, SA 是四棱锥最长的棱, SA=22=222= 3.应选 C. SC+AC SC+ AB + BC图 D1884.曲线 y= x3- 2x+4 在点 (1,3)处的切线的倾斜角为()π4. C分析:f′(x)=3x2-2,f′(1)=1,所以切线的斜率是1,倾斜角为4.5.设 x∈ R, [x]表示不超出x 的最大整数 . 若存在实数t,使得 [t]=1, [t 2]= 2,, [t n]=n 同时成立,则正整数n 的最大值是 ()A.3 B.4 C.5 D.65.B分析:由于[x]表示不超出x 的最大整数.由[t ]= 1,得 1≤t<2,由 [t 2]= 2,得 2≤t2<3.由[t3 ]=3,得 3≤t3<4.由 [t4]=4,得 4≤t4<5.所以 2≤t2< 5.所以 6≤t5<4 5.由 [t5]= 5,得 5≤t5<6,与 6≤t5 <4 5矛盾,故正整数n 的最大值是 4.6.(2016 年北京 )履行如图M1-2 所示的程序框图,若输入的 a 值为 1,则输出的k 值为()图 M1-2A .1B .2C .3D .46. B 分析:输入 a = 1,则 k = 0, b = 1;进入循环体, a =- 1,否, k =1, a =- 2,否, k = 2, a = 1,2此时 a =b =1,输出 k ,则 k = 2.应选 B.7.某市要点中学奥数培训班共有14 人,分为两个小组, 在一次阶段考试中两个小构成绩的茎叶图如图 M1-3 ,此中甲组学生成绩的均匀数是 88,乙组学生成绩的中位数是89,则m + n 的值是 ()图 M1-3A. 10 B. 11 C. 12D. 1378+ 88+ 84+ 86+92+ 90+ m+ 957.C分析:由题意,得=88,n=9.所以m+n=12.应选 C.8. (2015 年陕西 )某公司生产甲、乙两种产品均需用吨甲、乙产品需原料及每日原料的可用限额如表所示,A, B假如生产两种原料.已知分别生产1 吨甲、乙产品可获收益分1别为 3 万元、 4 万元,则该公司每日可获取最大收益为()项目甲乙原料限额A/ 吨3212B/ 吨128万元B.16 万元C. 17万元D. 18万元8. D分析:设该公司每日生产甲、乙两种产品分别为x 吨、 y 吨,则收益z= 3x+ 4y.3x+ 2y≤ 12,x+ 2y≤8,由题意可得其表示如图D189 暗影部分地区:x≥0,y≥ 0.图 D189当直线 3x + 4y - z = 0 过点 A(2,3) 时, z 获得最大值,所以 z max = 3×2+ 4×3= 18.应选 D.9. (2016 年新课标Ⅲ )定义 “规范 01 数列 ”{a n }以下: {a n }共有 2m 项,此中 m 项为 0 ,m项为 1,且对随意 k ≤2m ,a 1,a 2, ,a k 中 0 的个数许多于 1 的个数. 若 m = 4,则不一样的“规范 01数列”共有()A .18 个B .16 个C . 14 个D .12 个9. C 分析:由题意,必有a 1= 0, a 8= 1,则详细的排法列表以下:10. (2016 年天津 )已知函数 f(x)=sin2ωx 1 1 2+ sin ωx- (ω>0), x ∈R.若 f(x)在区间 ( π, 2π)22内没有零点,则 ω的取值范围是 ()5∪8,11 5∪4,8分析: f(x)=1- cos ωx sin ωx 12sinωx-π, f(x)= 0sin ωx-π= 0,2+2-=2442π所以 x=kπ+4( π, 2π),(k∈Z).ω所以ω1,1∪5,5 ∪9,9∪ =1,1∪5,+∞ ω∈ 0,1∪1,5.应选 D.84848484884811.四棱锥P-ABCD的底面 ABCD为正方形, PA⊥底面 ABCD, AB= 2,若该四棱锥的所243 π)有极点都在体积为的同一球面上,则 PA= (16A. 3C. 2311. B分析:如图D190,连结 AC,BD 交于点 E,取 PC的中点 O,连结 OE,则 OE∥11 PA,所以 OE⊥底面 ABCD,则 O 到四棱锥的全部极点的距离相等,即O 为球心,2PC=21 4 1243 π7PA2+AC2=2 PA2+ 8,所以由球的体积可得3π2PA2+8 3=16,解得 PA=2.应选 B.图 D1902→ →12.已知 F 为抛物线 y = x 的焦点,点 A、B 在该抛物线上且位于 x 轴双侧,若 OA·OB=6(O 为坐标原点 ),则△ ABO 与△ AOF 面积之和的最小值为 ()A. 413,2)2,4)12. B分析:设直线 AB 的方程为 x= ty+ m,点 A(x1,y1), B(x2, y2),直线 AB 与 x 轴的交点为 M(m,0),将直线方程与抛物线方程联立,可得 y2- ty- m=0,依据韦达定理有y1·y2=- m,由于→ →位于 x 轴的双侧,OA·OB=6,所以 x1·x2+ y1·y2= 6,进而 (y1·y2 )2+ y1·y2- 6= 0,由于点 A, B1所以 y 1·y 2=- 3,故 m = 3,不如令点 A 在 x 轴上方,则 y 1>0,又 F 4, 0 ,所以 S △ ABO + S △1 1 1 13 y 1+ 9 ≥213 9 1 = 3 13 ,当且仅当 13y 1 9,即 y 1 = AFO = × 3×(y 1- y 2)+ 2 × y 1 = 8 2y 8 ·y 1·· 2 8 = 2y 1 1 16 13时取等号,故其最小值为3 13 .应选 B. 132第Ⅱ卷 (非选择题 满分 90 分)本卷包含必考题和选考题两部分.第13~ 21 题为必考题,每个试题考生一定作答.第22~ 23 题为选考题,考生依据要求作答.二、填空题:本大题共 4 小题,每题 5 分.13.平面向量 a = (1,2), b = (4,2), c = ma + b(m ∈ R),且 c 与 a 的夹角等于 c 与 b 的夹角,则 m = ________.13.2 分析: a =(1,2) ,b = (4,2),则 c =ma + b = (m + 4,2m + 2),| a| = 5,| b| =2 5,c ·a c ·b5m + 8 a ·c = 5m +8,b ·c = 8m +20.∵ c 与 a 的夹角等于 c 与 b 的夹角,∴ |c| |a|· = |c| |b|· .∴58m + 20=.解得 m = 2.2 5x 2 y 214.设 F 是双曲线 C : a 2- b 2 =1 的一个焦点,若 C 上存在点 P ,使线段 PF 的中点恰为其虚轴的一个端点,则C 的离心率为 __________.分析:依据双曲线的对称性,不如设F(c,0),虚轴端点为 (0, b),进而可知点 (-c,2b)c 2 4b 2在双曲线上,有 a 2- b 2 = 1,则 e 2= 5, e = 5.15. (2016 年北京 )在(1- 2x)6 的睁开式中, x 2 的系数为 ________. (用数字作答 )r + 1 r r r2 的系数为 22 =15.60 分析:依据二项睁开的通项公式6可知, xC 6(- 2)T = C ·(- 2) x60,故填 60.16.在区间 [0, π]上随机地取一个数1x ,则事件 “ sinx ≤”发生的概率为 ________.2 分析:由正弦函数的图象与性质知,当x ∈π 5π 1 0, ∪ , π时, sin x ≤6 6 2. π + π- 5π- 0 66 1 .所以所求概率为 π =3三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12 分 )已知 {a n}是各项均为正数的等比数列,{b n }是等差数列,且a1=b1= 1, b2+ b3= 2a3, a5- 3b2=7.(1)求{a n}和 {b n}的通项公式;(2)设 c n= a n b n, n∈ N*,求数列 {c n}的前 n 项和.17.解:(1)设 {a n}的公比为q,{b n}的公差为d,由题意知q>0.由已知,有消去 d,得 q4- 2q2- 8= 0.解得 q= 2, d= 2.所以 {a n}的通项公式为a n= 2n-1,n ∈N*,n n*.{b }的通项公式为b=2n- 1, n∈ N(2)由(1)有 c n=(2n- 1)2n- 1,设{cn}的前n项和为S n,则 S n01n-1,+ 3×2+ 5×2++(2n- 1) ×2= 1×21+3×2+3n5×2++ (2n -1) ×22S n=1×2.23n n n 两式相减,得- S n= 1+2 +2++ 2 -(2n- 1)×2=- (2n- 3)×2- 3.n*所以 S n= (2n-3) 2·+3, n∈ N .2q2- 3d=2,q 4- 3d= 10.18.(本小题满分12 分 )(2014 年纲领 )设每个工作日甲、乙、丙、丁4人需使用某种设施的概率分别为,, ,,各人能否需使用设施互相独立.(1)求同一工作日起码 3 人需使用设施的概率;(2)X 表示同一工作日需使用设施的人数,求X 的数学希望.18.解:记A1表示事件:同一工作日乙、丙中恰有i 人需使用设施,i=0,1,2.B 表示事件:甲需使用设施.C表示事件:丁需使用设施.D 表示事件:同一工作日起码 3 人需使用设施.(1)由于 P(B)=, P(C)=, P(A i )=C i2×, i= 0,1,2 ,所以 P(D)= P(A1·B·C+ A2·B+ A2·B ·C)= P(A1·B·C)+ P(A2·B)+ P(A2·B ·C)=P(A1)P(B)P(C)+ P(A2)P(B)+ P(A2)P( B )P(C)= .(2)X 的可能取值为 0,1,2,3,4 ,其散布列为P(X= 0)= P( B ·A0·C )=P( B )P(A0)P( C )=(1-××-(1=,P(X= 1)= P(B·A0·C + B ·A0·C+ B ·A1·C )=P(B)P(A0 )P( C )+ P( B )P(A0)P(C)+ P( B )P(A1)P( C )=××-(1+ (1-××+ (1-×2××-(1=,P(X= 4)= P(A2·B·C)= P(A2)P(B)P(C)=××=,P(X= 3)= P(D)- P(X= 4)=,P(X= 2)=1- P(X= 0)- P(X=1)- P(X= 3)-P(X= 4)= 1----=,所以 E(X)= 0×P(X=0)+ 1×P(X= 1)+ 2×P(X= 2)+3×P(X= 3)+ 4×P(X=4)=+ 2×+ 3×+ 4×=2.19.(本小题满分12 分 )(2016 年四川 )如图 M1-4 ,在四棱锥P-ABCD中, AD∥ BC,∠ ADC=∠1PAB= 90°, BC= CD=2AD, E 为边 AD 的中点,异面直线PA 与 CD 所成的角为90°.(1)在平面 PAB内找一点M,使得直线CM∥平面 PBE,并说明原因;(2)若二面角P-CD-A 的大小为45°,求直线PA与平面 PCE所成角的正弦值.图 M1-419.解: (1)在梯形 ABCD中, AB 与 CD 不平行.延伸 AB, DC,订交于点M(M∈平面 PAB),点 M 即为所求的一个点.原因以下:由已知, BC∥ ED,且 BC= ED,所以四边形BCDE是平行四边形.所以 CD∥ EB.进而 CM∥ EB.又 EB平面 PBE, CM 平面 PBE,所以 CM∥平面 PBE.MN上随意一点) (说明:延伸AP 至点 N,使得 AP= PN,则所找的点能够是直线(2)方法一,由已知,CD⊥PA,CD⊥ AD, PA∩AD= A,所以 CD⊥平面 PAD.进而 CD⊥ PD.所以∠ PDA是二面角P-CD-A 的平面角.所以∠ PDA= 45°.设 BC=1,则在 Rt△ PAD中, PA= AD=2.如图 D191,过点 A 作 AH⊥ CE,交 CE的延伸线于点H,连结 PH.易知 PA⊥平面 ABCD,进而 PA⊥ CE.于是 CE⊥平面 PAH.所以平面 PCE⊥平面 PAH.过 A 作 AQ⊥ PH 于 Q,则 AQ⊥平面 PCE.所以∠ APH 是 PA 与平面 PCE所成的角.在 Rt△AEH 中,∠ AEH= 45°, AE=1,2所以AH=2.在 Rt△ PAH中, PH= PA2+AH2=322,AH 1所以 sin∠APH=PH=3.图 D191图D192方法二,由已知,CD⊥ PA, CD⊥AD, PA∩AD= A,所以 CD⊥平面 PAD.于是 CD⊥ PD.进而∠ PDA是二面角P-CD-A 的平面角.所以∠ PDA= 45°.由 PA⊥ AB,可得 PA⊥平面 ABCD.设 BC=1,则在 Rt△ PAD中, PA= AD=2.→→x 轴,z 轴的正方向,成立如图 D192作 Ay⊥ AD,以 A 为原点,以 AD ,AP的方向分别为所示的空间直角坐标系Axyz,则 A(0,0,0), P(0,0,2), C(2,1,0) , E(1,0,0) ,→→→所以 PE= (1,0,- 2), EC=(1,1,0),AP=(0,0,2)设平面 PCE的法向量为n= (x,y, z),→= 0,x- 2z= 0,n·PE由得→= 0,x+ y= 0.n·EC设 x=2,解得 n= (2,- 2,1).设直线 PA 与平面 PCE所成角为α,→=1则 sin α=| n ·AP|=2→2×22+- 22+ 12 3 .| n| ·|AP|所以直线 PA 与平面 PCE所成角的正弦值为13.20. (本小题满分12 分 )(2016 年新课标Ⅲ )设函数 f(x)=ln x- x+ 1.(1)议论 f(x)的单一性;x- 1(2)证明当 x∈(1,+∞)时, 1< ln x <x;(3)设 c>1,证明当x∈ (0,1) 时, 1+ (c- 1)x>c x.20.解: (1)由题设, f(x)的定义域为 (0,+∞), f′(x)=1x- 1,令 f′(x)= 0,解得 x=1.当 0<x<1 时, f ′(x)>0, f(x)单一递加;当 x>1 时, f ′(x)<0,f(x)单一递减.(2)由(1)知, f(x)在 x= 1 处获得最大值,最大值为f(1)= 0.所以当 x≠1时, ln x<x-1.故当 x∈ (1,+∞)时, ln x<x- 1, ln 1 1x- 1< -1,即 1<<x. x x ln x(3)由题设 c>1,设 g(x)= 1+ (c- 1)x- c x,则 g′(x)= c- 1- c x ln c.c-1lnln c令 g′(x)= 0,解得 x0=ln c .当x<x0时,g′(x)>0,g(x)单一递加;当 x>x0时, g′(x)<0,g(x)单一递减.c- 1由 (2)知, 1< ln c <c,故 0<x0<1.又 g(0)= g(1)= 0,故当 0<x<1 时, g(x)>0.所以 x∈ (0,1)时, 1+ (c- 1)x>c x.21. (本小题满分 12分 )(2016 年广东广州综合测试一 )已知椭圆 C 的中心在座标原点,焦点在 x 轴上,左极点为A,左焦点为 F1(-2, 0),点 B(2, 2)在椭圆 C 上,直线 y= kx(k≠ 0)与椭圆 C 交于 E, F 两点,直线AE, AF 分别与 y 轴交于点M, N.(1)求椭圆 C的方程;(2)以 MN 为直径的圆能否经过定点若经过,求出定点的坐标;若不经过,请说明原因.2221.解: (1)设椭圆 C 的方程为 x 2 + y2= 1(a>b>0),a b由于椭圆的左焦点为F 1(- 2,0),所以 a 2- b 2= 4.① 4 2 由于点 B(2, 2)在椭圆 C 上,所以 a 2+ b 2= 1.②由①②,解得 a =2 2,b =2.所以椭圆 C 的方程为x 2+ y 2=1.8 4(2)由于椭圆 C 的左极点为 A ,则点 A 的坐标为 (- 22, 0).2 2由于直线 y = kx(k ≠0)与椭圆 x+ y= 1 交于两点 E , F ,84设点 E(x 0, y 0)(不如设 x 0>0),则点 F(- x 0,- y 0).y = kx ,8联立方程组x 2 y 2 消去 y ,得 x 2=1+ 2.8+ 4=12k所以 x 0=22 ,则 y 0= 2 2k.1+ 2k 21 +2k 2所以直线 AE 的方程为y =k1+ 1+ 2k 2(x +22).由于直线 AE , AF 分别与 y 轴交于点 M , N ,令 x =0 得 y =22kM 0,2 2k,即点 1+ 1+ 2k 2.1+ 1+ 2k 2同理可得点 N 0, 2 2k2 .1+1- 2k2 2k 22k2所以|MN| = -= 221+ 2k .1+ 1+ 2k 2 1- 1+ 2k 2| k| 设 MN 的中点为 P ,则点 P 的坐标为 P2.0,- k22 2 21+ 2k 22222 2则以 MN 为直径的圆的方程为 x +y + k = | k|,即 x + y +k y = 4.令 y = 0,得 x 2= 4,即 x = 2 或 x =- 2. 故以 MN 为直径的圆经过两定点 P 1 2 (2,0) ,P (-2,0),请考生在第 (22)(23) 两题中任选一题作答.注意:只好作答在所选定的题目上.假如多做,则按所做的第一个题目计分.22. (本小题满分 10 分 )选修 4-4:极坐标与参数方程x = 2cos θ,(θ为参数 ),以坐标原点为极点, x 轴的正半轴已知曲线 C 的参数方程是y = sin θ为极轴成立极坐标系,A 、B 的极坐标分别为 A(2, π)、 B 2, 4π.3(1)求直线 AB 的直角坐标方程;(2)设 M 为曲线 C 上的动点,求点 M 到直线 AB 距离的最大值.22.解: (1)将 A 、 B 化为直角坐标为 A(2cos π, 2sin π),B 2cos 4π 4π,即 A ,B, 2sin 33 的直角坐标分别为 A(-2,0), B(- 1,- 3),- 3 -0k AB = - 1+2 =-3,∴直线 AB 的方程为 y - 0=- 3(x + 2),即直线 AB 的方程为3x + y + 23= 0.(2)设 M (2cos θ, sin θ),它到直线 AB 的距离d = |2 3cos θ+ sin θ+ 2 3| = |13sin θ+ φ+ 2 3| ,2 2∴ d max =13+2 32.23. (本小题满分 10 分 )选修 4-5:不等式选讲已知函数 f(x)= | x - 2| - |2 x - a| , a ∈ R.(1)当 a = 3 时,解不等式 f(x)>0;(2)当 x ∈ (-∞, 2)时, f(x)<0 恒成立,求 a 的取值范围.23.解: (1)当 a =3 时, f(x)>0,即 | x -2| -|2 x - 3|>0 ,33<x<2,x ≥2,x ≤ ,或2等价于2或x - 1>0,- x + 1>0.- 3x + 5>0,3 35解得 1<x ≤ ,或 2 <x< .2 35 .所以原不等式的解集为x 1<x<3(2)f(x)= 2- x - |2 x - a| ,所以 f(x)<0 可化为 |2 x - a|>2 - x ,①即 2x -a>2- x ,或 2x - a<x -2. ①式恒成立等价于 (3x - 2)min >a 或 (x + 2)max <a ,∵ x ∈(- ∞, 2),∴ a ≥4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国卷理科数学模拟试题(一)一、选择题:本大题共12个小题,每小题5分,共60分.1. 已知全集R U =,集合}5,4,3,2,1,0{=A ,}2|{≥∈=x R x B ,则图中阴影部分所表示的集合为( )A .1}{0,B .{1}C .2}{1,D .2}1{0,,2.设R b a ∈,,若p :b a 22<,q :22b a <,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.设i 为虚数单位,则6)(i x -的展开式中含4x 的项为( ) A .415x - B .415x C .420ix - D .420ix 4.若坐标原点到抛物线2mx y =的准线的距离为2,则=m ( ) A .8 B .8± C .41±D .81±5. 函数x x x f sin )(=,)('x f 为)(x f 的导函数,则)('x f 的图象是( )6. 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是3224π,则它的表面积是( ) A .π17 B .π18 C .π60 D .π687. 公元263年左右,我国数学刘徽发现当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了割圆术.利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名是徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 为( )(参考数据:1305.05.7sin ,2588.015sin ,732.13≈≈≈ ) A .12 B .24 C .36 D .488.设n m ,为空间两条不同的直线,βα,为空间两个不同的平面,给出下列命题:①若βα//,//m m ,则βα//; ②若n m m //,//α,则α//n ; ③若βα//,m m ⊥,则βα⊥;④若βαα//,⊥m ,则β⊥m . 其中所有正确命题的序号是( )A .③④B .②④C .①②D .①③ 9. 已知函数)32sin(3)(π-=x x f ,则下列结论正确的是( ) A .导函数为)32cos(3)('π-=x x f B .函数)(x f 的图象关于直线2π=x 对称C .函数)(x f 在区间)125,12(ππ-上是增函数 D .函数)(x f 的图象可由函数x y 2sin 3=的图象向右平移3π个单位长度得到 10.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,且b a B c +=2co s 2,若A B C ∆的面积c S 123=,则ab 的最小值为( ) A .21 B .31 C .61D .3 11.定义在R 上的奇函数)(x f 和偶函数)(x g 满足:xe x g xf =+)()(,给出如下结论:①2)(x x e e x f --=且)2()1(0g f <<; ②R x ∈∀,总有1)]([)]([22=-x f x g ;③R x ∈∀,总有0)()()()(=+--x g x f x g x f ;④R x ∈∃0,使得)()(2)2(000x g x f x f >. 其中所有正确结论的序号是( )A .①②③B .②③C .①③④D .①②③④12. 已知函数||)(xxe x f =,方程)(01)()(2R t x tf x f ∈=+-有四个实数根,则t 的取值范围为( )A .),1(2+∞+e eB .)1,(2e e +--∞C .2),1(2-+-e e D .)1,2(2e e + 二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量)1,(t =与),4(t =共线且方向相同,则=t . 14. 若31044=+-xx,则=4log 3x . 15. 正月十六登高是“中国石刻艺术之乡”、“中国民间文化艺术之乡”四川省巴中市沿袭千年的独特民俗.登高节前夕,李大伯在家门前的树上挂了两串喜庆彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 .16. 设函数222)2(ln )()(a x a x x f -+-=,其中0>x ,R a ∈,若存在0x 使得54)(0≤x f 成立,则实数a 的值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)在等差数列}{n a 中,2372-=+a a ,2983-=+a a .(1)求数列}{n a 的通项公式; (2)设数列}{n n b a +是首项为1,公比为q 的等比数列,求}{n b 的前n 项和n S .18. (本小题满分12分)某中学举行了一次“环保知识竞赛”活动. 为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n )进行统计. 按照[50,60), [60,70), [70,80), [80,90), [90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60), [90,100]的数据).(1)求样本容量n 和频率分布直方图中的y x 、的值;(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设ξ表示所抽取的3名同学中得分在[80,90)的学生人数,求ξ的分布列及数学期望.19. (12分)如图,在直三棱柱111C B A ABC -中,D 是BC 的中点.(1)求证://1B A 平面1ADC ; (2)若AC AB ⊥,1==AC AB ,21=AA ,求平面1ADC 与平面1ABA 所成二面角的正弦值.20. (本小题满分12分) 已知椭圆M :13222=+y a x (0>a )的一个焦点为)0,1(-F ,左右顶点分别为B A ,,经过点F 的直线l 与椭圆M 交于D C ,两点.(1)求椭圆方程;(2)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求||21S S -的最大值.21. (12分)已知函数23)(bx ax x f +=在1=x 处取得极值61.(1)求b a ,的值; (2)若对任意的),0[+∞∈x ,都有)1ln()('+≤x k x f 成立(其中)('x f 是函数)(x f 的导函数),求实数k 的最小值;(3)证明:2)1ln(11++<∑=n ini (*∈N n ).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为a 22)4sin(=+πθρ,曲线2C 的参数方程为⎩⎨⎧+-=+-=ϕϕsin 1cos 1y x (ϕ为参数).(1)求曲线1C 的直角坐标方程和曲线2C 的普通方程;(2)当曲线1C 和曲线2C 有两个不同公共点时,求实数a 的取值范围.23. (本小题满分10分)选修4-5:不等式选讲已知函数|3|)(--=x m x f ,不等式2)(>x f 的解集为)4,2(.(1)求实数m 的值;(2)若关于x 的不等式)(||x f a x ≥-恒成立,求实数a 的取值范围.理科数学参考答案一、选择题:本大题共12小题,每小题5分,共60分.1.【考向】考查集合的列举法、描述法、韦恩图法三种表示及交集、补集运算 2.【考向】原创 考查指数函数、幂函数的性质,不等式的性质,充分必要条件的判断 3.【考向】由2016年四川高考题改编 考查二项式定理的通项公式和复数的基本运算 4.【考向】抛物线的几何性质简单应用 5.【考向】由山东高考题改编 考查导数的求导公式与法则、函数的图象与性质 6.【考向】由2016年新课标全国高考题改编 考查简单的三视图及球的体积、表面积公式 7.【考向】考查算法中的循环结构、传承并弘扬灿烂的中国古代数学文化 8.【考向】整合课本相关理论知识创编 主要考查:(1)直线与平面平行的判定定理及其性质定理;(2)直线与平面垂直的判定定理及其性质定理9.【考向】由传统经典题改编 考查)sin(φω+=x A y 型三角函数的求导、对称性、单调性、图象变换等主干性质10.【考向】本题由2014年全国新课标Ⅰ卷16题改编 考查正余弦定理、三角形面积公式、两角和的正弦、基本不等等基础知识,是一道兼具基础性与能力性的好题.其中根据正余弦定理实施边角互化是解题的关键 11.【考向】由必修一P83.4题原创 考查函数的奇偶性与单调性、指数式的基本运算、全称量词与存在量词等主干知识12.【考向】传统经典题目改编 考查分段函数中导数与函数单调性的关系、复合函数方程中方程的实根与两函数图像公共点的等价转化关系.综合检测分类讨论思想、函数与方程思想、数形结合思想、转化与化归思想,体现出较高的交汇性与能力性二、填空题:本大题共4小题,每小题5分,共20分. 13.2; 14.1±; 15.43; 16.51 13.【考向】考查向量同向(或反向)的充要条件14.【考向】由人教版必修1.P75.8.1原创 交换课本题目的条件与结论,得到一道将解方程的基本方法与指数式与对数式的互化、换底公式等基本技能融合在一起的好题.此题不难,但学生任意马虎、遗漏,造成丢分.15.【考向】由人教版教材几何概型习题及2013年四川高考题改编 考查几何概型、线性规划及其实际应用与数学文化.分清几何概型中的长度比,面积比,角度比,体积比是解决问题的关键16.【考向】原创 考查函数结构形似联想与几何意义、导数的几何意义、存在量词等,体现等价转化与数形结合的思想,有一定的灵活性、综合性与创意性 三、解答题:本大题共6个题,共70分.17.解:(1)设等差数列}{n a 的公差为d ,则62)(7283-==+-+d a a a a ,∴3-=d . ∴2372172-=+=+d a a a ,解得11-=a . ∴数列}{n a 的通项公式为23+-=n a n .(2)∵数列}{n n b a +是首项为1,公比为q 的等比数列,∴1-=+n n n q b a ,即123-=++-n n q b n ,∴123-+-=n n q n b ,【考向】考查等差、等比数列的通项公式、前n 项和公式及分类讨论思想18.【分析】(1)根据:频率=频数/样本容量,可得5010016.08=⨯=n ,004.010502==y ,再根据频率之和为1,可求x 的值;(2)首先确定ξ的可能取值为1,2,3,基本事件的总数为3537=C ,求出相应的概率列出分布列.解:(1)由题意可知,样本容量50100.0168=⨯=n ,004.010502==y , 又由1)010.0040.0016.0(10=++++y x ,得030.0=x .(2)由题意可知,分数[80,90)在有人,分数在[90,100]有2人,共7人. 抽取的3名同学中得分在[80,90)的学生个数ξ的可能取值为1,2,3,则71355)1(372215====C C C P ξ,743520)2(371225====C C C P ξ,723510)3(3735====C C P ξ, 所以ξ的分布列为所以7157********=⨯+⨯+⨯=ξE 【考向】(1)频率分布直方图(2)古典概型及离散型随机变量分布列的求法.19.(1)证明:如图,连接C A 1,交1AC 于点E ,则点E 是C A 1和1AC 的中点,连接DE ,则B A DE 1//. ∵⊂DE 平面1ADC ,⊄B A 1平面1ADC ,∴//1B A 平面1ADC(2)解:如图建立空间直角坐标系xyz A -,则)0,0,0(A ,)0,0,1(B ,)0,1,0(C ,)2,1,0(1C ,)0,21,21(D ,则)0,21,21(=,)2,1,0(1=AC ,设平面1ADC 的法向量为),,(z y x =,则⎪⎩⎪⎨⎧=⋅=⋅001AC m ,得⎪⎩⎪⎨⎧=+=+0202121z y y x , 取1=z ,得2-=y ,2=x ,得)1,2,2(-=m , 易得平面1ABA 的法向量为)0,1,0(=,故32||||,cos -=>=<n m .故平面1ADC 与平面1ABA 所成二面角的正弦值为35)32(12=--. 【考向】(1)线面平行的判定定理;(2)利用法向量求二面角的平面角.20.解:(1) ∵点)0,1(-F 为椭圆的一个焦点,∴1=c ,又32=b ,∴4222=+=c b a ,∴椭圆方程为13422=+y x . (2)当直线l 斜率不存在时,直线方程为1-=x ,此时)23,1(-D ,)23,1(--C ,ABD ∆与ABC ∆的面积相等,0||21=-S S 当直线l 斜率存在时,设直线方程为)1(+=x k y (0≠k ), 设),(11y x C ,),(22y x D 显然21,y y 异号.由⎪⎩⎪⎨⎧+==+)1(13422x k y y x 得01248)43(2222=-+++k x k x k ,显然0>∆,方程有实根,且2221438k k x x +-=+,222143124k k x x +-=,此时2121212122143||12|2)(|2|)1()1(|2||2||||||2||k k k x x k x k x k y y y y S S +=++=+++=+=-=-,由0≠k 可得3||4||3212||4||31243||122=⋅≤+=+k k k k k k ,当且仅当23±=k 时等号成立. ∴||21S S -的最大值为3【考向】(1)椭圆的标准方程的求法;(2)用韦达定理及均值不等式求面积最值问题. 21.解:(1)由题设可得bx ax x f 23)('2+=,∵)(x f 在1=x 处取得极值61, ∴⎪⎩⎪⎨⎧==61)1(0)1('f f ,即⎪⎩⎪⎨⎧=+=+6123b a b a ,解得31-=a ,21=b . 经检验知,31-=a ,21=b 满足题设条件. (2)由(1)得232131)(x x x f +-=,∴x x x f +-=2)(',∴)1ln(2+≤+-x k x x 在),0[+∞∈x 上恒成立,即0)1ln(2≥++-x k x x 在),0[+∞∈x 上恒成立, 设)1ln()(2++-=x k x x x g ,则0)0(=g ,112112)('2+-++=++-=x k x x x k x x g ,),0[+∞∈x设12)(2-++=k x x x h , ①当0)1(81≤--=∆k ,即89≥k 时,0)(≥x h ,∴0)('≥x g ,)(x g 在),0[+∞上单调递增, ∴0)0()(=≥g x g ,即当89≥k 时,满足题设条件. ②当0)1(81>--=∆k ,即89<k 时,设21,x x 是方程0122=-++k x x 的两个实根,且21x x <,由2121-=+x x 可知01<x ,由题设可知,当且仅当02≤x ,即021≥⋅x x ,即01≥-k ,即1≥k 时,对任意的),0[+∞∈x 有0)(≥x h , 即0)('≥x g 在),0[+∞上恒成立,∴)(x g 在),0[+∞上单调递增,∴0)0()(=≥g x g ,∴891<≤k 时,也满足题设条件. 综上,k 的取值范围为1≥k ,∴实数k 的最小值为1.(3)证明:由(2)知,当1=k 时,)1ln(2+≤+-x x x ,即)1ln(2++≤x x x 在),0[+∞上恒成立(当且仅当0=x 时取等号). 令n x 1=(*∈N n ),得n n nn n n ln )1ln(1)11ln(1122-++=++<. ∴当2≥n 且*∈N n 时,2)1ln()1ln(12)1ln()111()3121()211(1)1ln()1(13212111)1ln(131211]ln )1[ln()2ln 3(ln )1ln 2(ln 13121113121112222221++<++-=++--++-+-+=++-++⨯+⨯+<++++++=-+++-+-+++++<++++=∑=n n nn n n n nn n n n n n n i ni 当1=n 时,原不等式显然成立. ∴原不等式得证.【考向】(1)可导函数在某点处取得极值的充要条件;(2)用求导法、分类讨论思想探寻恒成立有关的逆向求参问题;(3)用特殊赋值法构造“零件”不等式,然后通过叠加、放缩证明难度较大的数列不等式.22.解:(1)由a 22)4sin(=+πθρ,有a 22)cos sin (22=+θρθρ,∴1C 的直角坐标方程为0=-+a y x . 由⎩⎨⎧+-=+-=ϕϕsin 1cos 1y x (ϕ为参数)可得2C 的普通方程为1)1()1(22=+++y x . (2)∵曲线1C 和曲线2C 有两个不同公共点,∴12|11|<---a ,解得2222-<<--a , ∴实数a 的取值范围为)22,22(---【考向】(1)极坐标、参数方程与普通方程的互化;(2)直线与圆的位置关系.23.解:(1)∵|3|)(--=x m x f ,∴不等式2)(>x f ,即2|3|>--x m ,∴15+<<-m x m , 而不等式2)(>x f 的解集为)4,2(,∴25=-m 且41=+m ,解得3=m . (2)由(1),|3|3)(--=x x f ,关于x 的不等式)(||x f a x ≥-恒成立⇔关于x 的不等式|3|3||--≥-x a x 恒成立⇔ 3|3|||≥-+-x a x 恒成立,而|3||)3()(||3|||-=---≥-+-a x a x x a x ,∴只需3|3|≥-a ,则33≥-a 或33-≤-a ,解得6≥a 或0≤a .故实数a 的取值范围为),6[]0,(+∞-∞ .【考向】(1)绝对值不等式解集的逆向求参;(2)用绝对值不等式的性质解决不等式恒成立问题.。