高中数学 幂函数教案 北师大版必修1
高中数学 第二章 函数 25 简单的幂函数教案 北师大版必修1 教案
简单的幂函数教学目的:了解简单幂函数的概念,理解图像和性质,理解函数奇偶性及图像特征,能基本运用;培养学生形数结合的能力,及图像对称性的审美能力。
教学重点:理解幂函数的图像和性质,理解函数奇偶性及图像特征。
难点:判断函数奇偶性,及运用幂函数的图像和性质、函数奇偶性解决问题。
教学过程:一.导入:观察--- 正比例函数 y=x (即x1 )反比例函数 y= (即x-1)二次 函数 y=x 2(即x 2)-------------三者有何共性? 二.知识构建: 1.幂函数 (1)定义:(略)[注] 哪个是幂函数? A.y=2x B.y=x2 C.y=xx D. y=-x2 [答] B (2)图像:【探究1】幂函数y=x 3【探究2】幂函数y=x1/2 【2、(3)性质:(引导学生发现下列特点) 1).特征点:(1,1)?; (0,0)?2).单调性:略. 2.函数的奇偶性【观察1】以上各幂函数图像关于y 轴对称吗?偶函数定义:若一个函数的图像关于y 轴对称,则称之为偶函数.【观察2】以上各幂函数图像关于原点对称吗?奇函数定义:若一个函数的图像关于坐标原点对称,则称之为奇函数.【观察3】奇偶函数的图像有什么特点吗?(通过观察课件,知:)偶函数满足f(-x )=f(x ), 奇函数满足f(-x )=-f(x ) 【设问2】以上各幂函数x 1、x -1、x 3、x 2、x 1/2各有怎样的奇偶性? 答:略.【观察4】哪些函数定义域关于原点O 对称?1.定义域对称O ?2.公式f(-x)成立?三.用法示范例1.已知f(x )=(2m 2-1)·x 是幂函数,且在区间 (0,+∞)上递增.(1)试求f(x)的解析式,并画图;(2)判断f(x)奇偶性及单调性.(黑板讲解分析后,图像可由课件给出)练习1:幂函数f(x)=(m-1)·xm-1.5,试画图象,并判断其单调性、奇偶性.213m m 212-+y(图像、答案由课件给出)例2.判断奇偶性,并说明图像特征:(1) f (x)=- 2x -1; (2) f(x)=x 2+2; (3) f(x)=(x-1) ; (4) f(x)= .. (黑板讲解分析后,图像可由课件给出)练习2:p50(1)、(2)、(3)、(4) (学生动手过程中,逐次给出由课件图像、答案) 四.小结(以课件诱导进行)【设问3】本节课学习的第一个核心内容是什么?-------幂函数: 1.特征点; 2.单调性.【设问4】本节课学习的第二个核心内容是什么?-------奇偶性: 1.图对称; 2.公式f(-x).五. 智力冲浪----激趣、提升及备用 你能解决下列问题吗?1.已知函数f(x)=ax2+bx+(3a+b)为偶函数,其定义域为[a-1,2a],求f(x)的值域.2.若(a+1)-1<(3-2a)-1,求实数a 的取值范围.3.若函数f(x)是定义在R 上的奇函数,当x<0 时, f(x)=x(1-x). (1)求证:f(0)=0.(2)求当x >0时,f(x)的表达式. (结合课件诱导关键处,在黑板上推导)[答]:1.a=1/3,b=0.故(-∞,1];2. a<-1,或2/3<a<3/2.3.(1)f(-0)=-f(0);(2)x(1+x). 六.作业(略)1x x 122-+-x1x 1-+。
高中数学 幂函数 教案北师大版必修1
简单的幂函数§4.1二次函数的性质教学时间 : 2课时教学目标: 1、掌握幂函数的概念,熟练计算幂函数的定义域2、掌握幂函数的图象和性质3、自己正确运用幂函数的图象和性质,解决比大小问题教学重点:1、幂函数的概念2、幂函数的图象和性质教学难点:1、幂函数的图象和性质2、正确运用幂函数的图象和性质,解决比大小问题教学方法:讲授法探讨法教具准备:教学过程:(一)复习回顾1、初中已经学过函数:y=x,和,这些函数都是幂函数。
(二)新课讲解1.幂函数的概念定义:形如的函数叫做幂函数。
注意:函数,,都不是幂函数。
2.幂函数的定义域:幂函数的定义域就是使幂函数有意义的实数x的集合。
例1 求下列幂函数的定义域,,,,,解:定义域是R的定义域是R的定义域是的定义域是的定义域是的定义域是说明:如果幂函数的指数是常数,则幂函数的定义域较好求,若是给出字母指数,应分四种情况讨论的定义域。
(1)当指数n是正整数时,的定义域是R。
(2)当指数n是正分数时,设(p、q是互质的正整数,q >1),则如果q是奇数,的定义域是R如果q是偶数,的定义域是(3)当指数n是负整数时,设n=-k,则,显然,的定义域是(4)当指数n是负分数时,设(p、q是互质的正整数,q>1)则。
如果q是奇数,的定义域是如果q是偶数,的定义域是。
3.幂函数的图象(1)描绘幂函数的图象:依幂函数的定义域先列出对应值表,再用描点法作图,列出对应值是描点法的关键。
例如,画出函数,,,,的图象,其中,,及。
见课本P46。
定义域为(图1)x …-3 -2 -1 1 2 3 …… 1 4 4 1 …定义域为(图2)x … 1 4 …… 4 3 2 1 …4.幂函数的性质例2在同一坐标系内作业幂函数,,,,的图象,(见书P48图1-19),由图象可知当n>0时,幂函数有下列性质:(1)图象都通过点(0,0),(1,1);(2)在第一象限内,函数值y随x的增大而增大。
高中数学 幂函数教案 北师大版必修1
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
2019北师大版必修一《简单的幂函数》word教案
2019北师大版必修一《简单的幂函数》word 教案学习目标:1、 了解指数是整数的简单幂函数的概念,能够判断幂函数;2、 会利用定义判定、证明简单函数的奇偶性;3、 了解利用奇偶性画函数图像和研究函数的方法。
学习重点:幂函数的概念;奇偶性的定义及简单函数奇偶性的判定与证明。
难点:利用奇偶性画函数图像和研究函数 学习过程: 一、引入:我们已经很熟悉y=x 是正比例函数,y=x 2是二次函数, y=x1(即y=x -1)是反比例函数,它们有什么共同特点呢?根据这一特点它们有个怎样的共同名字? 二、 阅读导学 阅读P 481,2两段,1、回答:一般的,函数 叫做幂函数,其中 是自变量, 是常数。
2、判断下列函数,其中那些是幂函数:y=x 3,y=x 2+x , y=2x 2, y=(2x)4幂函数的系数是 底数是 , 是任意实数。
例1画出函数f(x)= x 3的图像,讨论其单调性。
再用描点法画出图像: 从图像上可以看出f(x)= x 3是R 上的 函数阅读P 483、观察f(x)= x 3的图像,说出他有那些特征?什么是奇函数?奇函数满足关系式 ?4、观察f(x)= x 2的图像说出他有那些特征?什么是偶函数?偶函数满足关系式 ?例2判断f(x)= -2x 2和g(x)= x 4+2的奇偶性 方法小结:三、 动手实践在P 49图2-28中,只画出了函数图像的一半,请你画出它们的另一半,并说出画法的依据 结论:四、 自我展示1、下列函数中是幂函数的是( )①y=21x②y=ax m (a,m 为非零常数,且a ≠1)③y=x 31+ x 2④y= x π⑤y=(x-1)32、画出下列函数图像,判断奇偶性 f(x)= -x3 y=x 2,x ∈(]33-,f(x)=3x 2-3 f(x)=2(x+1)2+1 五、拓展练习1.已知y=(m 2+2m-2)x 112-m+2n-3是幂函数,求m,n 的值。
高中数学必修1幂函数教案范文
高中数学必修1幂函数教案范文高中数学必修1《幂函数》教案11、教学目标知识目标:(1)掌握幂函数的形式特征,掌握具体幂函数的图象和性质。
(2)能应用幂函数的图象和性质解决有关简单问题。
能力目标:培养学生发现问题,分析问题,解决问题的能力。
情感目标:(1)加深学生对研究函数性质的基本方法和流程的经验。
(2)渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。
2、教学重点:从具体函数归纳认识幂函数的一些性质并简单应用。
教学难点:引导学生概括出幂函数的性质。
3、教学方法和教学手段:探索发现法和多媒体教学4、教学过程:问题情境问题1写出下列y关于x的函数解析式:①正方形边长x、面积y②正方体棱长x、体积y③正方形面积x、边长y④某人骑车x秒内匀速前进了1m,骑车速度为y⑤一物体位移y与位移时间x,速度1m/s问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。
(二)新课讲解幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfunction),其中是自变量,是常数。
为了加深对定义的理解,请同学们判别下列函数中有几个幂函数?①y=②y=2x2我们了解了幂函数的概念以后我们一起来研究幂函数的性质。
问题3幂函数具有哪些性质?用什么方法研究这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起研究了哪些性质呢?(学生讨论,教师引导)(引发学生作图研究函数性质的兴趣。
函数单调性的判断,既可以使用定义,也可以通过图象解决,直观,易理解。
)在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。
根据你的学习经历,你能在同一坐标系内画出函数的图象吗?(学生作图,教师巡视。
将学生作图用实物投影仪演示,指出优点和错误之处。
教师利用几何画板演示,通过超级链接几何画板演示。
数学高一(北师大)必修1教案 2.5简单的幂函数
2.5简单的幂函数教案●三维目标1.知识与技能(1)了解简单幂函数的概念.(2)会用定义证明简单幂函数的奇偶性.(3)了解利用奇偶性画函数图像及研究函数的方法.2.过程与方法类比研究一般函数的方法研究幂函数的图像和方法.3.情感、态度与价值观在幂函数的研究过程中让学生体会数学的科学价值和应用价值,引导学生发现数学的对称美,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.●重点难点重点:幂函数的概念及函数奇偶性的概念.难点:简单幂函数的图像和性质,函数奇偶性的判断.幂函数的概念和性质的突破方法是通过教材中的实例,概括它们解析式的共性来获得幂函数的定义,再根据它们的图像概括出性质;函数的奇偶性的突破方法是让学生观察图像,归纳、猜想概括得出定义,从而也掌握了函数奇偶性的几何意义.●教学建议本节课可以采用直观式教学,启发学生,放手让学生去探索与研究,并在一旁适时地引导学生根据几个实例函数的公共特点归纳、总结幂函数的定义,对几个特殊幂函数的性质先进行初步探索,再根据研究的结果结合描点作图画出幂函数的图像,让学生观察和分析所作的图像,归纳得出图像特征,并由图像特征得到相应的函数性质及函数奇偶性的初步认识,让学生体会系统研究函数的方法.整个教学过程的绝大部分时间都留给学生,让学生动脑动手.通过对同类旧知识的回忆,引导学生利用数形结合,找出与新知识的连接点,并在对照、类比分析中找出规律.可以提高学生学习的积极性和自学能力,培养了他们的归纳演绎能力和创新思维习惯.●教学流程通过几何画板演示部分幂函数的图像,加深对定义的感性认识,为顺利引出幂函数定义作铺垫⇒利用图像,数形结合,理解幂函数的图像和性质⇒通过例1及其变式训练,加深对幂函数的概念及性质的理解⇒通过f(x)=x3的图像关于原点对称并且对任意的xf(-x)=(-x)3=-x 3即f (-x )=-f (x ),完成对定义的理解⇒通过例2及其变式训练,加深定义及证明步骤的理解和掌握⇒通过例3及其变式训练,加深对函数奇偶性的理解和应用⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(见学生用书第29页)课标解读1.了解幂函数的概念.2.结合函数y =x ,y =x 2,y =x 3,y =x -1,y =x 12的图像,了解它们的变化情况.(难点、易混点)3.结合具体函数,了解函数奇偶性的含义.(重点)【问题导思】我们学习过几种基本初等函数如正比例函数y =x ,反比例函数y =x -1,二次函数y =x 2.看下面两个例子:(1)如果正方体的棱长为x ,正方体的体积为y ; (2)如果正方形场地面积为x ,其边长为y .1.在第一个例子中,y 关于x 的函数关系式怎样? 【提示】 y =x 3.2.在第二个例子中,y 关于x 的函数关系式怎样? 【提示】 y =x 2.3.这两个问题中的函数关系式与y =x ,y =x -1,y =x 2有什么共同特点. 【提示】 从形式上看,它们只是指数不同. 1.幂函数的定义如果一个函数,底数是自变量x ,指数是常量α,即y =x α,这样的函数称为幂函数. 2.简单的幂函数的图像和性质函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1在同一平面直角坐标系中的图像如图所示.从图中可以观察得到:【问题导思】画出函数y =x ,y =x 2,y =1x 的图像.1.它们的图像具有怎样的对称性?【提示】 y =x ,y =1x的图像关于原点对称,y =x 2关于y 轴对称.2.在函数y =x 2中,x 取-1时和取1时的函数值相同吗?在函数y =1x 中呢?【提示】 在函数y =x 2中相同,在y =1x 中互为相反数.1.奇函数的定义一般地,图像关于原点对称的函数叫作奇函数.在奇函数f (x )中,f (x )和f (-x )的绝对值相等,符号相反,即f (-x )=-f (x ).反之,满足f (-x )=-f (x )的函数y =f (x )一定是奇函数.2.偶函数的定义一般地,图像关于y 轴对称,像这样的函数叫作偶函数.在偶函数 f (x )中,f (x )和f (-x )的值相等,即f (x )=f (-x );反之,满足f (x )=f (-x )的函数y =f (x )一定是偶函数.3.奇偶性当一个函数是奇函数或偶函数时,称该函数具有奇偶性.(见学生用书第30页)下列函数是幂函数的为()①y=1x2;②y=2x2;③y=x2+x;④y=(x-2)3;⑤y=1.A.①⑤B.②C.①D.①②④【思路探究】紧扣幂函数的概念,y=xα的形式是解题的关键.【自主解答】函数y=1x2可写成y=x-2的形式,是幂函数;y=2x2的系数不是1,y=x2+x等式右边是两个幂和的形式,y=(x-2)3底数不是自变量x,y=1与y=x0(x≠0)不是同一函数,所以它们都不是幂函数.【答案】 C若一个函数是幂函数,则该函数一定是形如y=xα(α为常数)的形式,即函数解析式的右边是一个幂的形式,其中指数为常数,底数为自变量,系数为1,这是我们解决某些问题的一个隐性条件.若函数y=(a2-3a-3)x2为幂函数,则a的值为________.【解析】根据幂函数的定义,若函数y=(a2-3a-3)·x2为幂函数,则x2的系数必为1,即a2-3a-3=1,所以a2-3a-4=0,解得a=-1或a=4.【答案】-1或4判断下列函数的奇偶性:(1)f(x)=x3+2x;(2)f(x)=x2-|x|+1;(3)f(x)=x2x-1x-1;(4)f(x)=0.【思路探究】首先判断定义域是否关于原点对称,若关于原点对称,再看是否满足f(-x)=±f(x)即可.【自主解答】(1)函数的定义域是R,又f(-x)=(-x)3+2(-x)=-(x3+2x)=-f(x).所以f(x)是奇函数.(2)f(x)的定义域是R,且f(-x)=(-x)2-|-x|+1=x2-|x|+1=f(x),所以f(x)是偶函数.(3)由于x-1≠0,所以x≠1,即函数的定义域是{x|x≠1},不关于原点对称,所以f(x)既不是奇函数,也不是偶函数.(4)由于f(x)=0的定义域为R,且f(-x)=f(x)=-f(x),所以f(x)既是奇函数,又是偶函数.1.判断函数的奇偶性时,首先考虑函数的定义域,并判断其是否关于原点对称.2.若定义域不关于原点对称,则函数f(x)不具有奇偶性,若定义域关于原点对称,可再利用定义验证f(-x)与f(x)的关系.判断下列函数的奇偶性:(1)f(x)=x2,x∈(-1,2);(2)f(x)=x3+x,x∈[0,1];(3)f(x)=x x-1x-1,x∈(-1,1).【解】(1)由于定义域不关于原点对称,所以f(x)既不是奇函数,也不是偶函数.(2)因为定义域不关于原点对称,所以f(x)既不是奇函数,也不是偶函数.(3)由于x∈(-1,1),且关于原点对称,所以f(x)=x,且f(-x)=-x=-f(x),因此,f(x)为奇函数.图2-5-1已知函数f(x)是定义域为R的奇函数,当x>0时,f(x)=x2-2x.(1)求出函数f(x)在R上的解析式;(2)在图2-5-1中画出函数f(x)的图像.【思路点拨】根据题中条件,当x>0时的解析式已知,需求x≤0时的解析式,故需借助奇函数的性质求解,根据对称性即可画出图像.【自主解答】(1)①由于函数f(x)是定义域为R的奇函数,则f(0)=0;②当x<0时,-x>0,∵f(x)是奇函数,∴f(-x)=-f(x),∴f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x , 综上:f (x )=⎩⎪⎨⎪⎧x 2-2x , x >0,0, x =0,-x 2-2x , x <0.(2)图像如图:1.奇、偶函数的图像有以下特征:若f (x )为奇函数,则它的图像关于原点对称,反之也成立;若f (x )为偶函数,则它的图像关于y 轴对称,反之也成立.这个结论提供了结合图像处理函数奇偶性问题的依据,也是数形结合思想的体现.2.已知函数f (x )在区间[a ,b ]上的表达式,求函数f (x )在区间[-b ,-a ]上的表达式的一般方法:设-b ≤x ≤-a ,则a ≤-x ≤b ;根据已知条件f (x )在区间[a ,b ]上的表达式可求得f (-x )的表达式;然后根据函数f (x )的奇偶性来实现函数的解析式在f (x )与f (-x )之间的相互转化(若函数f (x )为奇函数,则f (x )=-f (-x );若f (x )为偶函数,则f (x )=f (-x )).特别值得一提的是:设-b ≤x ≤-a ,转化为a ≤-x ≤b 是解决问题的关键.(1)已知函数是定义在R 上的偶函数,且x ≥0时,f (x )=-x +1,则f (x )的解析式为________.(2)若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )>0的x 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-2,2)D .(-∞,-2)∪(2,+∞) 【解析】 设x <0,则-x >0.∵当x ≥0时,f (x )=-x +1,∴f (-x )=-(-x )+1=x +1. ∵函数f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ).∴当x <0时,f (x )=x +1.∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧-x +1,x ≥0,x +1,x <0.(2)由于函数f (x )是定义在R 上的偶函数,所以它的图像关于y 轴对称.又它在(-∞,0]上是减函数,所以可知该函数在(0,+∞)上为增函数.根据这些特征及f (2)=0,可作出它的图像(如下图).观察图像可得,使f (x )>0成立的x 的取值范围是(-∞,-2)∪(2,+∞).【答案】 (1)f (x )=⎩⎪⎨⎪⎧-x +1,x ≥0,x +1,x <0 (2) D。
高中数学北师大版必修1-幂函数教案教案
2.3 幂函数刘晓杰一.教学目的1.了解幂函数的概念2.理解幂函数的性质3.能从幂函数图象发现并理解幂函数的性质。
二.教学重点1.理解幂函数的性质三.教学难点1.从具体图象的性质推广到一般并概括出幂函数的性质四.教学过程1.复习前面2个基本初等函数,点明研究函数的基本内容。
2.创设情景,引入新课多媒体显示五个例子,引导学生观察,并归纳他们的共同特征。
幂函数的概念一般地,函数y=x a叫做幂函数(power function),其中x是自变量,a是常数。
练习1:下列函数中,那些是幂函数?(1),y=x4 (2), y=1/x2(3), y= -x2(4), y=x1/2(5), y=2x2 (6), y=x3+2 (归纳判断的原则)几个常见幂函数的图象和性质借助计算机利用《几何画板》软件画出函数y=x3和y=x1/2结合学生课前画好的y=x,y=x2,y=x-1三个图象,在同个坐标系内讨论完成课本的表格。
讨论归纳幂函数的性质五.例题例1:判断正误1.函数f(x)=x+1/x 为奇函数.2.函数f(x)=x 2,x ∈[-1,1)为偶函数.练习1.函数y=f(x)在定义域R 上是奇函数,且在(-∞,0]上是递增的,则f(x)在[0,+ ∞)上也是递增的.2.函数y=f(x)在定义域R 上是偶函数,且在(-∞,0]上是递减的,则f(x)在[0,+ ∞)上也是递减的.3.函数y=f(x)在实数集R 上是奇函数, 则f(0)=0.例2 比较下列各组数的大小;练习(3)证明幂函数 在[0,+∞)上是增函数.六.课堂小结(1) 幂函数的定义;(2) 幂函数的性质;(3) 利用幂函数的单调性判别大小七.作业:复习参考题A组 10题 ,B 组 3题高一(7)2005-10-21 87872525918 2133 1------)()(.)(和和x x f =)(32523283 14 2632 132-----..)()()()(和和π。
高中数学北师大版必修1第二章《简单的幂函数》优质课公开课教案教师资格证面试试讲教案
高中数学北师大版必修1第二章《简单的幂函数》优质课公开
课教案教师资格证面试试讲教案
高中数学北师大版必修1第二章《简单的幂函数》优质课公开课教案教师资格证面试试讲教案
1教学目标
1.了解指数是整数的幂函数的概念;
2.学会利用定义证明简单函数的奇偶性,了解用函数的奇偶性画函数图象和研究函数的方法;
3.培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。
2学情分析
幂函数是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,全面掌握有理数指数幂和根式的基础上来研究的一种特殊函数,是对函数概念及性质的应用。
3重点难点
1.教学重点:幂函数的概念,奇偶函数的概念.
2.教学难点:幂函数图像性质,研究函数奇偶性。
4教学过程
4.1第一学时
4.1.1教学活动
活动1【导入】简单的幂函数
一、问题引入
(1)如果小红买了每千克1元的水果x千克,那么她需要支付
(2)如果正方形的边长为x ,那么正方形的面积
(3)如果立方体的边长为x ,那么立方体的体积
(4)如果正方形的面积为x ,那么正方形的边长
(5)如果小明x小时走了1千米那么他的平均速度
以上问题中的函数解析式有什么共同特征?
答:底数是自变量x,指数是常量,式子前面的系数是1.
1、幂函数的定义。
数学必修1幂函数教案1(20201103182333)
,1,
2 四个值,则相应于曲
34
线 C1、 C2、C3、C4的解析式中的指数 依次可取( )
43
43
34
34
O
( A) ,1,, 2 (B) 2,1,, (C) 2,1,, (D ) ,1,, 2
34
34
43
43
5、小结 :
通过本节的学习,你对幂函数有什么认识?你能概括一下吗?
6、作业:
C3 C4
(1) 必做题:课本 P82 A 组第 10 题
(2) 课外探究:利用计算机探索一般幂函数 y x 的图象随 的变化规律.
【板书设计】
幂函数
一、定义 投
三、例题及练习
影
二、幂函数的图象与性质
区
O
[ 探究 ] 通过对以上五个函数图象的观察和填表,你能类比出一
般的幂函数的性质吗? 3、例题讲解:
例:比较大小:
(1)1.51.5 ,1.71.5
1
1
(2) 1.1 2 与 0.9 2
C1 C2
4、练习: 如图所示,曲线 C1、 C2、C3、C4 为幂函数 y x 在
第一象限内的图象,已知
取
4
3 ,
数学必修 1 幂函数 教案
【三维目标】
1、知识与技能:
1
(1) 理解幂函数的概念,会画幂函数 y x , y x 2 , y x 3 , y x 1 , y x 2 的图
象.
(2) 结合常见的幂函数图象,理解幂函数图象的变化情况和性质,并能进行简单的
应用.
2、过程与方法 :
(1) 通过观察、总结幂函数的性质,培养学生的识图能力和概括能力 .
(2) 函数 y x, y x3 , y x 1 是奇函数,函数 y x2 是偶函数;
高中数学 2.5简单的幂函数教案 北师大版必修1
5.简单的幂函数一、教材的地位和作用:《简单的幂函数》北师大版必修1第2章第5节的内容。
是对学生学习了正、反比例函y 及其他们的图像和性质的基础上来研究的,是这些特殊函数等在解析数和二次函数2x式的形式上共有特征的推广,本节突出幂函数从特殊到一般的推广,同时要研究函数的另外一个重要的性质奇偶性,是继函数单调性之后的又一重要的性质,是函数性质的延续和深化,通过本节课的学习,学生将建立幂函数这一函数模型,并能用系统的眼光看待以前已经接触过的函数,因而本节课更是一个对学生研究函数的方法和能力的综合提升,为后续学习做了铺垫。
二、教学目标:(1)知识与技能目标:①理解幂函数的概念②通过几个幂函数的图象,理解函数奇偶性的概念③会利用定义判定、证明简单函数的奇偶性,了解利用奇偶性画函数图像的方法(2)过程与方法目标:①通过幂函数解析式共性的观察、培养学生抽象概括和画图与识图能力。
②使学生进一步体会数形结合、转化的思想。
③培养学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。
(3)情感态度与价值观①通过熟悉的例子消除陌生感引出幂函数的概念,从而引起学生注意,激发学生的学习兴趣。
②利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。
三、教学重难点教学重点:幂函数的概念、奇偶函数的概念,突出待定系数法教学难点:简单幂函数的概念;定义法判断函数的奇偶性四、教法学法与教具本节主要采用“发现法”教学。
通过观察函数解析式及函数图像,借助多媒体全方位的审视,由特殊到一般、直观到抽象进行教学,同时也解决时间上的矛盾,突破了难点。
辅助以启发式、演示法教学,通过优化组合,以期达到最佳教学效果。
教具:多媒体 五、教学过程教学程序主要分为五个环节:1、温故知新,引入新课:x y =,xy 1=,2x y = 开门见山 问题:这三个函数解析式从结构上看有什么共同的特点吗?这时,学生观察可能有些困难,教师提示,可以改变形式,上述函数式变成:1211y x y x y x x-====,,,(这个教师可直接给出,说明一下,在后面指数函数将详尽讲解)设计意图: 就近区域的理论,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,易保持,且易于迁移到陌生的问题情境中。
高中数学 第二章 函数 2.5 简单的幂函数教案1 北师大版必修1
2.5 简单的幂函数
本节教材分析
教材从整数指数的幂函数自然引入,给出定义后,也只是推广到其他整数指数的情况,但是要指出x为其他实数时依有意义,留待第三章解决.对于函数的奇偶性,虽然给出了一般定义,但是应该知道,教材重在从图上看出图像的对称性,着重从对称的角度应用这一性质,也就是说,对奇偶性的要求是低的,习题不需要过难,要循序渐进.
三维目标
1.了解指数是整数的简单的幂函数的概念,巩固画函数图像的方法,培养学生识图和画
图的能力.
2.会利用定义证明简单函数的奇偶性,提高学生的逻辑思维能力.
3.了解利用奇偶性画函数图像和研究函数方法,培养学生分析问题和解决问题的能力. 教学重点:幂函数的概念,奇函数和偶函数的概念.
教学难点:判断函数的奇偶性.
教学建议:尽量用信息技术画幂函数的图像,通过它们的图像,让学生自己归纳出它们的性质.
新课导入设计
导入一:举例说明生活中经常遇到的几个数学模型,让学生发现共同点,进而导出课题.
导入二:运用我们已经熟悉正比例、反比例、一次函数、二次函数,这一节课我们学习一种新的函数---幂函数,教师板书引出课题.
1。
高中数学新北师大版精品教案《北师大版高中数学必修1 5 简单的幂函数》33
§ 简单的幂函数一、教学目标:1知识与技能: (1)了解简单幂函数的概念;能够观察总结简单幂函数的一些性质;会利用定义证明简单函数的奇偶性(2)了解利用奇偶性画函数图像和研究函数的方法。
2过程与方法: (1)培养学生从特殊归纳出一般的意识;(2)学习利用图像研究函数奇偶性的能力3情感、态度价值观:(1)引导学生发现数学中的对称美,让学生在识图和画图中获得 学习的快乐。
(2)通过几何画板等多媒体的应用,使学生认识到现代信息技术在数学认知过程中的作用。
二、教学重点与难点:重点:幂函数的概念,函数奇、偶性的概念。
难点:简单幂函数的性质;正确判断函数的奇偶性。
三、学法指导:本节课主要是通过对幂函数模型的特征归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度的情况下发现函数奇偶性的特征。
重在归纳、动手操作、观察发现的过程。
四、教学过程:(一) 创设情境(生活实例中抽象出几个数学模型)1如果你买每千克1元的蔬菜x 千克,那么需要付的钱数?=y2.如果正方形的边长为x ,那么正方形的面积?=y3.如果正方体的棱长为x ,那么正方体的体积?=y4.如果正方形场地的面积为x ,那么正方形的边长?=y5如果某人x 内骑车行进了1m,那么他骑车的平均速度?=y【思考】上述函数解析式有什么形式特征?具有什么共同点?(教师将解析式写成指数幂形式,以启发学生归纳,板书课题并归纳幂函数的定义。
)(二)探究幂函数的概念、图象和性质阅读导学阅读49P 1,2两段1、回答:一般的,函数 叫做幂函数,其中 是自变量, 是常数。
2、判断下列函数,其中那些是幂函数:32245;1)4(;2)3(;2)2(;31x y x y x y x y y x =+====)( )( )(3、幂函数)(x f y =过点)(4,2,求函数的解析式幂函数的系数是 底数是 ,α是任意实数。
探究导学探究:在同一坐标系内描点法画出幂函数21132;;;;x y x y x y x y x y =====-的图像,通过这组图像你有哪些发现?学生活动:观察交流,分析图像还有那些特点?(三)奇函数、偶函数的定义阅读49P 思考:①什么是奇函数?什么是偶函数?②x x 与-在几何上有和关系?具有奇偶性的函数的定义域有何特征?③你能否用数学符号语言来刻画图像关于原点对称?关于y 轴对称?一般地,图像关于原点对称的函数叫作奇函数,即f -=-f;反之,满足f -=-f 的函数=f 一定是奇函数。
2022年 高中数学新北师大版精品教案《北师大版高中数学必修1 简单的幂函数》
§幂函数与二次函数教学设计【教学目标】1.知识目标〔1〕了解幂函数的概念;〔2〕识记五种常见的简单幂函数的图象,并能根据图象得出这些函数的性质;〔3〕掌握二次函数的图像和性质,并能运用解决二次函数在闭区间上的单调性和最值。
2.能力目标利用函数图像识记幂函数和二次函数的单调与最值性,培养学生观察和归纳能力,培养学生数形结合的意识和思想。
3.情感目标通过师生、生生彼此之间的讨论、互动,培养学生合作、交流、探究的意识品质,同时让学生在探索、解决问题过程中,获得学习的成就感。
【学情分析】学生通过对函数概念,三要素及性质的学习,已经初步掌握了利用函数的图像去研究一类函数并归纳出此类函数性质的能力和方法,本节课继续带学生复习,培养学生由一般到特殊的研究函数的方法。
【教学重点】幂函数与二次函数的图象及推导性质的过程与方法。
【教学难点】求函数的解析式的方法,性质的讨论。
【教学用具】多媒体【教学方法】讲练结合【教学过程】一开门见山,引入新课一.知识整理幂函数的定义:一般地,函数=叫做幂函数,其中为自变量,为常数。
对于幂函数,我们主要学习以下五种函数:= ,=2 ,=3 ,=,=-1。
五个常用幂函数的图象性质探究2二次函数的图象和性质0,二次函数f=a2+b+c的图象可能是例4函数f=-2+2a+1-a在∈[0,1]时有最大值2,求a的值.【课堂小结】1二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不管哪种类型,解决的关键是考察对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论;2二次函数的单调性问题那么主要依据二次函数图象的对称轴进行分类讨论求解.【课后反思】本节课其实是复习课,高三的学生已经掌握了这些函数的相关性质。
但由于我校生源问题,学生根底普遍薄弱。
我就在想二次函数肯定要作为重点的,但是幂函数是他们容易忽略的,所以在开始复习的时候我先复习的是幂函数,强调它与指数函数的不同。
数学北师大版高中必修1北师大版高一年级数学必修一第三章指数、对数、幂函数教案
第三章 指数、对数、幂函数教学目的:(1)掌握根式的概念;(2)规定分数指数幂的意义;(3)学会根式与分数指数幂之间的相互转化;(4)理解有理指数幂的含义及其运算性质;(5)了解无理数指数幂的意义教学重点:分数指数幂的意义,根式与分数指数幂之间的相互转化,有理指数幂的运算性质教学难点:根式的概念,根式与分数指数幂之间的相互转化,了解无理数指数幂.教学过程:一、 引入课题1. 以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性2. 由实例引入,了解指数指数概念提出的背景,体会引入指数的必要性;3. 复习初中整数指数幂的运算性质;n n n mnn m nm n m b a ab a a a a a ===⋅+)()(4. 初中根式的概念;如果一个数的平方等于a ,那么这个数叫做a 的平方根,如果一个数的立方等于a ,那么这个数叫做a 的立方根;二、 新课教学(一)指数与指数幂的运算1.根式的概念一般地,如果a x n =,那么x 叫做a 的n 次方根(n throot ),其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示.式子n a 叫做根式(radical ),这里n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ).当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n .思考:(课本P 58探究问题)n n a =a 一定成立吗?.(学生活动)结论:当n 是奇数时,a a n n= 当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a n n 例1.(教材P 58例1).解:(略)巩固练习:(教材P 58例1)2.分数指数幂正数的分数指数幂的意义规定:)1,,,0(*>∈>=n N n m a a a n m n m)1,,,0(11*>∈>==-n N n m a a a a n m n mn m0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.有理指数幂的运算性质(1)r a ·s r r a a += ),,0(Q s r a ∈>;(2)rs s r a a =)(),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题例2.(教材P 60例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用.巩固练习:(教材P 63练习1-3)4. 无理指数幂结合教材P 62实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.思考:(教材P 63练习4)巩固练习思考::(教材P 62思考题)例3.(新题讲解)从盛满1升纯酒精的容器中倒出31升,然后用水填满,再倒出31升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?解:(略)点评:本题还可以进一步推广,说明可以用指数的运算来解决生活中的实际问题.三、 归纳小结,强化思想本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.四、 作业布置1. 必做题:教材P 69习题2.1(A 组) 第1-4题.2. 选做题:教材P 70习题2.1(B 组) 第2题.课题:§2.1.2指数函数及其性质教学任务:(1)使学生了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;(2)理解指数函数的的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点;(3)在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程、数形结合的方法等.教学重点:指数函数的的概念和性质.教学难点:用数形结合的方法从具体到一般地探索、概括指数函数的性质.教学过程:五、引入课题(备选引例)5.(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长.为了控制人口过快增长,许多国家都实行了计划生育.我国人口问题更为突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.○1按照上述材料中的1%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍?○2到2050年我国的人口将达到多少?○3你认为人口的过快增长会给社会的发展带来什么样的影响?6.上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数?7.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?8.上面的几个函数有什么共同特征?六、新课教学(一)指数函数的概念一般地,函数)1y x≠>=且叫做指数函数(exponentialaa,0a(function),其中x是自变量,函数的定义域为R.注意:○1指数函数的定义是一个形式定义,要引导学生辨析;○2注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.巩固练习:利用指数函数的定义解决(教材P 68例2、3)(二)指数函数的图象和性质问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.探索研究:1.在同一坐标系中画出下列函数的图象:(1)x )31(y = (2)x )21(y = (3)x 2y =(4)x 3y =(5)x 5y =2.从画出的图象中你能发现函数x 2y =的图象和函数x )21(y =的图象有什么关系?可否利用x2y =的图象画出x )21(y =的图象? 3.从画出的图象(x 2y =、x 3y =和x 5y =)中,你能发现函数的图象与其底数之间有什么样的规律?4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?9. 利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =;(4)当1a >时,若21x x <,则)x (f )x (f 21<;(三)典型例题例1.(教材P 66例6).解:(略)问题:你能根据本例说出确定一个指数函数需要几个条件吗?例2.(教材P 66例7)解:(略)问题:你能根据本例说明怎样利用指数函数的性质判断两个幂的大小?说明:规范利用指数函数的性质判断两个幂的大小方法、步骤与格式.巩固练习:(教材P 69习题A 组第7题)七、 归纳小结,强化思想本节主要学习了指数函数的图象,及利用图象研究函数性质的方法.八、作业布置3.必做题:教材P69习题2.1(A组)第5、6、8、12题.4.选做题:教材P70习题2.1(B组)第1题.课题:§2.2.1对数教学目的:(1)理解对数的概念;(2)能够说明对数与指数的关系;(3)掌握对数式与指数式的相互转化.教学重点:对数的概念,对数式与指数式的相互转化教学难点:对数概念的理解.教学过程:九、引入课题10.(对数的起源)价绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性;设计意图:激发学生学习对数的兴趣,培养对数学习的科学研究精神.11.尝试解决本小节开始提出的问题.十、新课教学1.对数的概念一般地,如果Na x=)1>aa,那么数x叫做以.a为底(≠,0..N的对数(Logarithm ),记作:N x a log =a — 底数,N— 真数,N a log — 对数式说明:○1 注意底数的限制0>a ,且1≠a ; ○2N N a a x =⇔=log ○3 思考:○1 为什么对数的定义中要求底数0>a ,且1≠a ; ○2 是否是所有的实数都有对数呢? 设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备. 两个重要对数:○1 常用对数(common logarithm ):以10为底的对数N lg ;○2 自然对数(natural logarithm ):以无理数 71828.2=e 为底的对数的对数Nln .2. 对数式与指数式的互化x N a =log⇔ N a x =对数式 ⇔ 指数式对数底数 ← a → 幂底数 对数 ← x → 指数 真数 ← N → 幂例1.(教材P 73例1)巩固练习:(教材P 74练习1、2)设计意图:熟练对数式与指数式的相互转化,加深理解对数概念.说明:本例题和练习均让学生独立阅读思考完成,并指出对数式与指数式的互化中应注意哪些问题. 3. 对数的性质 (学生活动)○1 阅读教材P 73例2,指出其中求x 的依据; ○2 独立思考完成教材P 74练习3、4,指出其中蕴含的结论 对数的性质(1)负数和零没有对数; (2)1的对数是零:01log =a ; (3)底数的对数是1:1log =a a ;(4)对数恒等式:N a Na=log ;(5)n a n a =log . 十一、 归纳小结,强化思想 ○1 引入对数的必要性; ○2 指数与对数的关系; ○3 对数的基本性质. 十二、 作业布置教材P 86习题2.2(A 组) 第1、2题,(B 组) 第1题.课题:§2.2.2对数函数(一)教学任务:(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;(2)能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;(3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法.教学重点:掌握对数函数的图象和性质.教学难点:对数函数的定义,对数函数的图象和性质及应用.教学过程:十三、引入课题1.(知识方法准备)○1学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.○2对数的定义及其对底数的限制.设计意图:为讲解对数函数时对底数的限制做准备.2.(引例)教材P 81引例处理建议:在教学时,可以让学生利用计算器填写下表:然后引导学生观察上表,体会“对每一个碳14的含量P 的取值,通过对应关系P t 215730log=,生物死亡年数t都有唯一的值与之对应,从而t 是P 的函数” .(进而引入对数函数的概念) 十四、 新课教学 (一)对数函数的概念 1.定义:函数(l o g >=a x y a ,且)1≠a 叫做对数函数(logarithmic function )其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0(>a ,且)1≠a . 巩固练习:(教材P 68例2、3) (二)对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:○1 在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)(1) x y 2log = (2) x y 21log =(3) x y 3log = (4) x y 31log =○2 类比指数函数图象和性质的研究,研究对数函数的性质并填写如下表格:○3 思考底数a 是如何影响函数x y a log =的.(学生独立思考,师生共同总结)规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大. (三)典型例题例1.(教材P 83例7). 解:(略)说明:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理解. 巩固练习:(教材P 85练习2).例2.(教材P83例8)解:(略)说明:本例主要考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法.注意:本例应着重强调利用对数函数的单调性比较两个对数值的大小的方法,规范解题格式.巩固练习:(教材P85练习3).例2.(教材P83例9)解:(略)说明:本例主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题.注意:本例在教学中,还应特别启发学生用所获得的结果去解释实际现象.巩固练习:(教材P86习题2.2 A组第6题).十五、归纳小结,强化思想本小节的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点.十六、作业布置5.必做题:教材P86习题2.2(A组)第7、8、9、12题.6. 选做题:教材P 86习题2.2(B 组) 第5题.课题:§2.2.2对数函数(二)教学任务:(1)进一步理解对数函数的图象和性质;(2)熟练应用对数函数的图象和性质,解决一些综合问题;(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力. 教学重点:对数函数的图象和性质. 教学难点:对对数函数的性质的综合运用. 教学过程: 十七、 回顾与总结 1. 函数xy x y x y lg ,log ,log 52===的图象如图所示,回答下列问题.(1)说明哪个函数对应于哪个图象,并解释为什么?(2)函数x y a log =与x y a1log =,0(>a 且)0≠a 有什么关系?图象之间 又有什么特殊的关系?○1 ○2 ○3(3)以x y x y x y lg ,log ,log 52===的图象为基础,在同一坐标系中画出x y x y x y 1015121log ,log ,log ===的图象.(4)已知函数xy x y x y x y a a a a 4321log ,log ,log ,log ====的图象,则底数之间的关系:. 教log =y x a1 log =y x a2 log =y x a3 log =y x a42. 完成下表(对数函数x y a log =,0(>a 且)0≠a 的图象和性质)3. 根据对数函数的图象和性质填空.○1 已知函数x y 2log =,则当0>x 时,∈y ;当1>x 时,∈y ;当10<<x 时,∈y ;当4>x 时,∈y .○1 已知函数x y 31log =,则当10<<x 时,∈y ;当1>x 时,∈y ;当5>x 时,∈y ;当20<<x 时,∈y ;当2>y 时,∈x .十八、 应用举例例1. 比较大小:○1 πa log ,e a log ,0(>a 且)0≠a ;○2 21log 2,)1(log 22++a a )(R a ∈. 解:(略)例2.已知)13(log -a a 恒为正数,求a 的取值范围. 解:(略)[总结点评]:(由学生独立思考,师生共同归纳概括)..例3.求函数)78lg()(2-+-=x x x f 的定义域及值域. 解:(略)注意:函数值域的求法.例4.(1)函数x y a log =在[2,4]上的最大值比最小值大1,求a 的值;(2)求函数)106(log 23++=x x y 的最小值. 解:(略)注意:利用函数单调性求函数最值的方法,复合函数最值的求法.例5.(2003年上海高考题)已知函数xx xx f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性. 解:(略)注意:判断函数奇偶性和单调性的方法,规范判断函数奇偶性和单调性的步骤.例6.求函数)54(log )(22.0++-=x x y x f 的单调区间. 解:(略)注意:复合函数单调性的求法及规律:“同增异减”. 练习:求函数)23(log 221x x y --=的单调区间.十九、 作业布置 考试卷一套课题:§2.2.2对数函数(三)教学目标:知识与技能理解指数函数与对数函数的依赖关系,了解反函数的概念,加深对函数的模型化思想的理解.过程与方法通过作图,体会两种函数的单调性的异同.情感、态度、价值观对体会指数函数与对数函数内在的对称统一.教学重点:重点难两种函数的内在联系,反函数的概念.难点反函数的概念.教学程序与环节设计:由函数的观点分析例题,引出反函数的概念.教学过程与操作设计:课题:§2.3幂函数教学目标:知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.教学重点:重点从五个具体幂函数中认识幂函数的一些性质.难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.教学程序与环节设计:问题引入.教学过程与操作设计:课题:§3.1.1方程的根与函数的零点教学目标:知识与技能理解函数(结合二次函数)零点的概念,领会函数零点与相应方程要的关系,掌握零点存在的判定条件.过程与方法零点存在性的判定.情感、态度、价值观在函数与方程的联系中体验数学中的转化思想的意义和价值.教学重点:重点零点的概念及存在性的判定.难点零点的确定.教学程序与环节设计:结合二次函数引入课题.研究二次函数在零点、零点之内及零点外的函数值符号,并尝试进行系统的总结.教学过程与操作设计:。
北师大版高中数学必修一教学案简单的幂函数
2.对任意的x,若f(-x)=-f(x),则称为。奇函数的图像关于。
3.对任意的x,若f(-x)=f(x),则称为。偶函数的图像关于。
4.所有的幂函数在(0,+ )上都有定义,并且图像都经过点。
5.如果 >0,则幂函数图像通过,并且在区间 上是。
如果 <0,并且在区间(0,+ )上是。
四课后反思
五课后巩固练习
1.已知幂函数 ,当x∈(0,+∞)时为减函数,则该幂函数的解析式是什么?奇偶性如何?单调性如何?
2.已知 是奇函数, 是偶函数,且 ,求 、 .
(1) 与 ;(2) 与 ;(3) 与 .
练习.比大小:
(1) 与 ;(2) 与 ;
(3) 与
三巩固练习
1.函数f(x)=|x|+1是()
A.奇函数B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数
2.下列函数中,定义域为R的是()
A.y=x-2B.
C.y=x2D.y=x-1
3.函数y=(x+2)(x-a)是偶函数,则a=()
A.2 B.-2
C.1 D.-1
4.设α∈{-1,1, ,3},则使函数y=xα的定义域为R且为奇函数的所有α的值为()
A.1,3 B.-1,1
C.-1,3 D.-1,1,3
5.设f(x)是定义在(-∞,+∞)上的奇函数,且x>0时,f(x)=x2+1,则f(-2)=________.
6.已知函数f(x)= ,已知f(a)>1,则实数a的取值范围是________.
二师生互动
例1在同一坐标系作出下列函数的图象:
(1) ;(2) ;(3) ;(4) ;(5) .
数学:2.5幂函数 教案 (北师大必修1)
2.5幂函数一.教学目标:1.知识技能:(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法:类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.3.情感、态度、价值观:(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性.二.重点、难点重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质三、教法、学法1、学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质;2、教法:探析交流、讲练结合。
四、教学过程(一)、引入新知阅读教材P90的具体实例(1)~(5),思考下列问题.(1)它们的对应法则分别是什么?(2)以上问题中的函数有什么共同特征?让学生独立思考后交流,引导学生概括出结论答:1、(1)乘以1 (2)求平方(3)求立方(4)求算术平方根(5)求-1次方2、上述的问题涉及到的函数,都是形如:y xα=,其中x是自变量,α是常数.(二)、探究新知1.幂函数的定义一般地,形如y xα=(x∈R)的函数称为幂孙函数,其中x是自变量,α是常数.如11234,,y x y x y x-===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.2.研究函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =提问:如何画出以上五个函数图像引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像.913.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=); (2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)当∠α<1时,x ∈(0,1),2y x =的图象都在y x =的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 例题:例1.证明幂函数()[0,]f x =+∞上是增函数证:任取121,[0,),x x x ∈+∞且<2x 则12()()f x f x -=因12x x -<00 所以12()()f x f x <,即()[0,]f x =+∞上是增函数.思考:我们知道,若12()()0,1()f x y f x f x =><若得12()()f x f x <,你能否用这种作比的方法来证明()[0,]f x =+∞上是增函数,利用这种方法需要注意些什么?例2.利用函数的性质 ,判断下列两个值的大小 (1)11662,3 (2)3322(1),(0)x xx +> (3)22244(4),4a --+分析:利用幂函数的单调性来比较大小. (三)、课堂练习画出23y x =的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性. (四)、归纳小结:提问方式(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的? (2)你能根据函数图象说出有关幂函数的性质吗? (五)、作业: P 92 习题 2.3 第2、3 题 五、课后反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5幂 函 数
教学目标
1、通过对幂函数概念的学习以及对幂函数图像和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。
2、使学生理解并掌握幂函数的图像与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。
教学难点
幂函数图像和性质的发现过程 教学重点
幂函数的性质及运用 教学过程 一、教学导入
数学和日常生活是密不可分的,观察下列问题中的函数个有什么共同特征? (1)如果李斯在超市买了每支1元的水笔n (支),那么他应支付p=n 元。
这里p 是n 的函数。
(2)如果正方形的边长a ,那么正方形的面积为S=a 2
,这里S 是a 的函数。
(3)如果立方体的边长a ,那么立方体的体积为V=a 3
,这里V 是a 的函数。
(4)如果正方形的面积为S ,那么这个正方形的边长为a=S 2
1
,这里a 是S 的函数。
(5)如果壮壮t (s )内骑车行进了1(km ),那么他骑车的平均速度为v=t -1
(s km ),
这里v 是t 的函数。
由学生讨论,总结,即可得出:p=n ,S=a 2
,V=a 3
,a=S 2
1 ,v=t -1
都是自变量的若干次幂的形式。
这节课,我们将来共同学习另一种函数——幂函数(老师板书课题)
二、讲授新课
1、定义:一般地,函数y=x a
叫做幂函数,其中x 是自变量,a 是实常数。
判断一个函数是否是幂函数?注意:①是否为幂的形式;②自变量是幂的底数,指数可以是任意实数。
例1、(1)y=x a 与y=a x
一样吗? (2)在函数y=x+2,y=1, y=x 2
+x ,y=2x 2+3,y=4
1
x 中,哪几个函数是幂函数? (3)已知幂函数y=f (x )的图像过点(2,8
1
),试求出这个函数的解析式。
2、对于幂函数y=x a
,讨论当a=1,2,3,2
1
,-1时的函数性质 表格如下:
y=x
y=x 2
y=x 3
y=x 2
1
y=x -1
定义域 值 域 奇偶性 单调性 定 点
下面先请五位同学分别在黑板上画出每个函数的图像,其他同学可以在同一坐标系内作五个幂函数的图像。
(要给学生留出充分时间去研究函数性质) 通过观察图像与表格 (1)函数y=x ,y=x 2
,y=x 3
,y=x 2
1 和y=x -1
的图像都通过(1,1) ; (2)函数y=x ,y=x 3
,y=x -1
是奇函数,函数y=x 2
是偶函数;
(3)在第一象限内,函数y=x ,y=x 2
,y=x 3
和y=x 2
1 是增函数,函数y=x -1
是减函数; (4)在第一象限内,函数y=x -1
的图像向上与y 轴无限接近,向右与x 轴无限接近。
例2、求下列函数的定义域,并判断函数的奇偶性
(1)f (x )=-2x 5 (2)g (x )=x 4
+2 (3)f (x )=-x+ x 3
1 (4)g (x )=5x+ x 5
2
3、拓展题
证明幂函数f (x )= x 3
在R 上是增函数 三、课外作业 教学后记
本节课主要从五个具体幂函数中认识幂函数的一些性质,画五个幂函数的图像并由图像概括其性质是教学中可能遇到的困难,所以要注意引导学生亲自动手画图像、分组讨论等形式,让学生自己去探究,把主动权交给学生。
6.1-6.2高中数学第二章测试题
班级 姓名 学号 成绩
一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、若()1f x x =
+,则(3)f = ( )
A 、2
B 、4
C 、22
D 、10 2、对于函数()y f x =,以下说法正确的有 ( )
①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个
B 、2个
C 、3个
D 、4个 3、下列各组函数是同一函数的是 ( )
①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =
;③0()f x x =与
01
()g x x
=
;④2()21f x x x =--与2()21g t t t =--。
A 、①② B 、①③ C 、③④ D 、①④
4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25
5、函数265y x x =---的值域为 ( )
A 、[]0,2
B 、[]0,4
C 、(],4-∞
D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( ) A 、(1) B 、(1)、(3)、(4) C 、(1)、(2)、(3) D 、(3)、(4) 7、若:f A B →能构成映射,下列说法正确的有 ( )
(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、1个
B 、2个
C 、3个
D 、4个 8、)(x f 是定义在R 上的奇函数,下列结论中,不正确...
的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、
()
1()
f x f x =-- 9、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( )
A 、3a -≤
B 、3a -≥
C 、a ≤5
D 、a ≥5 10、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )
A 、12a >
B 、12a <
C 、12a ≥
D 、12
a ≤ 11、定义在R 上的函数()f x 对任意两个不相等实数,a
b ,总有
()()
0f a f b a b
->-成立,则必有( )
A 、函数()f x 是先增加后减少
B 、函数()f x 是先减少后增加
C 、()f x 在R 上是增函数
D 、()f x 在R 上是减函数
12、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
A 、(1)(2)(4)
B 、(4)(2)(3)
C 、(4)(1)(3)
D 、(4)(1)(2) 二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 13、已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f = 。
14、将二次函数22y x =-的顶点移到(3,2)-后,得到的函数的解析式为 。
15、已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 。
16、设2
2 (1)
() (12)2 (2)x x f x x x x x +-⎧⎪=-<<⎨⎪⎩
≤≥,若()3f x =,则x = 。
三、解答题:(本题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17、求下列函数的定义域:(12分) (1)2134y x x =++- (2)1
21
y x =
+-
18、已知(,)x y 在映射f 的作用下的像是(,)x y xy +,求(2,3)-在f 作用下的像和(2,3)-在
f 作用下的原像。
(12分)
19、证明:函数2()1f x x =+是偶函数,且在[)0,+∞上是增加的。
(14分) 20、对于二次函数2
483y x x =-+-,(16分) (1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)画出它的图像,并说明其图像由2
4y x =-的图像经过怎样平移得来; (3)求函数的最大值或最小值;
(4)分析函数的单调性。
21、设函数)(x f y =是定义在R +
上的减函数,并且满足)()()(y f x f xy f +=,131=⎪⎭
⎫
⎝⎛f , (1)求)1(f 的值, (2)如果2)2()(<-+x f x f ,求x 的取值范围。
(16分)。