七年级上学期数学第三次月考试卷

合集下载

湖南省长沙市周南梅溪湖中学2023-2024学年七年级上学期第三次月考数学试题

湖南省长沙市周南梅溪湖中学2023-2024学年七年级上学期第三次月考数学试题

湖南省长沙市周南梅溪湖中学2023-2024学年七年级上学期第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....据中国民用航空局2023年11月16日消息,日前,包含北斗卫星导航系统(以下简北斗系统”)标准和建议措施的《国际民用航空公约》附件最新修订版正式生效这标志着北斗系统正式加入国际民航组织(ICAO )标准,成为全球民航通用的卫星导.早在2012月,每分钟就有多个国家和地区的用户访问使用北斗系统70000000次.其中70000000用科学记数法表示为()7710⨯.77010⨯80.7010⨯8710⨯A .建B 7.下列运算正确的是(A .326=B D 8.假期中,一群学生前往某工地进行社会实践活动,男生戴白色安全帽,女生戴红色安全帽.休息时他们坐在一起,大家发现了一个有趣的现象:每名男生看到白色与红色安全帽一样多,而每名女生看到白色安全帽是红色安全帽人,下面所列方程正确的是(A .()121x x -=+B 9.苯是一种石油化工基本原料,其产量和生产的技术水平是一个国家石油化工发展水平的标志之一,如图,小明用式,他继续用相同的木棒搭建与苯有关联的各个图形,按此规律,用含建第n (n 为正整数)个图形所需木棒的根数(A .101n +B .81n +C .61n +10.某中学初一年级有13个课外兴趣小组,共162人.各组人数如下表:组别12345678910111213人数235791013141617202224一天下午学校同时举办语文、数学两个讲座,已知有12个小组去听讲座,其中听语文讲座的人数是听数学的6倍,还剩下一个小组在教室里讨论问题,这一小组是(A .第3组B .第6组C .第9组。

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案) (5)

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案) (5)

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(共18分)1.下列算式中,运算结果为﹣2019的是()A.﹣(﹣2019)B.C.﹣|﹣2019|D.|﹣2019|2.下列各式中,是方程的是()A.7x﹣4=3x B.4x﹣6C.4+3=7D.2x<53.如图,处于平衡状态的天平反映的等式性质是()A.如果a=b,那么a+c=b+c B.如果a=b,那么ac=bcC.如果a=b,那么(c≠0)D.如果a=b,那么a2=b24.若代数式﹣2a x+7b4与代数式3a4b2y是同类项,则x y的值是()A.9B.﹣9C.4D.﹣45.把方程﹣去分母,正确的是()A.3x﹣(x﹣1)=1B.3x﹣x﹣1=1C.3x﹣x﹣1=6D.3x﹣(x﹣1)=6 6.一艘轮船从甲码头到乙码头顺流而行用3h,从乙码头返回甲码头用了5h,已知轮船在静水中的平均速度为32km/h,求水流的速度,若设水流的速度为xkm/h,则可列方程为()A.3(32+x)=5×32B.3×32=5×(32﹣x)C.3(32+x)=5×(32﹣x)D.=二、填空题(共24分)7.写出一个比﹣2小的有理数:.8.设甲数为x,乙数为y,用代数式表示“甲数与乙数的和的三分之一”是.9.若方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,则a=.10.当y=时,式子12﹣3(9﹣y)与5(y﹣4)的值相等.11.规定:符号“&”为选择两数中较大的数,“◎”为选择两数中较小的数,则(﹣4◎﹣3)×(2&5)的结果为.12.小明在解一元一次方程■x﹣3=2x+9时,不小心把墨汁滴在作业本上,其中未知数x前的系数看不清了,他便问邻桌,但是邻桌只告诉他,方程的解是x=﹣2(邻桌的答案是正确的),小明由此知道了被墨水遮住的x的系数,请你帮小明算一算,被墨水遮住的系数是.13.如下,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行每一竖列上的3个数之和都相等,则这个方阵图中x的值为.﹣2中国4﹣1梦x22x+1014.若2x2+x m+4x3﹣nx2﹣2x+5是关于x的五次四项式,则n﹣m=.三、解答题(共16分)15.化简:﹣3(2x﹣3)+7x+816.计算:﹣14﹣(﹣+)×2417.解方程:5﹣2(2+x)=3(x+2)18.解方程:.四、解答题(共62分)19.如图,一只蚂蚁从点A沿数轴向右爬2个单位长度到达点B,若点A表示的数a=﹣,设点B所表示的数为b.(1)求b的值.(2)先化简:3(a2﹣2ab)﹣[3a2﹣2b+2(ab+b)],再求值.20.本学期学习了一元一次方程的解法,下面是林林同学解题过程:解方程=1解:方程两边同时乘以6,得:×6=1×6…………第①步去分母,得:2(2x+1)﹣x+2=6………………第②步去括号,得:4x+2﹣x+2=6…………………第③步移项,得:4x﹣x=6﹣2﹣2…………………第④步合并同类项,得:3x=2…………………………第⑤步系数化1,得:x=…………………………第⑥步上述林林的解题过程从第步开始出现错误,错误的原因是.请你帮林林改正错误,写出完整的解题过程.21.某学校为表彰在“庆祝党的十九大胜利召开”主题绘画比赛中表现突出的同学,购买了30支水彩笔和40本笔记本,共用1360元,每本笔记本的价格比每支水彩笔的价格贵6元.每支水彩笔的价格是多少元?22.已知A=2x2+3xy﹣2x﹣1,B=﹣x2﹣1.5xy﹣1(1)求A+B的值;(2)若3A+6B=1,求x的值.23.如图,在一个长方形中放入5个形状、大小完全相同的小长方形求每个小长方形的长和宽.24.(列方程解应用题某车间有36名工人,生产A、B两种零件,每人每天平均可生产A零件12个,或生产B 零件18个,现有若干人生产A零件,其余人生产B零件.要使每天生产的A、B两种零件按1:3组装配套,问生产零件A要安排多少人?25.A、B两地相距480km,一辆轿车以100km/h的速度从A地出发匀速行驶,前往B地.同时,一辆货车以80km/h的速度从B地出发,匀速行驶,前往A地.(1)当两车相遇时,求轿车行驶的时间;(2)当两车相距120km时,求轿车行驶的时间.26.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?参考答案与试题解析一、选择题(共18分)1.解:∵﹣(﹣2019)=2019,=,﹣|﹣2019|=﹣2019,|﹣2019|=2019,∴运算结果为﹣2019的是﹣|﹣2019|.故选:C.2.解:A、7x﹣4=3x是方程;B、4x﹣6不是等式,不是方程;C、4+3=7没有未知数,不是方程;D、2x<5不是等式,不是方程;故选:A.3.解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:A.4.解:由﹣2a x+7b4与代数式3a4b2y是同类项,得x+7=4,2y=4.解得x=3,y=2.x y=32=9,故选:A.5.解:方程两边同时乘以6得:3x﹣(x﹣1)=6.故选:D.6.解:设水流速度为xkm/h,则顺流速度为(32+x)km/h,逆流速度为(32﹣x)km/h,3(32+x)=5(32﹣x).故选:C.二、填空题(共24分)7.解:比﹣2小的有理数为﹣3(答案不唯一),故答案为:﹣3.8.解:设甲数为x,乙数为y,则甲、乙两数的差的三分之一是:,故答案为:.9.解:∵方程(a﹣3)x|a|﹣2﹣7=0是一个一元一次方程,∴a﹣3≠0且|a|﹣2=1,解得a≠3,a=±3,∴a=﹣3,故答案为:﹣3.10.解:根据题意得:12﹣3(9﹣y)=5(y﹣4),去括号得:12﹣27+3y=5y﹣20,移项合并得:﹣2y=﹣5,解得:y=2.5,故答案为:2.511.解:(﹣4◎﹣3)×(2&5)=﹣4×5=﹣20.故答案为:﹣20.12.解:设被墨水遮住的系数是k.则把x=﹣2代入kx﹣3=2x+9,得﹣2k﹣3=﹣4+9,解得:k=﹣4.故答案是:﹣413.解:由题意可得:x+2+2x+10=﹣2+(﹣1)+(2x+10),整理得:3x+12=2x+7,解得:x=﹣5,故答案为:﹣5.14.解:由于2x2+x m+4x3﹣nx2﹣2x+5是关于x的五次四项式,∴多项式中最高次项x m的次数是5次,故m=5;又二次项2x2﹣nx2的系数2﹣n的值是0,则2﹣n=0,解得n=2.则n﹣m=2﹣5=﹣3.故答案为:﹣3.三、解答题(共16分)15.解:原式=﹣6x+9+7x+8=x+17.16.解:﹣14﹣(﹣+)×24=﹣1﹣16+18﹣4=﹣3.17.解:5﹣2(2+x)=3(x+2),5﹣4﹣2x=3x+6,﹣2x﹣3x=6﹣5+4,﹣5x=5,x=﹣1.18.解:方程整理得:﹣=12,即﹣2x﹣4=12,去分母得:10x﹣10﹣6x﹣12=36,移项合并得:4x=58,解得:x=.四、解答题(共62分)19.解:(1)根据题意得:b=﹣+2=;(2)原式=3a2﹣6ab﹣3a2+2b﹣2ab﹣2b=﹣8ab,当a=﹣,b=时,原式=6.20.解:上述林林解题过程从第②步开始出现错误,错误的原因是去分母没有加括号;故答案为:②;去分母没有加括号;正确解题过程为:去分母得:2(2x+1)﹣(x+2)=6,去括号得:4x+2﹣x﹣2=6,移项合并得:3x=6,解得:x=2.21.解:设每支水彩笔的价格是x元,则每本笔记本的价格为(x+6)元,根据题意得:30x+40(x+6)=1360,解得:x=16.答:每支水彩笔的价格是16元.22.解:(1)∵A=2x2+3xy﹣2x﹣1,B=﹣x2﹣1.5xy﹣1,∴A+B=2x2+3xy﹣2x﹣1﹣x2﹣1.5xy﹣1=x2+1.5xy﹣2x﹣2;(2)∵3A+6B=1,∴3(2x2+3xy﹣2x﹣1)+6(﹣x2﹣1.5xy﹣1)=1,整理得:﹣6x﹣9=1,解得:x=﹣.23.解:设每个小长方形的长为x,则宽为10﹣x,∴x﹣2(10﹣x)=4,解得:x=8,∴10﹣x=2,答:每个小长方形的长和宽分别为8和2.24.解:设安排x名工人生产零件A,则安排(36﹣x)名工人生产零件B,根据题意得:3×12x=18(36﹣x),解得:x=12,∴36﹣x=24.答:需要安排12名工人生产零件A.25.解:(1)设两车相遇时,轿车行驶的时间为t小时,由题意可得100t+80t=480,解得t=.答:两车相遇时,轿车行驶的时间为小时.(2)设两车相距120km时,轿车行驶的时间x小时,由题意可以分相遇前和相遇后两种情况.①相遇前两车相距120km时,有100t+80t=480﹣120解得t=2②相遇后两车相距120km时,有100t+80t=480+120解得t=.答:当轿车行驶2小时或小时,两车相距120km.26.解:(1)设该店有客房x间,房客(7x+7)人;根据题意得:9(x-1)=7x+7解得:x=8,7x+7=63答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性订客房18间,则需付费20×18×0.8=288钱<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.。

七年级第三次月考数学试题

七年级第三次月考数学试题

七年级第三次月考数学试题一、精心选一选,慧眼识金(每小题3分,共36分)。

1、下列各数中,不相等的组数有()①(-3)2与-32 ②(-3)2与32 ③(-2)3与-23④|-2|3与|-23| ⑤(-2)3与|-2|3A、0组B、1组C、2组D、3组2、单项式的系数和次数分别是()A、23,12 B、-23,12 C、-83,9 D、-13,93、在方程3x-y=2,x+1x-2=0 ,x2=5x , x=0, x2-2x-3=0中,一元一次方程的个数为()A、1个B、2个C、3个D、4个4、假期张老师带学生乘车外出参加创新素质实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师免费”,张老师算了一下,不论坐谁的车,费用都一样,则张老师带的学生数为()A、8名B、9名C、10名D、17名5、运用等式性质进行的变形,正确的是()A、如果a=b, 那么a+c=b-cB、如果ac=bc,那么a=bC、如果a=b,那么ac=bcC、如果a2=3a ,那么a=36、解方程2-2x-43=-x-76去分母正确的是()A、2-2(2x-4)=-(x-7)B、12-2(2x-4)=-x-7C、12-2(2x-4)=-(x-7)D、12-(2x-4)=-(x-7 )7、若关于x的方程2x+a = 4的解在数轴上表示的点到原距离为3,则a的值为()A、-2B、2或-2C、10或-10D、-2或108、下列变形中,不正确的是()A、a+(b+c-d)=a+b+c-dB、 a-(b-c+d)=a - b + c - dC、a-b-(c-d)=a - b - c - dD、 a+b-(- c - d)=a + b +c + d9、台湾为是我国最大的岛屿,总面积为3589760000平方米,这个数据用科学记数法表示为()平方米。

A、0.358976×1010B、3.58976×109C、3.58976×1010D、35.8976×10810、已知:当x=3时,代数式ax5+bx3+cx-10的值为7,则当x=-3时,该多项式的值是()A、-3B、-7C、-27D、-1711、有2006个数排成一行,其中任意相邻的三个数中,中间的数等于它前后两个数的和,若第一个数和第二个数都是1,则这2006个数的和等于()A、2006B、-1C、0D、212、下列说法中:①若a=b,则ax2+1=bx2+1②x=±3都是方程x2=9的解。

沪科版2022-2023学年七年级数学上册第三次月考测试题(附答案)

沪科版2022-2023学年七年级数学上册第三次月考测试题(附答案)

2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(满分40分)1.在﹣2,0,,1这四个数中,绝对值最大的数是()A.﹣2B.0C.D.12.若a,b两数在数轴上位置如图所示,则a+b是()A.负数B.正数C.0D.无法确定符号3.方程1﹣去分母得()A.1﹣2(2x﹣4)=﹣(x﹣7)B.6﹣2(2x﹣4)=﹣x﹣7C.6﹣2(2x﹣4)=﹣(x﹣7)D.以上答案均不对4.二元一次方程组的解是()A.B.C.D.5.如图,在不添加字母的情况下,可以用字母表示出来的不同线段和射线有()A.3条线段,3条射线B.6条线段,6条射线C.6条线段,4条射线D.3条线段,1条射线6.如图所示,由A到B有(1)(2)(3)三条路线,最短的路线选(1)的理由是()A.因为它是直的B.两点确定一条直线C.两点之间,线段最短D.两点之间距离的定义7.某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为()A.(a﹣5%)(a+9%)万元B.(a﹣5%+9%)万元C.(1﹣5%+9%)a万元D.(1﹣5%)(1+9%)a万元8.如图,下列关系式中与图不符合的式子是()A.AD﹣CD=AB+BC B.AC﹣BC=AD﹣BDC.AC﹣BC=AC+BD D.AD﹣AC=BD﹣BC9.如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积是()A.1280 cm3B.2560 cm3C.3200 cm3D.4000 cm310.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm二、填空题(共20分)11.已知代数式2x﹣y的值是2,则代数式3+2y﹣4x的值是.12.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是.13.线段AB被分为2:3:4三部分,已知第一部分和第三部分的中点间的距离是5.4cm,则线段AB的长度应为.14.若关于x,y的方程组的解是则关于x,y的方程组的解是.三、解答题(满分90分)15.解方程组:16.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.17.某中学为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),已知购买3个足球和2个篮球共需310元;购买2个足球和5个篮球共需500元.求购买一个足球、一个篮球各需多少元?18.已知方程组与方程的解相同,求a、b.19.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,…(1)当线段AB上有6个点时,线段总数共有条;(2)当线段AB上有n个点时,线段总数共有多少条?20.放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元.(1)求笔记本的单价和单独购买一支签字笔的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.21.提出问题:如图,图中共有多少个长方形(包括正方形)?分析问题:确定了长方形的一组邻边,就可以确定一个长方形.每一个长方形都对应线段AB上任取的一条线段和线段AC上任取的一条线段所组成的线段对,反过来,这样的一条线段对也对应了一个长方形.如AB上的线段A2A3和AC上的线段B1B2所组成的线段对(A2A3,B1B2)对应了一个长方形(阴影部分),反过来,阴影部分的长方形也确定了一个线段对(A2A3,B1B2).解决问题:(1)AC上的B1C与AB上的线段可以组成个线段对;(2)图中共有个长方形(包括正方形).22.鹏程中学拟组织七年级部分师生赴滁州市琅琊山进行文学采风活动.下面是活动负责人李老师和小芳同学、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们八年级师生上个星期在这个客运公司租了4辆60座和2辆45座的客车到滁州市琅琊山,一天的租金共计5600元.”小明:“我们七年级师生租用2辆60座和5辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,七年级师生到该公司租车一天,共需租金多少元?(3)小芳听了小明的话后,说:“你们七年级还有更合算的租车方案.”请直接写出这个租车方案:.23.有一片牧场原有的草量为akg,草每天都匀速地生长,这片牧场每天牧草的生长量都为mkg.若在其上放牧24头牛,则6天吃完牧草.若放牧21头牛,则8天吃完牧草.若每头牛每天吃草的量也都是相等的,设每头牛每天吃草的量为xkg.问:(1)放牧24头牛,6天所吃的牧草量用含a,m的代数式表示为kg;放牧21头牛,8天所吃的牧草量用含a,m的代数式表示为kg;(2)试用x表示a,m;(3)若放牧16头牛,则几天可以吃完牧草?参考答案一、选择题(满分40分)1.解:因为|﹣2|=2,|0|=0,||=,|1|=1,而,所以在﹣2,0,,1这四个数中,绝对值最大的数是﹣2.故选:A.2.解:由题意得:b<0<a,且|a|<|b|,∴a+b<0,∴a+b是负数,故选:A.3.解:方程两边都乘6,得6﹣2(2x﹣4)=﹣(x﹣7).故选:C.4.解:,①+②得,3x=9,解得x=3,把x=3代入①得,3+y=3,解得y=0,所以,原方程组的解是.故选:D.5.解:线段有CB,CA,CO,BA,BO,AO共6条,射线有射线CB,射线BC,射线BA,射线AB,射线AO,射线OA,共6条.故选:B.6.解:最短的路线选(1)的理由是:两点之间,线段最短.故选:C.7.解:由题意得:12月份的利润为:(1﹣5%)(1+9%)a万元,故选:D.8.解:A、AD﹣CD=AB+BC,正确,B、AC﹣BC=AD﹣BD,正确;C、AC﹣BC=AB,而AC+BD≠AB,故本选项错误;D、AD﹣AC=BD﹣BC,正确.故选:C.9.解:设甲的容积为xcm3,根据题意得:﹣=8,解得:x=3200,所以甲的容积为3200cm3.故选:C.10.解:∵点A、B、C都是直线l上的点,∴有两种情况:①如图,当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②如图,当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选:C.二、填空题(共20分)11.解:3+2y﹣4x=3﹣(4x﹣2y)=3﹣2(2x﹣y),∵2x﹣y=2,∴原式=3﹣2×2=3﹣4=﹣1.故答案为:﹣1.12.解:把x=m代入方程4x﹣3m=2,得:4m﹣3m=2,解得:m=2.故答案为:2.13.解:如图,AC:CD:BD=2:3:4,设AC=2x,则CD=3c,BD=4x,∵点M是AC的中点,点N是BD的中点∴CM=AC=x,DN=BD=2x∴MN=CM+CD+DN=6x=5.4,解得x=0.9∴AB=2x+3x+4x=9x=9×0.9=8.1(cm).故答案为:8.1cm.14.解:根据题意得:,解得:,故答案为:.三、解答题(满分90分)15.解:,由①得:x=2﹣3y③,把③代入②,得3(2﹣3y)﹣y=﹣4,解得:y=1,把y=1代入③,得x=﹣1.所以原方程组的解为.16.解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+(AB+CD)=2+×4=4cm.17.解:设一个足球为x元、一个篮球为y元,根据题意得,解得:,答:一个足球需要50元、一个篮球需要80元.18.解:①×7﹣②得:17x=34,解得x=2.把x=2代入①得:y=1.所以第一个方程组的解是.把x=2,y=1代入方程组得,解得:;即a、b的值分别是2.5、1.19.解:(1)∵当有3个点时,线段的总数为:=3;当有4个点时,线段的总数为:=6;当有5个点时,线段的总数为:=10;∴当有6个点时,线段的总数为:=15.(2)由(1)可看出,当线段AB上有n个点时,线段总数为:.20.解:(1)设签字笔x元/支,笔记本y元/本,依题意可得:解得:答:签字笔2元/支,笔记本3元/本;(2)合买一盒签字笔.购买前:小贤有12+2=14(元),小艺有15+1=16(元),总共30元.由于整盒购买比单只购买每支可优惠0.5元,因此,小贤和小艺可一起购买整盒签字笔,费用为15元,3本笔记本费用为9元,2件工艺品需6元,总共需30元;∴他们既能买到各自需要的文具用品,又都能购买到一个小工艺品.还多一支签字笔.21.解:(1)根据题意得,AC上的B1C与AB上的线段可以组成的线段对为:(B1C,AA1)、(B1C,AA2)、(B1C,AA3)、(B1C,AB)、(B1C,A1A2)、(B1C,A1A3)、(B1C,A1B)、(B1C,A2A3)、(B1C,A2B)、(B1C,A3B),共10个线段对.故答案为:10;(2)AC上的线段为:AB1,AB2,AC,B1B2,BC,B2C,共6条线段,结合(1)的结论,得图中的长方形(包括正方形)数量为:6×10=60.故答案为:60.22.解:(1)设平安客运公司60座和45座客车每天每辆的租金分别为x元,y元.由题意,列方程组得:,解得:,答:平安客运公司60座和45座的客车每辆每天的租金分别是1000元,800元.(2)七年级师生共需租金:2×1000+5×800=6000(元).答:按小明提出的租车方案,七年级师生到该公司租车一天,共需租金6000元.(3)设租用60座客车m辆,租用45座客车n辆,依题意得:60m+45n=2×60+5×45,整理得:4m+3n=23,∵m,n均为正整数,∴m=2,n=5,或m=5,n=1,当m=2,n=5时,所需费用为1000×2+800×5=6000(元);当m=5,n=1时,所需费用为1000×5+800×1=5800(元);∵58800<6000,∴更合算的租车方案为:租用5辆60座和1辆45座的客车,此时租车费为5800元,故答案为:租用5辆60座和1辆45座的客车.23.解:(1)放牧24头牛,6天所吃的牧草量用含a,m的代数式表示为(a+6m)kg;放牧21头牛,8天所吃的牧草量用含a,m的代数式表示为(a+8m)kg;故答案为:(a+6m);(a+8m);(2)由题意,得解得:即a=72x,m=12x;(3)设16头牛y天可以吃完牧草,根据题意,得a+ym=16xy,即72x+12xy=16xy,解得:y=18,答:若放牧16头牛,18天可以吃完牧草.。

河南省安阳市内黄县第五实验学校2023-2024学年七年级上学期第三次月考考试数学试题

河南省安阳市内黄县第五实验学校2023-2024学年七年级上学期第三次月考考试数学试题

河南省安阳市内黄县第五实验学校2023-2024学年七年级上学期第三次月考考试数学试题
学校:___________姓名:___________班级:___________考号:___________
那么再经过多长时间,两车相遇?若设再经过x 小时两车相遇,则可列方程( )
A .751(12075)270x ⨯+-=
B .751(12075)270x ⨯++=
C .120(1)75270x x -+=
D .1201(12075)270x ⨯++=
二、填空题
三、解答题
(2)若该用户九月份平均电费为每干瓦时0.45元,则九月份共用电多少千瓦时?应交电费多少元
23.阅读下列材料:
在数轴上A点表示的数为a,点B表示的数为b,则A、B两点的距离可以用右边的数
=-,请用这个知识解答下列问题:
减去左边的数表示,即AB b a
已知数轴上A、B两点对应的数分别为2
-和4,P为数轴上一点,其对应的数为x.
(1)如图1,①点A与点B之间的距离为______;
②若点P到A、B两点之间的距离相等,求点P所对应的数;
(2)如图2,在数轴上是否存在点P,使点P到A、B两点的距离之和为10;若存在,求出x的值;若不存在,请说明理由.。

七年级上学期数学第三次月考试卷第3套真题

七年级上学期数学第三次月考试卷第3套真题

七年级上学期数学第三次月考试卷一、单选题1. 学校每周一升国旗用的旗杆,给我们的形象可近似地看做A . 直线B . 射段C . 线段D . 折线2. 下列说法正确的是()A . 射线和射线表示的是同一条射线B . 直线和直线表示的是两条直线C . 线段和线段表示的是同一条线段D . 如图,点在直线上,则点在射线上3. 下列表示角的方法中,错误的是A . ∠AB . ∠ABCC . ∠DD . ∠14. 下列算式正确的是①33.33°=33°3′3″;②33.33°=33°19′48″;③50°40′30″=50.43°;④50°40′30″=50.675°.A . ①和②B . ①和③C . ②和③D . ②和④5. C为AB的一个三等分点,D为AB的中点,若AB的长为6.6 cm,则CD的长为A . 0.8 cmB . 1.1 cmC . 3.3 cmD . 4.4 cm6. 用A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于()A . 35°B . 55°C . 60°D . 65°7. 在同一平面内两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于A . 1B . 2C . 3D . 48. 如图,将三个同样的正方形的一个顶点重合放置,如果∠1=α,∠2=β,那么∠3的度数是A . 90°-α-βB . 90°-α+βC . 90°+α-βD . α+β-90°9. 如图,已知射线OC平分∠AOB,射线OD,OE三等分∠AOB,又OF平分∠AOD,图中等于∠BOE的角共有A . 1个B . 2个C . 3个D . 4个10. 甲、乙、丙、丁四位同学在判断时钟的时针和分针互相垂直的时刻,他们每个人都说两个时刻,其中说对的是A . 甲说3时整和3时30分B . 乙说6时15分和6时45分C . 丙说9时整和12时15分D . 丁说3时整和9时整二、填空题11. 从多边形的一个顶点出发能画5条对角线,则这个多边形的边数是________.12. 如图,线段AB比折线AMB________,理由________.13. 如图,图中共有________条线段,它们是________.如图,图中共有________条射线,指出其中的两条:________.14. 如图,把一张长方形纸条按如图的方式折叠后量得∠AOB'=110°,则∠B'OC=________.15. 已知A、B、C是直线l上的三点,且线段AB=9cm,BC=AB,那么A、C两点的距离是________.16. 现在的时间是9时20分,此时钟面上时针与分针夹角的度数是________度.17. 如图,OM,ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.∠MON=________;当OC在∠AOB内绕点O转动时,∠MON的值________改变.18. 乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A,B两站之间需要安排不同的车票________种.三、解答题19. 计算:(1)50°24′×3+98°12′25″÷5;(2)100°23′42″+26°40′28″+25°30′16″×4.20. 如图,AB=2,AC=5,延长BC到D,使BD=3BC,求AD的长.21. 按下列语句画出图形:(1)直线l经过点A,但不经过点B.(2)三条直线a,b,c两两相交,交点分别为A,B,C.(3)射线AB与线段DE相交于点B.22. Cindy、小明、Ben家恰好与学校在一条笔直的大街上,若Cindy家离学校500米,Ben家在Cindy家与学校的正中间,小明家在Cindy家与Ben家的正中间,请你计算一下小明家与学校的距离是多少?23. 如图,直线AB,CD交于点O,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)∠2=________, ∠3=________;(2)OF平分∠AOD吗?为什么?24. 如图所示,从点O发出四条射线OA,OB,OC,OD,已知∠AOC=∠BOD =90°.(1)若∠BOC=35°,则∠AOB=________,∠COD=________;(2)若∠BOC=46°,则∠AOB=________,∠COD=________.(3)你发现了什么?你能说明其中的道理吗?25. 如图1,点O在直线MN上,∠AOB=90°,OC平分∠MOB.(1)若∠AOC= 则∠BOC=________,∠AOM=________,∠BON=________;(2)若∠AOC= 则∠BON=________;(3)将∠AOB绕着点O顺时针转到图2的位置,其他条件不变,若∠AOC= ,求∠BON的度数.。

2023—2024学年最新北师大版七年级上学期数学第三次月考考试试卷

2023—2024学年最新北师大版七年级上学期数学第三次月考考试试卷

最新北师大版七年级上学期数学第三次月考考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为60900t,将60900用科学记数法表示为()A.6.09×104B.60.9×103C.0.609×103D.6.09×1032、下列哪个图形是正方体的展开图()A.B.C.D.3、设x,y,c表示有理数,下列结论始终成立的是()A.若x=y,则x+c=y﹣c B.若x=y,则xc=ycC.若x=y,则D.若,则2x=3y4、若方程(a﹣1)x|a|﹣1=5是关于x的一元一次方程,则a的值为()A.±1B.2C.±2D.﹣15、有理数a在数轴上对应的点如图所示,则a、﹣a、﹣1的大小关系是()A.﹣a<﹣1<a B.﹣a<a<﹣1C.a<﹣1<﹣a D.﹣1<a<﹣a 6、如图,A地和B地都是海上观测站,A地在灯塔O的北偏东30°方向,∠AOB=100°,则B地在灯塔O的()A.南偏东40°方向B.南偏东50°方向C.南偏西50°方向D.东偏南30°方向7、已知数轴上点P表示的数为﹣3,与点P距离为4个单位长度的点表示的数为()A.1B.﹣7C.1或﹣7D.1或78、已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=729、如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.10、已知x=2023时,代数式ax3+bx﹣2的值是2,当x=﹣2023时,代数式ax3+bx+5的值等于()A.9B.5C.1D.﹣1二、填空题(每小题3分,满分18分)11、如果2x+5的值与3﹣x的值互为相反数,那么x=.12、若代数式5x2a﹣1y与﹣3x7y3a+b能合并成一项,则a+b=13、已知关于x,y的代数式ax2+2x+x2﹣3y2﹣bx+4y﹣5的值与x的取值无关,则a﹣b=.14、早上9:30时,分针与时针的夹角是度.15、用火柴棒按图中的方式搭图形.按照这种方式搭下去,搭第n个图形需要根火柴棒.16、用一些大小相同的小正方体搭成一个几何体,使得从正面和上面看到的这个几何体的形状如图所示,那么,组成这个几何体的小正方体的块数至少为.最新北师大版七年级上学期数学第三次月考考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1)(﹣+)×24.(2)﹣12﹣(1+0.5)×÷(﹣4).18、先化简,再求值:4a2+(7a2﹣7a)﹣7(a2﹣a),其中a=﹣.19、解下列方程:(1)4x﹣3=8x+5;(2).20、如图,已知线段AB=21,BC=15,点M是AC的中点.(1)求线段AM的长;(2)在CB上取一点N,使得2CN=NB,求线段MN的长.21、如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图(1),若∠AOC=40°,求∠DOE的度数;(2)如图(2),若∠COE=∠DOB,求∠AOC的度数.22、小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积;(2)已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地面的平均费用为200元,那么小王铺地砖的总费用为多少元?23、为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:每月用水量收费不超过10吨的部分水费1.6元/吨10吨以上至20吨的部分水费2元/吨20吨以上的部分水费2.4元/吨(1)若小刚家6月份用水18吨,则小刚家6月份应缴水费多少元?(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费78.8元,其中含2元滞纳金(水费为每月底缴纳,因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明8、9月各用多少吨水?24、如果两个方程的解相差a,a为正整数,则称解较大的方程为另一个方程的“a﹣稻香方程”,例如:方程x﹣2=0是方程x+3=0的“5﹣稻香方程”.(1)若方程2x=5x﹣12是方程3(x﹣1)=x+1的“a﹣稻香方程”,则a=;(2)若关于x的方程x﹣=n﹣1是关于x的方程2(x﹣2mn)﹣m=3n ﹣3的“m﹣稻香方程”(m>0),求n的值;(3)当a≠0时,如果关于x方程ax+b=1是方程ax+c﹣1=0的“3﹣稻香方程”,求代数式6x+2b﹣2(c+3)的值.25、如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+3|+(c﹣9)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动,假设t秒钟过后,A、B、C三点中恰有一点为另外两点的中点,求t的值;(4)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小聪同学发现:当点C在B点右侧时,m•BC+3AB的值是个定值,求此时m的值.最新北师大版七年级上学期数学第三次月考考试试卷(参考答案)11、-8 12、-7 13、-3 14、105 15、(4n+1)16、8三、解答题17、略18、略19、略20、略21、略22、解:(1)总面积:2n+6m+3×4+2×3=(2n+6m+18)m2.(2)当n=1.5时,客厅面积是卫生间面积的8倍,6m=8×2n=24,总面积=2×1.5+24+18=45(米2).总费用为:200×45=9000(元).答:小王铺地砖的总费用为9000元.23、解:(1)小刚家6月份应缴水费32元.(2)小刚家7月份的用水量为16吨.(3)小明家8月份用水量为31吨,9月份的用水量为9吨.24、(1)2.(2)n=﹣.( 3)﹣6.25、解:(1)﹣3,1,9.(2)5.(3)t的值为4或1或16;(4)m•BC+3AB=m(9﹣4t﹣1+t)+3(1﹣t+3+2t)=8m+12+3t(1﹣m),故:当m=1时,m•BC+3AB为定值20.。

七年级数学上第三次月考考试试题(一)

七年级数学上第三次月考考试试题(一)

七年级上数学三次月考试题试卷(一)一、选择题(共15个小题,每小题2分,共30分)1.如果向东走80m 记为80m ,那么向西走60m 记为 ( ) A .60m - B .|60|m - C .(60)m -- D .60m +2.某市2010年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( )A .-10℃B .-6℃C .6℃D .10℃ 3.-6的绝对值等于 ( ) A .6 B .16 C .16- D .6 4.未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为 ( )A .40.8510⨯亿元 B .38.510⨯亿元 C .48.510⨯亿元 D .28510⨯亿元 5.当2x =-时,代数式1x +的值是 ( )A .1-B .3-C .1D .3 6.下列计算正确的是 ( )A .33a b ab +=B .32a a -=C .225235a a a += D .2222a b a b a b -+=7. 一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +288.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 9.一个多项式减去222x y -等于222x y -,则这个多项式是 A .222x y -+ B .222x y - C .222x y - D .222x y -+10.把方程0.10.20.710.30.4x x---=的分母化为整数的方程是( )A .0.10.20.7134x x ---=B .12710134x x---= C .127134x x ---= D .127101034x x---= 二、填空题(共10个小题,每小题2分,共20分) 11.比较大小:6-_________8-(填“<”、“=”或“>”) 12.计算:|3|2--=_________13.如果a 与5互为相反数,那么a=_________ 14.甲数x 的23与乙数y 的14差可以表示为_________ 15.定义a ※b =2a b -,则(1※2)※3=_________ 16.已知,a -b =2,那么2a -2b +5=_________.17.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 18.根据图中提供的信息,可知一个杯子的价格是________元.共43元共94元19.已知2|312|102n m ⎛⎫-++= ⎪⎝⎭,则2m n -=___________.20.观察下面的一列单项式:2342,4,8,16x x x x --,…根据你发现的规律,第7个单项式为___________;第n 个单项式为___________. 三、计算或化简(共4个小题,每小题4分,共16分)21.计算:32323223⎡⎤⎛⎫-⨯-⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦22.计算:2( 6.5)(2)(5)5⎛⎫-+-÷-÷- ⎪⎝⎭23.(本小题满分7分)先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.化简:22(521)4(382)a a a a +---+四、解方程(共2个小题,每小题5分。

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)

2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(共30分)1.﹣5的绝对值是()A.B.5C.﹣5D.﹣2.在﹣,﹣,0,,0.2中,最小的是()A.﹣B.﹣C.0D.3.下列方程为一元一次方程的是()A.y=3B.x+2y=3C.x2=﹣2x D.+y=24.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到5100000册.把5100000用科学记数法表示为()A.0.51×108B.5.1×106C.5.1×107D.51×1065.如图所示,下列判断正确的是()A.a+b>0B.a+b<0C.ab>0D.|b|<|a|6.已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.27.如果2x3n y m+4与﹣3y2n x9是同类项,那么m、n的值分别为()A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=2 8.下面计算正确的是()A.3x2﹣x2=3B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=09.下列解方程去分母正确的是()A.由﹣1=,得2x﹣1=3﹣3xB.由﹣=﹣1,得2(x﹣2)﹣3x﹣2=﹣4C.由=﹣﹣y,得3y+3=2y﹣3y﹣1﹣6yD.由﹣1=,得12x﹣15=5y+2010.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+2y2,阴影部分即为被墨迹弄污的部分,那么被墨汁遮住的项应是()A.﹣xy﹣y2B.7xy﹣4y2C.7xy D.﹣xy+y2二、填空题(共18分)11.计算(﹣81)÷×÷(﹣4)结果为.12.若|1+y|+(x﹣1)2=0,则(xy)2021=.13.已知a2+2a=10,则代数式2a2+4a﹣1的值为.14.有一个两位数,十位上的数字为a,个位上的数字比十位上的数字大5,用代数式表示这个两位数是,并当a=4时,这个两位数是.15.一家商店某种裤子按成本价提高50%后标价,又以八折以后出卖,结果每条裤子获利10元,则是这条裤子的成本是.16.观察一列单项式:3x2,﹣5x3,7x,﹣9x2,11x3,﹣13x,15x2,﹣17x3,19x,……,则第2020个单项式是.三、解答题(共计72分)17.若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求a2(b+c)的值.18.有理数运算题:①﹣23÷8﹣×(﹣2)2②(﹣1)2020﹣(0.5﹣1)××[3﹣(﹣3)2]19.解方程题:①﹣=1②﹣1=2+20.化简求值题:(1)2x2﹣[x2+2(x2﹣3x﹣1)﹣(x2﹣1﹣2x],其中x=;(2)﹣a﹣2(a﹣b2)﹣3(a+b2),其中a=﹣2,b=2021.21.探索规律题:将连续的偶数2,4,6,8,…排成如下表:(1)若将十字框上下左右移动,可框住五个数,设中间的数为x,用代数式表示十字框中的五个数的和.(2)若将十字框上下左右移动,可框住五个数的和能等于2020吗?如能,写出这五位数,如不能,说明理由.22.方程应用题:某车间有技工85人,生产甲、乙两种零件,平均每人每天能生产甲种零件16个或乙种零件10个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?23.方程应用题今年疫情过后,一商店在某一时间以每件80元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?24.方程应用题:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2000元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利250元,销售一台C种电视机可获利300元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?参考答案一、选择题(共30分)1.解:﹣5的绝对值是5,故选:B.2.解:∵,∴,即在﹣,﹣,0,,0.2中,最小的是.故选:A.3.解:A、方程y=3符合一元一次方程的定义,故本选项符合题意;B、方程x+2y=3含有两个未知数,不是一元一次方程,故本选项不符合题意;C、方程x2=﹣2x中未知数的最高次数是2,不是一元一次方程,故本选项不合题意;D、+y=2是分式方程,故本选项不符合题意.故选:A.4.解:5100000=5.1×106,故选:B.5.解:由图可知,b<0,a>0|.A、∵b<0,a>0,且|a|<|b|,根据有理数的加法法则,得出a+b<0,错误;B、正确;C、∵b<0,a>0,∴ab<0,错误;D、根据绝对值的定义,得出|a|<|b|,错误.故选:B.6.解:根据题意,得:6x﹣12+4+2x=0,移项,得:6x+2x=12﹣4,合并同类项,得:8x=8,系数化为1,得:x=1.故选:C.7.解:∵2x3n y m+4与﹣3y2n x9是同类项,∴,解得.故选:B.8.解:A、3x2﹣x2=2x2≠3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.9.解:A.由﹣1=,得x﹣3=1﹣x,故选项A不符合题意;B.由﹣=﹣1,得2(x﹣2)﹣(3x﹣2)=﹣4,故选项B不符合题意;C.由=﹣﹣y,得3y+3=2y﹣3y+1﹣6y,故选项C不符合题意;D.由﹣1=,得12x﹣15=5x+20,故选项D符合题意.故选:D.10.解:∵(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+3xy﹣y2+x2﹣4xy+y2=﹣x2﹣xy+y2;∴阴影部分=﹣x2﹣xy+y2﹣(﹣x2+2y2)=﹣x2﹣xy+y2+x2﹣2y2=﹣xy﹣y2;故答案为:D.二、填空题(共18分)11.解:(﹣81)÷×÷(﹣4)=(﹣81)×××(﹣)=4.故答案为:4.12.解:∵|1+y|+(x﹣1)2=0,而|1+y|≥0,(x﹣1)2≥0,∴1+y=0,x﹣1=0,解得x=1,y=﹣1,∴(xy)2021=﹣1.故答案为:﹣1.13.解:原式=2(a2+2a)﹣1,把a2+2a=10代入,得原式=2×10﹣1=19,故答案为:19.14.解:十位上的数字为a,个位上的数字比十位上的数字大5,则个位数是a+5,则这个数是10a+(a+5)=11a+5.当a=4时,个位上的数是9,则这个数是49.故答案为11a+5;49.15.解:设这种裤子的成本是x元,由题意得:(1+50%)x×80%﹣x=10,解得:x=50,故答案为:50元.16.解:系数依次为3,﹣5,7,﹣9,11,…,(﹣1)n+12n+1,x的指数依次是2,3,1,2,3,1,可见三个单项式一个循环,故可得第2020个单项式的系数为(﹣1)2020+1×2×2020+1=﹣4041,2020÷3=673……1,则第2020个单项式的次数为:1,则第2020个单项式是﹣4041x.故答案为:﹣4041x.三、解答题(共计72分)17.解:∵(2a﹣1)2+|2a+b|=0,(2a﹣1)2≥0,|2a+b|≥0,∴2a﹣1=0,2a+b=0,∴a=,b=﹣1,∵|c﹣1|=2,∴c﹣1=±2,∴c=3或﹣1,当a=,b=﹣1,c=3时,a2(b+c)==,当a=,b=﹣1,c=﹣1时,a2(b+c)==.综上所述,a2(b+c)的值为或.18.解:①﹣23÷8﹣×(﹣2)2=﹣8÷8﹣×4=﹣1﹣1=﹣2;②(﹣1)2020﹣(0.5﹣1)××[3﹣(﹣3)2]=1+××(3﹣9)=1+××(﹣6)=1﹣1=0.19.解:①﹣=1,3(5x+1)﹣2(2x﹣1)=6,去括号,得15x+3﹣4x+2=6,移项,得15x﹣4x=6﹣3﹣2,合并同类项,得11x=1,系数化成1,得x=;②﹣1=2+,去分母,得2(x+1)﹣4=8+(2﹣x),去括号,得2x+2﹣4=8+2﹣x,移项,得2x+x=8+2﹣2+4,合并同类项,得3x=12,系数化成1,得x=4.20.解:(1)2x2﹣[x2+2(x2﹣3x﹣1)﹣(x2﹣1﹣2x]=2x2﹣(x2+2x2﹣6x﹣2﹣x2+1+2x)=2x2﹣x2﹣2x2+6x+2+x2﹣1﹣2x=4x+1,当x=时,原式=4×+1=2+1=3;(2)﹣a﹣2(a﹣b2)﹣3(a+b2)=﹣a﹣2a+b2﹣a﹣b2=﹣4a,当a=﹣2,b=2021时,原式=﹣4×(﹣2)=8.21.解:(1)十字框中的五个数的和:x+(x﹣10)+(x+10)+(x﹣2)(x+2)=5x;(2)由题意得:5x=2020,解得a=404,故框住的5个数是402、406、404、394、414.22.解:设分配x人生产甲种零件,则分配(85﹣x)人生产乙种零件,根据题意得=,解得x=25,∴85﹣25=60(人),答:应分配25人生产甲种零件,60人生产乙种零件.23.解:设盈利的一件的进价为x元,亏损的一件的进价为y元,根据题意得x+25%x=80,y﹣25%y=80,解得x=64,y=,80×2<64+,且80×2﹣(64+)=﹣(元),答:卖这两件衣服总的是亏损,亏损了元.24.解:(1)设购进A种电视机x台,C种电视机y台,若同时购进A种、B种电视机,则1500x+2000(50﹣x)=90000,解得x=20,所以50﹣20=30(台);若同时购进A种、C种电视机,则1500x+2500(50﹣x)=90000,解得x=35,所以50﹣35=15(台);若同时购进B种、C种电视机,则2000x+2500(50﹣x)=90000,解得x=70,不符合题意,舍去,答:有两种方案:方案一:购进A种电视机20台,B种电视机30台;方案二:购进A 种电视机35台,C种电视机15台.(2)选择方案一可获利:150×20+250×30=10500(元);选择方案二可获利:150×35+300×15=9750(元),10500元>9750元,答:选择方案一,即购进购进A种电视机20台,B种电视机30台.。

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)

2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题:共36分。

1.下列有理数中,最小的有理数是()A.3.14B.C.﹣2D.2.下列各式中,不是单项式的是()A.3t2B.1C.D.3.下列一元一次方程的是()A.x2﹣x﹣3=0B.x+1=0C.D.x+y=14.以下说法中正确的是()A.22x3y的次数是4B.3ab2与﹣2a2b是同类项C.的系数是D.m2+m﹣7的常数项为75.一辆快车和一慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是120km/h,慢车的行驶速度是80km/h,快车比慢车早2h经过B地.设A、B两地间的路程是xkm,由题意可得方程()A.120x﹣80x=2B.﹣=2C.80x﹣120x=2D.﹣=2 6.已知|x|=3,|y|=2,且xy>0,则x﹣y的值等于()A.5或﹣5B.1或﹣1C.5或1D.﹣5或﹣17.下列各数中,互为相反数的是()A.(﹣3)2与32B.﹣3与﹣|﹣3|C.﹣(﹣25)与﹣52D.(﹣5)3与﹣538.运用等式性质进行变形,正确的是()A.由a=b得到a+c=b﹣c B.由2x=﹣4得到x=2C.由2m﹣1=3得到2m=3+1D.由ac=bc得到a=b9.如图,在长和宽分别为m和n的矩形纸片的四个角都剪去一个直角边分别为x和y的直角三角形,则用代数式表示纸片剩余部分的面积(阴影部分)为()A.mn﹣4xy B.0.5mn﹣4xy C.mn﹣2xy D.0.5mn﹣2xy10.按如图所示的程序计算,若开始输入的x值为﹣2,则最后输出的结果是()A.8B.64C.120D.12811.如图是一个树形图的生长过程,自上而下一个空心圆生成一个实心圆,一个实心圆生成一个实心圆和一个空心圆,依此生长规律,第10行的实心圆的个数是()A.27B.29C.32D.3412.下列四个结论中,其中正确的是()①若|2a﹣1|=1,则a只能为0;②若关于x的多项式ax2﹣bx﹣3与2x2+3x+3的差为单项式,则b a=﹣9;③若c<b<0<a,则化简代数式|a+b﹣c|﹣2|b﹣a|+2|c|=3b﹣a﹣3c;④已知关于x的方程x﹣=的解是正整数,则符合条件的所有整数a的和是1.A.①②③④B.①②③C.③④D.②④二、填空题:共18分。

人教版七年级上数学第三次月考试卷(1)

人教版七年级上数学第三次月考试卷(1)

人教版七年级上数学第三次月考试卷(1)一、选择题(本大题10个小题,每小题3分,共30分.)1.(3分)三个小正方体搭成的几何体如图所示,从正面看这个几何体,看到的图形是()A.B.C.D.2.(3分)下面各图中不能是正方体展开图的是()A.B.C.D.3.(3分)下面四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B. C.D.4.(3分)若|a﹣6|=0,则a的值是()A.6 B.﹣6 C.0 D.6或﹣65.(3分)下列计算,正确的是()A.5a+3b=8ab B.6ab﹣6ba=0 C.6m2n﹣5mn2=mn D.m2+5m3=6m56.(3分)运用等式性质进行的变形,不正确的是()A.如果a=b,那么a﹣c=b﹣c B.如果a=b,那么a+c=b+cC.如果a=b,那么D.如果a=b,那么ac=bc7.(3分)小明和小刚从相距25千米的两地同时出发相向而行,3小时后两人相遇.已知小明的速度是4km/h.设小刚的速度为x km/h,列方程得()A.3x+12=25 B.3x+4=25 C.3x﹣25=12 D.3(4﹣x)=258.(3分)如图,下列表述:①直线a与直线b、c分别相交于点A和B;②点C 在直线a外;③直线b、c相交于点C;④三条直线a、b、c两两相交,交点分别是A、B、C.其中正确的个数为()A.1 B.2 C.3 D.49.(3分)下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④10.(3分)随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑每台按原售价降低m元后又降了20%,现售价为n元.则该电脑每台的原售价为()A.n+m B.n﹣m C.n+m D.m+n二、填空题:(本大题8个小题,每小题3分,共24分.)11.(3分)若﹣6与3x是互为相反数,则x=.12.(3分)某地在一次扶贫助残活动中收到捐款2590000元.2590000用科学记数法可表示为.13.(3分)若a2n+1b2与﹣5a n+2b2是同类项,则n=.14.(3分)如果A、B、C在同一直线上,线段AB=6厘米,BC=2厘米,则A、C 两点间的距离是.15.(3分)已知一件商品的销售是180元,商家获利率是20%,则该商品的进价是元.16.(3分)如图,AB=12,C为AB的中点,点D在线段AC上,且AD:CB=1:3,则DB的长度为.17.(3分)一个两位数,十位上的数字与个位上的数字之和是11,如果把十位上的数字与个位上的数字对调,得到的新数比原来大63,求这个两位数为.18.(3分)如图,用火柴棒按如下方式拼成一排由三角形组成的图形.若拼成的第n个图形恰好用了2013根火柴棒,则n=.三、解答题(共46分)19.(8分)计算(1)3×(﹣2)3﹣16×(﹣)2(2)x+3(x﹣y)﹣(x﹣2y)20.(4分)先化简,再求值:(﹣2a2+5+4a)﹣(5a+4﹣2a2),其中a=﹣2.21.(5分)已知:AB=10,AC=4,点D是线段AC的中点,点E是线段BC的中点,求:线段DE的长.22.(8分)解方程(1)4x﹣3(2﹣x)=x﹣3;(2)=+1.23.(5分)已知关于x的方程=+1的解与方程4x﹣5=3(x﹣2)的解为互为相反数,求a的值.24.(6分)解答下列各题:(1)如图1,已知三点A、B、C,按下列语句画图:①画线段AB;②画射线AC;③画直线BC.(2)如图2,已知∠AOB,点P在∠AOB在边OA上,按下列语句画图:过点P 画直线,交OB于点Q,过点O画射线OM,交线段PQ于点M.25.(5分)列方程解应用题一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后甲乙两人合作完成这项工程,求两人合作的天数.26.(5分)列方程解应用题某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需7元车费),超过3km后,每增加1km,加收2.4元(不足1km的按1km算),某人乘这种出租车从甲地到乙地共支付车费19元.问:甲地到乙地的路程是多少?。

苏科版2022-2023学年七年级数学上册第三次月考测试题(附答案)

苏科版2022-2023学年七年级数学上册第三次月考测试题(附答案)

2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(共计30分)1.在下列数:﹣2.5,,0,﹣1.121121112……,0.2,﹣π中,无理数有()A.1个B.2个C.3个D.4个2.如图,四个有理数在数轴上的对应点分别为M,P,N,Q.若点M,N表示的有理数互为相反数,则图中表示绝对值最大的数的点是()A.点Q B.点N C.点M D.点P3.下列图形中,哪一个是四棱锥的侧面展开图?()A.B.C.D.4.根据等式性质,下列变形正确的是()A.由2x﹣3=1,得2x=3﹣1B.若mx=my,则x=yC.由=4,得3x+2x=4D.若=,则x=y5.下列说法中,正确的是()A.正数和负数统称为有理数B.互为相反数的两个数之和为零C.单项式﹣2的次数是2次D.多项式3x2+x﹣1是三次三项式6.《九章算术》中记录了一个问题:“以绳测井,若将绳三折测之,绳多四尺,绳多一尺,问绳长井深各几何?”其题意是:用绳子测量水井深度,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?若设绳长为x尺,则下列符合题意的方程是()A.x﹣4=x﹣1B.3(x+4)=4(x+1)C.x+4=x+1D.3x+4=4x+17.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.8.若方程﹣8=﹣的解与关于x的方程4x﹣(3a+1)=6x+2a﹣1的解相同,则代数式a﹣的值为()A.B.C.D.9.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依次类推,则a2021的值为().A.﹣1010B.﹣1011C.﹣2020D.﹣202110.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上.A.AB B.BC C.CD D.DA二、填空题(共计24分)11.关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m=.12.x=2关于x的一元一次方程ax﹣2=b的解,则3b﹣6a+2的值是.13.一个长方体形状的粉笔盒展开如图所示,相对的两个面上的数字之和等于5,则a+b+c =.14.如图,用正方形制作的“七巧板”拼成了一只小猫,若小猫头部(图中涂色部分)的面积是16cm2,则原正方形的边长为cm.15.实数a、b在数轴上的位置如图所示,则化简|a﹣b|﹣|b|的结果为.16.商场销售某品牌冰箱,若按标价的八折销售,每件可获利200元,其利润率为10%,若按标价的九折销售,每件可获利元.17.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是cm2.18.数轴上O,A两点的距离为4,一动点P从点A出发,按以下规律跳动:第1次跳动到AO的中点A1处,第2次从A1点跳动到A1O的中点A2处,第3次从A2点跳动到A2O 的中点A3处,按照这样的规律继续跳动到点A4,A5,A6,…,A n.(n≥3,n是整数)处,那么线段A n A的长度为(n≥3,n是整数).三、解答题(共66分)19.计算与化简:(1);(2)﹣22+3×(﹣1)2021﹣9÷(﹣3);(3)4(m2+n)+2(n﹣2m2);(4)5ab2﹣[a2b+2(a2b﹣3ab2)].20.解方程:(1)2x ﹣3=﹣5(x ﹣2) (2)﹣1=21.(1)已知A =2x 2﹣3x ﹣1,B =3x 2+mx +2.3A ﹣2B 与x 无关,求m 的值. (2)方程2﹣3(x +1)=0的解与关于x 的方程﹣3k ﹣2=2x 的解互为倒数,求k的值;22.(1)请在网格中画出如图所示的几何体的主视图、左视图和俯视图; (2)已知每个小正方体的棱长为1cm ,则该几何体的表面积是 .23.2022年元旦期间,某商场打出促销广告,如表所示.优惠条件 一次性购物不超过200元一次性购物超过200元,但不超过500元 一次性购物超过500元优惠办法没有优惠全部按九折优惠其中500元仍按九折优惠,超过500元部分按八折优惠小明妈妈两次购物分别用了154元和530元.(1)小明妈妈这两次购物时,所购物品的原价分别为多少?(2)若小明妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.24.如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A 的边长是2米,(1)若设图中最大正方形B 的边长是x 米,请用含x 的代数式表示出正方形F 、E 和C 的边长分别为 , , ;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MN 和PQ ,MQ 与PN ).请根据这个等量关系,求出x 的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.如果两队从同一点开始,沿相反的方向同时施工4天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?25.已知:如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是﹣8,点C在数轴上表示的数是18.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒.(1)当点B与点C相遇时,点A、点D在数轴上表示的数分别为、;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.参考答案一、选择题(共计30分)1.解:在实数:﹣2.5,,0,﹣1.121121112……,0.2,﹣π中,无理数有﹣1.121121112……,﹣π,无理数共2个.故选:B.2.解:由数轴知,M<P<N<Q,∵M=﹣N,∴Q的绝对值最大,故选:A.3.解:四棱锥的侧面展开图是四个三角形.故选:C.4.解:A.由2x﹣3=1,得2x=3+1,所以A选项不符合题意;B.若mx=my,当m≠0时,x=y,所以B选项不符合题意;C.由=4,得3x+2x=24,所以C选项不符合题意;D.若=,则x=y,所以D选项符合题意.故选:D.5.解:A:正数和负数统称为有理数是错误的,应该是:整数分数统称为有理数,故A选项不合题意;B:互为相反数的两个数之和为零,故B选项符合题意;C:单项式﹣2的次数是0次,故C选项不符合题意;D:多项式3x2+x﹣1是二次三项式,故D选项不符合题意.故选:B.6.解:假设绳长为x尺,根据题意,可列方程为x﹣4=x﹣1.故选:A.7.解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选:C.8.解:解方程,去分母,得2(x﹣4)﹣48=﹣3(x+2),去括号,得2x﹣8﹣48=﹣3x﹣6,移项,合并同类项,得5x=50,系数化为1,得x=10,∵两方程同解,将x=10代入到4x﹣(3a+1)=6x+2a﹣1中,可得40﹣(3a+1)=60+2a﹣1,解得a=﹣4,∴.故选:A.9.解:∵a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,…所以,当n是奇数时,,n是偶数时,,∴.故选:A.10.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.二、填空题(共计24分)11.解:由题意得:|m﹣2|=1,且2m﹣6≠0,解得:m=1,故答案为:1.12.解:将x=2代入一元一次方程ax﹣2=b,得2a﹣b=2∵3b﹣6a+2=3(b﹣2a)+2,∴﹣3(2a﹣b)+2=﹣3×2+2=﹣4.即3b﹣6a+2=﹣4.故答案为:﹣4.13.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“2”与“b”相对,“3”与“c”相对,“a”与“﹣1”相对,∵相对的两个面上的数字之和等于5,∴b=3,c=2,a=6,∴a+b+c=6+3+2=11.故答案为:11.14.解:设阴影部分小正方形边长为xcm,由题意得,2x2=16,解得x=2,∴原正方形的对角线为4×=8(cm),即原正方形的边长为8cm,故答案为:8.15.解:由数轴可知,a﹣b<0,b>0,∴|a﹣b|﹣|b|=﹣(a﹣b)﹣b=﹣a.故答案为:﹣a.16.解:设该品牌冰箱的标价为x元,根据题意,该品牌冰箱的进价为200÷20%=2000元,则有80%x﹣2000=200,解得x=2750,所以90%x﹣2000=90%×2750﹣2000=475元,即按标价的九折销售,每件可获利475元.故答案为:475.17.解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故答案为:6π.18.解:由于OA=4,所以第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4﹣(n≥3,n是整数).故答案为:4﹣.三、解答题(共66分)19.解:(1)原式=﹣+﹣﹣=(﹣+)+(﹣﹣)=1﹣1=0.(2)原式=﹣4+3×(﹣1)﹣(﹣3)=﹣4﹣3+3=﹣4.(3)原式=4m2+4n+2n﹣4m2=6n.(4)原式=5ab2﹣(a2b+2a2b﹣6ab2)=5ab2﹣(3a2b﹣6ab2)=5ab2﹣3a2b+6ab2=11ab2﹣3a2b.20.解:(1)去括号得:2x﹣3=﹣5x+10,移项合并得:7x=13,解得:x=;(2)去分母得:3x+3﹣6=4+6x,移项合并得:3x=﹣7,解得:x=﹣.21.解;(1)∵A=2x2﹣3x﹣1,B=3x2+mx+2,∴3A﹣2B=3(2x2﹣3x﹣1)﹣2(3x2+mx+2)=(﹣9﹣2m)x﹣7,∵3A﹣2B与x无关,∴﹣9﹣2m=0,解得:,(2)解方程2﹣3(x+1)=0得:2﹣3x﹣3=0,x=﹣,∵方程2﹣3(x+1)=0的解与关于x的方程的解互为倒数,∴关于x的方程的解为x=﹣3,∴,解得:k=1.22.解:(1)如图所示:;(2)∵每个小正方体的棱长为1cm,∴每个小正方形的面积为1cm2,∴该几何体的表面积是(4+3+4)×2=22cm2,故答案为:22cm2.23.解:(1)∵第一次付了154元<200×90%=180元,∴第一次购物不享受优惠,即所购物品的原价为154元;②∵第二次付了530元>500×90%=450元,∴第二次购物享受了500元按9折优惠,超过部分8折优惠.设小明妈妈第二次所购物品的原价为x元,根据题意得:90%×500+(x﹣500)×80%=530,得x=600.答:小明妈妈两次购物时,所购物品的原价分别为154元、600元;(2)她将这两次购物合为一次购买更节省,理由如下:500×90%+(600+154﹣500)×80%=653.2(元),又154+530=684(元),∵653.2<684,∴她将这两次购物合为一次购买更节省.24.解:(1)由图形及题意可得,正方形F的边长为:(x﹣2)米,正方形E的边长为:x﹣2﹣2=x﹣4(米),正方形C的边长为:x﹣4﹣2=x﹣6(米),故答案为:x﹣2,x﹣4,x﹣6;(2)(2)根据题意可知MN=PQ,则有x+(x﹣2)=x﹣4+2(x﹣6),解得x=14,∴x的值为14;(3)把这项工程看作单位“1”,则由题意可知甲工程队的工作效率为,乙工程队的工作效率为,设还要y天完成,则有()×4+y=1,解得y=5,答:还要5天完成任务.25.解:∵AB=2(单位长度),点A在数轴上表示的数是﹣8,∴B点表示的数是﹣8+2=﹣6.又∵线段CD=4(单位长度),点C在数轴上表示的数是18,∴点D表示的数是22.(1)根据题意得:(6+2)t=|﹣6﹣18|=24,即8t=24,解得t=3.则点A表示的数是﹣8+6×3=10,点D在数轴上表示的数是22﹣2×3=16.故答案为:10、16;(2)C、D的中点所表示的数是20,依题意得:(6+2)t=20﹣(﹣6),解得t=.答:当t为时,点B刚好与线段CD的中点重合;(3)①当点B在点C的左侧时,依题意得:(6+2)t+8=24,解得t=2,此时点B在数轴上所表示的数是﹣8+6×2=4;②当点B在点C的右侧时,依题意得:(6+2)t=24+8,解得t=4,此时点B在数轴上所表示的数是﹣8+6×4=16.综上所述,点B在数轴上所表示的数是4或16.。

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)

人教版2022-2023学年七年级数学上册第三次月考测试题(附答案)

2022-2023学年七年级数学上册第三次月考测试题(附答案)一、选择题(每题4分,共48分)1.四个有理数0,﹣1,9,﹣2022中,最小的数是()A.0B.﹣1C.9D.﹣20222.下列各组中的两项是同类项的是()A.﹣m2n和mn2B.8zy2和﹣y2z C.﹣m2和3m D.0.5a和0.5b 3.已知等式a=b,c为任意有理数,则下列等式中,不一定成立的是()A.a﹣c=b﹣c B.a+c=b+c C.﹣ac=﹣bc D.4.如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则下列图形从正面看得到的是()A.B.C.D.5.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元6.如图,已知线段AB=6cm,BC=4cm,若点M,N分别为AB,BC的中点,那么MN=()A.1cm B.4cm C.5cm D.6cm7.如图,是正方体包装盒的平面展开图,如果在其中的三个正方形A、B、C内分别填上适当的数,使得将这个平面展开图折成正方体后,相对面上的两数字互为相反数,则填在A、B、C内的三个数字依次为()A.0,1,﹣2B.1,0,﹣2C.﹣2,0,1D.0,﹣2,18.下列方程的解法,其中正确的个数是()①,去分母得2(x﹣1)﹣4﹣x=6;②,去分母得2(x﹣2)﹣3(4﹣x)=1;③2(x﹣1)﹣3(2﹣x)=5,去括号得2x﹣2﹣6﹣3x=5;④3x=﹣2,系数化为1得.A.3B.2C.1D.09.某商品在元旦假日准备开展促销活动,商品的标价为1000元,4折销售后任可赚80元,则该商品的成本价为()A.400元B.440元C.320元D.270元10.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑩个图形中小圆圈的个数为()A.24B.27C.30D.3311.小黄做一道题“已知两个多项式A,B,计算A﹣B”.小黄误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请你帮助小黄求出A﹣B的正确答案()A.8x2﹣5x+9B.7x2﹣8x+11C.10x2+x+5D.7x2+4x+3 12.如图,用8块相同的长方形地砖拼成一个大长方形,则每个长方形地砖的面积是()A.200cm2B.300cm2C.600cm2D.2400cm2二、填空题:(本大题6个小题,共24分)13.若单项式的系数是m,次数是n,则mn=.14.已知∠A=64°,则∠A的余角等于°.15.若关于x的方程3x﹣7=2x+a的解与方程4x+3=7的解相同,则a的值为.16.若a为负数,则化简|a|﹣|﹣2a|=.17.若x=1,代数式px3+qx+1=﹣2022,则当x=﹣1时,代数式px3+qx+1的值为.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共78分)19.计算(1)﹣8﹣6+22﹣9(2)﹣12022+(﹣18)×||﹣42÷(﹣2).20.化简:(1)(3a﹣2)﹣3(a﹣5);(2)(8a2﹣3ab﹣5b2)﹣(2a2﹣2ab+3b2).21.解方程(1)5(x﹣1)﹣2(1﹣x)=3+2x(2).22.先化简,再求值:2x2+3(﹣x2+3xy﹣y2)﹣(﹣x2﹣xy+2y2),其中x、y满足(2x﹣1)2+|y+2|=0.23.某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人,该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间?24.如图,动点C从点A出发,以2cm/s的速度沿A→B→A运动,D是线段BC的中点.已知AB=20cm,设点C的运动时间为t秒.(1)求运动过程中线段BD的长;(用含t的代数式表示)(2)在运动过程中,设AC的中点为E,DE的长度是否变化?若不变,直接写出DE的长;若发生变化,请说明理由.25.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)已知∠AOC=30°,∠BOD=60°,求∠MON的度数;(2)如果只已知“∠COD=90°”,你能求出∠MON的度数吗?如果能,请求出;如果不能,请说明理由.26.阅读以下材料:高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+…+100=?在其他同学还在犯难时,却很快传来了高斯的声音:“老师,我已经算好了!”老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,…,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050.根据以上的信息,请同学们:(1)计算1+3+5+7+…+99的值.(2)计算2+4+6+8+…+200的值.(3)用含a和n的式子表示运算结果:求a+2a+3a+…+na的值.27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不小于5盒).(1)当该班购买的乒乓球是10盒时,分别计算在甲、乙两店各需多少元?(2)当该班购买乒乓球多少盒时,两种优惠办法付款一样?(3)如果你去办这件事,你选择哪家商店购买,更省钱?参考答案一、选择题(共48分)1.解:根据有理数比较大小的方法,可得﹣2022<﹣1<0<9,∴四个有理数0,﹣1,9,﹣2022中,最小的数是﹣2022.故选:D.2.解:A、﹣m2n和mn2字母的指数不同,不是同类项;B、8zy2和﹣y2z是同类项;C、﹣m2和3m字母的指数不同,不是同类项;D、0.5a和0.5b字母不同不是同类项.故选:B.3.解:A、根据等式性质1,等式两边都减c,即可得到a﹣c=b﹣c;B、根据等式性质1,等式两边都加c,即可得到a+c=b+c;C、根据等式性质2,等式两边都乘以﹣c,即可得到﹣ac=﹣bc;D、根据等式性质2,等式两边都除以c时,应加条件c≠0,所以D错误;故选:D.4.解:从正面看,底层是三个小正方形,上层左右两边各一个小正方形.故选:D.5.解:将8450亿元用科学记数法表示为8.45×103亿元.故选:B.6.解:∵M、N分别是线段AB、BC的中点,AB=6cm,BC=4cm,∴MB=AB=3cm,NB=BC=2cm,∴MN=MB+NB=3+2=5(cm),故选:C.7.解:由正方体的展开图的特点可知B的对面是0,C的对面是﹣1,A的对面是2.由相反数的定义可知:A、B、C表示的数分别为﹣2,O,1.故选:C.8.解:①方程去分母得:2(x﹣1)﹣(4﹣x)=6,错误;②方程去分母得:2(x﹣2)﹣3(4﹣x)=6,错误;③方程去括号得:2x﹣2﹣6+3x=5,错误;④方程系数化为1得:x=﹣,错误,则其中正确的个数是0.故选:D.9.解:设该商品的成本价为x元,依题意得:1000×40%﹣x=80,解得x=320.故选:C.10.解:∵第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…∴第n个图形有3+3n个圆圈.则第⑩个图形中小圆圈的个数为3+3×10=33.故选:D.11.解:根据题意得:(9x2﹣2x+7)﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=7x2﹣8x+11.故选:B.12.解:设每个小长方形地砖的长为xcm,宽为ycm,由题意可得,即,解之,所以每个长方形地砖的面积是300cm2.故选:B.13.解:∵单项式的系数是m,次数是n,∴m=﹣,n=5,则mn=﹣×5=﹣3.故答案为:﹣3.14.解:∠A的余角等于:90°﹣64°=26°.故答案是:26.15.解:∵4x+3=7解得:x=1将x=1代入:3x﹣7=2x+a得:a=﹣6.故答案为:﹣6.16.解:∵a为负数,∴a<0,﹣2a>0,∴|﹣2a|=﹣2a,|a|=﹣a,∴|a|﹣|﹣2a|=﹣a﹣(﹣2a)=a.故答案为:a.17.解:把x=1代入代数式得:p+q+1=﹣2022,即p+q=﹣2023,则当x=﹣1时,﹣p﹣q+1=﹣(p+q)+1=2023+1=2024,故答案为:202418.解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或15619.解:(1)原式=﹣8﹣6﹣9+22=﹣23+22=﹣1;(2)原式=﹣1﹣4+8=3.20.解:(1)原式=3a﹣2﹣3a+15=13;(2)原式=8a2﹣3ab﹣5b2﹣2a2+2ab﹣3b2=6a2﹣ab﹣8b2.21.解:(1)去括号,得5x﹣5﹣2+2x=3+2x,合并,得7x﹣7=3+2x,移项,得7x﹣2x=3+7,合并,得5x=10,系数化为1,得x=2;(2)去分母,得4(2x﹣1)﹣3(1﹣3x)=﹣24,去括号,得8x﹣4﹣3+9x=﹣24,移项,得8x+9x=﹣24+4+3,合并,得17x=﹣17,系数化为1,得x=﹣1.22.解:原式=2x2﹣3x2+9xy﹣3y2+x2+xy﹣2y2=10xy﹣5y2,∵(2x﹣1)2+|y+2|=0,∴2x﹣1=0,y+2=0,解得:x=,y=﹣2,则原式=﹣10﹣20=﹣30.23.解:设大宿舍有x间,小宿舍有(50-x)间,由题意,得8x+6(50-x=360)解得:X=30, 50-x=20答:大宿舍有30间,小宿舍有20间.24.解:(1)∵点D是线段BC中点,AB长20cm,∴BD=BC,当0≤t≤10时,BD=(20﹣2t)=(10﹣t)cm,当10<t≤20时,BD=(2t﹣20)=(t﹣10)cm;(2)DE的长度不发生变化,理由如下:∵AC的中点为E,点D是线段BC中点,∴AE=CE=AC,DC=DB=BC,∴DE=CE+CD=AC+BC=(AC+BC)=AB=×20=10(cm),故DE长度为10cm.25.解:(1)∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=∠A0B﹣∠AOC﹣∠BOD=180﹣30﹣60=90°,∵OM、ON分别是∠AOC、∠BOD的平分线,∴∠MOC=∠AOC=15°,∠NOD=∠BOD=30°,∴∠MON=∠MOC+∠COD+∠NOD=15+90+30=135°;(2)能.∵OM、ON分别是∠AOC、∠BOD的平分线.∴∠MOC+∠NOD,=∠AOC+∠BOD,=(∠AOC+∠BOD),=(180﹣90)=45°,∴∠MON=∠MOC+∠NOD+∠COD=90+45=135°.26.解:(1)原式=(1+99)×50÷2=100×25=2500;(2)原式=2×(1+2+3+ (100)=2×5050=10100;(3)原式=a(1+2+…+n)=an(1+n).27.解:(1)甲:5×30+(10﹣5)×5=175(元)乙:(5×30+10×5)×0.9=180(元);(2)设该班购买乒乓球x盒,则30×5+5(x﹣5)=0.9(30×5+5x)解得x=20;(3)该班购买乒乓球盒数等于20盒时,两家付款一样;该班购买乒乓球盒数少于20盒时,甲商店更省钱;该班购买乒乓球盒数超过20盒时,乙商店更省钱.。

人教版七年级上数学第三次月考试卷(03)

人教版七年级上数学第三次月考试卷(03)

人教版七年级上数学第三次月考试卷(03)一、选择题(每小题3分,共30分)1.(3分)3的倒数是()A.3B.﹣3C.D.﹣2.(3分)多项式﹣2xy2+xy﹣3是()A.五次三项式B.三次三项式C.四次二项式D.三次二项式3.(3分)下列说法中,正确的是()A.0是整数,但不是有理数B.一个有理数,它不是整数就是分数C.﹣3﹣1=﹣2D.倒数等于它本身的数只有14.(3分)x=2是下列哪个方程的解()A.x2﹣x=5B.﹣2x=4C.=1D.=2 5.(3分)下列式子正确的是()A.a﹣(b+c)=a+b﹣c B.﹣x+y﹣z=﹣(x+y+z)C.2(a﹣b)+c=2a﹣b+c D.x+3y﹣3z=x+3(y﹣z)6.(3分)若a=b,下列变形不正确的是()A.=B.a﹣5=b﹣5C.﹣a=﹣b D.=7.(3分)若方程(m+2)x|m|﹣1+5=0是关于x的一元一次方程,则m的值是()A.1B.±2C.2D.﹣28.(3分)有理数a,b在数轴上的位置如图所示,则下列各式中正确的是()A.a﹣b<0B.a+b>0C.|b|﹣|a|>0D.|a|﹣|b|>0 9.(3分)某公园计划砌一个形状如图1的喷水池,后来有人建议改为图2的形状,且外圆的直径不变,可担心原来的材料不够,请比较两种方案,确定两种方案砌各圆形水池的周边需用的材料()A.方案(1)多B.方案(2)多C.两种方案一样多D.与r有关10.(3分)为提高产量,某工厂购进新的生产设备.新设备投产后2月份比1月份增产15%,3月份比1月份增产20%,第一季度产量共67吨.若设该1厂月份产量为x吨,根据题意可列方程为()A.15%×20%x=67B.(1+15%)×(1+20%)x=67C.x+15%x+20%x=67D.x+(1+15%)x+(1+20%)x=67二、填空题(每小题3分,共18分)11.(3分)8×(﹣2)=.12.(3分)单项式﹣πa2b的系数是,次数是.13.(3分)“x的4倍比y的一半少1”可列等式表示为.14.(3分)如果a﹣1与2a+7互为相反数,则|a+2|=.15.(3分)七年级某班小组活动中,如果每组5人则余3人,每组6人则缺5人,则该班的学生人数为人.16.(3分)观察下列等式:42﹣12=15,52﹣22=21,62﹣32=27…按这样的规律,用含自然数n的式子表示规律为.三、解答题(共52分)17.(5分)计算:﹣22﹣(1﹣0.5)××[3﹣(﹣3)2].18.(5分)化简:3ab﹣[2a2﹣(b2﹣3ab)﹣a2].19.(5分)解方程:.20.(7分)已知多项式A=ax2+2x﹣5,B=x2﹣bx,且A﹣2B的值与字母x的取值无关,求a2﹣b2的值.21.(7分)某体育场一扇形观众席区域的座位按下表所列方式设置:按这样的方式排列下去:(1)第6排有个座位;(2)小明说,他坐的那一排刚好有100个座位,你认为他说的对吗?请说明理由.22.(7分)一个两位数,若用a表示十位上的数,用b表示个位上的数.(1)用含a、b的式子表示这个两位数;(2)若把这个两位数个位上的数字与十位上的数字交换位置,所得新数与原数的差是多少?(3)若原数个位上的数是十位上的数的3倍,且新数与原数的差是36,求原来的两位数是多少?23.(8分)我国出租车收费标准因地而异.甲市出租车起步价为6元,3千米后每千米收费1.5元;乙市出租车起步价为9元,3千米后每千米收费1.2元.若在两市乘坐同样距离(超过3千米)的出租车费用也相同,求乘坐出租车的距离和费用分别是多少?24.(8分)已知A、B两点在数轴上表示的数分别为m和n.(1)计算当m和n分别取下列值时A、B两点间的距离;①m=7,n=3;②m=﹣1,n=0;③m=2,n=﹣5;(2)若A、B两点间的距离记为d,试写出m、n与d之间的数量关系式;(3)若在数轴上分别表示的数为x和﹣2,且d=20,求x的值.。

七年级上第三次月考数学试卷

七年级上第三次月考数学试卷

七年级上册数学练习(2010-12-24)姓名:一、选择题(每题3分,共30分)1.化简)2(--的结果是( ) A .-2 B .21-C .21 D .22.实数a b ,在数轴上的位置如图所示,下列各式正确的是( )A .0a >B .0b <C .a b <D .a b >3.湛江是个美丽的海滨城市,三面环海,海岸线长达1556000米,数据1556000用 科学记数法表示为( )A .515.5610⨯B 、61.55610⨯C .80.155610⨯D . 71.55610⨯ 4.下列各项是同类项的是 ( )A 、ab 与ab 21 B 、xy 与y 2C 、2ab 与b a 2D 、ab 5与26ab5.下列各题中合并同类项,结果正确的是( )A 、222532a a a =+B 、222632a a a =+C 、134=-xy xyD 、02222=-mn n m6.一元一次方程513=-x 的解为( ) A .1 B .2 C .3 D .4 7、解方程1-,去分母,得( )A 、x x 331=--B 、x x 336=--C 、x x 336=+-D 、x x 331=+-.8. 已知(2)2-x +1+y =0,则y x +的值是( )A 、1 B 、-1 C 、-3 D 、39.已知整式622+-x x 的值为9,则6422+-x x 的值为( ) A .18 B .12 C .9 D .710、假期张老师带学生乘车外出参加创新素质实践活动,甲车主说“每人8折”,乙车主说:“学生9折,老师免费”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师带的学生数为( )A .8名B .9名C .10名D .17名二、填空题(每空3分,共30分)11.如果水位上升1.2m ,记作+1.2m ,那么水位下降0.8m ,记作________m. 12.2.40万精确到 位,有效数字有 个 .13.单项式223xy π-的系数是__________,次数是___________.14.计算()m n m n +--的结果为 .15.已知0531=+-n x为一元一次方程,则n =________.16.在数轴上,若A 点表示数x ,点B 表示数-5,A 、B 两点之间的距离为7,则x =_______. 17.m y x 22与y x n 3-是同类项,则mn=___________18.今年国庆长假期间,“富万家”超市某商品按标价打八折销售,小玲购了一件该商品,付款56元,则该项商品的标价为 元。

七年级上学期第三次月考数学试题

七年级上学期第三次月考数学试题

七年级上学期数学 第三次月考试题一、精心选一选:(每小题3分,共24分)在下列各题的四个备选答案中,只有一个是正确的,请把正确答案的代号写在题后的括号内。

1、在下面的四个有理数中,最小的是( ).A 、-1B 、0C 、1D 、-22、地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为( ).A 、0.149⨯610B 、1.49⨯710C 、1.49⨯810D 、14.9⨯710 3、若a 为有理数,下列结论一定正确的是( ).A 、a a >-B 、1a a> C 、a a ||= D 、2a ≥0、4、在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A.3个B.4个C.5个D.6个 5、已知b am225-和437a b n -是同类项,则n m +的值是( ).A 、2B 、3C 、4D 、6 6、下列解方程步骤正确的是( ).A 、由x x 2+4=3+1,得x x 2+3=1+4B 、由7(1)x x -=2(+3),得71x x -=2+3C 、由0.5x x -0.7=5-1.3,得5x x -7=5-13D 、由136x x -+2-=2,得2212x x -2--= 7、某书上有一道解方程的题:13xx ++1=, 处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么 处应该是数字( ). A 、7 B 、5 C 、2 D 、-28、某商品进价为a 元/件,在销售旺季,该商品售价较进价高50%,销售旺季过后,又以7折(即原价的70%)的价格对商品开展促销活动,这时一件商品的售价为( ).A 、1.5a 元B 、0.7a 元C 、1.2a 元D 、1.05a 元 二、细心填一填:(每小题3分,共24分)9、211-的相反数是 ,倒数是 ,绝对值是 。

10、单项式33a π-的系数是________,次数是_______。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

191
七年级上学期数学第三次月考试卷 时间:120分钟 满分120分
一、填空题(本题有8个小题,每小题3分,共24分) 1. 比较两个数的大小:-2 -1.
2、A 、B 两地海拔高度分别是1800米,205-米,B 地比A 地低 米.
3、代数式c b a 323
1
-的系数是 。

4. 如图,已知点M 是线段AB 的中点,点P 是线段AM 的中点,若AB =10cm ,则PM = cm . 5. 1.36度 = 分. 6.3-的倒数是 ;相反数是 .
7. 小明今年13岁,他的妈妈40岁.几年后,小明的年龄是他妈妈年龄的2
1
?如果设x 年后小明年
龄是他妈妈年龄的2
1
,由此可以得到方程(不要求解方程): .
8、根据规律填上合适的数:(1) -9,-6,-3, , 3 ; (2) 1,8,27,64, , 216。

二、选择题(本题有8个小题,每小题3分,共24分.以下每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在题后括号内) 9.下列式子中,正确的是( )
A .∣-5∣ =5
B .-∣-5∣ = 5
C .∣-0.5∣ =21
- D .-∣- 21∣ =2
1
10.如果某数的绝对值是5,那么这个数是……………………… ( ) (A) 5 (B) -5 (C) 0 (D) 5或-5
11.计算)4()16
1
()2(-÷-÷-得………………………………………… ( )
(A) -8 (B) 8 (C) 41- (D) 321
-
12.x =-1是下列哪个方程的解?………………………………… ( )
(A) 1+x = 2 (B) 1-x = 2 (C) x -2 = 1 (D) x +2 = -1 13.下面的图形经过折叠能围成正方体………………………… ( )
14.某种型号的电视机,1月份每台售价x 元,6月份降价20%,则6月份每台售价…………………………………………………………………( )
(A) (%20-x )元 (B) %
20x
元 (C) x %)201(-元 (D) x %20元
15.足球比赛的计分规则为:胜一场3分,平一场是1分,负一场得0分,一个队打了14场,负了5场共得19分,那么这个队胜了( ) A 、3场 B 、4场 C 、5场 D 、6场 16.下面几何体的截面图不可能是三角形的是( ) A. 正方体 B. 圆柱 C. 长方体 D. 棱柱 三、解答题(本题有8个小题,共72分)
17.计算(本题有2个小题,每小题5分,共10分.注:要适当保留计算的中间过程):
(1)(-21)+(-39);(4分) (2)21
25.0)2(222÷⨯---;(5分)
18.解方程:
(1) -2(x +3)=4; (5分) (2) 3
2221+-=--x x x (5分)
19.化简 :()()y x y x +--+-4332 (5分)
20. 先化简,再求值a+(a-6b)+(a+6b)+ b ,其中a = 3
2
, b = -1(7分)
192
21.(每小题4分,满分12分)
在方格纸上画出图形,并用适当的方式表示这些图形. (1) 画一个45º的角;
(2) 画两条互相平行的线段(要求所画线段不能和方格线重合或平行); (3) 画两条互相垂直的线段(要求所画线段不能和方格线重合或平行).
22.(本小题第(1)题2分,第(2)题5分,第(3)题6分,共13分.最后一个问题另加6分)
(1) 探索规律并填空:
2)21(221+=+; 2)31(3321+=++; 2
)
41(44321+=+++;……
=++++20321 ; =++++n 321 .
(2) 用火柴棒按下面的方式搭图形,填写下表:
(3)照这样的规律搭下去,第n 个图形的大三角形周长的火柴棒是几根?
第n 个图形的小三角形个数有几个?第200个图形的小三角形个数有几个?
(4)、 (选做)第n 个图形需要多少根火柴棒?(3分)
23.(本小题满分8分) 某航空公司规定:乘坐飞机普通舱每人最多可免费托运20千克行李,超过的部分,每千克按飞机票价的1.5%购买行李票,一名旅客托运了35千克行李,机票连同行李费共付了1323元,求该旅客的机票价格?
24.(本小题满分8分)某书店在促销活动中,推出一种优惠卡,每张卡售价20元,凭此卡购书可享受8折优惠,有一次,李明同学到书店购书,结账时,他先买优惠卡再凭卡付款,结果节约了人民币12元,那么李明同学此次购书的总价值是多少元?。

相关文档
最新文档