2016年全国统一高考数学试卷文科新课标ⅰ-高考真题
2016年高考文科数学全国Ⅰ卷试题及答案
绝密★启封并使用完毕前
试题类型:
2016年普通高等学校招生全国统一考试
文科数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.
(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =
(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}
(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=
(A )-3(B )-2(C )2(D )3
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
(A )13(B )12(C )2
3
(D )5
6
(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2
cos 3
A =
,则b= (A )2(B )3(C )2(D )3
(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1
4,则该椭圆的离心率为
(A )13(B )12(C )23(D )34
(6)若将函数y =2sin (2x +π6)的图像向右平移1
4个周期后,所得图像对应的函数为
2016年全国统一高考数学试卷文科全国一附带答案解析
2016年全国统一高考数学试卷(文科)(新课标Ⅰ)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只
有一项是符合题目要求的.
1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}
2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3
3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()
A.B.C.D.
4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()
A.B.C.2D.3
5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()
A.B.C.D.
6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()
A.y=2sin(2x+)B.y=2sin(2x+)
C.y=2sin(2x﹣)D.y=2sin(2x﹣)
7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()
A.17πB.18πC.20πD.28π
8.(5分)若a>b>0,0<c<1,则()
A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b
9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()
2016年高考新课标1文科数学真题及答案
2016年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=
A .{1,3}
B .{3,5}
C .{5,7}
D .{1,7} (2)设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=
A .-3
B .-2
C .2
D . 3 (3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种 在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花 不在同一花坛的概率是
A .13
B .12
C .23
D .56
(4)ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3
a c A ===,则b=
A ..2 D .3 (5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14
,则该椭圆的离心率为
A .1
3
B .12
C .23
D .34
(6)若将函数y =2sin (2x +6π
)的图像向右平移14
个周期后,所得图像对应的函数为
A .y =2sin(2x +4π)
B .y =2sin(2x +3π)
C .y =2sin(2x –4π)
D .y =2sin(2x –3
π
)
(7)如图,某几何体的三视图是三个半径相等的圆 及每个圆中两条相互垂直的半径.若该几何体的体积 是
2016年高考文科数学(新课标1)试题及答案
2016年普通高等学校招生全国统一考试
文科数学
(1) 设集合}7,5,3,1{=A ,}52|≤≤=x x B {,则B A ⋂=
(A)}3,1{
(B)}5,3{
(C)}7,5{
(D)}7,1{
(2) 设12)()i a i ++(的实部与虚部相等,其中a 为实数,则a =
(A) -3 (B) -2 (C) 2 (D) 3
(3) 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一
个花坛中,则红色和紫色的花坛不在同一花坛的概率是
(A)3
1
(B)
2
1 (C)
3
2 (D)
6
5 (4) △ABC 的内角C B A ,,的对边c b a ,,,已知3
2
cos ,2,5=
==A c a ,则b = (A)2
(B)3
(C) 2
(D) 3
(5) 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的
4
1
,则该椭圆的离心率为 (A)
3
1 (B)
2
1 (C)
3
2 (D)
4
3 (6) 将函数)62sin(2π+
=x y 的图像向右平移4
1
个周期后,所得图像对应的函数为 (A))42sin(2π+
=x y
(B))3
2sin(2π+
=x y (C))4
-
2sin(2πx y =
(D))3-
2sin(2πx y =
(7) 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积
是
3
28π
,则它的表面积是 (A )17π (B )18π (C )20π (D )28π
(8)
若0a b >> , 10<
(B)
b c c a log log < (C)c c b a <
首发2016年高考全国卷一文科数学真题及答案
首发2016年高考全国卷一文科数学真题及答案
2016年普通高等学校招生全国统一考试
文科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =
(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}
(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a =
(A )-3(B )-2(C )2(D )3
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
(A )13(B )12(C )23(D )5
6
(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .
已知a =2c =,2cos 3A =
,
则b =
(A B C )2(D )3
(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1
4,
则该椭圆的离心率为
(A )13(B )12(C )23(D )3
4
(6)若将函数y =2sin (2x +π6)的图像向右平移1
4个周期后,所得图像对应的函数为
(A )y =2sin (2x +π4) (B )y =2sin (2x +π3) (C )y =2sin (2x –π
2016年全国高考文科数学试题及答案
2016年普通高等学校招生全国统一考试
文科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
234(1B =
2} ((2(A (3)=sin()y A x ωϕ+(A )2sin(2)6
y x π=-
(B )2sin(2)3
y x π=-
(C )2sin(2+)6
y x π=
(D )2sin(2+)3
y x π=
(4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为
(A)12π(B)32
3
π(C)8π(D)4π
(5)设F为抛物线C:y2=4x的焦点,曲线y=k
x
(k>0)与C交于点P,PF⊥x 轴,则k=
(A)1
2(B)1(C)3
2
(D)2
(6)圆
(A
(7)
(A
(8)40秒.若(A
(9)
(A
(B
(C)17
(D)34
(10)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是(A)y=x(B)y=lg x(C)y=2x(D)y
=
(11)函数π()cos 26cos()2
f x x x =+-的最大值为
(A )4(B )5 (C )6 (D )7
(12)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图像的
交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=m
i i x =∑
(A)0(B)m (C)2m (D)4m
(13)(14)(15513
C =
,a =1(16(17等差数列{n a }中,34574,6a a a a +=+=
2016年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析
2016年全国统一高考新课标版Ⅰ卷全国1卷文科数学试卷及参考答案与解析
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于( )
A.-3
B.-2
C.2
D.3
3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )
A. B. C. D.
4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=( )
A. B. C.2 D.3
5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( )
A. B. C. D.
6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为( )
A.y=2sin(2x+)
B.y=2sin(2x+)
C.y=2sin(2x-)
D.y=2sin(2x-
)
7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该
几何体的体积是,则它的表面积是( )
A.17π
B.18π
C.20π
D.28π
8.(5分)若a>b>0,0<c<1,则( )
A.log
a c<log
b
c B.log
c
a<log
c
b C.a c<b
2016年全国高考文科数学试题及标准答案
2016年普通高等学校招生全国统一考试
文科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。写在本试卷上无效。
3.答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷
一、 选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合{123}A =,,,2{|9}B x x =<,则A B =
(A){210123}--,,,,,ﻩ(B ){21012}--,,,,ﻩ (C ){123},,
(D){12},
(2)设复数z满足i 3i z +=-,则z =
(A)12i -+(B )12i -(C )32i +(D )32i -
(3) 函数=sin()y A x ωϕ+的部分图像如图所示,则
(A )2sin(2)6
y x π=- (B )2sin(2)3
y x π=- (C)2sin(2+)6
y x π= (D)2sin(2+)3
y x π=
(4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为
(A)12π(B)32
3
π(C)8π(D)4π
(5)设F为抛物线C:y2=4x的焦点,曲线y=k
x
(k>0)与C交于点P,PF⊥x轴,则k=
(A)1
2
(B)1 (C)
3
2
(D)2
(6) 圆x2+y2−2x−8y+13=0的圆心到直线ax+y−1=0的距离为1,则a=
2016年高考文科数学全国Ⅰ卷试题及答案
绝密★启封并使用完毕前
试题类型:
2016年普通高等学校招生全国统一考试
文科数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.
4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.
(1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =
(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}
(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=
(A )-3(B )-2(C )2(D )3
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
(A )13(B )12(C )2
3
(D )5
6
(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.
已知a =
2c =,2
cos 3
A =
,则b= (A
(B
C )2(
D )3
(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1
4,则该椭圆的离心率为
(A )13(B )12(C )23(D )34
(6)若将函数y =2sin (2x +π6)的图像向右平移1
4个周期后,所得图像对应的函数为
(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π
2016年全国高考文科数学试题及解析全国卷I
绝密★
启封并使用完毕前
试题类型:A
2016年普通高等学校招生全国统一考试
文科数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A
B =( )
A.{1,3}
B. {3,5}
C. {5,7}
D. {1,7} 2. 设(12)()i a i ++的实部与虚部相等,其中a 为实数,则a =( )
A.3-
B. 2-
C. 2
D. 3
3. 为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.
13 B. 12 C. 2
3
D. 56
4. ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知a =,2c =,2
cos 3
A =
,则b =( )
B.
C. 2
D. 3
5. 直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1
4
,则该椭圆的离心率为( ) A.
13 B. 12 C. 23 D. 34
6. 将函数2sin(2)6
y x π
=+的图像向右平移1
4个周期后,所得图像对应的函数为( )
A. 2sin(2)4y x π=+
2016年高考真题文科数学(全国Ⅰ卷)含答案
2016年普通高等学校招生全国统一考试
文科数学 第Ⅰ卷
一、选择题:本大题共12小题,每小题5分.
(1)设集合
,
,则
(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}
(2)设
的实部与虚部相等,其中a 为实数,则a =( )
(A )-3 (B )-2 (C )2 (D )3 (3)为美化环境,从红、黄、白、紫4种颜色的花中
任选2种花种在一个花坛中,余下的2种花种在另一个花
坛中,则红色和紫色的花不在同一花坛的概率是( ) (A )
31 (B )21 (C ) 32 (D )6
5 (4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知
,
,3
2
cos =A ,则b=( )
(A )
(B )
(C )2 (D )3
(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心
到的l 距离为其短轴长的41,则该椭圆的离心率为( )
(A )31 (B )21 (C )32 (D )4
3
(6)若将函数y =2sin (2x +6π)的图像向右平移41
个周期后,所得图像对应的函数为( )
(A )y =2sin(2x +
4π) (B )y =2sin(2x +3π) (C )y =2sin(2x –4π) (D )y =2sin(2x –3
π
) )
(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是
3
28π
,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π
(8)若a>b>0,0
(A )log a c c b (9)函数y =2x 2–e |x |在[–2,2]的图像大致为( )
2016年高考新课标1文科数学真题及答案
2016年普通高等学校招生全国统一考试(新课标全国卷Ⅰ)
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合A={1,3,5,7},B={x |2≤x ≤5},则A ∩B=
A .{1,3}
B .{3,5}
C .{5,7}
D .{1,7} (2)设(1+2i )(a+i )的实部与虚部相等,其中a 为实数,则a=
A .-3
B .-2
C .2
D . 3 (3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种 在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花 不在同一花坛的概率是
A .13
B .12
C .23
D .56
(4)ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知22,cos 3
a c A ===,则b=
A ..2 D .3 (5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14
,则该椭圆的离心率为
A .1
3
B .12
C .23
D .34
(6)若将函数y =2sin (2x +6π
)的图像向右平移14
个周期后,所得图像对应的函数为
A .y =2sin(2x +4π)
B .y =2sin(2x +3π)
C .y =2sin(2x –4π)
D .y =2sin(2x –3
π
)
(7)如图,某几何体的三视图是三个半径相等的圆 及每个圆中两条相互垂直的半径.若该几何体的体积 是
2016年全国卷1数学文科试卷及答案(高考文科试卷)
2016年普通高等学校招生全国统一考试
文科数学试题卷
第Ⅰ卷
一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合{1,3,5,7}A = ,{|25}B x x =≤≤,则A
B =
答案: B
解析:常规的集合习题,考察交集的运算性质。
2.设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=
答案:A
解析:本题考察复数实部虚部的基本概念,展开化简可得(2)(21)a a i -++,所以221a a -=+,即3a =-. 3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
答案:C.
解析:本题考察古典概率。从基本情况出发只要确定一个花坛的颜色,另一个花坛随之确定,所以有我们只需要确定一个花坛就好,因此有以下情况:红黄,红白,红紫,黄白,黄紫,白紫六种情况;其中红紫不在一起的情况有四种,所以答案
23
4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.
已知a =
2c =,2
cos 3
A =
,则b=
答案:D
解析:本题考察余弦定理,根据题目条件画出图形可以列出等式222
2cos a b c bc A =+-,带入已知条件化简可得
23830b b --=,解得3b =.
5.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1
4
,则该椭圆的离心率为
A .{1,3}
B .{3,5}
C .{5,7}
D .{1,7}
A .-3
2016年高考文科数学试卷及答案解析(新课标全国1卷)【WORD版】
绝密★启封并使用完毕前
2016年普通高等学校招生全国统一考试 1
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷4至6页。注意事项:
1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条
形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.
2。第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3。考试结束,监考员将试题卷、答题卡一并收回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2
(2)已知点A(0,1),B(3,2),向量AC=(—4,-3),则向量BC=
(A)(—7,-4)(B)(7,4) (C)(-1,4) (D)(1,4)
(3)已知复数z满足(z-1)i=i+1,则z=
(A)-2—I (B)-2+I (C)2—I (D)2+i
(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为
(A)10
3
(B)
1
5
(C)
1
10
(D)
1
20
(5)已知椭圆E的中心在坐标原点,离心率为1
2
,E的右焦点与抛物线C:y²=8x的焦点重合,A,B
2016年高考文科数学试卷及答案解析(新课标全国1卷)
绝密★启封并使用完毕前
2016年普通高等学校招生全国统一考试1
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:
1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。考生要认真核对答题卡上粘贴的
条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮
擦干净后,在选涂其他答案标号。第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为
(A)5(B)4(C)3(D)2
uuur uuur
(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=
(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)
(3)已知复数z满足(z-1)i=i+1,则z=
(A)-2-I(B)-2+I(C)2-I(D)2+i
(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为
(A)10111
(B)(C)(D)351020
1
(5)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y²=8x的焦点重合,A,
2016年全国统一高考数学试卷
2016年全国统一高考数学试卷(文科)(新课标ⅰ)
适用年级:高三建议时长:0分钟试卷总分:170.0分
一、单选类
1.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()(5.0分)(单选)
A. {1,3}
B. {3,5}
C. {5,7}
D. {1,7}
2.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()(5.0分)(单选)
A. ﹣3
B. ﹣2
C. 2
D. 3
3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,
则红色和紫色的花不在同一花坛的概率是()(5.0分)(单选)
A.
B.
C.
D.
4.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()(
5.0分)(单选)
A.
B.
C. 2
D. 3
5.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()(5.0分)(单选)
A.
B.
C.
D.
6.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为
()(5.0分)(单选)
A. y=2sin(2x+)
B. y=2sin(2x+)
C. y=2sin(2x﹣)
D. y=2sin(2x﹣)
7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半
径.若该几何体的体积是,则它的表面积是()(5.0分)(单选)
A. 17π
B. 18π
C. 20π
D. 28π
8.若a>b>0,0<c<1,则()(5.0分)(单选)
A.
B.
C.
D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年全国统一高考数学试卷(文科)(新课标Ⅰ)
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}
2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3 B.﹣2 C.2 D.3
3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()
A.B.C.D.
4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()
A.B.C.2 D.3
5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()
A.B.C.D.
6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()
A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)
7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()
A.17πB.18πC.20πD.28π
8.(5分)若a>b>0,0<c<1,则()
A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b
9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()
A.B.
C.D.
10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()
A.y=2x B.y=3x C.y=4x D.y=5x
11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.
12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()
A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]
二、填空题:本大题共4小题,每小题5分
13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.
16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在
不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.
(Ⅰ)求{a n}的通项公式;
(Ⅱ)求{b n}的前n项和.
18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.
(Ⅰ)证明:G是AB的中点;
(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.
19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:
记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;
(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C 于点H.
(Ⅰ)求;
(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.
21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)有两个零点,求a的取值范围.
请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]
22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.
(Ⅰ)证明:直线AB与⊙O相切;
(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.
[选修4-4:坐标系与参数方程]
23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.
[选修4-5:不等式选讲]
24.已知函数f(x)=|x+1|﹣|2x﹣3|.
(Ⅰ)在图中画出y=f(x)的图象;
(Ⅱ)求不等式|f(x)|>1的解集.