高等数学第四章 不定积分教案
不定积分-教案
不定积分 的几何意义就是,其表示了 的一族积分曲线 .这族积分曲线可由积分曲线 向上或向下平移得到,且在相同的横坐标的点处,任一曲线的切线有相同的斜率,即有平行的切线.
4.1.3基本积分公式表
1.求原函数或不定积分与求导数或求微分互为逆运算.
(1) ,或 ;
(2) ,或 .
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
*(7) ;
*(8) ;
*(9) ;
*(10) .Biblioteka 授课序号03教 学 基 本 指 标
教学课题
第4章第3节分部积分法
课的类型
新知识课
教学方法
讲授、课堂提问、讨论、启发、自学
教学手段
黑板多媒体结合
教学重点
分部积分法
教学难点
分部积分法
参考教材
作业布置
课后习题微积分标准化作业
例题讲解
例4.38求不定积分 .
例4.39求不定积分 .
例4.40求不定积分 .
注多次使用分部积分时, 和 的选取类型要与第一次的保持一致,否则将回到原积分.本例选取幂函数为 ,正(余)弦函数为 .并两次使用了分部积分法.
分部积分法的使用熟练后, 与 的选取不必写出,只要把被积表达式凑成 的形式,即可使用分部积分公式.
大纲要求
熟练掌握分部积分法.
教 学 基 本 内 容
定理4.4设 , 在区间 上都有连续的导数,则有 ,即 ,简记为 .
注1.分部积分法应用的基本步骤可归纳为:
= .
2. 和 的选取非常关键.选取 和 一般要遵循下面两个原则:
(1)由 要容易求得 ;
(2) 要比 容易积分.
第四章不定积分教案
第四章 不定积分§4-1 不定积分的概念与性质一、原函数与不定积分1.定义1 如果对任一I x ∈,都有)()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。
例如:x x cos )(sin =',即x sin 是x cos 的原函数。
2211)1l n ([xx x+='++,即)1ln(2x x ++是211x+的原函数。
2.原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。
注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。
设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。
注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即 C x G x F =-)()( (C 为常数)注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。
3.定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为⎰dx x f )(。
如果)(x F 为)(x f 的一个原函数,则C x F dx x f +=⎰)()(,(C 为任意常数) 例1. 因为 23)3(x x =', 得⎰+=C x ds x 332例2. 因为,0>x 时,x x 1)(ln =';0<x 时,xx x x 1)(1])[ln(='--='-,得 xx 1)||(l n =',因此有 ⎰+=C x dx x ||ln 1例3. 设曲线过点)2,1(,且其上任一点的斜率为该点横坐标的两倍,求曲线的方程。
不定积分教案范文
不定积分教案范文一、教学目标:1.熟练掌握不定积分的概念和性质。
2.能够运用基本积分公式求不定积分。
3.能够运用换元法、分部积分法、有理函数积分法等方法求解不定积分。
4.能够运用不定积分的性质解决实际问题。
二、教学内容:1.不定积分的基本概念和性质。
2.基本积分公式及其运用。
3.换元法求不定积分。
4.分部积分法求不定积分。
5.有理函数积分法求不定积分。
6.不定积分的应用。
三、教学过程:1.不定积分的基本概念和性质:不定积分是微积分中的重要内容,是函数的一个全体定义域上的原函数集合。
具体来说,设函数 f(x) 在区间 [a, b] 上连续,则函数 F(x)在区间 [a, b] 上的不定积分是 f(x) 的一个原函数,记作∫f(x)dx=F(x)+C,其中 F(x) 称为 f(x) 的一个原函数,C 为任意常数。
不定积分具有以下性质:(1)积分的线性性质:∫[af(x)+bg(x)]dx=a∫f(x)dx+b∫g(x)dx;(2)积分和求导的逆关系:如果F(x)是f(x)的一个原函数,则F'(x)=f(x);(3)换元积分法:设 F(x) 是 f(x) 的一个原函数,g(x) 是可导函数,则∫f[g(x)]g'(x)dx=F[g(x)]+C;(4)分部积分法:设 F(x) 和 G(x) 分别是 f(x) 和 g(x) 的原函数,则∫f(x)g'(x)dx=F(x)g(x)-∫F'(x)g(x)dx。
2.基本积分公式及其运用:(1)常数函数积分:∫kdx=kx+C,其中 k 为常数。
(2)幂函数积分:∫x^n dx=(n+1)x^(n+1)/(n+1)+C,其中 n 为任意实数,n ≠ -1(3)指数函数积分:∫e^xdx=e^x+C。
(4)三角函数积分:a. ∫sinxdx=-cosx+C;b. ∫cosxdx=sinx+C。
(5)倒数函数积分:∫1/xdx=ln,x,+C。
高职高等数学教案第四章不定积分
第四章 不定积分§4-1 不定积分的概念与性质一、不定积分的概念1.原函数定义定义1:如果在区间I 上,可导函数()F x 的导数为()f x ,即对任一xI ,都有()()F x f x 或()()dF x f x dx ,则称()F x 为()f x 在区间I 上的一个原函数。
例:(sin )cos x x ,则sin x 是cos x 的一个原函数;1(sin 1)(sin )(sin 3)cos 2x xx x ,则都是cos x 的原函数。
2.原函数性质定理1:如果()f x 在区间I 上连续,则在该区间原函数一定存在。
定理2:如果()F x 是()f x 的一个原函数,则()F x C 是()f x 的全体原函数,且任一原函数与()F x 只差一个常数。
例:验证2211cos 2,sin 2,cos 233x x x 都是sin 2x 的原函数 证:2211(cos 2)sin 233(sin 2)sin 2(cos 2)sin 2x x x x xx,则三个函数都是sin 2x 的原函数3.不定积分定义定义2:()f x 的全体原函数称为()f x 的不定积分,记作()f x dx ,其中称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量。
说明:如果()F x 是()f x 在区间I 上的一个原函数,则()F x C 就是()f x 的不定积分,即()()f x dxF x C例1:求23x dx解:因为32()3x x ,所以3x 是23x 的一个原函数则233x dx x C例2:求1dx x解:当0x时,1(ln )x x当0x 时,11ln()x xx 所以1 ln ||(0)dx x C xx4.不定积分几何意义在相同横坐标的点处切线是平行的,切线斜率都为()f x ,可由()yF x 沿y 轴平移得到。
例:一条积分曲线过点(1,3),且平移后与231y x x 重合,求该曲线方程解:设2()31f x x x C由于曲线过(1,3) 则3131C ,2C2()31f x xx二、不定积分性质性质1:[()()]()()f x g x dx f x dx g x dx性质2:()(0)()0(0)kf x dx k kf x dxdxC k性质3:(())(),()()f x dx f x f x dx f x C三、基本积分表(1)kdx kx C (k 是常数) (2)111ααx dxx C α(3)1ln ||dx x C x (4)x xe dx e C (5)ln x xa a dxC a(6)sin cos xdxxC(7)cos sin xdx x C (8)221sec tan cos dx xdx x C x(9)221csc cot sin dx xdx x C x (10)sec tan sec x xdx xC(11)csc cot csc x dx xC (12)21arctan 1dxx C x(13)21arcsin 1dx x C x例1:求51dx x解:55154111514dx x dxx CC x x例2:求x xdx解:313522223512x x xdx x dxCx C例3:求3(sin )xx dx解:433(sin )sin cos 4x x x dx xdxx dxxC例4:求2(1)x dx x解:22(1)211(2)x x x dx dx x dx xx x2122ln ||2x xdx dxdx xx C x注:根式或多项式函数需化成αx 形式,再利用公式。
第四章___不定积分
第四章第1页第四章不定积分讲授内容§4-1不定积分的概念与性质教学目的与要求1、理解不定积分的概念理解不定积分与微分之间的关系. 2、掌握不定积分的性质会用常见不定积分公式和不定积分性质求一些不定积分. 3、熟练掌握常用积分公式. 教学重难点重点——理解的概念与性质熟练掌握常用积分公式. 难点——不定积分的公式熟练掌握. 教学方法讲授法教学建议1、加深对原函数、不定积分的理解. 2、对15个积分公式要进行大量练习. 3、求不定积分一定注意不能漏C . 学时2学时教学过程第二章我们研究了如何求一个函数的导函数问题本章将讨论它的反问题即要寻求一个可导函数使它的导函数等于已知函数.这是积分学的基本问题之一. 一原函数与不定积分的概念1. 定义如果在区间I上函数Fx和fx使得F′xfx 或dFxfxdxx∈I. 称Fx为fx或fxdx在区间I上的原函数. 如sincosxx则cosx是sinx 的一个原函数. 第四章第2页1lnxx1x是lnx的一个原函数问ln2x是否是1x的原函数.2. 定理原函数的存在定理连续函数必有原函数.即: 如果fx在I上连续则在I上必有Fx 使得: F′xfx. x∈I. 注①初等函数在定义区间上必有原函数但原函数并非都是初等函数. ②函数在区间上连续只是在区间上有原函数的充分条件不连续的函数也可能有原函数.3. 两个原函数的关系如果Fx为fx在区间I上的一个原函数则FxC为fx的原函数. 因为FxC′fx 如果Fx和Gx为fx的两个原函数则有FxGxC. 因为Fx-Gx′0 FxGxC. 4. 定义在区间I上函数fx的带有任意常数项的原函数称为fx 或fxdx在I上的不定积分记为xxfd. 即∫ fxdxFxC. 其中∫为积分符号fx为被积函数fxdx为被积表达式x为积分变量. 注①不定积分∫fxdx可以表示fx的任意一个原函数. ②C 不能去掉5. 函数fx的原函数Fx的图形称为fx的积分曲线. 6. 微分与积分的关系: 1 dxfxxf 或xxfxxfddd. 2 CxFxxFd或dFxFxC. 例1 求2xdx 第四章第3页解Cxdxxxx333223 例2 求dxx1 解当xgt0时由于lnx′1/x ∫1/xdxlnxC. 当xlt0时由于ln-x′1/x ∫1/xdxln-xC. 因此∫fxdxlnxC x≠0 例3 设曲线通过点12且其上任意一点处的切线的斜率等于这点横坐标的两倍求此曲线方程. 解设所求曲线方程为yyx由题义有y′x2x y12. y′x2xyx2C. 代y12 得C1. 所以yx21 二、基本积分表见书本P186 注①11d1xxxC 其中1 ②1dlnxxCx 例4 求下列积分1 ∫x-3dx 解∫x-3dx1313xC-221xC 2 ∫x2xdx 第四章第4页解∫x2xdx∫25xdx125125xC2772xC 注用分式或根式表示的幂函数应化为x的形式然后用公式三、不定积分的性质性质1. dxxgxxfxxgxfdd 性质2. dxxfkdxxkf k≠0k 为常数注性质说明不定积分具有线性性可以推广到所有的积分例5 求下列不定积分1∫xx2-5dx∫21255xxdx732221073xxc 2∫ax-3cosxdx∫axdx-3∫cosxdxaaxln-3sinxc. 3∫2xexdx∫2exdx2ln2eexc2ln12xec 4 ∫tan2xdx∫sec2x-1dxtanx-xc 5∫221xxdx∫2121xxdxx-2lnx-x1c 6 ∫1122xxxxdx∫ x1211xdxlnxarctanxc 7∫241xxdx∫24111xxdx∫2221111xxxdx ∫x2-1211xdx33x-xarctanxc 第四章第5页8∫2sin2xdx∫211-cosxdx21x-sinxc 9 ∫2cos2sin122xxdx∫22sin1xdx24cscdxx-4cotxc 例6 设f′lnxx1求fx 解设tlnx 则f′tet1 从而ft∫et1dtettC fxex xc 例7 设xxfxd arctanxC求xxfd 解将darctanxxxCfx两边求导可得211xxfx 所以12xxxf 从而Cxxdxxf4242. 故有dfxxFxC 作业高等数学练习册C类习题十九教学后记第四章第6页参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题证明xxeshxechx都是的xechxshx原函数. 第四章第7页讲授内容: §4-2换元积分法1 教学目的与要求1、理解第一换元积分法. 2、熟练掌握各种形式的“凑微分”. 教学方法讲授法重难点重点——各种形式的“凑微分”的方法. 难点——灵活的使用“凑微分”法. . 教学建议常用的凑微分的公式和方法要求学生牢记. 学时2学时教学过程将复合函数的微分法用于求不定积分利用中间变量的代换得到求复合函数的不定积分的方法称为换元积分法一、第一类换元法定理1设函数fu具有原函数Fuuφx可导则有换元公式∫fφxφ′xdx∫fuduFuCFφxC 证明由复合函数的微分法有FφxC ′ F′φxφ′x fφxφ′x 注关键是找uφx 例1. 求下列积分: 1∫2cos2xdx∫cos2xd2x sin2xC. u2x 第四章第8页2 ∫x231dx21∫xxd232321ln32xC. u32x 3 cxxddxxx31.3231313113121 u1-3x 注1. 形如faxb总可作uaxb把它化为fu 2. 不要忘记变量还原熟练后中间变量可不用设出4 ∫2x2xedx∫2xedx22xeC. u2x 5∫x21xdx-21∫21xd1-x2 -311-x23/2C. u1-x2 注11dnnnnnfaxbxxfaxbdaxba 10na 6∫tanxdx∫xxcossindx -∫xxdcoscos-lncosxC ucosx 7 ∫221xadx∫12axaaxda1arctanaxC uax 8 ∫221xadxa21∫xa1ax1dxa21∫xa1dx∫ax1dx a21∫ax1dxa-∫xa1da-xln21axaxaC agt0 注对21dxaxbxc 若240bac则用法8 若240bac则用法7 第四章第9页如①221d11darctan232122xxxCxxx ②2dd1dd11ln231341343xxxxxCxxxxxxx 9∫chaxdxa∫chaxdax ashaxC uax 10 ∫22xadx∫21axaxdarcsinaxC 11∫ln21xxdx∫xxdln21ln21∫xxdln21ln2121ln12lnxC 12 ∫xex3dx2∫xdex332∫xdex3332xe3C 13 ∫10121xxdx∫1012111xxdx∫101111xxx10111xdx∫100121xx10111xdx∫9911x10012x10111xdx -981981x991992x10011001xc 另一解法另1tx则原式2981001011011d2dttttttt 14 ∫sin3xdx-∫1-cos2xdcosx-cosx31cos3xC 15∫sin2xcos5xdx∫sin2x1-sin2x2dsinx∫sin2x-2sin4xsinx6dsinx 第四章第10页31sin3x-52sin5x71sin7xC 16 ∫cos2xdx∫1cos2x/2dxx/2sin2x/4C 17∫cos4xdx∫22cos1x2dx41∫12cos2xcos22xdx 41∫12cos2x 24cos1xdx41∫232cos2x 24cosxdx 83x41sin2x321sin4xC 18 ∫cscxdx∫xdxsin∫2cos2sin2xxdx∫2cos2tan22xxxd∫2tan2tanxxdln2tanxClncscx-cotxC 注2tanxxxsin2sin22xxsincos1cscx-cotx 19∫secxdx∫xdxcos∫2sin2xxdlncsc2x-cot2xC lnsecxtanxC 20∫sec6xdx∫1tan2x2dtanx∫12tan2xtan4xdtanx tanx32tan3x51tan5xC 21 ∫tan5xsec3xdx∫tan4xsec2xdsecx∫sec2x-12sec2xdsecx 第四章第11页71sec7x-52sec5x31sec3xC 注被积函数中含三角函数2secx经常将它化为正切22cxxxdxxxdxxdxtan2arctan22tan21tantansecsecsin122222 23∫cos3xcos2xdx21∫cosxcos5xdx21sinx101sin5xC. 2411dddd111xxxxxxeee xxxxeee1d1ln11xxxxexeCe 25665666114111dddd444444xxxxxxxxxxxxx 611lnln4424xxC 26322222221111dd1d122111xxxxxxxxx 3122222221111d111231xxxxcx 注1 将代数式进行恒等变形、分子分母同乘一个阶印⒗ 萌范ㄊ 泻愕裙叵怠⑷ 枪 蕉际谴瘴⒎值某S梅椒? 2 常用的公式adxdaxb nndxdxnx1 1lnxdxdxlnx xxxtanddsec2 第四章第12页arcsindd122axxxa 作业高等数学练习册C类习题二十1、2 1-14 教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算dxxxx2211tan 第四章第13页讲授内容§4-2换元积分法2 教学目的与要求1、理解第二类换元积分法的原理. 2、熟练掌握第二类换元积分法中的几种常用的换元方法及第二类换元积分法所适用的类型. 教学方法讲授法重难点重点——第二类换元积分法中的几种常用的换元法. 难点——如何熟练应用第二类换元法. 教学建议熟悉常用变量代换. 学时2学时教学过程定理设xψt单调可导且ψ′t≠0. 又设fψtψ′t有原函数Ft则有∫fxdx∫fψtψ′tdtFtCFψ--1xC. 证明由复合函数和反函数的求导法则有Fψ-1xC′F′t??txfψtψ′t??1/ψ′tfψtfx. 1三角代换例1 求下列积分1∫22xadxtaxsina2∫cos2tdt22at22asintcostC 22aarcsinax21x22xaC agt02∫22xadxtaxtan∫sectdtlnsecttantC 第四章第14页lnx22axC agt0 3∫22axdx 当xgta时设xasect 0lttltπ/2 则22dxxa∫sectdt lnsecttantC lnx22axC 当xlt-a时令x-u那么ugta则22dxxa22duua -lnu22auC - ln-x-22axC 所以x≠a 有∫22axdx lnx22axC421dxxxtxsincossincostttdt 21cossincossin dtsincossincostttttttt 21tlnsintcostC21arcsinxlnx21xC. 5 22211dxxx tanxt 2222secsinarctansin1sin2tan11tantdtdttcttt2arctan1xcx 第四章第15页注22dfaxx一般令sinxat 22dfaxx一般令tanxat 22dfxax一般令secxat 2倒数代换例2 求下列积分14422 1/ d11dxtxttxxt2211d1ttt-t3/3t-arctantC-231xx1-arctanx1C. 2222211arcsin11dxtdtctxxxtt 0x结果一样3∫4211xxdx21∫4222111xxxxdx 21∫42211xxxdx-21∫42211xxxdx21∫1111222xxxdx-21∫1111222xxxdx 21∫3112xxxxd-21∫1112xxxxd321arctan31xx-41ln1111xxxxC 第四章第16页4∫4211xxxdx∫41xxdx∫411xxdx21∫2221xdx∫43111xxdx 21lnx241x-21∫222111xxd 21lnx241x-21ln21x4111xC 3万能代换例3 求积分xdxcos3 解设2tanxt xdxcos3cxdtt2tan21arctan2122 4整体代换例4 求积分exdx1 解设1ln1xetxt dttdx11 1xdxe11ln111xxdtedtctttte 5根式代换第四章第17页例5 求下列积分xdx21 解设xt2 xdx21cxxcttdttt21ln21ln1 注关于第二类换元法非常灵活除上面几种常用代换外经常二类换元同时应用作业高等数学练习册C类习题二十2 15-28 教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算33411xdxx 第四章第18页讲授内容§4-3分部积分法教学目的与要求1、熟练掌握分部积分法公式. 2、会灵活应用分部积分法求一些函数的积分. 教学方法讲授法重难点重点——恰当选取u和v. 难点——恰当选取u和v. 教学建议1、选取原则1v易求2vdu 要比udv简单. 2、用分部积分法有时会出现复原的情况学时2学时教学过程一、分部积分法设ux和vx具有连续导数则uv′u′vuv′ 于是有分部积分法公式∫udvuv-∫vdu. 二、分部积分法常见的几种用法1降幂降低被积函数中幂函数的次幂例1求下列积分 1 ∫xcosxdx∫xdsinxxsinx-∫sinxdxxsinxcosxC 2∫x2exdx∫x2dexx2ex-2∫xexdxx2ex-2xex2exexx2-2x2C 注当被积函数为幂函数、三角函数、指数函数时一般将幂函数视为u将三角函数、指数函数凑微分. 2化难为易降低被积函数中幂函数的次幂利用分部积分法将被积函数中的难积函数如对称函数、反三角函数消第四章第19页除掉. 例2 求下列积分1∫xlnxdx21∫lnxdx221x2lnx-∫xdx21x2lnx-41x2C 2arctanxdx xarctanx-∫21xxdx xarctanx-21ln1x2C 3∫xarcsinxdx∫arcsinxdx2x2arcsinx-∫221xxdx x2arcsinx∫22111xxdx x2arcsinx∫21x-211xdx x2-1arcsinx21arcsinx-21x21xC x2-21arcsinx-21x21xC 注当被积函数为幂函数与反三角函数、对称函数乘积时一般将反三角函数、对称函数视为u 将幂函数凑微3循环积分用分部积分公式后原来积分又重新出现例31∫exsinxdx∫sinxdexexsinx-∫excosxdx exsinx-∫cosxdexexsinx-excosx-∫exsinx21exsinx-cosxC 2sec3xdx∫secxdtanxsecxtanx-∫tan2xsecxdx secxtanx-∫sec3xdx∫secxdx21secxtanxlnsecxtanxC 注当被积函数为指数函数与三角函数乘积时将其中之一视为u用两次分部积分法会出现循环. 第四章第20页4递推例4 求积分sindnxx 导出递推公式解111sindsind-coscossin-cosdsinnnnnnIxxxxxxxx 12cossincos1sincosdnnxxxnxxx 122cossin1sin1sindnnxxnxxx 12cossin11nnnxxnInI12cossin1nnnnIxxnI 所以1211cossinnnnnIxxInn 三、两种积分法的同时运用例5 求下列积分1∫xedx tx 2∫ettdt2ett-1C2xex-1C2∫xsinxcosxdx21∫sin2xdx-41∫xdcos2x-41xcos2x41∫cos2xdx-41xcos2x81∫dsin2x-41xcos2x81sin2xC.3∫23lnxxdx∫ln3xd-x1xx3ln3∫22lnxxdx-xx3ln3∫ln2xd-x1-xx3ln-xx2ln36∫2lnxxdx-xx3ln-xx2ln36∫lnxdx1-xx3ln-xx2ln3-xxln66∫21xdxx1ln3x3ln2x6lnx6C. 或∫23lnxxdxtx/1∫ln3tdttln3t-3∫ln2tdttln3t-3tln2t6∫lntdt 第四章第21页tln3t-3tln2t6tlnt-6tCtln3t-3ln2t6lnt-6C x1 ln3x1-3ln2x16lnx1-6C-x1 ln3x3ln2x6lnx6C4∫coslnxdxxcoslnx∫xsinlnx·x1dxxcoslnxxsinlnx∫xcoslnx·x1dxxcoslnxxsinlnx∫coslnxdx21xsinlnxcoslnxC5∫exsin2xdx∫ex22cos1xdx21ex21∫excos2xdx 121ex21∫exdsin2x2xe41exsin2x∫exsin2xdx 2xe4xesin2x81∫exdcos2x2xe4xesin2x8xecos2x81∫excos2xdx 2 ∫excos2xdx58??4xesin2x21cos2xC1 原式2xe5xesin2x21cos2xCex21101cos2x51sin2xC. 6x2cos22xdx∫x22cos1x21∫x2x2cosxdx2131x3∫x2dsinx61x321x2sinx21∫2xsinxdx63x22xsinx∫xdcosx 63x22xsinxxcosxsinxC. 第四章第22页例6 求In∫naxdx22其中n为正整数. 解当ngt1时有: In-1∫122naxdx122naxx2n-1∫naxx222dx 122naxx2n-1 ∫1221nax-naxa222dx 122naxx2n-1In-1-a2In. 于是In1212na122naxx2n-3In-1. 其中I1a1arctanaxC. 作业高等数学练习册C类习题二十一教学后记参考书《高等数学》同济五版《高等数学》全真课堂北大数学科学学院编《高等数学典型题精解》陈兰祥编思考题计算dxxcosln 第四章第23页讲授内容§4-4 有理函数的不定积分教学目的与要求熟练掌握几种特殊类型函数公式.重难点重点——有理函数的积分三角函数有理式的积分. 难点——无理函数的积分. 教学方法讲授法教学建议1、有理函数必可积但不一定是最简单. 2、三角函数有理式的积分和简单无理函数的积分通常是运用变量代换学时2学时教学过程一、有理函数的积分称xQxPmmmmnnnnbxbxbxbaxaxaxa11101110为有理函数.1 其中m和n为非负整数a0 a1??an b0 b1??bm 为实数a0≠0 b0≠0 . 以下总假设Px和Qx没有公因子. 当nltm时称1为真分式当n≥m时称1为假分式. 对假分式总可以利用多项式的除法将其变为一个多项式与一个真分式的和.真分式划为部分分式的和: 设1为一个真分式且Qx在实数范围内可分解为一次因式和二次因式的乘积Qxb0x-aα??x-bβx2pxqλ??x2rxsμ. 其中p2-4qlt0??r2-4slt0. 则第四章第24页xQxP1axA12axA??axA 1bxB12bxB??bxB 211qpxxNxM1222qpxxNxM??qpxxNxM2 211srxxSxR1222srxxSxR??srxxSxR2 其中A1??Aα B1??Bβ M1??Mλ N1??Nλ R1??Rμ S1??Sμ为待定常数. 有理分式函数的积分只有三种形式多项式函数分式函数naxA 和nqpxxNMx2 但前两个函数的积分较简单主要是第三个积分. 对∫nqpxxNMx2dx 可以用配方法x2pxqx2p2q-22p设tx2p a2q-22p bN-2Mp 则有∫nqpxxNMx2dx∫natMtdt22∫natbdt22 例1. 将真分式6532xxx分解为部分分式. 解设6532xxx323xxx32xBxA 第四章第25页方法一两边去分母:x3Ax-3Bx-2 2 比较同次幂的系数有:AB1-3A-2B3解得A-5B6. 方法二在2中代特殊值:令x2得A-5令x3得B6. 例2. 将真分式1122xxx分解为部分分式. 解设1122xxxxA121xB21xDCx 去分母得xA1x1x2B1x2CxD1x23 即xABDAC2DxAB2CDx2ACx3 于是002020CADCBADCADBA解得A0 B-21C0 D21. 即有1122xxx21211x-211x. 例3. 求下列积分: 1∫6532xxxdx∫36x-25xdx6lnx-3-5lnx-2C 2 ∫1122xxxdx21∫211x-211xdx21 arctanxx11C 3 ∫3222xxxdx21∫326222xxxdx 21∫323222xxxxddx-3∫22211x xd 21lnx22x3-23 arctan21xC 第四章第26页 4 ∫xxxx3458dx∫x2x11182xxxxxdx 31x321x2x∫14138xxxdx31x321x2x8lnx-3lnx-1-4lnx1C. 5 ∫411xdx21∫422111xxxdx21∫222111xxxdx-∫222111xxxdx 21∫22211xxxxd-∫22211xxxxd2121xxarctan21xx-221ln2121xxxxC 42arctanxx212-82ln121222xx.。
不定积分教案
第四章 不定积分教学目的: 1、 理解原函数概念、不定积分的概念。
2、 掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、 会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、 不定积分的概念;2、 不定积分的性质及基本公式;3、 换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有F '(x )=f (x )或dF (x )=f (x )dx ,那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数.例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为xx 21)(=', 所以x 是x 21的原函数. 提问:cos x 和x21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有F '(x )=f (x ).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数.第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数).定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作⎰dx x f )(.其中记号⎰称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量.根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即⎰+=C x F dx x f )()(.因而不定积分dx x f )(⎰可以表示f (x )的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以C x xdx +=⎰sin cos .因为x 是x21的原函数, 所以C x dx x+=⎰21.例2. 求函数xx f 1)(=的不定积分. 解:当x >0时, (ln x )'x1=, C x dx x+=⎰ln 1(x >0); 当x <0时, [ln(-x )]'xx 1)1(1=-⋅-=, C x dx x+-=⎰)ln( 1(x <0). 合并上面两式, 得到C x dx x+=⎰||ln 1(x ≠0). 例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解 设所求的曲线方程为y =f (x ), 按题设, 曲线上任一点(x , y )处的切线斜率为y '=f '(x )=2x ,,即f (x )是2x 的一个原函数.因为 ⎰+=C x xdx 22,故必有某个常数C 使f (x )=x 2+C , 即曲线方程为y =x 2+C .因所求曲线通过点(1, 2), 故2=1+C , C =1.于是所求曲线方程为y =x 2+1.积分曲线: 函数f (x )的原函数的图形称为f (x )的积分曲线.从不定积分的定义, 即可知下述关系: ⎰=)(])([x f dx x f dxd , 或 ⎰=dx x f dx x f d )(])([;又由于F (x )是F '(x )的原函数, 所以⎰+='C x F dx x F )()(,或记作 ⎰+=C x F x dF )()(.由此可见, 微分运算(以记号d 表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)C kx kdx +=⎰(k 是常数), (2)C x dx x ++=+⎰111μμμ, (3)C x dx x+=⎰||ln 1, (4)C e dx e x x +=⎰, (5)C aa dx a x x +=⎰ln , (6)C x xdx +=⎰sin cos ,(7)C x xdx +-=⎰cos sin , (8)C x xdx dx x +==⎰⎰tan sec cos 122, (9)C x xdx dx x+-==⎰⎰cot csc sin 122,(10)C x dx x+=+⎰arctan 112, (11)C x dx x +=-⎰arcsin 112, (12)C x xdx x +=⎰sec tan sec ,(13)C x dx x +-=⎰csc cot csc ,(14)C x dx x +=⎰ch sh ,(15)C x dx x +=⎰sh ch .例4⎰⎰-=dx x dx x 331C x C x +-=++-=+-21321131. 例5 ⎰⎰=dxx dx x x 252C x ++=+1251251C x +=2772C x x +=372. 例6 ⎰⎰-=dx x x x dx 343C x ++-=+-134134C x +-=-313C x+-=33. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([.这是因为, ])([])([])()(['+'='+⎰⎰⎰⎰dx x g dx x f dx x g dx x f =f (x )+g (x ).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即 ⎰⎰=dx x f k dx x kf )()((k 是常数, k ≠0).例7. ⎰⎰-=-dx x x dx x x )5()5(21252 ⎰⎰-=dx x dx x 21255⎰⎰-=dx x dx x 21255 C x x +⋅-=232732572. 例8 dx x x x dx xx x x dx x x )133(133)1(222323-+-=-+-=-⎰⎰⎰ C x x x x dx xdx x dx dx x +++-=-+-=⎰⎰⎰⎰1||ln 3321113322.例9 ⎰⎰⎰-=-xdx dx e dx x e x x cos 3)cos 3(C x e x +-=sin 3.例10 C e C e e dx e dx e x x x x x x ++=+==⎰⎰2ln 12)2ln()2()2(2. 例11 dx xx dx x x x x dx x x x x )111()1()1()1(122222++=+++=+++⎰⎰⎰ C x x dx x dx x++=++=⎰⎰||ln arctan 1112. 例12 dx x x x dx x x dx x x ⎰⎰⎰++-+=++-=+222242411)1)(1(1111 ⎰⎰⎰⎰++-=++-=dx xdx dx x dx x x 222211)111( C x x x ++-=arctan 313. 例13 ⎰⎰⎰⎰-=-=dx xdx dx x dx x 222sec )1(sec tan= tan x - x + C .例14 ⎰⎰⎰-=-=dx x dx x dx x )cos 1(212cos 1 2sin 2 C x x +-=)sin (21. 例15 C x dx x dx xx +-==⎰⎰cot 4sin 142cos 2sin 1222.§4. 2 换元积分法一、第一类换元法设f (u )有原函数F (u ), u =ϕ(x ), 且ϕ(x )可微, 那么, 根据复合函数微分法, 有d F [ϕ(x ) ]=d F (u )=F '(u )d u = F ' [ϕ(x ) ] d ϕ(x )= F '[ϕ(x ) ]ϕ'(x )d x ,所以 F '[ϕ(x )]ϕ'(x )dx = F '[ϕ(x )] d ϕ(x )= F '(u )d u = d F (u )=d F [ϕ(x ) ],因此 ⎰⎰'='')()]([)()]([x d x F dx x x F ϕϕϕϕ⎰⎰='=)()(u dF du u F C x F x dF +==⎰)]([)]([ϕϕ.即 )(])([)()]([)()]([x u du u f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='=[F (u ) +C ] u = ϕ(x ) = F [ϕ(x )]+C .定理1 设f (u )具有原函数, u =ϕ(x )可导, 则有换元公式⎰⎰⎰+=+==='C x F C u F du u f x d x f dx x x f )]([)()()()]([)()]([ϕϕϕϕϕ .被积表达式中的dx 可当作变量x 的微分来对待, 从而微分等式ϕ'(x )dx =du 可以应用到被积表达式中.在求积分⎰dx x g )(时, 如果函数g (x )可以化为g (x )= f [ϕ(x )]ϕ'(x )的形式, 那么⎰dx x g )()(])([)()]([x u du u f dx x x f ϕϕϕ=⎰⎰='=.例1. ⎰⎰'⋅=dx x x xdx )2(2cos 2cos 2⎰=)2(2cos x xdC u udu +==⎰sin cos =sin 2x +C .例2. dx x x dx x ⎰⎰'++=+)23(23121231⎰++=)23(23121x d x C u dx u +==⎰||ln 21121C x ++=|23|ln 21. 例3. ⎰⎰⎰⎰=='=du e x d e dx x e dx xe u x x x )()(222222C e C e x u +=+=2.例4. 22222121)(1211dx x dx x x dx x x ⎰⎰⎰-='-=- C u du u x d x +-=-=---=⎰⎰2321223121)1(121 C x +--=232)1(31.C u du u+-=-=⎰||ln 1 =-ln|cos x |+C .即 C x xdx +-=⎰|cos |ln tan .类似地可得C x xdx +=⎰|sin |ln cot .熟练之后, 变量代换就不必再写出了.例6. dx ax a dx x a ⎰⎰+=+2222)(1111C ax a a x d ax a +=+=⎰arctan 1)(1112. 即 dx x a ⎰+221C a xa +=arctan 1. 例7. C ax a a x d a x a dx a x +==⎰⎰sh ch ch . 例8. 当a >0时,⎰⎰-=-dx a x a dx x a 222)(1111C a x a x d a x +=-=⎰arcsin )(112. 即 dx x a ⎰-221C a x +=arcsin . 例9. ⎰⎰+--=-dx a x a x a dx a x )11(21122]11[21⎰⎰+--=dx a x dx a x a ])(1)(1[21⎰⎰++---=a x d ax a x d a x a C a x a x a ++--=|]|ln ||[ln 21C ax a x a ++-=||ln 21. 即 dx a x ⎰-221C a x ax a ++-=||ln 21. 例10. ⎰⎰⎰++=+=+xx d x x d x x dx ln 21)ln 21(21ln 21ln )ln 21( C x ++=|ln 21|ln 21.xC e x +=332. 含三角函数的积分:例12. ⎰⎰⋅=xdx x xdx sin sin sin 23⎰--=x d x cos )cos 1(2⎰⎰+-=x xd x d cos cos cos 2C x x ++-=3cos 31cos . 例13. ⎰⎰=x xd x xdx x sin cos sin cos sin 4252⎰-=x d x x sin )sin 1(sin 222⎰+-=x d x x x sin )sin sin 2(sin 642C x x x ++-=753sin 71sin 52sin 31. 例14. dx x xdx ⎰⎰+=22cos 1cos 2)2cos (21⎰⎰+=xdx dx ⎰⎰+=x xd dx 22cos 4121C x x ++=2sin 4121. 例15. dx x xdx 224)(cos cos ⎰⎰=⎰+=dx x 2)]2cos 1(21[ ⎰++=dx x x )2cos 2cos 21(412 ⎰++=dx x x )4cos 212cos 223(41 C x x x +++=)4sin 812sin 23(41 C x x x +++=4sin 3212sin 4183. 例16. ⎰⎰+=dx x x xdx x )5cos (cos 212cos 3cos C x x ++=5sin 101sin 21. 例17. ⎰⎰=dx x xdx sin 1csc ⎰=dx x x 2cos 2sin 21C x xxd x x x d +===⎰⎰|2tan |ln 2tan 2tan 2cos 2tan 22=ln |csc x -cot x |+C . 即 ⎰xdx csc =ln |csc x -cot x |+C .例18. ⎰⎰+=dx x xdx )2csc(sec πC x x ++-+=|)2cot()2 csc(|ln ππ =ln |sec x + tan x | + C .即 ⎰xdx sec =ln |sec x + tan x | + C .二、第二类换元法定理2 设x =ϕ(t )是单调的、可导的函数, 并且ϕ'(t )≠0. 又设f [ϕ(t )]ϕ'(t )具有原函数F (t ), 则有换元公式C x F t F dt t t f dx x f +=='=-⎰⎰)]([)()()]([)(1ϕϕϕ.其中t =ϕ-1(x )是x =ϕ(t )的反函数.这是因为)()]([1)()]([)(})]([{1x f t f dtdx t t f dx dt t F x F =='='='-ϕϕϕϕ. 例19. 求dx x a ⎰-22(a >0).解: 设x =a sin t , 22 ππ<<-t , 那么22x a -t a t a a cos sin 222=-=, dx =a cos t d t , 于是⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222. 因为ax t arcsin =, a x a a x t t t 222cos sin 22sin -⋅==, 所以 dx x a ⎰-22C t t a ++=)2sin 4121(2C x a x a x a +-+=22221arcsin 2.解: 设x =a sin t , 22 ππ<<-t , 那么⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222C x a x a x a +-+=22221arcsin 2. 提示:22x a -t a t a a cos sin 222=-=, dx =a cos tdt .提示: a x t arcsin =, ax a a x t t t 222cos sin 22sin -⋅==.例20. 求⎰+22a x dx (a >0). 解法一: 设x =a tan t , 22 ππ<<-t , 那么 22a x +t a a 222tan +=t a 2tan 1+==a sec t , dx =a sec 2t d t , 于是⎰+22a x dx ⎰⎰==tdt dt t a t a sec sec sec 2= ln |sec t + tan t |+C . 因为aa x t 22sec +=, a x t =tan , 所以 ⎰+22a x dx = ln |sec t + tan t |+C C a a x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .解法一: 设x =a tan t , 22 ππ<<-t , 那么 ⎰⎰⎰==+tdt dt t a t a a x dx sec sec sec 222=ln|sec t +tan t |+C C aa x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .提示:22a x +t a a 222tan +==a sec t , dx =a sec 2t dt ,提示:aa x t 22sec +=, a x t =tan .解法二: 设x =a sh t , 那么⎰+22a x dx C a x C t dt dt t a t a +=+===⎰⎰arsh ch ch C a x a x +⎪⎭⎫ ⎝⎛++=1)(ln 2122)ln(C a x x +++=, 其中C 1=C -ln a .提示: 22a x +222a t sh a +==a ch t , dx =a ch t d t .例23. 求⎰-22a x dx (a >0). 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么 22a x -222sec a t a -=1sec 2-=t a =a tan t ,于是⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec = ln |sec t + tan t |+C . 因为aa x t 22tan -=, a x t =sec , 所以 ⎰-22a x dx = ln |sec t + tan t |+C C a a x a x +-+=||ln 22122)ln(C a x x +-+=, 其中C 1=C -ln a .当x <a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a x x +-+--=)ln(22122)ln(C a x x +---=,122222)ln(ln C a x x C aa x x +---=+---=, 其中C 1=C -2ln a .综合起来有⎰-22a x dx C a x x +-+=||ln 22. 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec C aa x a x C t t +-+=++=)ln(|tan sec |ln 22 C a x x +-+=)ln(22,其中C 1=C -ln a .当x <-a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a a x x C a x x +---=+-+--=22222ln )ln( 122)ln(C a x x +---=,其中C 1=C -2ln a .提示:22a x -222sec a t a -=1sec 2-=t a =a tan t .提示:aa x t 22tan -=, a x t =sec . 综合起来有C a x x a x dx +-+=-⎰||ln 2222. 补充公式: (16)C x xdx +-=⎰|cos |ln tan ,(17)C x xdx +=⎰|sin |ln cot ,(18)C x x xdx ++=⎰|tan sec |ln sec ,(19)C x x xdx +-=⎰|cot csc |ln csc , (20)C a x a dx x a +=+⎰arctan 1122, (21)C a x a x a dx a x ++-=-⎰||ln 21122, (22)C a x dx x a +=-⎰arcsin 122, (23)C a x x a x dx +++=+⎰)ln(2222,(24)C a x x a x dx +-+=-⎰||ln 2222.§4. 3 分部积分法设函数u =u (x )及v =v (x )具有连续导数. 那么, 两个函数乘积的导数公式为(uv )'=u 'v +uv ',移项得 uv '=(uv )'-u 'v .对这个等式两边求不定积分, 得⎰⎰'-='vdx u uv dx v u , 或⎰⎰-=vdu uv udv ,这个公式称为分部积分公式.分部积分过程:⋅⋅⋅='-=-=='⎰⎰⎰⎰ vdx u uv vdu uv udv dx v u .例1 ⎰⎰⎰-==xdx x x x xd xdx x sin sin sin cos =x sin x -cos x +C .例2 C e xe dx e xe xde dx xe x x x x x x +-=-==⎰⎰⎰.例3 ⎰⎰⎰-==2222dx e e x de x dx e x x x x x⎰⎰-=-=x x x x xde e x dx xe e x 2222⎰+-=dx e xe e x x x x 222=x 2e x -2xe x +2e x +C =e x (x 2-2x +2 )+C .例4 ⎰⎰⎰⋅-==dx xx x x xdx xdx x 121ln 21ln 21ln 222 C x x x xdx x x +-=-=⎰22241ln 2121ln 21. 例5 ⎰⎰-=x xd x x xdx arccos arccos arccosdx x x x x ⎰-+=211arccos )1()1(21arccos 2212x d x x x ---=⎰-C x x x +--=21arccos . 例6 ⎰⎰=2arctan 21arctan xdx xdx x ⎰+⋅-=dx x x x x 2221121arctan 21 ⎰+--=dx x x x )111(21arctan 2122C x x x x ++-=arctan 2121arctan 212. 例7 求xdx e x sin ⎰.解 因为⎰⎰⎰-==x d e x e xde xdx e x x x x sin sin sin sin⎰⎰-=-=x x x x xde x e xdx e x e cos sin cos sin⎰+-=x d e x e x e x x x cos cos sin⎰+-=x d e x e x e x x x cos cos sin⎰--=xdx e x e x e x x x sin cos sin ,所以 C x x e xdx e x x +-=⎰)cos (sin 21sin .例8 求⎰xdx 3sec .解 因为⎰⎰⎰=⋅=x xd xdx x xdx tan sec sec sec sec 23⎰-=xdx x x x 2tan sec tan sec⎰--=dx x x x x )1(sec sec tan sec 2⎰⎰+-=xdx xdx x x sec sec tan sec 3⎰-++=xdx x x x x 3sec |tan sec |ln tan sec ,所以 ⎰xdx 3sec C x x x x +++=|)tan sec |ln tan (sec 21. 例9 求⎰+=nn a x dx I )(22, 其中n 为正整数. 解 C a x aa x dx I +=+=⎰arctan 1221; 当n >1时,用分部积分法, 有dx a x x n a x x a x dx n n n ⎰⎰+-++=+--)()1(2)()(222122122dx a x a a x n a x x n n n ⎰+-+-++=--])()(1[)1(2)(222122122, 即 ))(1(2)(211221n n n n I a I n a x x I --++=---, 于是 ])32()([)1(2111222---++-=n n n I n a x x n a I . 以此作为递推公式, 并由C ax a I +=arctan 11即可得n I . 例10 求dx e x ⎰. 解 令x =t 2 , 则 , dx =2tdt . 于dx e x ⎰C x e C t e dt te x t t +-=+-==⎰)1(2)1(22.x d e x x d e dx e x x x ⎰⎰⎰==2)(2x d e e x de x x x x ⎰⎰-==222C x e C e e x x x x +-=+-=)1(222.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰⎰=')()]([)()]([x d x f dx x x f ϕϕϕϕu x =)(ϕ令⎰du u f )(,⎰⎰=')()()()(x dv x u dx x v x u ⎰-=)()()()( x du x v x v x u .哪些积分可以用分部积分法?⎰xdx x cos , ⎰dx xe x , dx e x x ⎰2;⎰xdx x ln , ⎰xdx arccos , ⎰xdx x arctan ;xdx e x sin ⎰, ⎰xdx 3sec .2222⋅⋅⋅===⎰⎰⎰du e dx e dx xe u x x ,2222⋅⋅⋅=-==⎰⎰⎰dx e e x de x dx e x x x x x .§4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:mm m m n n n n b x b x b x b a x a x a x a x Q x P ++⋅⋅⋅++++⋅⋅⋅++=----11101110)()(, 其中m 和n 都是非负整数; a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n 及b 0, b 1, b 2, ⋅ ⋅ ⋅ , b m 都是实数, 并且a 0≠0, b 0≠0. 当n <m 时, 称这有理函数是真分式; 而当n ≥m 时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如1111)1(1122223++=+++=+++x x x x x x x x . 真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰+-+dx x x x 6532. 解 ⎰+-+dx x x x 6532⎰--+=dx x x x )3)(2(3⎰---=dx x x )2536( ⎰⎰---=dx x dx x 2536=6ln|x -3|-5ln|x -2|+C . 提示: )3)(2()32()(23)3)(2(3----++=-+-=--+x x B A x B A x B x A x x x , A +B =1, -3A -2B =3, A =6, B =-5.分母是二次质因式的真分式的不定积分:例2 求⎰++-dx x x x 3222. 解 ⎰++-dx x x x 3222dx x x x x x )3213322221(22++-+++=⎰ dx x x dx x x x ⎰⎰++-+++=321332222122 ⎰⎰+++-++++=2222)2()1()1(332)32(21x x d x x x x d C x x x ++-++=21arctan 23)32ln(212. 提示: 321332221323)22(213222222++⋅-++-⋅=++-+=++-x x x x x x x x x x x . 例3 求⎰-dx x x 2)1(1.解 ⎰⎰-+--=-dx x x x dx x x ])1(1111[)1(122 ⎰⎰⎰-+--=dx x dx x dx x 2)1(1111C x x x +----=11|1|ln ||ln .提示: 222)1(1)1(1)1(1)1(1-+--=-+-=-x x x x x x x x x 22)1(1111)1(1)1(1-+--=-+-+--=x x x x x x x x . 二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x 、cos x 表成2tan x 的函数, 然后作变换2tan x u =: 222122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x xx x x x x +=+===, 222222112sec 2tan 12sin 2cos cos u u x xx x x +-=-=-=. 变换后原积分变成了有理函数的积分.例4 求⎰++dx x x x )cos 1(sin sin 1. 解 令2tan x u =, 则212sin u u x +=, 2211cos u u x +-=, x =2arctan u , du u dx 212+=. 于是 ⎰++dx x x x )cos 1(sin sin 1⎰+-++++=)111(12)121(2222u u u u u udu u 212+⎰++=du u u )12(21 C u u u +++=|)|ln 22(212C x x x +++=|2tan |ln 212tan 2tan 412. 解 令2tan x u =, 则du uu u u u u udx x x x 2222212)111(12)121()cos 1(sin sin 1+⋅+-++++=++⎰⎰ ⎰++=+++=du uu C u u u )12(21|)|ln 22(212 C x x x +++=|2tan |ln 212tan 2tan 412. 说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如,⎰⎰++=++=+C x x d x dx x x )sin 1ln()sin 1(sin 11sin 1cos .三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰-dx xx 1. 解 设u x =-1, 即12+=u x , 则du u u udu u u dx xx ⎰⎰⎰+=⋅+=-12211222 C u u du u+-=+-=⎰)arctan (2)111(22 C x x +---=)1arctan 1(2.例6 求⎰++321x dx . 解 设u x =+32. 即23-=u x , 则du uu du u u x dx ⎰⎰⎰++-=⋅+=++111331121223 C u u u du u u +++-=++-=⎰|)1|ln 2(3)111(32 C x x x +++++-+=|21|ln 23)2(233332. 例7 求⎰+x x dx )1(3. 解 设x =t 6, 于是dx =6t 5d t , 从而dt t t dt t t t x x dx ⎰⎰⎰+=+=+22325316)1(6)1(C t t dt t +-=+-=⎰)arctan (6)111(62 C x x +-=)arctan (666.例8 求⎰+dx xx x 11. 解 设t xx =+1, 即112-=t x , 于是 dt t t t t dx x x x ⎰⎰--⋅-=+222)1(2)1(11 dt t dt t t )111(212222-+-=--=⎰⎰ C t t t ++---=|11|ln 2 C xx x x x x +++-+-+-=11ln 12.练习1. 求⎰+xdx cos 2. 解: 作变换2tan x t =, 则有dt t dx 212+=, 2211cos t t x +-=, ⎰+x dx cos 2⎰+-++=22211212t t t dt⎰+=dt t 2312⎰+=3)3(11322t d t C t+=3arctan 32C x +=)2tan 31arctan(32. 2. 求⎰dx xx 45cos sin . 解: ⎰dx x x 45cos sin ⎰-=x d x x cos cos sin 44⎰--=x d xx cos cos )cos 1(422 ⎰+--=x d xx cos )cos 1cos 21(42 C x x x ++--=3cos 31cos 2cos . 3. 求⎰+-+dx x x x 23132.解: ⎰+-+dx x x x 23132⎰--+=dx x x x )1)(2(13⎰---=dx x x )1427(⎰-=dx x 217⎰--dx x 114 =7ln|x -2|-4ln|x -1|+C .§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax +b 的积分 1.⎰++=+C b ax ab ax dx ||ln 1 2.)1()()1(1)(1-≠+++=++⎰μμμμC b ax a dx b ax 3.C b ax b b ax a dx b ax x ++-+=+⎰|)|ln (124.[]C b ax b b ax b b ax a dx b ax x ++++-+=+⎰||ln )(2)(2112232 5.C x b ax b b ax x dx ++-=+⎰ln 1)( 6.C x b ax b a bx b ax x dx +++-=+⎰ln 1)(22 7.()C b ax b b ax a dx b ax x ++++=+⎰||ln 1)(22 8.()C b ax b b ax b b ax a dx b ax x ++-+-+=+⎰2322||ln 21)( 9.C xb ax b b ax b b ax x dx ++-+=+⎰ln 1)(1)(22 例1求⎰+dx x x 2)43(. 解: 这是含有3x +4的积分, 在积分表中查得公式()C b ax b b ax a dx b ax x ++++=+⎰||ln 1)(22.现在a =3、b =4, 于是 ()C x x dx x x ++++=+⎰434|43|ln 91)43(2. 二、含有b ax +的积分1.C b ax adx b ax ++=+⎰3)(32 2.C b ax b ax a dx b ax x ++-=+⎰32)()23(152 3.C b ax b abx x a a dx b ax x +++-=+⎰322232)()81215(1052 4.C b ax b ax a dx b ax x ++-=+⎰)2(322 5.C b ax b abx x a a dx bax x +++-=+⎰)843(15222232 6.⎰⎪⎩⎪⎨⎧<+-+->+++-+=+)0( arctan 2)0( ln 1b C b b ax bb C b b ax b b ax b b ax x dx 7.⎰⎰+-+-=+b ax x dx b a bx b ax bax x dx 22 8.⎰⎰+++=+bax x dx b b ax dx x b ax 2 9.⎰⎰+++-=+bax x dx a x b ax dx x b ax22 三、含x 2±a 2的积分1.⎰+=+C a x a a x dx arctan 122 2.⎰⎰--+--++-=+1222122222)()1(232)()1(2)(n n n a x dx a n n a x a n x a x dx 3.C ax a x a a x dx ++-=-⎰ln 2122 四、含有ax 2+b (a >0)的积分1.⎪⎩⎪⎨⎧<+-+--->+=+⎰)0( ln 21)0( arctan 12b C bx a b x a ab b C x b a ab b ax dx 2.C b ax adx b ax x ++=+⎰||ln 21223.⎰⎰+-=+b ax dx a b a x dx b ax x 222 4.C b ax x b b ax x dx ++=+⎰||ln 21)(222 5.⎰⎰+--=+dx b ax b a bx b ax x dx 22211)( 6.C bx x b ax b a b ax x dx +-+=+⎰22222321||ln 2)( 7.⎰⎰+++=+dx bax b b ax b x b ax dx 2222121)(2)( 五、含有ax 2+bx +c (a >0)的积分 六、含有22a x + (a >0)的积分1.C a x x C a x a x dx +++=+=+⎰)ln(arsh 22122 2.C a x a x a x dx +++⎰222322)( 3.C a x dx a x x ++=+⎰2222 4.C a x dx a x x ++-=+⎰223221)( 5.C a x x a a x x dx a x x +++-+=+⎰)ln(2222222222 6.C a x x a x x dx a x x +++++-=+⎰)ln()(22223222 7.C x a a x a a x x dx +-+=+⎰||ln 12222 8.C x a a x a x x dx ++-=+⎰222222 9.C a x x a a x x dx a x +++++=+⎰)ln(222222222 例3求⎰+942x x dx . 解: 因为⎰⎰+=+222)23(2194x x dx x x dx , 所以这是含有22a x +的积分, 这里23=a . 在积分表中查得公式C x a a x a a x x dx +-+=+⎰||ln 12222. 于是 C x x C x x x x dx +-+=+-+⋅=+⎰||2394ln 31||23)23(ln 3221942222. 七、含有22a x -(a >0)的积分1.⎰+-+=+=-C a x x C a x x x a x dx ||ln ||arch ||22122 2.⎰+--=-C a x a x a x dx 222322)( 3.C a x dx a x x +-=-⎰2222 4.⎰+--=-C a x dx a x x 223221)( 5.C a x x a a x x dx a x x +-++-=-⎰||ln 2222222222 6.⎰+-++--=-C a x x a x x dx a x x ||ln )(22223222 7.⎰+=-C x a a a x x dx ||arccos 122 8.⎰+-=-C x a a x ax x dx 222222 9.C a x x a a x x dx a x +-+--=-⎰||ln 222222222 八、含有22x a -(a >0)的积分1.⎰+=-C a x x a dx arcsin 22 2.⎰+--=-C x a a x x a dx 222322)( 3.C x a dx x a x +--=-⎰2222 4.⎰+-=-C x a dx x a x 223221)( 5.C a x a x a x dx x a x ++--=-⎰arcsin 22222222 6.⎰+--=-C a x x a x dx x a x arcsin )(2232227.⎰+--=-C x x a a a x a x dx ||ln 12222 8.⎰+--=-C x a x a x a x dx 222222 9.C ax a x a x dx x a +--=-⎰arcsin 2222222 九、含有)0(2>++±a c bx ax 的积分 十、含有bx a x --±或))((b x a x --的积分 十一、含有三角函数的积分1.C x x xdx ++=⎰|tan sec |ln sec2.C x x xdx +-=⎰|cot csc |ln csc3.C x xdx x +=⎰sec tan sec4.C x xdx x +-=⎰csc cot csc5.C x x xdx +-=⎰2sin 412sin 2 6.C x x xdx ++=⎰2sin 412cos 2 7.⎰⎰---+-=xdx nn x x n xdx n n n 21sin 1cos sin 1sin 8.⎰⎰---+=xdx nn x x n xdx n n n 21cos 1sin cos 1cos 9.C x b a b a x b a b a bxdx ax +---++-=⎰)cos()(21)cos()(21cos sin 10.C x b a b a x b a b a bxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin 11.C x b a b a x b a b a bxdx ax +--+++=⎰)sin()(21)sin()(21cos cos 12.)( 2tan arctan 2sin 222222b a C b a b x a b a x b a dx >+-+-=+⎰13.)( 2tan 2tan ln 2sin 22222222b a C a b b x a a b b x a a b x b a dx <+-++--+-=+⎰ 14.())( 2tan arctan 2cos 22b a C x b a b a b a b a b a x b a dx >++--++=+⎰ 14.)( 2tan 2tan ln 2cos 22b a C a b ba x ab ba x ab b a b a x b a dx <+-+--++-++=+⎰ 例2求⎰-xdx cos 45. 解: 这是含三角函数的积分. 在积分表中查得公式())( 2tan arctan 2cos 22b a C x b a b a b a b a ba xb a dx >++--++=+⎰. 这里a =5、b =-4, a 2>b 2, 于是 () 2tan )4(5)4(5arctan )4(5)4(5)4(52cos 45C x x dx +-+-----+-+=-⎰ ()C x +=2tan 3arctan 32. 例4 求⎰xdx 4sin .解: 这是含三角函数的积分. 在积分表中查得公式⎰⎰---+-=xdx n n x x n xdx n n n 21sin 1cos sin 1sin , C x x xdx +-=⎰2sin 412sin 2. 这里n =4, 于是C x x x x xdx x x xdx +-+-=+-=⎰⎰)2sin 412(43cos sin 41sin 43cos sin 41sin 3234.。
“不定积分的概念与性质”教案
“不定积分的概念与性质”教案教案:不定积分的概念与性质一、教学目标1.理解不定积分的概念,能够正确地定义不定积分。
2.掌握不定积分的基本性质,能够正确地应用不定积分求解一些简单的函数积分。
3.培养学生的逻辑思维能力和数学分析能力。
二、教学重点1.不定积分的概念和定义。
2.不定积分的基本性质。
三、教学难点1.不定积分的概念和定义的理解。
2.不定积分的基本性质的掌握和应用。
四、教学过程1.引入(5分钟)请学生回顾在微积分第一节课中所学的导数的概念和定义,提醒学生导数与积分的关系。
2.概念讲解(20分钟)解释不定积分的概念,即初等函数的原函数。
示意图解,帮助学生理解不定积分的几何意义。
引导学生注意不定积分的一般形式f(x)dx中,f(x)的变量是x,x是积分变量。
3.定义说明(25分钟)通过具体的例子和讲解,引导学生理解不定积分的定义并能够正确地定义不定积分。
4.基本性质的讲解(20分钟)讲解不定积分的一些基本性质,如线性性质、常数性质、分部积分法等。
通过具体的例子演示和讲解,引导学生掌握这些基本性质,并能够正确地应用。
5.练习(20分钟)布置一些基本性质练习题,让学生独立完成。
通过做题,巩固和拓展学生对不定积分的理解和掌握。
6.拓展延伸(10分钟)让学生思考不定积分与定积分的关系,引导学生思考什么条件下不定积分可以变成定积分。
7.总结与反思(10分钟)对本节课内容进行总结,检查学生对不定积分概念和性质的掌握情况。
针对学生可能存在的困惑和问题进行解答和引导。
五、作业布置1.完成课堂练习题。
2.预习下一节课内容。
六、板书设计不定积分的概念与性质概念:不定积分的定义性质:1.线性性质2.常数性质3.分部积分法七、教学反思本节课通过引入导数和积分的关系,让学生能够更容易理解不定积分的概念。
通过具体的例子和讲解,引导学生正确地定义不定积分,并能够掌握不定积分的基本性质。
通过练习题的布置,巩固和拓展学生对不定积分的理解和应用能力。
高等数学教案第四章不定积分
提示:
………………………………………………………………………………………42分钟
内容小结:用换元法计算不定积分
思考题:换元法在引入积分变量时应注意什么
作业:P205 2(1)~(28)单数
备注:
………………………………………………………………………………………3分钟
授课章节
二、基本公式表
p186
例5.求
例6.求
三、不定积分的性质
设 原函数存在,则
性质1
性质2
例7.求
例8.求
例9.求
例10.求
例11.
例12.
例13.
………………………………………………………………………………………42分钟
内容小结:原函数与不定积分的关系及不定积分的性质
思考题:偶函数的原函数一定是奇函数对吗?.
作业:1要求学生回家背三角的和差化积与积化和差公式,下次课用;
2P190 1(3)(5)(7)(9)(11)(13)(15)(17),2
备注:
………………………………………………………………………………………3分钟
授课章节
第四章不定积分第二节换元法(第一讲)
目的要求
用换元法计算不定积分
重点难点
用两类换元法被积函数的特点。
例6.求
例7.求
例8.求
例9.求
提示:
另:做几道作业题。
…………………………………………………………………………………………42分钟
第四节有理函数积分法
一、有理函数
1.有理函数形式
2.假分式化成真分式
如
3.把真分式化成最简真分式的和
大学不定积分教案
教学目标:1. 理解不定积分的概念和性质。
2. 掌握不定积分的基本方法,包括换元积分法、分部积分法等。
3. 能够运用不定积分解决实际问题。
教学重点:1. 不定积分的概念和性质。
2. 换元积分法和分部积分法的运用。
教学难点:1. 换元积分法和分部积分法的灵活运用。
2. 复杂函数的不定积分计算。
教学过程:一、导入1. 回顾导数的概念和求导法则。
2. 提出问题:如何从导数反求原来的函数?二、不定积分的概念与性质1. 引入不定积分的定义:如果函数f(x)在区间I上有原函数F(x),那么f(x)在区间I上的不定积分记作∫f(x)dx,其中F(x) + C为f(x)的不定积分。
2. 讲解不定积分的性质:a. 线性性质:∫[af(x) + bg(x)]dx = a∫f(x)dx + b∫g(x)dxb. 可积性质:如果f(x)在区间I上连续,则f(x)在区间I上可积。
c. 积分常数:如果F(x)是f(x)的一个原函数,那么F(x) + C也是f(x)的一个原函数。
三、换元积分法1. 介绍换元积分法的概念:将原积分问题转化为新的积分问题,通过变量替换简化积分计算。
2. 讲解第一类换元法:a. 介绍凑微分法:在原积分中,将微分表达式凑成待积函数的形式。
b. 举例说明第一类换元法的运用。
3. 讲解第二类换元法:a. 介绍根式换元法:将被积函数中含有根式的部分通过换元转化为不含根式的函数。
b. 举例说明第二类换元法的运用。
四、分部积分法1. 介绍分部积分法的概念:利用分部积分公式将原积分问题转化为新的积分问题。
2. 讲解分部积分公式的推导过程。
3. 举例说明分部积分法的运用。
五、巩固练习1. 给出一些不定积分的计算题,让学生运用所学方法进行计算。
2. 对学生的答案进行点评和讲解,帮助学生掌握不定积分的计算方法。
六、总结1. 总结本节课所学的不定积分的概念、性质、基本方法。
2. 强调换元积分法和分部积分法的运用技巧。
七、课后作业1. 完成本节课所学的练习题。
不定积分教案
不定积分教案目的要求1.理解原函数的定义,知道原函数的性质,会求简单函数的原函数.2.理解不定积分的概念,掌握不定积分的线性性质,会用定义求简单函数的不定积分.内容分析1.不定积分是一元函数微积分学的基本内容,本章教材是在学生已掌握求导数方法的基础上,研究求原函数或不定积分的.故学好“导数与微分”是学好不定积分的前提,教学时,要与“导数与微分”一章的有关内容进行对照.2.本节教学重点是原函数和不定积分的概念教学,难点是原函数的求法.突破难点的关键是紧紧扣住原函数的定义,逆用求导公式,实现认知结构的理顺.由于逆运算概念学生并不陌生,因此教学中要充分利用思维定势的积极因素并引入教学.另外,本节切勿提高教学难度,因为随着后续学习的深入,积分方法多,无需直接用定义求不定积分.3.本节教学要始终抓住一条主线:“求导数与求原函数或不定积分(在不计所加任意常数时)互为逆运算”.强调求不定积分时,不要漏写任意常数C;另外,要向学生说明:求一个函数的不定积分,允许结果在形式上不同,但结果的导数应相等.指出这点是有益的,一方面使学生会检查得到的不定积分是否正确,另一方面消除学生由于所得不定积分形式的不同而产生的疑问.4.根据本节知识的抽象性,教学中应充分安排学生进行观察、联想、类比、讨论等课堂活动,使之参与到概念的发现过程,体会知识的形成过程.本着这一原则,本节课宜采用引导发现法进行教学.教学过程1.创设情境,引入新课(1)引例(见解本章头).用多媒体显示引例图象,提出问题,激起学生求知欲望,揭示并板书课题.(2)介绍微积分产生的时代背景,弘扬科学的学习态度和钻研精神.2.尝试探索,建立新知(1)提出问题:已知某个函数的导数,如何求这个函数?(2)尝试练习:求满足下列条件的函数F(x).①F′(x)=3x2②F′(x)=x3(3)解决问题:上述练习是完成与求导数相反的逆运算.因此,解决问题的方法仍为求导数.(4)形成定义:详见课本“原函数”的定义.对于原函数的定义,教师应强调下列三点:第一,F(x)与f(x)是定义在同一区间I上,这里的区间I可以是闭区间或半闭区间或开区间.第二,F(x)是f(x)的一个原函数,不是所有的原函数.第三,求原函数(在不计所加常数C的情况下)与求导数互为逆运算.(5)简单应用:例1 求下列函数的一个原函数.①f(x)=3x2②f(x)=x3小结解法:根据定义,求函数f(x)的原函数,就是要求一个函数F(x),使它的导数F′(x)等于f(x).(6)讨论问题:已知函数f(x)的一个原函数F(x),那么函数f(x)是否还有其他原函数?举例说明.(略)(7)归纳性质:一般地,原函数有下面的性质:设F(x)是函数f(x)在区间I上的一个原函数,对于任意常数C,F(x)+C也是f(x)的原函数,并且f(x)在区间I上任何一个原函数都可以表示成F(x)+C的形式.教师强调:一个函数虽然有无穷多个原函数,但是我们只要求出其中的一个就行,其他的原函数都可以由这个原函数再加上一个常数得到.这样就给出了求已知函数的所有原函数的方法.3.类比分析,拓广知识根据原函数的性质,类比引入不定积分的概念.(1)讲解不定积分的有关概念:不定积分、积分号、被积函数、积分变量、被积式、积分常数等(详见课本).对于不定积分的定义,教师说明如下:+C.常数C不要漏写,F(x)只能表示一个原函数,这也正是原函数和“f(x)dx”构成,书写时不要漏掉dx.积分变量是u,被积函数u x是关于u的幂函数.(2)推导不定积分的性质.证明:设函数f(x)的一个原函数为F(x),即F′(x)=f(x).证明(略)上述两个性质表明:求导数与求不定积分(在不计所加的任意常数时)互为逆运算.因此,求不定积分时,常常利用导数与不定积分的这种互逆关系,验证所求的不定积分是否正确.4.例题评价,反馈训练例2 如果在区间(a,b)内,恒有f′(x)=g′(x),则一定有[B]A.f(x)=g(x)B.f(x)=g(x)+CD.f(x)=Cg(x)例3 求下列不定积分.小结解法:(1)求不定积分时,都要在结果上写上任意常数C.本章凡是没有特别说明时,所加的C均表示任意常数.(2)求一个函数的不定积分,由于方法不同,它的结果在形式上往往也不同.这种形式上不同的结果,可以用求它们的导数的方法,看其导数是否相同,如果导数相同,就说明结果是正确的.课堂练习:教科书练习第1、3、4题.的解析式.解:由不定积分的性质得f(x)=(2x3-x2+9x+C)′=6x2-2x+95.归纳总结,巩固提高(1)一条主线:求导数与求不定积分(在不计所加任意常数时)互为逆运算.(2)二组概念:原函数的定义和性质,不定积分的定义和性质.(3)三个注意:一是注意一个函数的原函数有无穷多个,它们之间仅相差一个常数;二是注意求不定积分时,不要漏写任意常数C;三是注意求一个函数的不定积分,允许结果在形式上不同,但其结果的导数应相等.布置作业1.课本习题4.1第3、4题.2.设函数y=f(x)的图象为a,且在曲线a上任一点M(x,y)处的切线的斜率k(x)=x3+1,并且曲线过点P(1,2),求函数y=f(x)的解析式.有两个相等实根.(1)求f(x)的解析式.(2)是否存在实数m、n(m<n),使f(x)的定义域和值域分别是[m,n]和[2m,2n].。
四、高职不定积分教案
第四章 不定积分一、 基本要求:1、 理解原函数与不定积分的概念;2、 掌握不定积分的性质和了解不定积分的几何意义。
二、 授课内容:§4-1 原函数与不定积分一、 原函数定义1 如果对任一I x ∈,都有)()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。
例如:x x cos )(sin =',即x sin 是x cos 的原函数。
2211)1l n ([xx x+='++,即)1ln(2x x ++是211x+的原函数。
原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。
注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。
设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。
注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()( (C 为常数)注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。
二、不定积分定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为⎰dx x f )(。
如果)(x F 为)(x f 的一个原函数,则C x F dx x f +=⎰)()(,(C 为任意常数) 例1. 因为 23)3(x x =', 得⎰+=C x ds x 332例2. 因为,0>x 时,xx 1)(l n =';0<x 时,xx x x 1)(1])[l n (='--='-,得 xx 1)||(l n =',因此有⎰+=C x dx x ||ln 1例3. 设曲线过点)2,1(,且其上任一点的斜率为该点横坐标的两倍,求曲线的方程。
不定积分的优秀教学设计
不定积分的优秀教学设计引言不定积分是高等数学中的重要概念之一,作为微积分的基础知识,不定积分的学习对学生的数学素养和解决实际问题的能力起着至关重要的作用。
然而,在教学过程中,不定积分的抽象性和复杂性常常会给学生带来困扰。
为了提高不定积分的教学效果,本文将介绍一种优秀的不定积分教学设计,帮助学生更好地理解和掌握这一概念。
一、教学目标1. 让学生了解不定积分的基本概念和性质;2. 培养学生运用不定积分解决实际问题的能力;3. 提高学生的数学思维能力和逻辑推理能力。
二、教学内容1. 不定积分的定义和性质;2. 基本不定积分法和常见的不定积分公式;3. 利用不定积分解决实际问题的应用。
三、教学步骤1. 导入环节通过一个生活中的例子引出不定积分的概念,例如汽车行驶的速度问题。
让学生思考在已知汽车的速度函数的情况下,如何求出汽车行驶的路程。
2. 知识讲解介绍不定积分的定义和基本性质,引导学生理解不定积分的本质是求取一个函数的原函数。
讲解基本不定积分法和常见的不定积分公式,如导数与不定积分的关系、幂函数、三角函数等的不定积分公式。
3. 案例分析选取一些具有实际意义的问题,如速度与加速度之间的关系、曲线下的面积计算等,通过具体的案例分析,引导学生运用不定积分解决实际问题。
让学生参与思考和讨论,锻炼他们的数学思维能力和逻辑推理能力。
4. 练习与巩固布置一定数量的练习题目,既涵盖了基本的不定积分计算,又包含了一些应用题。
让学生通过练习提升他们的计算能力和综合运用能力。
5. 总结与拓展对本节课的内容进行总结,重点回顾不定积分的基本概念和性质。
同时,引导学生在不定积分的基础上,拓展更深层次的数学知识,如定积分、微分方程等,培养学生对数学的兴趣和探索精神。
四、教学方法在教学过程中,可以采用多种教学方法,如讲述法、示范法、探究法和综合运用法等。
通过一些具体的例子和案例分析,激发学生的学习兴趣和思维活跃性,并结合实际问题,引导学生将数学知识与实际问题相结合。
高等数学 上册 第3版 第4章 不定积分
(2) 3x2dx
解:(1) 因为 (sin x) = cos x , sin x 是 cos x 的一个原函数,
所以
cos xdx = sin x + C
(2) 因为 (x3 ) = 3x2 , x3 是 3x2 的一个原函数,
所以
3x 2 dx = x 3 + C
注:不定积分结果中任意常数 C 的作用是把一个原函数转化成了 原函数族,因此切记不能丢掉。
六、直接积分法
直接用基本积分公式,或者对被积函数进行适当的恒等 变形(代数的或三角的),再利用基本积分公式与运算性质
提到积分号的外面。
证明: 因为[k f (x)dx] = k[ f (x)dx] = kf (x)
即 k f (x)dx 是 kf (x) 的原函数,并且其中含有任意常数 C ,
所以 kf (x)dx = k f (x)dx
性质 4: [ f (x) ±g(x)]dx = f (x)dx ± g(x)dx
8 (- cosx) = sin x
sin xdx = -cosx + C
9 (tan x) = sec2 x
sec2 xdx = tan x + C
10 (- cot x) = csc2 x
csc2 xdx = -cot x + C
11 (arcsin x) = 1
1- x2
1 dx = arcsin x + C 1- x2
12 (arctanx) = 1
1+ x2
13 (secx) = sec x tan x
1
1 + x2 dx = arctanx + C sec x tan xdx = sec x + C
不定积分的概念与基本公式教案
不定积分的概念与基本公式教案引言:不定积分是微积分的重要概念之一,是对函数求导运算的逆运算。
本教案将介绍不定积分的概念、性质以及基本公式,并提供一些练习题来帮助学生巩固所学知识。
一、不定积分的概念不定积分是对函数进行求导运算的逆运算,也可以理解为找到一个函数,使得它的导数等于给定的函数。
记作∫f(x)dx = F(x) + C,其中F(x)为不定积分的结果,C为常数。
二、不定积分的性质1. 线性性质:∫[a*f(x) + b*g(x)]dx = a∫f(x)dx + b∫g(x)dx,其中a和b为常数。
2.可积性:如果函数f(x)在区间[a,b]上有不定积分,则在该区间上f(x)一定可积。
3. 反常积分:如果函数f(x)在其中一点x=c处不连续,其中c为[a,b]上的端点,则∫f(x)dx = ∫[a,c]f(x)dx + ∫[c,b]f(x)dx。
三、基本不定积分公式1.幂函数的不定积分:(1) ∫x^n dx = (x^(n+1))/(n+1) + C,其中n≠-1(2) ∫1/x dx = ln,x, + C。
(3) ∫e^x dx = e^x + C。
(4) ∫a^x dx = (a^x)/(lna) + C,其中a>0且a≠12.三角函数的不定积分:(1) ∫sinx dx = -cosx + C。
(2) ∫cosx dx = sinx + C。
(3) ∫sec^2x dx = tanx + C。
(4) ∫csc^2x dx = -cotx + C。
3.指数函数与三角函数的不定积分:(1) ∫e^ax*sinbx dx = (e^ax)*(asinbx/b - bcosbx/b^2) + C。
(2) ∫e^ax*cosbx dx = (e^ax)*(acosbx/b + bsinbx/b^2) + C。
四、练习题1.求函数y=3x^2的不定积分。
2. 求不定积分∫(4x^3 + 2x - 5)dx。
高等数学教案ch 4 不定积分.
高等数学教案第四章不定积分教学目的:第四章不定积分1、理解原函数概念、不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、不定积分的概念;2、不定积分的性质及基本公式;3、换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I上, 可导函数F(x)的导函数为f(x), 即对任一x∈I, 都有F '(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数.例如因为(sin x)'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为(x)'=1, 所以x是1的原函数. 2x2x提问:cos x和1还有其它原函数吗? 2x原函数存在定理如果函数f(x)在区间I上连续, 那么在区间I上存在可导函数F(x), 使对任一x ∈I 都有F '(x)=f(x).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f(x)在区间I上有原函数F(x), 那么f(x)就有无限多个原函数,F(x)+C都是f(x)的原函数, 其中C是任意常数.第二, f(x)的任意两个原函数之间只差一个常数, 即如果Φ(x)和F(x)都是f(x)的原函数, 则Φ(x)-F(x)=C (C为某个常数).高等数学课程建设组1高等数学教案第四章不定积分定义2 在区间I上, 函数f(x)的带有任意常数项的原函数称为f(x)(或f(x)dx )在区间I上的不定积分, 记作⎰f(x)dx.其中记号⎰称为积分号, f(x)称为被积函数, f(x)dx称为被积表达式, x 称为积分变量. 根据定义, 如果F(x)是f(x)在区间I上的一个原函数, 那么F(x)+C就是f(x)的不定积分, 即⎰f(x)dx=F(x)+C.因而不定积分⎰f(x)dx可以表示f(x)的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以⎰cosxdx=sinx+C.因为x是1的原函数, 所以 2x例2. 求函数f(x)=1的不定积分. x解:当x>0时, (ln x)'=1, x⎰1dx=lnx+C(x>0); x当x<0时, [ln(-x)]'=1⋅(-1)=1, -xx⎰1dx=ln(-x)+C(x<0). x合并上面两式, 得到⎰1dx=ln|x|+C(x≠0). x例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解设所求的曲线方程为y=f(x), 按题设, 曲线上任一点(x, y)处的切线斜率为y'=f'(x)=2x,,即f(x)是2x 的一个原函数.因为⎰2xdx=x2+C,高等数学课程建设组2 ⎰1dx=x+C. x高等数学教案第四章不定积分故必有某个常数C使f(x)=x 2+C, 即曲线方程为y=x 2+C.因所求曲线通过点(1, 2), 故2=1+C, C=1.于是所求曲线方程为y=x2+1.积分曲线: 函数f(x)的原函数的图形称为f(x)的积分曲线.从不定积分的定义, 即可知下述关系: d[⎰f(x)dx]=f(x), dx或 d[⎰f(x)dx]=f(x)dx;又由于F(x)是F '(x)的原函数, 所以⎰F'(x)dx=F(x)+C,或记作⎰dF(x)=F(x)+C.由此可见, 微分运算(以记号d表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)⎰kdx=kx+C(k是常数), (2)⎰xμdx=1xμ+1+C, +1(3)⎰1dx=ln|x|+C, x(4)⎰exdx=ex+C, x(5)⎰axdx=a+C, lna(6)⎰cosxdx=sinx+C,(7)⎰sinxdx=-cosx+C, (8)⎰1dx=sec2xdx=tanx+C, ⎰cos2x(9)⎰12=⎰csc2xdx=-cotx+C, sinx高等数学课程建设组3高等数学教案第四章不定积分(10)⎰1=arctanx+C, 1+x(11)⎰1=arcsinx+C, -x2(12)⎰secxtanxdx=secx+C,(13)⎰cscxcotdx=-cscx+C,(14)⎰sh x dx=ch x+C,(15)⎰ch x dx=sh x+C.例4例5 ⎰xdx=⎰x-3dx=-3+1x-3+1+C=-2x+C.111⎰x2xdx=⎰5x2dx7+1122=x+C=x2+C=2x3+C. +17725例6 ⎰dx=⎰xx-4x3dx=-4+1x3-+13+C-1=-3x3+C=-3+C. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰[f(x)+g(x)]dx=⎰f(x)dx+⎰g(x)dx.这是因为, [⎰f(x)dx+⎰g(x)dx]'=[⎰f(x)dx]'+[⎰g(x)dx]'=f(x)+g(x).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即⎰kf(x)dx=k⎰f(x)dx(k是常数, k ≠0).例7. ⎰x(x-5)dx=⎰5x2dx-725(x21-5x2)dx 5x2dx-51x2dx =⎰⎰15x2dx3=⎰⎰22 =x2-5⋅x2+C. 7332(x-1)3x-3x+3x-1=(x-3+3-1)dx 例8 ⎰dx=⎰⎰22xx2xx=⎰xdx-3⎰dx+3⎰1dx-⎰1=1x2-3x+3ln|x|+1+C. x2xx高等数学课程建设组4高等数学教案第四章不定积分例9 ⎰(ex-3cosx)dx=⎰exdx-3⎰cosxdx=ex-3sinx+C. 例10 ⎰2xexdx=⎰(2e)xdx=xx(2e)x+C=2e+C. ln(2e)1+ln22x+(1+x2)1+x+x 例11 ⎰=⎰=⎰(12+1)dx 22x(1+x)x(1+x)1+xx=⎰12dx+⎰1dx=arctanx+ln|x|+C. x1+x44(x2+1)(x2-1)+1xx-1+1 例12 ⎰=⎰=⎰dx 1+x21+x21+x2=⎰(x2-1+1dx=⎰x2dx-⎰dx+⎰11+x1+x=1x3-x+arctanx+C. 3例13 ⎰tan2xdx=⎰(sec2x-1)dx=⎰sec2xdx-⎰dx= tan x - x + C .例14 ⎰sin2x dx=⎰1-cosxdx=1⎰(1-cosx)dx 222=例15 1(x-sinx)+C. 2⎰1=4⎰12=-4cotx+C. sinxsin2cos222高等数学课程建设组5高等数学教案第四章不定积分 §4. 2 换元积分法一、第一类换元法设f(u)有原函数F(u), u=ϕ(x), 且ϕ(x)可微, 那么, 根据复合函数微分法, 有d F[ϕ(x) ]=d F(u)=F '(u)d u= F' [ϕ(x) ] dϕ(x)= F '[ϕ(x) ]ϕ'(x)d x ,所以 F '[ϕ(x)]ϕ'(x)dx= F '[ϕ(x)] dϕ(x)= F '(u)d u= d F(u)=d F[ϕ(x) ],因此⎰F'[ϕ(x)]ϕ'(x)dx=⎰F'[ϕ(x)]dϕ(x)=⎰F'(u)du=⎰dF(u)=⎰dF[ϕ(x)]=F[ϕ(x)]+C.即⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=[⎰f(u)du]u=ϕ(x)=[F(u) +C] u = ϕ(x) = F[ϕ(x)]+C.定理1 设f(u)具有原函数, u=ϕ(x)可导, 则有换元公式⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=⎰f(u)du=F(u)+C=F[ϕ(x)]+C .被积表达式中的dx 可当作变量x的微分来对待, 从而微分等式ϕ'(x)dx =du可以应用到被积表达式中.在求积分⎰g(x)dx时, 如果函数g(x)可以化为g(x)= f[ϕ(x)]ϕ'(x)的形式, 那么⎰g(x)dx=⎰f[ϕ(x)]ϕ'(x)dx=[⎰f(u)du]u=ϕ(x).例1. ⎰2cos2xdx=⎰cos2x⋅(2x)'dx=⎰cos2xd(2x)=⎰cosudu=sinu+C=sin 2x+C .例2. ⎰3+2x=2⎰3+2x(3+2x)'dx=2⎰3+2xd(3+2x) 11111=1⎰1dx=1ln|u|+C=1ln|3+2x|+C. 2u22例3. ⎰2xexdx=⎰ex(x2)'dx=⎰exd(x2)=⎰eudu=eu+C=ex+C.例4. ⎰x-x2dx=1⎰-x2(x2)'dx=1⎰-x2dx2 22=-1⎰-x2d(1-x2)=-1⎰u2du=-1u2+C 223=-1(1-x2)2+C. 3高等数学课程建设组6 3132222高等数学教案第四章不定积分例5. ⎰tanxdx=⎰sinxdx=-⎰1dcosx cosxcosx =-⎰1du=-ln|u|+C u=-ln|cos x|+C .=-ln|coxs|+C. 即⎰tanxdx类似地可得⎰cotxdx=ln|sinx|+C.熟练之后, 变量代换就不必再写出了.例6. ⎰a+xdx=a⎰111dx1+(2a=1⎰1x=1arctanx+C. a1+()2aaaa即 n+C. ⎰a2+x2=aarcta11x例7. ⎰chx=a⎰chxx=a shx+C. aaaa例8. 当a>0时,1=111xdx=⎰dx=arcs+C. ⎰aaaxxa2-x222-(-(aa⎰即⎰1=arcsx+C. 22a-x例9. ⎰x2-a2dx=2a⎰x-a-x+a)dx=2a[⎰x-adx-⎰x+adx] 1111111=1[⎰1d(x-a)-⎰1(x+a)] 2ax-ax+a=1[ln|x-a|-ln|x+a|]+C=1ln|x-a|+C. 2a2ax+a即⎰x-a=2aln|x+a|+C.⎰x(1+2lnx)=⎰1+2lnx=2⎰dxdlnx1d(1+2lnx) 1+2lnx11x-a 例10.=1ln|1+2lnx|+C. 2高等数学课程建设组7高等数学教案第四章不定积分例11. ⎰e=2⎰ed=2⎰e3xdx 3x=2e+C. 3含三角函数的积分:例12. ⎰sin3xdx=⎰sin2x⋅sinxdx=-⎰(1-cos2x)dcosx=-⎰dcosx+⎰cos2xdcosx=-cosx+1cos3x+C. 3例13. ⎰sin2xcos5xdx=⎰sin2xcos4xdsinx=⎰sin2x(1-sin2x)2dsinx=⎰(sin2x-2sin4x+sin6x)dsinx=1sin3x-2sin5x+1sin7x+C. 357例14. ⎰cos2xdx=⎰1+cos2xdx=1(⎰dx+⎰cos2xdx) 22=1⎰dx+1⎰cos2xd2x=1x+1sin2x+C. 2424例15. ⎰cos4xdx=⎰(cos2x)2dx=⎰[1(1+cos2x)]2dx 2=1⎰(1+2cos2x+cos22x)dx 4=1⎰3+2cos2x+1cos4x)dx 422=1(3x+sin2x+1sin4x)+C 428=3x+1sin2x+1sin4x+C. 8432例16. ⎰cos3xcos2xdx=1⎰(cosx+cos5x)dx 2=1sinx+1sin5x+C. 2101dx 例17. ⎰cscxdx=⎰1dx=⎰sinx2sincos22高等数学课程建设组8高等数学教案第四章不定积分dxdtanx=ln|tanx|+C=ln |csc x -cot x |+C . =⎰=⎰2tancos2tan222xdx 即⎰csc=ln |csc x -cot x |+C .例18. ⎰secxdx=⎰csc(x+πdx=ln|csc(x+ π)-cot(x+ π)|+C 222=ln |sec x + tan x | + C.xdx 即⎰sec=ln |sec x + tan x | + C.二、第二类换元法定理2 设x =ϕ(t)是单调的、可导的函数, 并且ϕ'(t)≠0. 又设f [ϕ(t)]ϕ'(t)具有原函数F(t), 则有换元公式⎰f(x)dx=⎰f[ϕ(t)]ϕ'(t)dt=F(t)=F[ϕ-1(x)]+C.其中t=ϕ-1(x)是x=ϕ(t)的反函数.这是因为{F[ϕ-1(x)]}'=F'(t)dt=f[ϕ(t)]ϕ'(t)1=f[ϕ(t)]=f(x). dxdt例19. 求⎰2-x2dx(a>0).解: 设x=a sin t , - π<t< π, 那么a2-x2=2-a2sin2t=acost, 22dx =a cos t d t , 于是⎰a2-x2dx=⎰acost⋅acostdt=a2⎰cos2tdt=a21t+1sin2t)+C. 24因为t=arcsin22x, sin2t=2sintcost=2x⋅a-x, 所以 aaa⎰2a11a-xdx=a(t+sin2t)+C=arcsinx+1xa2-x2+C. 2a224222解: 设x=a sin t , - π<t< π, 那么 22高等数学课程建设组9高等数学教案第四章不定积分⎰a2-x2dx=⎰acost⋅acostdt2 =a2⎰cos2tdt=a21t+1sin2t)+C=aarcsinx+1xa2-x2+C. 2a224提示:2-x2=a2-a2sin2t=acost, dx=acos tdt .22提示: t=arcsinx, sin2t=2sintcost=2x⋅-x. aaa例20. 求⎰dx(a>0). x2+a2解法一: 设x=a tan t, - π<t< π, 那么 22x2+a2=2+a2tan2t=a+tan2t=a sec t , dx=a sec 2t d t , 于是⎰2dxasect=sectdt= ln |sec t + tan t |+C . =⎰⎰asectx2+a222因为sect=x+a, tant=x, 所以 aa⎰dx= ln |sec t + tan t |+C=ln(x+x2+a2)+C=ln(x+x2+a2)+C, 1aax2+a2其中C 1=C-ln a .解法一: 设x=a tan t, - π<t< π, 那么 22⎰dx=asec2tdt=sectdt=ln|sect+tant|+C ⎰asect⎰x2+a222xx+a =+)+C=ln(x+x2+a2)+C1, aa其中C 1=C-ln a .提示:x2+a2=2+a2tan2t=asect , dx=a sec 2t dt ,22提示:sect=x+a, tant=x. aa解法二: 设x=a sh t , 那么高等数学课程建设组10高等数学教案第四章不定积分⎰dx=⎰ach t=⎰dt=t+C=arshx+C ach tax2+a2 ⎛⎫ =ln x+(x)2+1⎪+C=ln(x+x2+a2)+C1, a⎝a⎭其中C 1=C-ln a .提示: x2+a2=2sh2t+a2=a ch t , dx =a ch t d t .例23. 求⎰dx(a>0). x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2x2-a2=a2sec2t-a2=a2t-1=a tan t ,于是⎰dx=⎰asecttant=⎰sectdt= ln |sec t + tan t |+C . atantx2-a222因为tant=x-a, sect=x, 所以 aa⎰dx= ln |sec t + tan t |+C =ln|x+x2-a2|+C=ln(x+x2-a2)+C, 1aax2-a2其中C 1=C-ln a .当x<a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a2=-ln(-x+x2-a2)+C=ln(-x-x2-a2)+C1,22-x-x-a=ln+C=ln(-x-x2-a2)+C1, a其中C 1=C-2ln a .综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2高等数学课程建设组11高等数学教案第四章不定积分⎰dx =⎰asecttant=⎰sectdt22atantx-a22 =ln|sect+tatn|+C=lnx+x-a)+C aa(+x2-a2)+C, =lnx其中C 1=C-ln a .当x<-a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a22222-x-x-a =-ln(-x+x-a)+C=ln+C a =ln(-x-x2-a2)+C1,其中C 1=C-2ln a .提示:x2-a2=2sec2t-a2=a2t-1=atant .22x-a提示:tant=, sect=x. aa综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2补充公式:(16)⎰tanxdx=-ln|cosx|+C,(17)⎰cotxdx=ln|sinx|+C,(18)⎰secxdx=ln|secx+tanx|+C,(19)⎰cscxdx=ln|cscx-cotx|+C, (20)⎰(21)⎰(22)⎰(23)⎰1=1x+C, aaa+x221=1ln|x-a|+C,2ax+ax-a1=arcsinx+C, aa2-x2 dx=ln(x+x2+a2)+C, x2+a2高等数学课程建设组12高等数学教案第四章不定积分(24)⎰dx=ln|x+x2-a2|+C. x2-a2§4. 3 分部积分法设函数u=u(x)及v=v(x)具有连续导数. 那么, 两个函数乘积的导数公式为(uv)'=u'v+uv',移项得 uv'=(uv)'-u'v.对这个等式两边求不定积分, 得⎰uv'dx=uv-⎰u'vdx, 或⎰udv=uv-⎰vdu,这个公式称为分部积分公式.分部积分过程:⎰uv'dx=⎰udv=uv-⎰vdu=uv-⎰u'vdx= ⋅⋅⋅.例1 ⎰xcosxdx=⎰xdsinx=xsinx-⎰sinxdx=x sin x-cos x+C .例2 ⎰xexdx=⎰xdex=xex-⎰exdx=xex-ex+C.例3 ⎰x2exdx=⎰x2dex=x2ex-⎰exdx2=x2ex-2⎰xexdx=x2ex-2⎰xdex=x2ex-2xex+2⎰exdx=x2ex-2xex+2ex+C =ex(x2-2x+2 )+C.例4 ⎰xlnxdx=1⎰lnxdx2=1x2lnx-1⎰x2⋅1dx 222x=1x2lnx-1⎰xdx=1x2lnx-1x2+C. 2224例5 ⎰arccosxdx=xarccosx-⎰xdarccosx=xarccosx+⎰x1 -x21- =xarccosx-1⎰(1-x2)d(1-x2)=xarccosx--x2+C. 2例6 ⎰xarctanxdx=1⎰arctanxdx2=1x2arctanx-1⎰x2⋅1dx 2221+x=1x2arctanx-1⎰(1-1dx 221+x高等数学课程建设组13高等数学教案第四章不定积分 =1x2arctanx-1x+1arctanx+C. 222例7 求⎰exsinxdx.解因为⎰exsinxdx=⎰sinxdex=exsinx-⎰exdsinx=exsinx-⎰excosxdx=exsinx-⎰cosxdex=exsinx-excosx+⎰exdcosx=exsinx-excosx+⎰exdcosx=exsinx-excosx-⎰exsinxdx,所以⎰exsinxdx=1ex(sinx-cosx)+C. 2例8 求⎰sec3xdx.解因为⎰sec3xdx=⎰secx⋅sec2xdx=⎰secxdtanx=secxtanx-⎰secxtan2xdx=secxtanx-⎰secx(sec2x-1)dx=secxtanx-⎰sec3xdx+⎰secxdx=secxtanx+ln|secx+tanx|-⎰sec3xdx,cxdx=1(secxtanx+ln|secx+tanx|)+C. 所以⎰se32例9 求In=⎰dx, 其中n为正整数. (x+a) 解 I1=⎰2dx2=1x+C; ax+aa当n>1时,用分部积分法, 有2dxxx ⎰=+2(n-1)⎰ (x+a)(x+a)(x+a)高等数学课程建设组14高等数学教案第四章不定积分 =x1a2dx, +2(n-1)[-⎰(x+a)(x+a)(x+a)x+2(n-1)(In-1-a2In), 22n-1(x+a)即 In-1=于是 In=1[x+(2n-3)In-1]. 2a(n-1)(x+a)以此作为递推公式, 并由I1=例10 求⎰edx. 1xarctan+C即可得In. aa解令x =t 2 , 则 , dx=2tdt. 于⎰edx=2⎰tetdt=2et(t-1)+C=2e(x-1)+C.⎰edx=⎰ed(x)2=2⎰xed=2⎰xdex=2xex-2⎰exdx=2xe-2e+C=2e(x-1)+C.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)令ϕ(x)=u⎰f(u)du,⎰u(x)v'(x)dx=⎰u(x)dv(x) =u(x)v(x)-⎰v(x)du(x).哪些积分可以用分部积分法?⎰xcosxdx, ⎰xexdx, ⎰x2exdx;⎰xlnxdx, ⎰arccosxdx, ⎰xarctanxdx;⎰exsinxdx, ⎰sec3xdx.⎰2xexdx=⎰exdx2=⎰eudu= ⋅⋅⋅ ,⎰x2exdx=⎰x2dex=x2ex-⎰exdx2= ⋅⋅⋅ .高等数学课程建设组15 22高等数学教案第四章不定积分 §4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:P(x)a0xn+a1xn-1+⋅⋅⋅+an-1x+an , =Q(x)b0xm+b1xm-1+⋅⋅⋅+bm-1x+bm其中m和n都是非负整数; a0, a1, a2, ⋅⋅⋅ , an及b0, b1, b2, ⋅⋅⋅ , bm都是实数, 并且a0≠0, b0≠0. 当n<m时, 称这有理函数是真分式; 而当n≥m时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如x3+x+1=x(x2+1)+1=x+1. x2+1x2+1x2+1真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰解 x+3dx. x2-5x+6x+3⎰x-5x+6dx=⎰(x-2)(x-3)dx=⎰(x-3-x-2)dx x+365=⎰6dx-⎰5dx=6ln|x-3|-5ln|x-2|+C. x-3x-2提示: (A+B)x+(-2A-3B)x+3, =A+B=(x-2)(x-3)x-3x-2(x-2)(x-3)A+B=1, -3A-2B=3, A=6, B=-5.分母是二次质因式的真分式的不定积分:例2 求⎰解 x-2dx. x+2x+32⎰x2+2x+3dx=⎰2x2+2x+3-3x2+2x+3)dx x-212x+21=1⎰22x+2-3⎰21 2x+2x+3x+2x+3d(x2+2x+3)d(x+1)1 =⎰2 -3⎰2x+2x+3(x+1)2+()2=1ln(x2+2x+3)-3arctanx+1+C. 21(2x+2)-3x-2=1⋅x-2-3⋅1=提示: .x+2x+3x+2x+32x+2x+3x+2x+3例3 求⎰1dx. x(x-1)2高等数学课程建设组16高等数学教案第四章不定积分解⎰x(x-1)2dx=⎰[x-x-1+(x-1)2dx 1111=⎰1dx-⎰1dx+⎰12dx=ln|x|-ln|x-1|-1+C. xx-1x-1(x-1)提示: 1=1-x+x=-1+1 x(x-1)(x-1)2x(x-1)2x(x-1)2=-1-x+x+12=1-1+12. x(x-1)(x-1)xx-1(x-1)二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x、cos x表成tanx的函数, 然后作变换u=tanx: 222tanx2tanx==2u, sinx=2sinxcosx=22sec21+tan21+u2221-tan2x=1-u2. cosx=cos2x-sin2x=22sec21+u2变换后原积分变成了有理函数的积分.例4 求⎰1+sinxdx. sinx(1+cosx)2x2u2du. 1-u 解令u=tan, 则sinx=, cosx=, x=2arctan u , dx=2221+u1+u1+u2(1+2u)2du=1(u+2+1)du 于是⎰1+sinxdx=⎰sinx(1+cosx)2⎰u2u(1+1-u1+u1+u1+u21u=(+2u+ln|u|)+C=1tan2x+tanx+1ln|tanx|+C. 2242222解令u=tanx, 则 2高等数学课程建设组17高等数学教案第四章不定积分(1+2u2 ⎰1+sinxdx=⎰⋅22du 2sinx(1+cosx)2u(1+1-u1+u1+u21+u22 =1u+2u+ln|u|)+C=1⎰(u+2+1du 222u=1tan2x+tanx+1ln|tanx|+C. 42222说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如, 三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰x-1dx. x解设x-1=u, 即x=u2+1, 则⎰1+sinxdx=⎰1+sinxd(1+sinx)=ln(1+sinx)+C. cosx1⎰x-1dx=u⋅2udu=2u2⎰u2+1⎰u2+1x=2⎰(1-1)du=2(u-arctanu)+C 1+u=2(x-1-arctanx-1)+C.例6 求⎰dx. 1+x+2 解设x+2=u. 即x=u3-2, 则dx=1⋅3u2du=3u2-1+1du ⎰1++2⎰1+u⎰1+u2 =3⎰(u-1+1du=3(u-u+ln|1+u|)+C 1+u2=3x+2)2-x+2+ln|1+x+2|+C. 2例7 求⎰dx. (1+x)x 解设x=t 6, 于是dx =6t 5d t , 从而高等数学课程建设组18高等数学教案第四章不定积分 dx6t5dt=6t2=6(1-1)dt=6(t-arctant)+C=⎰(1+x)x⎰(1+t2)t3⎰1+t2⎰1+t2=6(x-arctanx)+C.例8 求⎰1+xdx. xx解设+x=t, 即x=21, 于是 xt-1-2t ⎰1+xdx=⎰(t2-1)t⋅xx(t-1)2 =-2⎰tdt=-2⎰(1+1)dt t-1t-1=-2t-ln|t-1|+C t+1=-2+x-ln+x-x+C. x+x+练习1. 求⎰dx. 2+cosx1-t2x2 解: 作变换t=tan, 则有dx=, x=dt, cos1+t221+t22dt221tdx1=⎰1+t2=2⎰⎰ =ddt⎰2t1-t2+cosx3+t31+()22+1+t23=2arctant3+C=231xtan)+C. 232. 求⎰sin5xdx. 4cosx4(1-co2sx)2sin5xsinx 解: ⎰dx=-⎰dcosx=-⎰dcosx cos4xco4sxco4sx21 =-⎰(1-+)dcosx cos2xcos4x=-cosx-3. 求⎰3x+1dx. x2-3x+221++C. 3cosx3cosx高等数学课程建设组19高等数学教案第四章不定积分解: ⎰3x+13x+174=dxdx=(-⎰(x-2)(x-1)⎰x-2x-1)dx x2-3x+211dx-4⎰dx x-2x-1=7ln|x-2|-4ln|x-1|+C.§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax+b的积分 =7⎰1.⎰dx=1ln|ax+b|+C ax+ba2.⎰(ax+b)μdx=3.⎰1(ax+b)μ+1+C(μ≠-1) a(μ+1)xdx=1(ax+b-bln|ax+b|)+C ax+ba224.⎰xdx=13[1(ax+b)2-2b(ax+b)+b2ln|ax+b|]+C ax+ba25.⎰6.⎰7.⎰8.⎰9.⎰dx=-1lnax+b+C x(ax+b)bxdx1+alnax+b+C =-x2(ax+b)bxb2xx1(ln|ax+b|+b)+C dx=(ax+b)2a2ax+bx2dx=1ax+b-2bln|ax+b|-b2)+C (ax+b)2a3ax+bdx11lnax+b+C =-x(ax+b)2b(ax+b)b2xxdx. (3x+4)2例1求⎰解: 这是含有3x+4的积分, 在积分表中查得公式x1b⎰(ax+b)2dx=a2(ln|ax+b|+ax+b)+C.高等数学课程建设组20高等数学教案第四章不定积分现在a=3、b=4, 于是x14⎰(3x+4)2dx=9ln|3x+4|+3x+4)+C. 二、含有+b的积分1.⎰ax+bdx=2ax+b)3+C 3a2.⎰x+bdx=22(3ax-2b)ax+b)3+C 15a3.⎰x2+bdx=4.⎰5.⎰2(15a2x2-12abx+8b2)ax+b)3+C 105a3xdx=2(ax-2b)+b+C 3a2+bx2dx=2(3a2x2-4abx+8b2)+b+C 15a3+b1ln+b-+C (b>0)ax+b+ 2arctanax+b+C (b<0)-b-b⎧⎪6.⎰dx=⎨x+b⎪⎩7.⎰dx=-+b-a⎰dx bx2bx+bx2+b8.⎰+bdx=+b+b⎰dx xx+b9.⎰2+bdx=-+b+a⎰dx xx2x+b三、含x2±a2的积分1.⎰2.⎰3.⎰x2+a2dx=1arctanx+C aadxx2n-3dx =+⎰(x2+a2)n2(n-1)a2(x2+a2)n-12(n-1)a2(x2+a2)n-1dx=1lnx-a+C x2-a22ax+aax+C (b>0)b x-b+C (b<0)x+b四、含有ax2+b(a>0)的积分⎧1arctandx=⎪1.⎰2⎨ax+b⎪1ln⎩2ab2.⎰xdx=1ln|ax2+b|+C ax2+b2a高等数学课程建设组21高等数学教案第四章不定积分 3.⎰4.⎰5.⎰6.⎰7.⎰x2dx=x-bdx ⎰2ax+baaax2+bdx1lnx2+C =x(ax2+b)2b|ax2+b|dxx2(ax2+b)1dx =-1-a⎰2bxbax+bdxaln|ax2+b|-1+C =x3(ax2+b)2b2x22bx2dx=x11dx+⎰(ax2+b)22b(ax2+b)2bax2+b五、含有ax2+bx+c (a>0)的积分六、含有x2+a2 (a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=arshx+C=ln(x+x2+a2)+C a1x2+a2dxx+C x2+a2)3a2x2+a2x=x2+a2+Cx2+a2x1dx=-+C x2+a2)3x2+a2x2=xx2+a2-a2ln(x+x2+a2)+C 22x2+a2x2xdx=-+ln(x+x2+a2)+C 22322x+a)x+a22dx=1lnx+a-a+C |x|xx2+a2ax22+a2dx=-x2+C ax2+a2 9.⎰x2+a2dx=xx2+a2+aln(x+x2+a2)+C 222例3求⎰dx. xx2+9dxdx=1⎰, xx2+92xx2+(322解: 因为⎰所以这是含有x2+a2的积分, 这里a=3. 在积分表中查得公式 2高等数学课程建设组22高等数学教案第四章不定积分 dx1ln2+a2-a+C. =⎰xx2+a2a|x|x2+(3)2-3dx+C=1lnx2+9-3+C. 于是⎰=1⋅2ln|x|32|x|xx2+923七、含有x2-a2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=xarch|x|+C=ln|x+x2-a2|+C 1ax2-a2|x|dxx=-+C x2-a2)3a2x2-a2xdx=x2-a2+C 22x-ax1dx=-+C x2-a2)3x2-a2x2dx=xx2-a2+a2ln|x+2-a2|+C 22x2-a2x2xdx=-+ln|x+x2-a2|+C x2-a2)3x2-a2dx=1arccosa+C |x|xx2-a2ax222dx=x2-a+C ax2-a29.⎰2-a2dx=xx2-a2-aln|x+x2-a2|+C 222八、含有2-x2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰dx=arcsinx+C a2-x2dxx=-+C a2-x2)3a22-x2xdx=2-x2+C 22-xx1dx=+C a2-x2)32-x2x2dx=-x2-x2+a2arcsinx+C 22a2-x2x2xdx=-arcsinx+C aa2-x2)32-x2高等数学课程建设组23高等数学教案第四章不定积分 7.⎰8.⎰22dx=1lna--x+C |x|x2-x2ax222dx=-2-x+C ax2-x229.⎰a2-x2dx=x2-x2-aarcsinx+C 22a九、含有ax2+bx+c(a>0)的积分十、含有±x-a或x-a)(x-b)的积分 x-b十一、含有三角函数的积分1.⎰secxdx=ln|secx+tanx|+C2.⎰cscxdx=ln|cscx-cotx|+C3.⎰secxtanxdx=secx+C4.⎰cscxcotxdx=-cscx+C5.⎰sin2xdx=x-1sin2x+C 246.⎰cos2xdx=x+1sin2x+C 247.⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx nn8.⎰cosnxdx=1cosn-1xsinx+n-1⎰cosn-2xdx nn9.⎰sinaxcosbxdx=-1cos(a+b)x-1cos(a-b)x+C 2(a+b)2(a-b)1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)10.⎰sinaxsinbxdx=-11.⎰cosaxcosbxdx=1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)atanx+bdx2=arctan+C (a2>b2) 12.⎰2222a+bsinxa-b-b高等数学课程建设组24高等数学教案第四章不定积分atanx+b-2-a2dx=213.⎰ln+C (a2<b2) a+bsinx2-a2atan+b+2-a2214.⎰dxa+barctan(a-btanx)+C (a2>b2) =2a+bcosxa+ba-ba+b2a+b+C (a2<b2) a+bb-atanx+dxa+bln14.⎰=2a+bcosxa+bb-atanx-2例2求⎰dx. 5-4cosxdx2a+barct(a-btax)+C (a2>b2). a-ba+b25+(-4)5-(-4)x)+C arct(ta5-(-4)5+(-4)2解: 这是含三角函数的积分. 在积分表中查得公式 =⎰a+bcoxsa+bdx2这里a=5、b=-4, a 2>b2, 于是 =⎰5-4coxs5+(-4)=2arctan(3tanx)+C. 32例4 求⎰sin4xdx.解: 这是含三角函数的积分. 在积分表中查得公式⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx, ⎰sin2xdx=x-1sin2x+C. nn24这里n=4, 于是⎰sin4xdx=-1sin3xcosx+3⎰sin2xdx=-1sin3xcosx+3x-1sin2x)+C. 444424高等数学课程建设组25。
教案4-不定积分
第四章不定积分§4、1 不定积分概念微分学得基本问题就是:已知一个函数,求它得导数。
但就是,在科学技术领域中往往还会遇到与此相反得问题:已知一个函数得导数,求原来得函数,由此产生了积分学。
“积分”就是“微分”得逆运算。
一、原函数1、原函数定义我们在讨论导数得概念时,解决了这样一个问题:已知某物体作直线运动时,路程随时间变化得规律为,那么,在任意时刻物体运动得速度为。
现在提出相反得问题:例1已知某物体运动得速度随时间变化得规律为,要求该物体运动得路程随时间变化得规律。
显然,这个问题就就是在关系式中,当为已知时,要求得问题。
例2已知曲线上任意点处得切线得斜率为,要求此曲线方程,这个问题就就是要根据关系式,求出曲线。
从数学得角度来说,这类问题就是在关系式中,当函数已知时,求出函数。
由此引出原函数得概念。
定义4、1: 设就是定义在某区间I内得已知函数,如果存在一个函数,对于每一点,都有:或则称函数为已知函数在区间I内得一个原函数。
例如,由于,所以在内,就是得一个原函数;又因为,所以在内,就是得一个原函数;更进一步,对任意常数,有,所以在内,都就是得原函数。
2、原函数性质(1)如果函数在区间内连续,则在区间内一定有原函数;(2)若,则对于任意常数,都就是得原函数。
即如果在上有原函数,则它有无穷多个原函数;(3)若与都就是得原函数,则,(为任意常数)。
即任意两个原函数只相差一个常数。
二、不定积分定义4、2 :若就是在区间内得一个原函数,则称(为任意常数)为在区间内得不定积分,记为,即。
其中:——为积分号,——被积函数,——被积表达式,——积分变量,——积分常数。
由不定积分得定义可知,计算一个函数得不定积分时,就归结为“求出被积函数得一个原函数再加上任意得常数”即可。
例1计算下列不定积分。
(1);ﻩﻩ(2); (3)。
解(1)因为,所以就是得一个原函数,由不定积分得定义知:。
(2)因为,所以就是得一个原函数,由不定积分得定义知。
高等数学教案-不定积分
du
2
f
(
u )d(
u );
(5)
f
(1) u
1 u2
du
f
(1 )d( u
1 ); u
(6)
f
(ln u)
1 u
du
Байду номын сангаас
f
(ln u)d(ln
u);
(7) f (sin u) cos udu f (sin u)d(sin u);
(8) f (cos u) sin udu f (cos u)d(cos u); (9) f (tan u) sec2 udu f (tan u)d(tan u);
f (u)
二.第二换元积分法
1.定理:(第二换元积分法)设 x (t) 是单调的可导函数,且 (t) 0 ,又设 f [ (t)] (t) 的一个原
函数为 (t) ,则 f (x)dx = [ 1(x)] C ,该公式称为第二换元公式.
2.常用的第二换元积分法:
(1)含有根式 n ax b 时,令 n ax b t ;
新知识课
黑板多媒体结合
作业布置 课后习题
教 学 基本内容
一.分部积分法
1.定理:设 u u(x), v v(x) 在区间 I 上都有连续的导数,则有 u(x)v(x)dx u(x)v(x) u(x)v(x)dx ,
简记为 uvdx uv uv dx ,或 udv uv v du ,称为分部积分公式.
数.即一个函数如果存在原函数,则其原函数有无穷多个.
4.定理:设函数 F (x) 是 f (x) 在区间 I 上的一个原函数,那么 f (x) 在区间 I 上的任意一个原函数可以表示 为 F (x) C ,其中 C 是任意常数.
高等数学(上册)教案17-不定积分的概念和性质
第 4章不定积分不定积分的概念和性质【教学目的】:1.理解原函数的概念;2.理解不定积分的定义,及几何意义;3.掌握不定积分的基本公式和性质;4.会用直接积分法计算不定积分。
【教学重点】:1.原函数的概念;2.不定积分的概念及几何意义;3.不定积分的基本公式和性质。
【教学难点】:1.基本积分公式;2.用直接积分法计算不定积分。
【教学时数】:2 学时【教学过程】:4.1.1原函数与不定积分定义 1如果在区间I上,可导函数 F (x)的导数为 f ( x),即F'(x) f (x) 或dF ( x) f ( x) dx (x I ),那么函数F ( x)就称为f ( x) ( 或f ( x)dx ) 在区间 I 上的原函数.如果 f ( x) 有一个原函数,那么 f ( x) 就有无穷多个原函数.设( x) 是 f ( x) 的另一个原函数,则任意的x I ,有( x) f ( x) .于是(x) F (x)(x) F ( x) f ( x) f (x) 0所以(x) F ( x)C0( C0为某个常数 ) 这表明( x) 与 F ( x) 只差一个常数.因此当 C 为任意常数时,表达式F ( x) C 就可以表示 f (x) 的全体原函数,也就是说, f ( x) 的全体原函数所组成的集合,即函数族 F ( x) C | C R .定义 2如果 F ( x) 是 f ( x) 在某区间上的一个原函数,那么 F (x) C (C为任意常数)称为 f ( x) 在该区间上的不定积分.即 f (x)dx = F ( x) C .其中符号称为积分号, f ( x) 称为被积函数, f ( x)dx 称为被积表达式,x 称为积分变量.由上面的讨论可知,若 F ( x) 是 f ( x) 的一个原函数,那么f (x)dx = F ( x) C( C 为任意常数).因此,求函数 f ( x) 的不定积分, 只需求出被积函数 f ( x) 的一个原函数再加上积分常数 C ,求不定积分的方法称为积分法.从不定积分的定义,即可知不定积分与微分 ( 求导 ) 互为逆运算:由于 f ( x)dx 是 f ( x) 的原函数,所以 [ f (x)dx]' f (x) 或 d f ( x)dxf (x)dx .又由于 F ( x) 是F '( )'( x) dx F (x) C 或dF ( x) F ( x) C .x 的原函数,所以F由此可见微分运算 ( 以记号 d 表示 ) 与求不定积分的运算 ( 简称积分运算以记 号表示 ) 是互逆的,记号 与 d 一起时或者抵消,或者抵消后差一常数.例 3 求 1dx . x解 当 x 0 时,由于 (ln x) '1,所以 ln x 是 1在 (0,) 内的一个原函数,1dxxx因此在 (0,) 内,有ln x C .x11,所以 ln( x) 是 1在 (当 x0时,由于 [ln( x)] '( 1) ,0) 内的一x xx 个原函数,因此在 (,0) 内1dxln(x C .x)把以上结果综合起来,得1dxln | x |C .4.1.2x不定积分的几何意义因为不定积分f (x)dx = F ( x) C 是 f ( x) 的原函数的一般表达式,所以它对应的图形是一族积分曲线,称它为积分曲线族.积分曲线族 F (x)C 有如下特点:(1)积分曲线族中任意一条积分曲线都可以由曲线yF ( x) 沿 y 轴方向上、下平移得到;(2)由于 [ F ( x) C ]F (x) f (x) ,即横坐标相同的点处,所有曲线的切线都是互相平行的.4.1.3 基本积分公式表(1)kdxkxC ( k 为常数);(2)x dx1x1C ;1(3)1dxln | x | C ;(4)a x dx1a xC ,e x dxe xC ;xln a(5)cosxdxsin xC ;( 6)sin xdxcosxC ;(7)1dx2tan x C ;(8)1dx2xdx cot x C ;2sec xdx2csccos x sin x(9)1dx arcsin x C ;(10)1dx arctan x C ;x21x21(11) cscx cot xdx csc x C ;(12) secx tan xdx secx C .4.1.4 不定积分的性质性质 1设函数 f (x)及 g( x) 的原函数存在,则[ f (x)g( x)] dx f (x)dx g( x)dx .性质 2设函数 f ( x) 的原函数存在,k为非零常数,则kf (x)dx k f ( x) dx .例 6求( x3 3 x e x e3) dx .解(x33x e x e3 )dx x3 dx3x dx e x dx e3dx1 x4 1 3x e x e3 x C .4ln 3注意到被积函数中x3是幂函数, 3x和 e x是指数函数,而 e3是常数,它们的积分公式是不同的.【教学小节】:通过本节的学习,理解原函数、不定积分的概念及几何意义,熟记基本积分公式,掌握不定积分性质并学会使用直接积分法计算不定积分。
不定积分的概念教案
不定积分的概念教案Lesson Plan on the Concept of Indefinite Integral教学目标:1.了解不定积分的基本概念及意义。
2.掌握不定积分的符号表示和性质。
3.学会计算基本的不定积分。
教学内容:Introduction:In this lesson, we will introduce the concept of indefinite integral and understand its significance.We will also explore the notation and properties of indefinite integrals.引入:本节课我们将介绍不定积分的基本概念及其意义。
我们将探讨不定积分的符号表示和性质。
Section 1: Definition and Significance of Indefinite Integral1.1 Definition:An indefinite integral of a function f(x) is a function whose derivative is f(x), and it is denoted by ∫f(x)dx.The process of finding an indefinite integral is called antiderivative.1.2 Significance:Indefinite integrals play a crucial role in calculus.They are used tosolve problems involving area, volume, and accumulation.They also provide the foundation for calculating definite integrals, which are used to find exact values of functions.1.1 定义:函数f(x)的不定积分是一个导数为f(x)的函数,用符号∫f(x)dx表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 不定积分知识结构图: ⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧分部积分法第二换元积分法第一换元积分法直接积分法求不定积分基本公式性质几何意义定义不定积分原函数教学目的要求:1.理解原函数与不定积分的概念,理解两者的关系,理解不定积分与导数的关系;掌握不定积分的几何意义与基本性质。
2.理解与掌握积分的基本公式,掌握不定积分的基本运算,会熟练地用直接积分法、第一类换元积分法、第二换元积分法(代数换元)、分部积分法求不定积分。
3.了解不定积分在经济问题中的应用。
教学重点:1.原函数与不定积分的概念2.不定积分的性质与基本积分公式 3.直接积分法 4.换元积分法 5.分部积分法 教学难点:1.不定积分的几何意义2.凑微分法、分部积分法求不定积分第一节 不定积分的概念与基本公式【教学内容】原函数与不定积分的概念、不定积分的几何意义、不定积分的基本性质、不定积分的基本公式。
直接积分法求函数的不定积分。
【教学目的】理解原函数与不定积分的概念,理解不定积分的几何意义;理解并掌握不定积分的基本性质;熟练掌握用直接积分法计算一些简单函数的不定积分。
【教学重点】1.原函的概念;2.不定积分的概念;3.不定积分的几何意义;4.不定积分的基本性质;5.不定积分的基本公式;6.直接积分法计算不定积分。
【教学难点】1.理解不定积分的几何意义;2.记忆不定积分公式。
【教学时数】2学时 【教学进程】一、原函数与不定积分的概念(一)原函数的概念前面我们所学的知识是:已知一个函数,求这个函数的导数;在现实生活中往往有:已知一个函数的导数,求原来这个函数的问题,如:①已知曲线上任意一点p(x,y)处的切线斜率为x k 2=,求此曲线的方程。
②已知某产品的边际成本MC ,要求该产品总成本的变化规律()C C q =. 1.原函数定义定义4.1 设)(x f 是定义在区间I 内的已知函数.如果存在可导函数)(x F ,使对于任意的I x ∈,都有)()(x f x F ='或dx x f x dF )()(=则称函数)(x F 是函数)(x f 的一个原函数。
例1 指出下列函数的原函数:①x x f cos )(= ②23)(x x f = ③xa x f =)( ④xx f 1)(=教师将举例分析:如(cos )sin x x '-=,则cos x -是sin x 在R 上的一个原函数。
2()2x x '=,则 2x 是2x 的一个原函数。
教师再问:(1)是否所有的函数都有原函数?什么样的函数才有原函数存在呢?在此,我们不作讨论.我们只给出一个重要的结论.结论:如果函数()f x 在某区间上连续,则其原函数一定存在 (2)25x +是不是2x 在R 上的一个原函数呢?学生回答:是(3)提出一个函数若存在原函数,则有几个呢?引入 2.原函数个数定理4.1 如果函数()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数,且()f x 的所有原函数都具有()F x C +的形式(C 为任意常数). (二)不定积分的概念教师指出:在以上的分析中我们看到一个函数()f x 有原函数存在,则有无数多个,它们都可以表示为()F x C +的形式,我们把它叫做()f x 的不定积分。
1.不定积分定义定义4.2 如果函数()F x 是()f x 的一个原函数,则称()f x 的全体原函数()F x C +(C 为任意常数)为()f x 的不定积分,记作C x F dx x f +=⎰)()(其中⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 称为积分变量,C 称为积分常数.例2 求下列函数的不定积分:①x x f 2)(= ②x e x f =)( ③xx f 1)(=2.不定积分几何意义提问:不定积分是否像导数那样具有某种几何意义呢?观察图4-1,根据不定积分的定义,具有这样的性质:结论:()F x C +表示的是一族曲线,其中任意一条曲线都可以由曲线()y F x =沿y 轴上、下平移得到.这积分曲线上横坐标相同的点处所作曲线的切线都是互相平行的(如图4-1所示)。
例3 已知某曲线上一点(-1,2),且过曲线上任意一点的 切线斜率等于该点横坐标的两倍,求此曲线的方程课堂练习(一):求下列函数的一个原函数与不定积分:①3()4f x x = ②2()csc f x x = ③x x f 2)(=3.不定积分的性质提问:若对于任意的x I ∈,()()f x g x '=,那么()?f x dx '=⎰,[()]?f x dx '=⎰性质1(积分运算与微分运算互为逆运算)[()]()f x dx f x '=⎰ 或 [()]()d f x dx f x dx =⎰()()f x dx f x C '=+⎰ 或 ()()df x f x C =+⎰性质2 (不定积分的运算法则)两个函数代数和的不定积分,等于这两个函数不定积分的代数和,即[]⎰⎰⎰±=±dx x g dx x f dx x g x f )()()()(推广:有限个函数的代数和的积分等于各个函数积分的代数和,即[]⎰⎰⎰⎰±⋅⋅⋅±±=±⋅⋅⋅±±dxx f dx x f dx x f dx x f x fx f n n )()()()()()(2121性质3 (不定积分的运算法则)被积函数中不为零的常数因子可以提到积分号外面来,即()()kf x dx k f x dx =⎰⎰ (0k ≠)4.不定积分的基本公式 设想:导数运算与积分运算是互为逆运算,那么我们是否可以通过导数基本公式得到相应的不定积分公式?结论是肯定的,师生配合,根据导数基本公式,以及例1、2和课堂练习(一)得如下不定积分公式:1.0dx C ⋅=⎰2. 111x dx x C ααα+=++⎰ (1)α≠- 3. 1ln dx x C x =+⎰ 4. 1ln xx a dx a C a=+⎰ x x e dx e C =+⎰ 5. sin cos xdx x C =-+⎰ 6. cos sin xdx x C =+⎰7. 2sec tan xdx x C =+⎰ 8. 2csc cot xdx x C =-+⎰9.arcsin x C =+ 10. 2arctan 1dxx C x=++⎰11. sec tan sec x xdx x C =+⎰12. csc cot csc x xdx x C =-+⎰利用基本积分表和不定积分的性质,可以直接计算一些简单的不定积分,或将被积函数经过适当的恒等变形,再利用积分的基本性质和基本积分公式求出结果,这样的积分方法,叫做直接积分法.例4 求221(35)1xx e dx x -++⎰解221(35)1x x e dx x -++⎰221351xx dx e dx dx x=-++⎰⎰⎰ 35arctan xx e x C =-++例5 求 (35sin )x xe x dx -⎰解 (35sin )35sin x x x xe x dx e dx xdx -=-⎰⎰⎰(3)5sin xe dx xdx =-⎰⎰(3)5cos ln(3)xe x C e =++例6 求21)dx x⎰解 21)1x dx dxx x -=⎰⎰12dx dx x =-+⎰⎰ln x x C =-+例7 求2211x dx x -+⎰解 2222212(1)12111x x dx dx dx dx x x x --+==-+++⎰⎰⎰⎰ 2arctan x x C =-+例8 求2tan xdx ⎰解 222tan (sec 1)sec xdx x dx xdx dx =-=-⎰⎰⎰⎰tan x x C =-+例9 求2cos2x dx ⎰解 21cos 11coscos 2222x x dx dx dx xdx +==+⎰⎰⎰⎰11sin 22x x C =++ 例10 求221sin cos dx x x⎰ 解 221sin cos dx x x ⎰2222sin cos sin cos x x dx x x +=⎰2211cos sin dx x x ⎛⎫=+ ⎪⎝⎭⎰ tan cot x x C =-+课堂练习(二):求下列不定积分①dx x x ⎰ ②⎰--dx xx x21③⎰+++dx x x x x )1(2222 ④dx x x292⋅⎰本堂课小结:主要内容:原函数、不定积分的概念;不定积分的性质与运算法则;直接积分法。
重点:不定积分性质与基本公式,直接积分法。
难点:经恒等变形后使用直接积分法计算不定积分。
第二节 换元积分法【教学内容】第一类换元积分法、第二类换元积分法求函数的不定积分。
【教学目的】理解第一类换元、第二类换元积分法的思想方法,熟练掌握第一换元积分法(凑微分法),知道常用第二换元积分计算不定积分的被积函数类型,掌握第二换元积分法步骤。
【教学重点】1.第一类换元积分法;2.第二类换元积分法。
【教学难点】1.积分方法的合理选取;2.凑微分法 【教学时数】3学时 【教学进程】导入新课:1. 不定积分与导数运算是互逆运算;2. 不定积分基本公式及其性质只能解决一些较简单函数的不定积分;3. 复习复合函数的导数法则,引入新课。
一、第一类换元积分法教师举例分析不定积分:⎰xdx 2cos 的计算过程,导入第一类换元积分法。
(一)第一类换元积分公式如果)()(),(x x u f ϕϕ'和都是连续函数,并且容易求得)(u f 的一个原函数)(u F ,则有如下公式:⎰⎰====')()]([)()]([x d x f dx x x f ϕϕϕϕ凑微分C )]([F )()()(+回代令x C u F du u f x u ϕϕ⎰==+==利用复合函数的求导法则,可以验证上式的正确性.用这种方法的计算程序是先“凑”微分式,再作变量置换,因此我们将这类求不定积分的方法称为第一类换元积分法,也称凑微分法.例1 求下列不定积分(第一小题写出中间变量,以后逐步脱离中间变量的设置)(1)⎰+1x dx (2)⎰+dx x 4)12((3)⎰dx 1(4)⎰+dx e x 12分。
课堂练习(一) ① 求⎰xdx 2sin ;除了用上述方法以外还可以怎样做呢? ② 若⎰+=c x dx x f sin )(, 求⎰=+dx b ax f )( 。
③⎰+12x dx例2 求下列不定积分 (1)⎰dx xe x 2(2)dx x ⎰2 (3)dx x x ⎰-23①⎰-dx x x 21 ②dx x x 52)1(⎰+ ③⎰dx xa x 2例3 求下列不定积分教学方法:指出这三个题分别是属于常见类型,为常见凑微分类型小结作准备 (1)⎰--dx xx 2323sin (2)⎰dx x x ln (3)dx xex⎰21(二)常用凑微分法公式的被积函数类型1. )()(1)(b ax d x ax f adx b ax f ++=+(0≠a ) 特别)()()(b x d b x f dx b x f ++=+2. )()(1)(1n n n n x d x f n dx x f x=- 3. )()(2)(1x d x f dx x f x= 4. )()()(x x x x e d e f dx e f e = 5. )(ln )(ln )(ln 1x d x f dx x f x= 6.)1()1()1(12x d x f dx x f x -= 7. )(cos )(cos )(cos sin x d x f dx x xf -= 或 )(sin )(sin )(sin cos x d x f dx x xf = 8. )(tan )(tan )(tan sec 2x d x f dx x xf = 或)(cot )(cot )(cot csc 2x d x f dx x xf -= 9.)(arcsin )(arcsin )(arcsin 112x d x f dx x f x=-或)(arccos )(arccos )(arccos 112x d x f dx x f x-=-10. )(arctan )(arctan )(arctan 112x d x f dx x f x =+或)cot ()cot ()cot (112x arc d x arc f dx x arc f x -=+例4 求下列不定积分 ⑴ ⎰+22a x dx ⑵ ⎰-22x a dx ⑶ ⎰--62x x dx例5 求下列不定积分-指出被积函数为三角函数时方法的选取 (1)⎰xdx tan - 解题后,指出其相关类型积分方法的选取;(2)⎰xdx 3cos - 解题后,指出相关类型积分方法的选取;(3)⎰x dxcos - 指出此题的多种解法课堂练习(三)①⎰++422x x dx② ⎰+)1ln 2(x x dx小结第一换元积分法,提出新的一种被积函数的类型-含有根号 如:⎰-dx x a 22如何计算呢?⎰-+12x dx 如何计算?给出其求解的一般方法(第二换元积分法)。