一元一次方程单元综合测试题
一元一次方程单元测试题(含答案)
一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列是一元一次方程的是( ) A .x 2﹣2x ﹣3=0B .x +1=0C .x 2+1x=1D .2x +y =52.(3分)已知方程(a ﹣2)x |a |﹣1+7=0是关于x 的一元一次方程,则a 的值为( )A .2B .﹣2C .±2D .无法确定3.(3分)下列变形正确的是( ) A .由ac =bc ,得a =b B .由x 5=x 5−1,得a =b ﹣1C .由2a ﹣3=a ,得a =3D .由2a ﹣1=3a +1,得a =24.(3分)若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( ) A .1B .﹣1C .5D .﹣55.(3分)若x 3+1与2x −73互为相反数,则m 的值为( )A .34B .43C .−34D .−436.(3分)下列各题中不正确的是( ) A .由5x =3x +1移项得5x ﹣3x =1B .由2(x +1)=x +7去括号、移项、合并同类项得x =5C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3)D .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得 4x ﹣2﹣3x ﹣9=17.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( ) A .x ﹣1=(26﹣x )+2 B .x ﹣1=(13﹣x )+2 C .x +1=(26﹣x )﹣2D .x +1=(13﹣x )﹣28.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x 天,则下列方程正确的是( ) A .x +312+x8=1B .x 12+x +38=1 C .x −312+x8=1D .x 12+x −38=1 9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120B .720+120=6(x +32x )C .6x +6×32x +120=720D .6(x +32x )+120=72010.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x ﹣1与x +2的值相等,则x = . 12.(3分)若2a3x +1与−15x 2x +4的和是单项式,则x 的值为 .13.(3分)若P =2y ﹣2,Q =2y +3,2P ﹣Q =3,则y 的值等于 .14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x 人,则列方程为15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 . 三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x ); (2)x −13=2x −32+117.(8分)已知方程2﹣3(x +1)=0的解与关于x 的方程x +x2−3k =1﹣2x 的解互为倒数,求(5k +12)3的值.18.(8分)已知x=﹣2是方程2x﹣|k﹣1|=﹣6的解,求k的值.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x=4和3x+6=0为“兄弟方程”.(1)若关于x的方程5x+m=0与方程2x﹣4=x+1是“兄弟方程”,求m的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的方程2x+3m﹣2=0和3x﹣5m+4=0是“兄弟方程”,求这两个方程的解.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米(3)若两人同时出发,相向而行,则几小时后两人相距10千米22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗说明理由(3)若把n块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n所满足的条件.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱(2)当标价总额是多少时甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元一元一次方程单元测试题(含答案)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分) 1.(3分)下列是一元一次方程的是( ) A .x 2﹣2x ﹣3=0B .x +1=0C .x 2+1x=1D .2x +y =5【分析】利用一元一次方程的定义判断即可. 【解答】解:x +1=0是一元一次方程, 故选:B .【点评】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.(3分)已知方程(a ﹣2)x |a |﹣1+7=0是关于x 的一元一次方程,则a 的值为( )A .2B .﹣2C .±2D .无法确定【分析】根据一元一次方程的定义,得出|a |﹣1=1,注意a ﹣2≠0,进而得出答案. 【解答】解:由题意得:|a |﹣1=1,a ﹣2≠0, 解得:a =﹣2. 故选:B .【点评】此题主要考查了一元一次方程的定义,正确把握定义得出是解题关键. 3.(3分)下列变形正确的是( ) A .由ac =bc ,得a =b B .由x 5=x 5−1,得a =b ﹣1C .由2a ﹣3=a ,得a =3D .由2a ﹣1=3a +1,得a =2【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.【解答】解:A 、由ac =bc ,当c =0时,a 不一定等于b ,错误;B 、由x 5=x5−1,得a =b ﹣5,错误; C 、由2a ﹣3=a ,得a =3,正确; D 、由2a ﹣1=3a +1,得a =﹣2,错误;故选:C .【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理. 4.(3分)若关于x 的一元一次方程ax +3x =2的解是x =1,则a 的值为( ) A .1B .﹣1C .5D .﹣5【分析】把x =1代入方程ax +3x =2得出a +3=2,求出方程的解即可. 【解答】解:把x =1代入方程ax +3x =2得:a +3=2, 解得:a =﹣1, 故选:B .【点评】本题考查了一元一次方程的解和解一元一次方程的应用,解此题的关键是得出关于a 的一元一次方程,难度适中.5.(3分)若x 3+1与2x −73互为相反数,则m 的值为( )A .34B .43C .−34D .−43【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到m 的值. 【解答】解:根据题意得:x 3+1+2x −73=0, 去分母得:m +3+2m ﹣7=0, 解得:m =43,故选:B .【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)下列各题中不正确的是( ) A .由5x =3x +1移项得5x ﹣3x =1B .由2(x +1)=x +7去括号、移项、合并同类项得x =5C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3)D .由2(2x ﹣1)﹣3(x ﹣3)=1去括号得 4x ﹣2﹣3x ﹣9=1 【分析】根据解一元一次方程的步骤依次计算可得.【解答】解:A .由5x =3x +1移项得5x ﹣3x =1,此选项正确;B .由2(x +1)=x +7去括号、移项、合并同类项得x =5,此选项正确;C .由2x −13=1+x −32去分母得2(2x ﹣1)=6+3(x ﹣3),此选项正确; D .由2(2x ﹣1)﹣3(x ﹣3=1)去括号得 4x ﹣2﹣3x +9=1,此选项错误;故选:D .【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.7.(3分)一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形,设长方形的长为xcm ,则可列方程( ) A .x ﹣1=(26﹣x )+2 B .x ﹣1=(13﹣x )+2 C .x +1=(26﹣x )﹣2D .x +1=(13﹣x )﹣2【分析】首先理解题意找出题中存在的等量关系:长方形的长﹣1cm =长方形的宽+2cm ,根据此列方程即可.【解答】解:设长方形的长为xcm ,则宽是(13﹣x )cm ,根据等量关系:长方形的长﹣1cm =长方形的宽+2cm ,列出方程得:x ﹣1=(13﹣x )+2,故选:B .【点评】列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.8.(3分)某工程,甲单独做需12天完成,乙单独做需8天完成,现由甲先做3天,乙再加入合作,直至完成这项工程,求甲完成这项工程所用的时间.若设甲完成此项工程一共用x 天,则下列方程正确的是( ) A .x +312+x 8=1B .x 12+x +38=1 C .x −312+x8=1D .x 12+x −38=1 【分析】设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天,根据甲完成的部分+乙完成的部分=整个工作量(单位1),即可得出关于x 的一元一次方程,此题得解.【解答】解:设甲完成此项工程一共用x 天,则乙完成此项工程一共用(x ﹣3)天, 根据题意得:x 12+x −38=1.故选:D .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)A 、B 两城相距720km ,普快列车从A 城出发120km 后,特快列车从B 城开往A 城,6h 后两车相遇.若普快列车是特快列车速度的23,且设普快列车速度为xkm /h ,则下列所列方程错误的是( ) A .720﹣6x =6×32x +120 B .720+120=6(x +32x ) C .6x +6×32x +120=720D .6(x +32x )+120=720【分析】设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,根据相遇问题的数量关系建立方程求出其解即可.【解答】解:设普快列车速度为x 千米/时,则特快列车的速度为32x 千米/时,由题意,得:120+6(x +32x )=720,故列方程错误的是B . 故选:B .【点评】本题考查了由实际问题抽象一元一次方程的知识,解答本题的关键是仔细审题,根据等量关系建立方程.10.(3分)如图所示,两人沿着边长为80m 的正方形,按A ⇒B ⇒C ⇒D ⇒A …的方向行走.甲从A 点以每分钟60米的速度,同时乙从B 点以每分钟100米的速度行走,当乙第一次追上甲时,将在正方形( )A .DA 边上B .AB 边上C .BC 边上D .CD 边上【分析】要想知道乙追到甲时在哪一边上,则必须知道它们追上时所行的路程,那么只要求出追到时的时间,就可求出路程.根据路程计算沿正方形所走的圈数,就可知道在哪一边上.【解答】解:设乙第一次追上甲时,所用的时间为x ,依题意得:100x =60x +3×80 解得:x =6∴乙第一次追上甲时所行走的路程为:6×100=600m ∵正方形边长为80m ,周长为320m ,∴当乙第一次追上甲时,将在正方形AB 边上.故选:B.【点评】解决此题的关键是要求出它们相遇时的路程,然后根据路程求沿正方形所行的圈数,即可知道在哪一边上.二.填空题(共5小题,满分15分,每小题3分)11.(3分)若代数式2x﹣1与x+2的值相等,则x= 3 .【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:2x﹣1=x+2,移项合并得:x=3,故答案为:3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.(3分)若2a3x+1与−15x2x+4的和是单项式,则x的值为 3 .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可求解.【解答】解:根据题意得:3x+1=2x+4,解得:x=3.故答案是:3.【点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.(3分)若P=2y﹣2,Q=2y+3,2P﹣Q=3,则y的值等于 5 .【分析】把P、Q的值代入2P﹣Q=3,得关于y的一次方程,求解方程即可.【解答】解:把P=2y﹣2,Q=2y+3,代入2P﹣Q=3,得2(2y﹣2)﹣(2y+3)=3整理,得2y=10,所以y=5.故答案为:5【点评】本题考查了一元一次方程的解法.把P、Q的值代入得关于y的方程是解决本题的关键.14.(3分)某校春游,若包租相同的大巴13辆,那么就有14人没有座位;如果多包租1辆,那么就多了26个空位,若设春游的总人数为x人,则列方程为x−1413=x+2614【分析】设春游的总人数是x人,根据大巴的载客量做为等量关系列方程求解.【解答】解:设春游的总人数是x 人.根据题意所列方程为x −1413=x +2614, 故答案为:x −1413=x +2614. 【点评】本题考查理解题意的能力,因为同样的大巴,所以以大巴的载客量做为等量关系列方程求解.15.(3分)为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是 1710元 .【分析】设该照相机的原售价是x 元,从而得出售价为,等量关系:实际售价=进价(1+利润率),列方程求解即可.【解答】解:设该照相机的原售价是x 元,根据题意得:=1200×(1+14%),解得:x =1710.答:该照相机的原售价是1710元.故答案为:1710元.【点评】此题考查了一元一次方程的应用,与实际结合,是近几年的热点考题,首先读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解三.解答题(共8小题,满分75分)16.(8分)(1)5+3x =2(5﹣x );(2)x −13=2x −32+1 【分析】(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:(1)去括号得,5+3x =10﹣2x ,移项得,3x +2x =10﹣5,合并同类项得,5x =5,系数化为1得,x =1;(2)去分母得,2(x ﹣1)=3(2x ﹣3)+6,去括号得,2x ﹣2=6x ﹣9+6,移项得,2x ﹣6x =﹣9+6+2,合并同类项得,﹣4x =﹣1,系数化为1得,x =14;【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.17.(8分)已知方程2﹣3(x +1)=0的解与关于x 的方程x +x 2−3k =1﹣2x 的解互为倒数,求(5k +12)3的值.【分析】先求出第一个方程的解得x =−13,再根据倒数的定义把x =﹣3代入第二个方程,求出5k =﹣17,然后代入(5k +12)3,计算即可.【解答】解:解方程2﹣3(x +1)=0得:x =−13,−13的倒数为﹣3,把x =﹣3代入方程x +x 2−3k =1﹣2x 得:x −32−3k =1+6, 解得:5k =﹣17,则(5k +12)3=(﹣17+12)3=﹣125.【点评】本题考查了倒数、解一元一次方程、代数式求值,能得出关于k 的方程是解此题的关键.18.(8分)已知x =﹣2是方程2x ﹣|k ﹣1|=﹣6的解,求k 的值.【分析】将x =﹣2代入原方程,即可得出关于k 的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:∵x =﹣2是方程2x ﹣|k ﹣1|=﹣6的解,∴代入得:﹣4﹣|k ﹣1|=﹣6,∴|k ﹣1|=2,∴k ﹣1=2或k ﹣1=﹣2,解得:k =3或k =﹣1.答:k 的值是3或﹣1.【点评】本题考查了一元一次方程的解,将x =﹣2代入原方程,找出关于k 的含绝对值符号的一元一次方程是解题的关键.19.(9分)定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如方程2x =4和3x +6=0为“兄弟方程”.(1)若关于x 的方程5x +m =0与方程2x ﹣4=x +1是“兄弟方程”,求m 的值;(2)若两个“兄弟方程”的两个解的差为8,其中一个解为n ,求n 的值;(3)若关于x 的方程2x +3m ﹣2=0和3x ﹣5m +4=0是“兄弟方程”,求这两个方程的解.【分析】(1)根据新定义运算法则解答;(2)根据“兄弟方程”的定义和已知条件得到:n ﹣(﹣n )=8或﹣n ﹣n =8,解方程即可;(3)求得方程2x +3m ﹣2=0和3x ﹣5m +4=0解,然后由“兄弟方程”的定义解答.【解答】解:(1)方程2x ﹣4=x +1的解为x =5,将x =﹣5代入方程5x +m =0得m =25;(2)另一解为﹣n .则n ﹣(﹣n )=8或﹣n ﹣n =8,∴n =4或n =﹣4;(3)方程2x +3m ﹣2=0的解为x =−3x +22, 方程3x ﹣5m +4=0的解为x =5x −43, 则−3x +22+5x −43=0, 解得m =2.所以,两解分别为﹣2和2.【点评】考查了一元一次方程的解的定义,解题的关键是掌握“兄弟方程”的定义.20.(10分)有3个大人决定带领一些小孩通过旅行社去某旅游景区旅游,其中有两家旅行社可供选择,甲旅行社的收费标准为:大人全价,小孩7折优惠;而乙旅行社不分大人、小孩,一律八折优惠;这两家旅行社的全价一样,都是每人200元.(1)如果带领2个小孩,那么选择哪个旅行社更优惠,为什么(2)如果通过计算这两家旅行社的总费用一样,那么带领的小孩有多少人【分析】(1)根据旅行社收费标准,分别求出两家旅行社所需的费用,再比较即可;(2)设带领的小孩有x人,根据这两家旅行社的总费用一样列出方程,求解即可.【解答】解:(1)由题意可得,甲旅行社所需费用为:3×200+×200×2=880(元),乙旅行社所需费用为:×(3+2)×200=800(元),故选择乙旅行社更优惠;(2)设带领的小孩有x人,根据题意得3×200+×200x=×(3+x)×200,解得x=6.答:如果这两家旅行社的总费用一样,那么带领的小孩有6人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.21.(10分)A、B两地相距70千米,甲从A地出发,每小时行15千米,乙从B地出发,每小时行20千米.(1)若两人同时出发,相向而行,则经过几小时两人相遇(2)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米(3)若两人同时出发,相向而行,则几小时后两人相距10千米【分析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)根据题意可以列出相应的一元一次方程,从而可以解答本题;(3)根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:(1)设经过x小时两人相遇,15x+20x=70,解得,x=2,答:经过2小时两人相遇;(2)设经过a小时,乙超过甲10千米,20a=15a+70+10,解得,a=16,答:经过16小时,乙超过甲10千米;(3)设b小时后两人相距10千米,|15b +20b ﹣70|=10,解得,b 1=167,b 2=127, 答:127小时或167小时后两人相距10千米. 【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.(11分)某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗说明理由(3)若把n 块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出n 所满足的条件.【分析】(1)设用x 块金属原料加工螺栓,则用(20﹣x )块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求解即可;(2)设用y 块金属原料加工螺栓,则用(26﹣y )块金属原料加工螺帽.根据2×螺栓的个数=螺帽的个数列出方程,求出的方程的解如果是正整数,那么加工的螺栓和螺帽恰好配套;否则不能配套;(3)设用a 块金属原料加工螺栓,则用(n ﹣a )块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.根据2×螺栓的个数=螺帽的个数列出方程,得出n 与a 的关系,进而求解即可.【解答】解:(1)设用x 块金属原料加工螺栓,则用(20﹣x )块金属原料加工螺帽. 由题意,可得2×3x =4(20﹣x ),解得x =8,则3×8=24.答:最多能加工24个这样的零件;(2)若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套.理由如下:设用y 块金属原料加工螺栓,则用(26﹣y )块金属原料加工螺帽.由题意,可得2×3y =4(26﹣y ),解得y=.由于不是整数,不合题意舍去,所以若把26块相同的金属原料全部加工完,加工的螺栓和螺帽不能恰好配套;(3)设用a块金属原料加工螺栓,则用(n﹣a)块金属原料加工螺帽,可使这样加工出来的螺栓与螺帽恰好配套.由题意,可得2×3a=4(n﹣a),解得a=25 n,则n﹣a=35 n,即n所满足的条件是:n是5的正整数倍的数.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系:2×螺栓的个数=螺帽的个数是解题的关键.23.(11分)甲、乙两个超市开展了促销活动:(假设两家超市相同的商品的标价都是一样)甲超市乙超市全场折金额≤200元,没有优惠200<金额≤500元,打9折金额>500元,500元部分打9折,超过500部分打8折(1)当一次性购物标价总额是300元时,甲、乙超市实际上分别付了多少钱(2)当标价总额是多少时甲、乙超市实际付款额一样.(3)小明两次到乙超市分别付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元【分析】(1)根据两家超市的优惠方案,可知当一次性购物标价总额是300元时,甲超市实付款=购物标价×,乙超市实付款=300×,分别计算即可;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据甲超市实付款=乙超市实付款列出方程,求解即可;(3)首先计算出两次购物标价,然后根据优惠方案即可求解.【解答】解:(1)当一次性购物标价总额是300元时,甲超市实付款=300×=264(元),乙超市实付款=300×=270(元);(2)设当标价总额是x元时,甲、乙超市实付款一样.当一次性购物标价总额是500元时,甲超市实付款=500×=440(元),乙超市实付款=500×=450(元),∵440<450,∴x>500.根据题意得=500×+(x﹣500),解得x=625.答:当标价总额是625元时,甲、乙超市实付款一样;(3)小明两次到乙超市分别购物付款198元和466元,第一次购物付款198元,购物标价可能是198元,也可能是198÷=220元,第二次购物付款466元,购物标价是(466﹣450)÷+500=520元,两次购物标价之后是198+520=718元,或220+520=740元.若他只去一次该超市购买同样多的商品,实付款500×+(718﹣500)=元,或500×+(740﹣500)=642元,可以节省198+466﹣=元,或198+466﹣642=22元.答:若他只去一次该超市购买同样多的商品,可以节省或22元.【点评】本题考查了一元一次方程的应用,理解两家超市的优惠方案,进行分类讨论是解题的关键.¥。
人教版七年级数学上册第三章《一元一次方程》单元测试(含答案)
人教版七年级数学上册第三章《一元一次方程》单元测试一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知x=1是方程x−2k3=12−32x的解,则k的值是()A.−2B.2C.0D.−12. 某商品打七折后价格为a元,则原价为( )A.a元B.107a元 C.30%a元 D.710a元3. 在①2x+1;②1+7=15−8+1;③1−12x=x−1;④x+2y=3中,方程共有()A.1个B.2个C.3个D.4个4. 若关于x的方程3x+(2a+1)=x−(3a+2)的解为x=0,则a的值等于( )A.15B.35C.−15D.−355. 将一根长为acm的铁丝首尾相接围成一个正方形,若要将它按如图所示的方式向外等距扩大1cm得到新的正方形,则这根铁丝需增加()A.4cmB.8cmC.(a+4)cmD.(a+8)cm6. 七年级(1)班有30人会下象棋或围棋,已知会下象棋的人数比会下围棋的人数多5人,两种棋都会下的有17人,问只会下围棋的有多少人?设只会下围棋的有x人,可得方程()A.x+(x−5)+17=30B.x+(x+5)+17=30C.x+(x−5)−17=30D.x+(x+5)−17=307. 如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.668. 解方程x3−x−12=1时,去分母后,正确的是( )A.3x−2(x−1)=1B.2x−3(x−1)=1C.3x−2(x−1)=6D.2x−3(x−1)=69. 运用等式性质进行的变形,正确的是()A.如果a=b,那么a+c=b−cB.如果ac =bc,那么a=bC.如果a=b,那么ac =bcD.如果a2=3a,那么a=310. 已知x=2是方程5Xm+10=30的解,则m的值为( )A.2B.4C.6D.10二、填空题(本题共计 4 小题,每题 4 分,共计16分,)11. 当代数式2x−2与3+x的值相等时,x=________.12. 已知:(m−2)x−1=0是关于x的一元一次方程,则m________.13. 在等式5x−8=7−9x的两边同时________,得14x=15,这是根据________.14. 李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔的承包地去年甲种蔬菜有________亩.三、解答题(本题共计 5 小题,共计74分,)15.(20分) 解下列方程:(1)8(a+1)−2(3a−4)=13;(2)2x−13=2x+16−1;(3)y−y−12=2−y+25;(4)2x0.3+223=1.4−3x0.2.16.(12分) 列方程.(1)甲班有学生58人,乙班有学生46人,要使甲、乙两班的人数相等,应如何调动?(2)某推销员,卖出全部商品的2后,得到400元,卖出全部商品共得到多少元?517. (14分) “五一”期间,某电器城按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元,该电器的成本价为多少元?(只列方程)18. (14分)一个长方形的周长为28cm,将此长方形的长减少2cm,宽增加4cm,就可成为一个正方形,那么原长方形的长和宽分别是多少?19.(14分) 某公园门票价格规定如下表:某校七年级(1)(2)两个班共102人去游园,其中(1)班有40多人,不足50人.经计算,如果两个班都以班为单位购票,则一共应付1320元.问:(1)如果两班联合起来,作为一个团体购票,可省多少钱?(2)两班各有多少名学生?参考答案与试题解析一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】一元一次方程的解【解析】把x=1代入方程,即可得出一个关于k的一元一次方程,求出方程的解即可.【解答】把x=1代入方程x−2k3=12−32x得:1−2k3=12−32×1,解得:k=2,2.【答案】B【考点】一元一次方程的应用——打折销售问题【解析】此题暂无解析【解答】解:设该商品原价为:x元,∵ 某商品打七折后价格为a元,∵ 0.7x=a,则x=107a(元),故选B.3.【答案】B方程的定义【解析】方程是含有未知数的等式,是等式但不含未知数不是方程,含未知数不是等式也不是方程.【解答】(1)2x+1,含未知数但不是等式,所以不是方程.(2)1+7=15−8+1,是等式但不含未知数,所以不是方程.x=x−1,是含有未知数的等式,所以是方程.(3)1−12(4)x+2y=3,是含有未知数的等式,所以是方程.故有所有式子中有2个是方程.故选:B.4.【答案】D【考点】方程的解【解析】此题暂无解析【解答】解:∵ x=0是方程3x+(2a+1)=x−(3a+2)的解,∵ 2a+1=−(3a+2),,解得:a=−35故选D.5.【答案】B【考点】一元一次方程的应用——其他问题列代数式根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵ 原正方形的周长为acm,cm,∵ 原正方形的边长为a4∵ 将它按图的方式向外等距扩1cm,+2)cm,∵ 新正方形的边长为(a4+2)=(a+8)(cm),则新正方形的周长为4(a4因此需要增加的长度为a+8−a=8(cm).故选B.6.【答案】B【考点】由实际问题抽象出一元一次方程【解析】设只会下围棋的有x人,则只会下象棋的有(x+5)人,根据该班有30人会下象棋或围棋且两种棋都会下的有17人,即可得出关于x的一元一次方程,此题得解.【解答】设只会下围棋的有x人,则只会下象棋的有(x+5)人,依题意,得:x+(x+5)+17=30.7.【答案】B【考点】一元一次方程的应用——其他问题解一元一次方程【解析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x−7,最大的数为x+7.x+(x−7)+(x+7)=66,解得:x=22,故此选项错误;故选B.8.【答案】D【考点】解一元一次方程【解析】方程两边乘以6去分母得到结果,即可做出判断.【解答】解:方程x3−x−12=1,等式两边同时乘6得:2x−3(x−1)=6.故选D.9.【答案】B【考点】等式的性质【解析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:A、利用等式性质1,两边都加c,得到a+c=b+c,所以A不成立,故A选项错误;B、利用等式性质2,两边都乘以c,得到a=b,所以B成立,故B选项正确;C、成立的条件c≠0,故C选项错误;D、成立的条件a≠0,故D选项错误.故选B.10.【答案】A【考点】解一元一次方程【解析】把X=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解得:m=2,故选A.二、填空题(本题共计 4 小题,每题 4 分,共计16分)11.【答案】5【考点】解一元一次方程【解析】此题暂无解析【解答】解:由已知得:2x−2=3+x,移项合并得:x=5,故答案为:5.12.【答案】m≠2【考点】一元一次方程的定义【解析】依据一元一次方程的定义可知m−2≠0,从而可求得m的取值范围.【解答】解:∵ (m−2)x−1=0是关于x的一元一次方程,∵ m−2=0.∵ m≠2.故答案为:m≠2.13.【答案】9x+8,等式的性质1【考点】等式的性质【解析】根据等式的基本性质即可解答.【解答】解:两边同时加上9x得:5x+9x−8=7,两边再同时加上8得:14x=5,故5x−8=7−9x两边同时加上9x+8,得到14x=15,根据是:等式的性质1.故答案是:9x+8,等式的性质1.14.【答案】6【考点】一元一次方程的应用——工程进度问题【解析】可设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,等量关系为:甲种蔬菜总获利+乙种蔬菜总获利=18000.【解答】解:设甲种蔬菜种植了x亩,则乙种蔬菜种植了(10−x)亩,依题意得2000x+1500(10−x)=18000,解得x=6,答:甲种蔬菜种植了6亩.故答案为6.三、解答题(本题共计 5 小题,共计74分)15.【答案】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.【考点】解一元一次方程【解析】(1)方程去括号,移项合并,把a系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】去括号得:8a+8−6a+8=13,移项得:8a−6a=13−8−8,合并得:2a=−3,解得:a=−1.5;去分母得:2(2x−1)=2x+1−6,去括号得:4x−2=2x+1−6,移项得:4x−2x=1−6+2,合并得:2x=−3,解得:x=−1.5;去分母得:10y−5(y−1)=20−2(y+2),去括号得:10y−5y+5=20−2y−4,移项得:10y−5y+2y=20−4−5,合并得:7y=11,解得:y=117;方程整理得:20x3+83=7−15x,去分母得:20x+8=21−45x,移项得:20x+45x=21−8,合并得:65x=13,解得:x=0.2.16.【答案】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:25x=400.【考点】由实际问题抽象出一元一次方程【解析】(1)根据要使甲、乙两班的人数相等,表示出两班的人数即可得出等式;后,得到400元”,得出等式即可.(2)根据“卖出全部商品的25【解答】解:(1)设从甲班调x人到乙班,则:58−x=46+x;(2)设卖出全部商品共得到x元,则:2x=400.517.【答案】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.【考点】由实际问题抽象出一元一次方程【解析】设该电器的成本价为x元,根据成本价×(1+30%)×80%=售价为2080元可列出方程.【解答】解:设该电器的成本价为x元,依题意有x(1+30%)×80%=2080.18.【答案】长方形的长为10cm,宽为4cm.【考点】一元一次方程的应用——工程进度问题【解析】设长方形的长是xcm,根据正方形的边长相等即可列出方程求解.【解答】解:设长方形的长是xcm,则宽为(14−x)cm,根据题意得:x−2=(14−x)+4,解得:x=10,14−x=14−10=4.19.【解析】(1)根据题意得出两个班联合购票比分别购票的差值即可;(2)设(1)班有xx人,根据题意列出方程解答即可.【解答】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.【答案】解:(1)(1)1320−102×10=1320−102×10=300300(元)答:两个班联合购票比分别购票要省300300元.(2)(2)设(1)(1)班有xx人,因为(1)(1)班有4040多人,不足5050人,所以(2)(2)班人数必定大于5050,则:14x+12(102−x)=132014x+12(102−x)=1320,解得:x=48x=48,102−48=54102−48=54.答:(1)(1)班有4848人,(2)(2)班有5454人.。
一元一次方程单元试题4套
一元一次方程试题1一、选择题1.下列方程中,属于一元一次方程的是( ) A.0127=+yB.082=+y xC.103=zD.0232=-+x x2.已知ax=ay ,下列等式中成立的是( ) A .x=y B.ax+1=ay-1 C .ax=-ay D.3-ax=3-ay 3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40% B.20% C25% D.15% 4.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )A .a 米 B .(a +60)米 C .60a 米 D .(60+2a)米 5.解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+= B 、20025100.132x x -+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是( ) A .10 B .52 C .54 D .567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ) A .x -1=5(1.5x ) B .3x +1=50(1.5x ) C .3x -1=(1.5x ) D .180x +1=150(1.5x )8.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( ) A .约700元 B .约773元 C .约736元 D .约865元 9.下午2点x 分,钟面上的时针与分针成110度的角,则有( )A . 1105.06+=x xB .1705.06+=x xC .x x 5.01806=-D .505.06+=x x10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为( ) A .15% B .17% C .22% D .80%二、填空题11.若x =-9是方程131-=+m x 的解,则m = 。
一元一次方程单元测试题
一元一次方程单元测试题篇1:一元一次方程单元测试题一元一次方程单元测试题一.填空题:(每小题3分,共30分)1.方程的解为____________________;2.相邻5个自然数的和为45,则这5个自然数分别为______________________;3.如果x=1是方程m(x-1)=3(x+m)的解,则m=_________________;4.一根长18米的铁丝围成一个长是宽的2倍的长方形的面积为________________;5.若代数式2x-6的值与0.5互为倒数,则x=____.6.一件衬衫进货价60元,提高50%标价为_______,八折优惠价为________,利润为______;7.小明跑步每秒钟跑4米,则他15秒钟跑_____米,2分钟跑_____米,1小时跑____公里;.8.笼子里鸡和兔总共有56个头,160只脚,设鸡有x只,则兔有___________只,列方程__________________可求出鸡兔的.只数;9.小明今年6岁,他的祖父72岁,__________年后,小明的年龄是他祖父年龄的;10.关于x的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解为:y=________________;二.选择题(每小题3分,共24分)11.方程3(x+1)=2x-1的解是A、x=-4B.x=1C.x=2D.x=-212.某商品提价100%后要恢复原价,则应降价()A30%,B50%,C75%,D100%;13.方程去分母后可得()A3x-3=1+2x,B3x-9=1+2x,C3x-3=2+2x,D3x-12=2+4x;14、小山上大学向某商人贷款1万元,月利率为6‰,1年后需还给商人多少钱?()A17200元,B16000元,C10720元,D10600元;15.小明每秒钟跑6米,小彬每秒钟跑5米,小彬站在小明前10米处,两人同时起跑,小明多少秒钟追上小彬()A5秒,B6秒,C8秒,D10秒;16.甲商品进价为1000元,按标价1200元9折出售,乙商品进价为400元,按标价600元7.5折出售,则甲、乙两商品的利润率()A、甲高B、乙高C、一样高D、无法比较17.某种产,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。
一元一次方程单元测试卷(三套含答案)
一元一次方程单元测试卷(1)一.选择题(每题3分,共18分) 1.下列等式变形正确的是( ) A.如果s=12ab ,那么b=2saB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my ,那么x=y 2.下列方程中,是一元一次方程的是( )A. 243x x -=B.0x =C.21x y +=D. 11x x-= 3.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x4.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是( ) A. 1,4B. 2,3C. 3,2D. 4,15.某区中学生足球赛共赛8轮(即每队均参赛8 场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了( )场.A.3B.4C.5D.66.某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店( )A.不赚不亏B.赚5元C.亏5元D. 赚10元 二.填空题(每题4分,共24分)7.当=x ________时,代数式24+x 与93-x 的值互为相反数.8.已知 ()0332=-+--m x m m 是关于x 的一元一次方程, 则m=________. 9.在梯形面积公式 S = 12(a + b ) h 中, 用 S 、a 、h 表示b ,b = ________, 当16,3,4S a h ===时, b 的值为________.10.若关于x 的方程mx+2=2(m-x )的解是12x =,则m=________. 11.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计).12.如图,一个长方形恰被分成六个正方形,其中最小的正方形面积是1平方厘米,则这个长方形的面积为________平方厘米. 三.解方程(每题5分,共30分)13). 5x +3=-7x+9 14). 14)13(2)1(5-=---x x x15).312x +=76x+ 16). 511241263x x x +--=+17).75.001.003.02.02.02.03=+-+xx 18).解关于x 的方程9(2)4(3)6m x m x m ---= 四.应用题(每题7分,共28分)19.甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运多少吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?21.某城市按以下规定收取煤气费:每月使用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,超过部分按每立方米1.2元收费。
一元一次方程单元测试题及答案
一元一次方程单元测试题一、选择题(40分)1.在方程4x-y=0, x+1x-2=0,-2x=1,x2-2x+7=0中一元一次方程的个数为(A)A.1个B.2个C.3个D.4个2.解方程x2 -1=x-13时,去分母正确的是(B)A.3x-3=2x-2B.3x-6=2x-2C.3x-6=2x-1D.3x-3=2x-1 3.方程x-2=2-x的解是(C)A.x=1B.x= - 1C.x=2 D.x=04.如果等式ax=bc成立,则下列等式成立的是(D)A.abx=abc ;B.x= bca; C.b-ax=a-bc D.b+ax=b+bc5.增加2倍的值比扩大5倍少3,列方程得(D)A.2x=5x+3B.2x=5x-3C.3x=5x+3D.3x=5x-36.方程3a10+2x+42=4(x-1)的解为x=3,则a的值为(C)A.2;B.22;C.10;D.-27.已知a≠1,则关于x的方程(a-1)x=1-a的解是(C)A.x=0B.x=1C.x=- 1D.无解8.对∣x-2∣+3=4,下列说法正确的是(D)A.不是方程;B.是方程,其解为1;C.是方程,其解为3;D.是方程,其解为1、3。
9.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x 个月后,两厂库存钢材相等,则x =(A)A.3;B.5;C.2;D.410.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( C)。
A.80元;B.85元;C.90元;D.95元二、填空题(48分)11.代数式-2a+1与1+4a 互为相反数,则a= -112.如果 - 3x 2a+1+6=0是一元一次方程,那么a= 0 ,方程的解为x= 2 。
13.若x= -4是方程ax 2-6x-8=0的一个解,则a= -1 。
14.如果5a 2b -3(2m+1)与-3a 2b 2(m+3)是同类项,则m= - 98。
一元一次方程单元测试
第十一章一元一次方程单元检测一、选择题(每小题3分,共30分)1.下列方程中是一元一次方程的是()A.x+3=y+2B.x+3=3-xC.1x =1D.x 2-1=02.下列方程中,解是x =2的是()A .3x =x +3B .-x +3=0C .2x =6D .5x -2=83.下列说法中,正确的是()A .若ac =bc ,则a =bB .若a=b,则a+c=c-bC .若a 2=b 2,则a =bD .若a+1=b+1,则a =b4.下列方程变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x+1C.方程23t =32,未知数系数化为1,得t=1D.方程2(3)5(1)3(1)x x x +--=-,去括号得265533x x x +-+=-5.解方程371123x x-+-=的步骤中,去分母一项正确的是().A.3(37)226x x --+=B.37(1)1x x --+=C.3(37)2(1)1x x ---= D.3(37)2(1)6x x --+=6.在甲队工作的有272人,在乙处工作的有196人,如果乙处工作的人数是甲处工作人数的13,应从乙处调多少人到甲处?若设应从乙处调x 人到甲处,则下列方程中正确的是()A.272+x=13(196-x)B.13(272-x)=196-xC.13(272+x)=196+x D.13(272+x)=196-x7.甲比乙大15岁,5年前,甲的年龄是乙的年龄的2倍,则乙现在的年龄是().A.10岁B.15岁C.20岁D.30岁8.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是80元,若按成本计,其中一件盈利60%,另一件亏本20%,在这次买卖中他().A.不赚不赔B.盈利10元C.亏损10元D.盈利50元9.足球比赛的积分规则:胜一场得3分,平一场得1分,负一场得0分,某队打了14场,负5场,共得19分,那么这个队胜了()。
第3章 一元一次方程单元测试题(含答案)
3章 《一元一次方程》单元测试(时间120分钟 总分150分)姓名;__________________ 班级:_________________一、选择题(共12个小题,每小题4分,共48分,在给出的4个选项中只有一个选项符合题意) 1、下列方程是一元一次方程的是( )A.x -2=3B.1+5=6C.x 2+x =1 D.x -3y =0 2、下列通过移项变形,错误的是( )A.由x+2=2x-7,得x-2x=-7-2B.由x+3=2-4x ,得x+4x=2-3C.由2x-3+x=2x-4,得2x-x-2x=-4+3D.由1-2x=3,得2x=1-3 3、若(m ﹣2)x |m|﹣1=5是一元一次方程,则m 的值为( )A.±2B.﹣2C.2D.44、下列结论错误的是( )A 、若a=b ,则a ﹣c=b ﹣cB 、若a=b ,则ax=bxC 、若x=2,则x 2=2x D 、若ax=bx ,则a=b5、小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1325x x x ---+=-▲, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业.同学们,你能补出这个常数吗?它应该是( )A.2B.3C.4D.56、一条公路,甲队单独修需6天,乙队单独修需1 2天,若甲、乙两队同时分别从两端开始修,全部修完需要 ( )A .2天B .3天C .4天D .5天7、某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A .240元B .250元C .280元D .300元8、一个长方形的周长是40 cm ,若将长减少8 cm ,宽增加2 cm ,长方形就变成了正方形,则正方形的边长为 ( )A .6 cmB .7 cmC .8 cmD .9 cm9、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .(1)2070x x -= B .(1)2070x x += C .2(1)2070x x += D .(1)2070x x -= 10、1.汽车上坡时每小时走28千米,下坡时每小时走35千米,已知下坡路程比上坡路程的2倍少14千米.设上坡路程为x 千米,则汽车下坡共用了( )小时. A.3514-228x xB.2814-2xC.28xD. 3514-2x 11、小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=4412、图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( ) A.2314 B.3638C.42D.44二、填空题(共6小题,每小题4分,共24分)13、“x 的2倍与3的差等于零”用方程表示为________.14、由等式(a ﹣2)x=a ﹣2能得到x ﹣1=0,则a 必须满足的条件是________.15、若-x n +1与2x 2n -1是同类项,则n = .16、图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.17、2x+1=5的解也是关于x 的方程3x ﹣a=4的解,则a=________. 18、现规定一种新的运算=ad ﹣bc ,那么=9时,x=________.三、解答题(共8小题,共78分)19、解下列方程(共8分,每小题4分)(1)4x -3(12-x )=6x -2(8-x ) (2)2x -13-2x -34=120、(8分)某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?21、(8分)若已知M=x 2+3x-5,N=3x 2+5,并且6M=2N-4,求x.22、(8分)小聪做作业时解方程x +12-2-3x3=1的步骤如下:解:①去分母,得3(x +1)-2(2-3x )=1; ②去括号,得3x +3-4-6x =1; ③移项,得3x -6x =1-3+4; ④合并同类项,得-3x =2; ⑤系数化为1,得x =-23.(1)聪明的你知道小聪的解答过程正确吗?答:________.若不正确,请指出他解答过程中的错误________.(填序号)(2)请写出正确的解答过程.23、(10分)已知方程2x -35=23x -3与方程3n -14=3(x +n)-2n 的解相同,求(2n -27)2的值.24、(10分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x ,另三个数用含x 的式子表示出来,从大到小依次是 , , ;(2)当被框住的4个数之和等于416时,x 的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x 的值;如果不能,请说明理由.25、(12分).在某市第四次党代会上,提出了“建设美丽城市决胜全面小康”的奋斗目标,为响应市委号召,学校决定改造校园内的一小广场.如图是该广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的代数式分别表示出正方形F、E和C的边长;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的MQ和PN).请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙2个工程队单独铺设分别需要10天、15天完成.两队合作施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?26、(14分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?【参考答案】1.C2.C3.B4.D5.D6.B7.A8.B9.A 10.D 11.A 12.C13. 2x ﹣3=0 14. a ≠2 15. 2 16. 1000 17. 0或1 18. 219.(1)x =-20. (2)x =72.20.应往甲处调86名维和部队队员,往乙处调14名维和部队队员 21.因为6M=2N-4,所以6(x2+3x-5)=2(3x2+5)-4. 解得x=2. 22.解:(1)不正确 ①②(2)去分母,得3(x +1)-2(2-3x )=6, 去括号,得3x +3-4+6x =6, 移项,得3x +6x =6-3+4,合并同类项,得9x =7,解得x =79.25.解:(1)∵最小的正方形A 的边长是1米,最大的正方形B 的边长是x 米,∴正方形F 的边长为(x -1)米,正方形E 的边长为(x -2)米,正方形C 的边长为(x -3)米或x +12米.(2)∵MQ =PN ,∴x -1+x -2=x +x +12,解得x =7.(3)设余下的工程由乙队单独施工,还要y 天完成. 根据题意得)151101(×2+115y =1,解得y =10.答:余下的工程由乙队单独施工,还要10天完成.26.解:(1)设每个足球的定价是x 元,则每套队服是(x+50)元,根据题意得 2(x+50)=3x , 解得x=100, x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a ﹣10100)=100a+14000(元), 到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元); (3)当在两家商场购买一样合算时,100a+14000=80a+15000, 解得a=50.所以购买的足球数等于50个时,则在两家商场购买一样合算; 购买的足球数多于50个时,则到乙商场购买合算;购买的足球数少于50个时,则到甲商场购买合算。
一元一次方程单元测试题(含答案)
一元一次方程单元测试题(时间:90分钟,总分:100分)一、填空题:(本大题10个小题,每小题2分,共20分)在每小题中,请将答案直接填在题后的横线上。
1.在0,-1,3中, 是方程3x -9=0的解.2.如果3x 52a -=-6是关于x 的一元一次方程,那么a = ,方程的解=x .3.若x =-2是关于x 的方程324=-a x 的解,则a = .4.由3x =2x +1变为3x -2x =1,其根据是 .5.请你自编一道以5为解的一元一次方程是 .6.“代数式9-x 的值比代数式x 32-1的值小6”用方程表示为 . 7.当x = 时,代数式223x -与32x -互为相反数. 8.有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水 升.9.如果(5a -1)2+| b +5 |=0,那么a +b = .10.某商场把彩电按标价的8折出售,仍可获利20%,若该彩电的进价为2000元,则标价是 .二、选择题:(本大题8个小题,每小题3分,共24分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
11.下列各式中是一元一次方程的是( ) A.32=x B.2x =3 C.2x -3 D.x 2+2x =1 12.下列解方程错误的是( )A.由-31x =9得x =-3 B.由7x =6x -1得7x -6x =-1 C.由5x =10得x =2D.由3x =6-x 得3x+x =6 13.在公式s=21(a+b)h 中,已知a=3,h=4,s=16,那么b =( ) A. 1 B. 3 C. 5D. 7 14.与方程x -1=2x 的解相同的方程是( )A.x=2x+1B.x -2=1+2xC.x=2x+3D.x=2x -3 15.将方程x x 24213=+-去分母,正确的是( ) A.3x -1=-4x -4B.3x -1+8=2xC.3x -1+8=0D.3x -1+8=4x 16.如果方程ax a x x =+=2131与 的解相同,则a 的值是( ) A.2 B.-2 C.3 D.-317.小明今年12岁,他爷爷60岁,经过( )年以后,爷爷的年龄是小明的4倍.A.2B.4C.6D.818.甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙?若设x 秒后甲追上乙,列出的方程应为( )A.7x=6.5B.7x=6.5(x+2)C.7(x+2)=6.5xD.7(x -2)=6.5x三、解答题:(本大题3个小题,每小题4分,共12分)解答时每小题必须给出必要的演算过程或推理步骤。
一元一次方程章测试
一元一次方程检测题一.填空题(30分)1.已知98489=--+m x 是关于x 的一元一次方程,则m m 52+= .2.比10531的数是小的x ,列出的方程为 ,这个方程的解为=x .3.如果:106=-x ,则x = .4.当=x 时,2x x 4)1(--与+1的和等于0.5. 如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是______________6.一条环城公路长18千米,甲沿公路骑自行车,每分钟行550米,乙沿公路跑步,每分钟跑250米,两人同时从同一起点向相反的方向出发,经 小时两人第一次相遇.7.某商品的进价为250元,按标价的9折销售时,利润率为15.2%,商品的标价是 元.8.若2=y 是方程 -102=+b y 的解,则=b .9.若x=1时,代数式ax 3+bx +1的值为5,则x=- 1时,代数式ax 3+bx +1的值等于_______10.若a 、b 互为相反数,c.d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x 2+3cd •x-p 2=0的解为________.二.选择题(30分)1.下列方程中是一元一次方程的是( ) A.055=+x B.9352=-x C.652=-y y D.798=-y x 2.一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是( )秒.A.60B.50C.40D.303. 某厂原计划每天生产a 个零件,实际每天多生产b 个零件,那么生产m 个零件可以提前的天数为( ) A.b m a m - B.b a m + C.a m b a m -+ D.ba m a m +-4.方程 m y y 253+=-的解为3=y ,则m 的值为( ) A.21 B.-21 C.3 D.-3 5.三角形三边之比是7:5:4,最短边的长为8㎝,则这个三角形三边的长分别为( )㎝A.4.5.7B.8.10.14C.10.12.17D.以上都不对6.方程532=+x ,则106+x 等于( )A.15B.16C.17D.347.下列各种变形中,正确的是( )A .从3+2x =2可得到2x =5B .从6x =2x -1可得到6x -2x =-1C .从3212-=-x x 可得到3x -1=2(x -2) D .从21%+50%(60-x )=60×42%可得到21+50(60-x )=6000×428. 某商人一次卖出两件商品.一件赚了15%,一件赔了15%,卖价都是1955元,在这次买卖过程中,商人( )A.赔了90元B.赚了90元C.赔了100元D.不赔不赚9.小山向某商人贷款1万元月利率为6‰ ,1年后需还给商人多少钱( )A. 17200元,B. 16000元,C. 10720元,D. 10600元;10.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了( )场。
一元一次方程单元测试题及答案
一元一次方程单元测试题及答案一、选择题1. 解一元一次方程 \( ax + b = 0 \)(\( a \neq 0 \))时,应将\( x \) 的系数化为1,即解得 \( x = \) 。
A. \( -\frac{b}{a} \)B. \( \frac{b}{a} \)C. \( \frac{a}{b} \)D. \( -\frac{a}{b} \)2. 方程 \( 3x - 5 = 14 \) 的解是:A. \( x = 3 \)B. \( x = 4 \)C. \( x = 5 \)D. \( x = 6 \)3. 如果 \( x \) 满足方程 \( 2x + 4 = 10 \),那么 \( x \) 的值是:A. \( 1 \)B. \( 2 \)C. \( 3 \)D. \( 4 \)二、填空题4. 解方程 \( 5x - 7 = 18 \) 时,首先需要将方程两边同时加上______,然后将两边同时除以______。
5. 方程 \( 3x + 2 = 7x - 1 \) 移项后,合并同类项得到 \( 4x = ______ \)。
三、解答题6. 解方程 \( \frac{2}{3}x - 1 = \frac{1}{2}x + 2 \)。
7. 解方程 \( 2(x - 3) = 3(4x + 1) - 5x \)。
四、应用题8. 某工厂生产一批零件,如果每天生产50个,需要20天完成。
如果每天生产60个,需要多少天完成?答案:1. A2. C3. B4. 7, 55. 36. 解:\( \frac{2}{3}x - \frac{1}{2}x = 2 + 1 \),得\( \frac{1}{6}x = 3 \),\( x = 18 \)。
7. 解:\( 2x - 6 = 12x + 3 - 5x \),得 \( -8x = 9 \),\( x =-\frac{9}{8} \)。
8. 解:设需要 \( x \) 天完成。
一元一次方程单元测试(含答案)
第三章【1 】一元一次方程单元测试班别___________姓名____________成绩_______________一. 选择题(第小题3分,共30分)1.(3分)下列各式中,是一元一次方程的是()A.﹣=1B.=3C.x2+1=5D.x﹣52.(3分)已知关于x的方程3﹣(a﹣2x)=x+2的解是x=4,则a的值是()A.4B.5C.3D.23.(3分)方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=()A.2B.﹣2C.±1D.±24.(3分)解方程﹣3x+4=x﹣8,下列移项准确的是()A.﹣3x﹣x=﹣8﹣4B.﹣3x﹣x=﹣8+4C.﹣3x+x=﹣8﹣4D.﹣3x+x=﹣8+45.(3分)方程﹣4x=的解是()A.x=﹣2B.x=﹣C.x=﹣8D.x=26.(3分)下列等式变形中不准确的是()A.若x=y,则x+5=y+5B.若=,则x=yC.若﹣3x=﹣3y,则x=yD.若mx=my,则x=y7.(3分)在解方程﹣=1时,去分母准确的是()A.3(x﹣1)﹣2(2+3x)=1B.3(x﹣1)+2(2x+3)=1C.3(x﹣1)+2(2+3x)=6D.3(x﹣1)﹣2(2x+3)=68.(3分)已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.29.(3分)一个长方形的周长为30cm,若这个长方形的长削减1cm,宽增长2cm就可成为一个正方形,设长方形的长为xcm,可列方程为()A.x+1=(15﹣x)﹣2B.x+1=(30﹣x)﹣2C.x﹣1=(15﹣x)+2D.x﹣1=(30﹣x)+210.(3分)汽船在静水中速度为每小时20km,水流速度为每小时4km,从甲船埠顺流航行到乙船埠,再返回甲船埠,共用5小时(不计逗留时光),求甲.乙两船埠的距离.设两船埠间的距离为x km,则列出方程准确的是()A.(20+4)x+(20﹣4)x=5B.20x+4x=5C.+D.+二. 填空题(第小题4分,共24分)11.(4分)请写出一个一元一次方程,使得这个方程的解为“x=1”:12.(4分)已知2x﹣6=0,则4x=.13.(4分)若x与9的积等于x与﹣16的和,则x=.14.(4分)界说新运算:对于随意率性有理数a.b都有a⊗b=a(a﹣b)+1,等式右边是平日的加法.减法及乘法运算.比方:2⊗5=2×(2﹣5)+1=2×(-3)+1=-6+1=-5.若4⊗x=13,则x=.15.(4分)当k=时,方程kx+4=3﹣2x无解.16.(4分)一件工作,甲队独做10天可以完成,乙队独做可以15天完成.若两队合作2天,然后由乙队单独完成,还须要若干天可以完成剩下的工作?设乙队还须要x天可以完成剩下的工作,列方程为_______________.三. 解答题(共5小题,共46分)17.(12分)解方程:(1)12x+8=8x﹣4(2)x+3=x﹣2(3)4x﹣10=6(x﹣2)(4)﹣=118.(8分)方程x﹣3=的解与关于x的方程2x﹣m=x﹣2的解互为相反数,求m 的值.19.(8分)先浏览例1,再模仿例1解方程:|3x﹣4|=5.这就是“整体代换”数学思惟办法例1 解方程:|x﹣2|=3解:把x﹣2看作一个整体a,令a=x﹣2,方程可变形为|a|=3,这是“分类评论辩论”数学思惟办法∴a=3 或 a=﹣3即x﹣2=3 或 x﹣2=﹣3当x﹣2=3时,x=5当x﹣2=﹣3时,x=﹣1综上所述,方程的解为x=5或x=﹣1.20.(8分)某商场把一个双肩背的书包按进价进步60%标价,然后再按8折(标价的80%)出售,如许商场每卖出一个书包就可赚钱14元.这种书包的进价是若干元?21.(10分)某蔬菜公司的一种绿色蔬菜,若在市场上直接发卖,每吨利润为1000元,经粗加工后发卖,每吨利润可达4500元,经精加工后发卖,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工临盆才能是:假如对蔬菜进行粗加工,天天可加工16吨,假如进行精加工,天天可加工6吨,但两种加工方法不克不及同时进行,受季候等前提限制,公司必须在15天将这批蔬菜全体发卖或加工完毕,为此公司研制了三种可行计划:计划一:将蔬菜全体进行粗加工.计划二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接发卖.计划三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并正好15天完成.你以为哪种计划获利最多?为什么?一元一次方程单元测试参考答案与试题解析一.选择题(共10小题)ABBAB DDCCD二. 填空题(共6小题)11.x﹣1=012.12.13.﹣2.14.1.15.﹣216.(+)×2+=1.三. 解答题(共5小题)17.【解答】解:(1)移项归并得:4x=﹣12,解得:x=﹣3;(2)去分母得:8x+36=9x﹣24,移项归并得:﹣x=﹣60,解得:x=60;(3)去括号得:4x﹣10=6x﹣12,移项归并得:﹣2x=﹣2,解得:x=1;(4)去分母得:5x﹣15﹣8x﹣2=10,移项归并得:﹣3x=27,解得:x=﹣9.18.【解答】解:解方程x﹣3=x﹣得:x=3,把x=﹣3代入方程2x﹣m=x﹣2得:﹣6﹣m=﹣5,解得:m=﹣1.19.【解答】解:把3x﹣4看作一个整体b,令b=3x﹣4,方程可变形为|b|=5,这是“分类评论辩论”数学思惟办法∴b=5或b=﹣5,即3x﹣4=5或3x﹣4=﹣5.当3x﹣4=5时,x=3;当3x﹣4=﹣5时,x=﹣.综上所述,方程的解为x=3或x=﹣.20.【解答】解:设这种书包的进价是x元,其标价是(1+60%)x元,由题意得:(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.21.【解答】解:计划一:∵4500×140=630000(元),∴将食物全体进行粗加工后发卖,则可获利润630000元计划二:15×6×7500+(140﹣15×6)×1000=725000(元),∴将食物尽可能多的进行精加工,没来得及加工的在市场上直接发卖,则可获利润725000元;计划三:设精加工x天,则粗加工(15﹣x)天.依据题意得:6x+16(15﹣x)=140,解得:x=10,所以精加工的吨数=6×10=60,16×5=80吨.这时利润为:80×4500+60×7500=810000(元)答:该公司可以粗加工这种食物80吨,精加工这种食物60吨,可获得最高利润为810000元.。
一元一次方程章节测试题
一元一次方程章节测试题一、 选择题:(每题3分,共36分)1.下面的等式中,是一元一次方程的为( )A .3x +2y =0B .3+m =10C .2+x1=x D .a 2=162.如果3kx -2=6k +x 是关于x 的一元一次方程,则( ) A .k 是任意有理数 B .k 是不等于0的有理数C .k 是不等于31的整数 D .k 是不等于31的数 3.关于y 的方程3y +5=0与3y +3k =1的解相同,则k 的值为( )A .-2 B .43C .2D .-344.若代数式3a 4b 2x 与0.2b3x -1a4能合成一项,则x 的值是( )A. 21B.1C. 31D.05.解方程时,去分母得( )A .4(x +1)=x -3(5x -1)B .x +1=12x -(5x -1)C .3(x +1)=12x -4(5x -1)D .3(x +1)=x -4(5x -1) 6.若31(y +1)与3-2y 互为相反数,则y 等于( )A .-2 B .2 C .78D .-787.若代数式的值是2,则x 的值是( )A .0.75 B .1.75 C .1.5 D .3.58.某商品提价10%后,欲恢复原价,则应降价( )A .10% B .9% C .11100% D .9100%9、一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是( )A 、16 B 、25 C 、34 D 、6110.某服装商店同时卖出两套服装,每套均卖168元,以成本计算,其中一套盈利20%,另一套亏本20%,则这次服装商店( )A .不赚不赔 B .赚37.2元 C .赚14元 D .赔14元11.某人在1999年12月存入人民币若干元,年利率为2.25%,税率为利息的20%,一年到期后将缴纳利息税72元,则他存入的人民币为( )A .3600元 B .16000元 C .360元 D .1600元12.父亲现年32岁,儿子现年5岁,x 年前,父亲的年龄是儿子年龄的10倍,则x 应满足的方程是( ) A .32-x =5-x B .32-x =10(5-x) C .32-x =5×10 D .32+x =5×10 二、填空题:(每题4分,共24分) 13.已知方程是关于x 的一元一次方程,则m =______.14.若x =1是关于x 的方程mx +n =p 的解,则(m +n -p )2006=______. 15. 若与-41互为倒数,则x 等于______. 16.一件商品的成本是200元,提高30%后标价,然后打九折销售,则这件商品的利润为____元.17.一只轮船在A 、B 两码头间航行,从A 到B 顺流需4小时,已知A 、B 间的路程是80千米,水流速度是2千米/时,则从B 返回A 用______小时.三、解答题: 18、解方程:19、一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?20、某商店将某种品牌的DVD 按进价提高35%,然后打出“八折酬宾,外送50元出租车费”的广告,结果每台DVD 仍可获利166元,那么每台DVD 的进价是多少元?21、为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。
人教版七年级数学上册第三章 一元一次方程 单元综合测试【含答案】
21.(本小题满分 6 分)试根据图 6 中的信息,解答下列问题: (1)购买 5 根跳绳需 元,购买 15 根跳绳需 元; (2)小红比小明多买了 2 根跳绳,付款时小红反而比小明少付 5 元,则小红买了多少根跳绳?
图6
22.(本小题满分 7 分)列方程解应用题: 亲近科学,感受科技魅力.学校组织七年级学生走进科技馆,来到科技馆大厅,同学们就被大厅 里会“跳舞”的“小球矩阵”吸引住了(如图 7(1)).白色小球全部由计算机精准控制,每一 只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等 各种动态造型.已知每个小球分别由独立的电机控制.图(2),图(3)分别是 9 个小球可构成的 两个造型,在每个造型中,相邻小球的高度差均为 a.为了使小球从造型一(如图(2))变到造型 二(如图(3)),控制电机使造型一中的②③④⑥⑦⑧号小球同时运动,②③④号小球向下运动, 运动速度均为 3 米/秒;⑥⑦⑧号小球向上运动,运动速度均为 2 米/秒,当每个小球到达造型 二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,则②号小球运动了 多少米?
方案二:乙工程队每天的工作量为 7×150+70=1120(m2),粉刷完成所用时间为 6720÷1120=6(天),所需支付人工费用为 6×4×90=2160(元). 因为 2100<2160, 所以若要使总人工费用最少,该中学应选择方案一.
(1)求每个办公室需要粉刷的墙面面积.
(2)已知学校每天需要支付给每名一级技工 100 元,每名二级技工 90 元.该中学有 40 个办公 室的墙面和 720 m2 的展览墙需要粉刷.现有甲、乙两支工程队供选择,甲工程队有 3 名一级 技工,乙工程队有 4 名二级技工.该中学有两个选择方案,方案一:全部由甲工程队粉刷;方案 二:全部由乙工程队粉刷.若要使总人工费用最少,该中学应如何选择?请通过计算说明.
人教版七年级数学上册第三章《一元一次方程》综合测试卷(含答案)
人教版七年级数学上册第三章《一元一次方程》综合测试卷(含答案)题号 一 二三总分 1920 21 22 23 24分数一.选择题(共10小题,每题3分,满分30分) 1.下列等式中,是一元一次方程的有( )①2013+4x=2014;3x -2x=100;③2x+6y=15;④3x 2-5x+26=0 A.1个 B.2个 C.3个 D.4个 2.如果某数的3倍比这个数的2倍小2,那么这个数是( ) A.2 B.-1 C.-2 D.0.5 3. 若代数式2x ﹣3与32x +的值相等,则x 的值为( ) A .3B .1C .﹣3D .44.三个正整数的比是,它们的和是,那么这三个数中最大的数是( )A.56B.48C.36D.12 5.若方程2152x kx x -+=-的解为,则的值为( )A.B.C.D.6.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( ) A .x =-4B .x =-3C .x =-2D .x =-17.下列说法中,正确的是( )A.在等式2x =2a -b 的两边都除以2,得到x =a -bB.等式两边都除以同一个数,等式一定成立C.等式两边都加上同一个整式,所得结果仍是等式D.在等式4x =8的两边都减去4,得到x =48.小虎在解关于x 的一元一次方程2x-m=x 时,由于粗心大意,移项时忘记了改变符号,变形为2x+x=-m.求得方程的解为x=1,则原方程的解为( )A.x=-1 B.x=1 C.x=2 D.x=39.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A.95元B.90元C.85元D.80元10.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.5二、填空题(每题3分,共24分)11.若关于x的方程(a﹣3)x|a|﹣2+8=0是一元一次方程,则a=12.一般情况下不成立,但也有数可以使得它成立,例如:m=n=0.使得成立的一对数m、n我们称为“相伴数对”,记为(m,n).若(x,1)是“相伴数对”,则x的值为.13.一元一次方程x﹣2=4的解是.14.若代数式的值与代数式的值互为相反数,则a=.15.阅读理解:a,b,c,d是有理数,我们把符号称为2×2阶行列式,并且规定:=ad﹣bc,则满足等式=1的x的值是.16.20个工人生产螺栓和螺母,已知一个工人一天生产3个螺栓或4个螺母,且一个螺栓配2个螺母,如何分配工人生产螺栓和螺母?如果设生产螺栓的工人数为x个,根据题意可列方程为:.17.日历中同一行中相邻三个数的和为63,则这三个数分别为 . (用逗号隔开)18. 一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要做________天才能完成.三.解答题(共46分,19题6分,20 ---24题8分)19.解下列方程:(1)10(1)5x -=; (2)7151322324x x x -++-=-;(3)2(2)3(41)9(1)y y y +--=-; (4)0.89 1.33511.20.20.3x x x --+-=.20.当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2?21.当n 为何值时,关于x 的方程的解为0?22. 已知,x =2是方程2﹣(m ﹣x )=2x 的解,求代数式m 2﹣(6m +2)的值.23.有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.24.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问: (1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B C D B D D C B C C二.填空题11.﹣3.12.﹣.13. x=9.14.﹣.15.﹣10.16. 2×3x=4(20﹣x).17. 20 , 21 , 2218. 10三.解答题19.解:(1),去括号,得移项,得,系数化为1,得(2) 7151322324x x x-++-=-,去分母,得,去括号,得,移项,得,合并同类项,得系数化为1,得(3), 去括号,得, 移项,得,合并同类项,得, 系数化为1,得 (4),去分母,得, 去括号,得, 移项,得,合并同类项,得, 系数化为1,得20.解:方程x x m +=+135的解是251mx -=, 方程的解是.由题意可知251m -,解关于m 的方程得73-. 故当73-时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2.21.解:把x =0代入方程得,+1=+n ,去分母得, 2n +6=3+6n ,所以n =,即当n = 时,关于x 的方程的解为0.22. 解:把x =2代入方程得:2﹣(m ﹣2)=4, 解得:m =﹣4,则m 2﹣(6m +2) =16﹣(﹣24+2) =38.23.解:设第一座铁桥的长为米,那么第二座铁桥的长为米,•过完第一座铁桥所需要的时间为600x 分,过完第二座铁桥所需要的时间为250600x -分. 依题意,可列出方程600x +560=250,600x -解方程得所以答:第一座铁桥长100米,第二座铁桥长150米.24.(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱。
2022-2023学年鲁教版(五四学制)六年级数学上册《第4章一元一次方程》单元综合测试题(附答案)
2022-2023学年鲁教版(五四学制)六年级数学上册《第4章一元一次方程》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下列式子中,是一元一次方程的是()A.x+4>2B.C.x﹣3=y+5D.2.下列等式变形错误的是()A.若a=b,则B.若a=b,则3a=3bC.若a=b,则ax=bx D.若a=b,则3.下列方程中解是x=2的方程是()A.3x+6=0B.﹣2x+4=0C.D.2x+4=04.在解方程x﹣3=3x时,下列移项正确的是()A.x+3x=1B.x﹣3x=1C.x+3x=3D.x﹣3x=35.关于x的方程x﹣=1与2x﹣3=1的解相等,则a的值为()A.7B.5C.3D.16.若代数式比的值多1,则a=()A.﹣5B.﹣C.5D.7.方程|2x﹣6|=0的解是()A.x=3B.x=﹣3C.x=±3D.8.东方商场把进价为1850元的某商品按标价的8折出售,仍获利10%,则该商品的标价为()A.2635元B.2168元C.2480元D.2543.75元9.成都市某电影共有4个大厅和5个小厅其中1个大厅,2个小厅,可同时容纳1680人观影;2个大厅、1个小厅,可同时容纳2280人观影.设1个小厅可同时容纳x人观影,由题意得下列方程正确的是()A.x+2(1680﹣x)=2280B.x+2(1680﹣2x)=2280C.x+2(2280﹣x)=1680D.x+(2280﹣x)=168010.出售某品牌扫地机器人,已知该扫地机器人的进价为1800元,标价为2475元,双“十二”期间打折出售,且每件仍可获得180元的利润,设该扫地机器人按标价打x折出售,则下列方程正确的是()A.2475×﹣1800=180B.2475﹣1800×=180C.2475×﹣1800×=180D.1800﹣2475×=180二.填空题(共7小题,满分28分)11.若2x a﹣1+1=0是一元一次方程,则a=,代数式﹣a2+2a的值是.12.如果关于x的方程2x+1=3和方程2﹣=1的解相同,那么a的值为.13.若代数式(a、b为常数)的值与字母x、y 的取值无关,则方程3ax+b=0的解为.14.兰山某初中学校七年级举行“数学知识应用能力竞技”活动,测试卷由20道题组成,答对一题得5分,不答或答错一题扣1分,某考生的成绩为76分,则他答对了道题.15.《九章算术》是中国古代《算经十书》最重要的一部,它的出现标志中国古代数学形成了完整的体系,其中有一道阐述“盈不足数”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?意思是说:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问共有多少人?这个物品的价格是多少?设有x人,则根据题意可列方程.16.某型号彩电每台标价为5250元,按标价的八折销售,此时每台彩电的利润率是5%,则该型号彩电的进价为每台元.17.用符号※定义一种新运算a※b=ab+2(a﹣b),若3※x=2021,则x的值为.三.解答题(共6小题,满分52分)18.解方程:(1)3x﹣1=5x+9;(2)4﹣4(x+3)=3(x+2);(3);(4).19.(1)将等式5a﹣3b=4a﹣3b变形,过程如下:∵5a﹣3b=4a﹣3b,∴5a=4a,(第一步)∴5=4.(第二步)上述过程中,第一步的依据是什么?第二步得出错误的结论,其原因是什么?(2)如果关于x的方程﹣6=﹣的解与关于x的方程4x﹣(3a+1)=6x+a+1的解互为相反数,求a的值.20.某建筑工地有一大一小两个水池,用同样的输水管给两个水池注水,大水池需6小时注满,小水池需4小时注满.现在为了施工的需要,同时往两个水池注水,但在注水的过程中,电路出现问题,两个水池的注水被迫同时停止,经过测量发现:大水池剩余的需注水量是小水池需注水量的2倍,你能推测出输水用时多久吗?21.某通讯公司推出以下收费套餐,甲选择了套餐A,乙选择了套餐B,设甲的通话时间为t1分钟,乙的通话时间为t2分钟.月租费(元/月)不加收通话费时限(分)超时加收通话费标准(元/分)套餐A581500.3套餐B883500.2(1)请用含t1(t1>150)、t2(t2>350)的代数式表示甲和乙的通话费用;(2)若甲9月份通话时间为390分钟,乙通话费用和甲相同,求乙通话时间;(3)若甲和乙在10月份通话时间和通话费用都一样,则通话时间为.22.如图,点A、B在数轴上表示的数分别为﹣12,16(规定:数轴上两点A,B之间的距离记为AB).点P与点Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒,4个单位/秒,它们运动的时间为t秒.①点P与点Q在A,B两点之间相向运动,当它们相遇时,求时间t的值.②点P与点Q都向左运动,当Q追上点P时,求点P对应的数.③点P与点Q在点A与点B之间相向运动,当PQ=8时,t的值是.23.自10月1日开始实施新的个人所得税政策,个人所得税起征点由原来的每月3500元提高到每月5000元(即工资5000元以下不交税),纳税人每月的工资扣除5000元后所得的余额作为应纳税所得额(不考虑其他因素),根据个人所得税税率表(如下表)计算每月上交的个人所得税.个人所得税税率表级数全月应纳税所得额税率1不超过3000元的3%2超过3000元至12000元部分10%3超过12000元至25000元部分20%4超过25000元至35000元部分25%5……例如:小明妈妈月工资5000元,当月纳税额为0元;小王爸爸月工资9000元,应纳税额为3000×3%+(9000﹣5000﹣3000)×10%=190元.根据以上信息回答问题:(1)2020年,小明妈妈和爸爸月工资分别为7000元,11000元,分别求他们每月上交的个人所得税.(2)2021年,小明爸爸和妈妈月工资同时增长,小明爸爸说:“2021年我的月工资是你妈妈的两倍.”小明妈妈说:“你爸爸每个月交个人所得税是我的10倍还多40元.”小明爸爸说:“我们的个人所得税的税率级数相对2020年没有变化.”请根据以上对话,求小明爸爸、妈妈2021年的月工资是多少元?(3)若小明爸爸、妈妈的月工资分别为a,b元,其中(17000<a≤40000),(5000<b ≤8000),爸爸每月的个人所得税是妈妈的m倍,请用a,b的代数式表示m.参考答案一.选择题(共10小题,满分40分)1.解:A选项,不是等式,不是方程,故该选项不符合题意;B选项,这个方程不是整式方程,故该选项不符合题意;C选项,这个方程含有2个未知数,故该选项不符合题意;D选项,这个方程是一元一次方程,故该选项符合题意;故选:D.2.解:根据等式的性质可知:A.若a=b,则=.正确;B.若a=b,则3a=3b,正确;C.若a=b,则ax=bx,正确;D.若a=b,则=(m≠0),所以原式错误.故选:D.3.解:A.将x=2代入3x+6=0,可得6+6=12≠0,故A不符合题意;B.将x=2代入﹣2x+4=0,可得﹣4+4=0,故B符合题意;C.将x=2代入,可得=1≠2,故C不符合题意;D.将x=2代入2x+4=0,可得4+4=8≠0,故D不符合题意;故选:B.4.解:x﹣3=3x则x﹣3x=3.故选:C.5.解:2x﹣3=1,解得:x=2,∴x=2是方程x﹣=1的解,将x=2代入方程x﹣=1得:2﹣=1,解得:a=5.故选:B.6.解:根据题意得:﹣=1,去分母,得7(a+3)﹣4(2a﹣3)=28,去括号,得7a+21﹣8a+12=28,移项,得7a﹣8a=28﹣21﹣12,合并同类项,得﹣a=﹣5,系数化成1,得a=5,故选:C.7.解:∵|2x﹣6|=0,∴2x﹣6=0,解得:x=3.故选:A.8.解:设该商品的标价为x元,由题意得:0.8x﹣1850=1850×10%,解得:x=2543.75.答:该商品的标价为2543.75元.故选:D.9.解:由题意知,1个大厅可同时容纳(1680﹣2x)人观影,∵2个大厅、1个小厅,可同时容纳2280人观影.∴2(1680﹣2x)+x=2280,故选:B.10.解:根据题意得,2475×﹣1800=180,故选:A.二.填空题(共7小题,满分28分)11.解:由题意可知:a﹣1=1,∴a=2,∴原式=﹣4+4=0,故答案为:2,012.解:方程2x+1=3,解得:x=1,把x=1代入第二个方程得:2﹣=1,去分母得:6﹣a+1=3,解得:a=4,故答案为:413.解:原式=(1﹣)x2﹣5y+4﹣ax2﹣by﹣8=(﹣a)x2﹣(b+5)y﹣4,由结果与字母x、y的取值无关,得到﹣a=0,b+5=0,解得:a=,b=﹣5,代入方程得:5x﹣5=0,解得:x=1,故答案为:x=114.解:设该考生答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣(20﹣x)=76,解得:x=16.故答案为:16.15.解:设有x人,由题意,得8x﹣3=7x+4.故答案是:8x﹣3=7x+4.16.解:设彩电的进价为每台x元,由题意得,5250×80%﹣x=5%x,解得x=4000,答:彩电的进价为每台4000元.故答案为:4000.17.解:根据题中的新定义化简得:3x+2(3﹣x)=2021,去括号得:3x+6﹣2x=2021,移项合并得:x=2015.故答案为:2015.三.解答题(共6小题,满分52分)18.解:(1)3x﹣1=5x+9,移项,得3x﹣5x=9+1,合并同类项,得﹣2x=10,系数化成1,得x=﹣5;(2)4﹣4(x+3)=3(x+2),去括号,得4﹣4x﹣12=3x+6,移项,得﹣4x﹣3x=6﹣4+12,合并同类项,得﹣7x=14;系数化成1,得x=﹣2;(3),去分母,得10y﹣5(y﹣1)=20﹣2(y+2),去括号,得10y﹣5y+5=20﹣2y﹣4,移项,得10y﹣5y+2y=20﹣4﹣5,合并同类项,得7y=11,系数化成1,得y=;(4),原方程化为:﹣=3,5x﹣10﹣2x﹣2=3,移项,得5x﹣2x=3+10+2,合并同类项,得3x=15,系数化成1,得x=5.19.解:(1)上述过程中,第一步的依据是:等式的性质1,第二步得出错误的结论,其原因是:等式的两边同除以了一个可能等于零的a.(2)解:解方程,得,解方程4x﹣(3a+1)=6x+a+1,得x=﹣2a﹣1,因为两个方程的解互为相反数,所以=0,解得.20.解:设输水速度为v,输水时间为t小时,依题意有6v﹣vt=2(4v﹣vt),解得t=2.故输水时间为2小时.21.解:(1)依题意得:甲的通话费用为58+0.3(t1﹣150)=(0.3t1+13)元;乙的通话费用为88+0.2(t2﹣350)=(0.2t2+18)元.(2)依题意得:0.2t2+18=0.3×390+13,解得:t2=560.答:乙的通话时间为560分钟.(3)当t1=t2时,设甲、乙的通话时间均为t分钟,当0<t≤150时,显然不符合题意;当150<t≤350时,0.3t+13=88,解得:t=250;当t>350时,0.3t+13=0.2t+18,解得:t=50(不符合题意,舍去).∴若甲和乙在10月份通话时间和通话费用都一样,则通话时间为250分钟.故答案为:250分钟.22.解:(1)由题意可得:2t+4t=16+12,解得t=.故时间t的值为;(2)由题意可得:4x﹣2x=16+12,∴x=14,∴﹣12﹣2×14=﹣40,∴点P对应的数为﹣40;(3)∵PQ=8,∴|16﹣4t﹣(﹣12+2t)|=8,解得t1=,t2=6.故t的值是或6.故答案为:或6.23.解:(1)妈妈应交的个人所得税为:(7000﹣5000)×3%=60(元),爸爸应交的个人所得税为:3000×3%+(11000﹣5000﹣3000)×10%=90+300=390(元),答:妈妈应交的个人所得税为60元,爸爸应交的个人所得税为390元;(2)设妈妈的月工资为x元,则爸爸的月工资为2x元,依题意得:3%(x﹣5000)×10+40=3000×3%+(2x﹣5000﹣3000)×10%,解得:x=7500,则爸爸的月工资为:2x=15000(元),答:小明爸爸、妈妈2021年的月工资分别是15000元,7500元;(3)妈妈应交的个人所得税为:3%(b﹣5000)=3%b﹣150,①当爸爸的工资17000<a≤30000元时,应交的个人所得税为:3000×3%+(12000﹣3000)×10%+(a﹣12000﹣5000)×20%=20%a﹣2410,则m=;②当爸爸的工资30000<a≤40000元时,应交的个人所得税为:3000×3%+(12000﹣3000)×10%+(25000﹣12000)×20%+(a﹣25000﹣5000)×25%=25%a﹣3910,则m=.。
一元一次方程单元测试卷(三套含答案)
一元一次方程单元测试卷(1)一.选择题(每题3分,共18分) 1.下列等式变形正确的是( ) A.如果s=12ab ,那么b=2saB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果mx=my ,那么x=y 2.下列方程中,是一元一次方程的是( )A. 243x x -=B.0x =C.21x y +=D. 11x x-= 3.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A. 111014=+-+x x B. 111024=--+x x C. 611024=--+x x C. 611024=+-+x x4.一个教室有5盏灯,其中有40瓦和60瓦的两种,总的瓦数为260瓦,则40瓦和60瓦的灯泡个数分别是( ) A. 1,4B. 2,3C. 3,2D. 4,15.某区中学生足球赛共赛8轮(即每队均参赛8 场),胜一场得3分,平一场得1分,输一场得0分,在这次足球联赛中,猛虎足球队踢平的场数是所负场数的2倍,共得17分,则该队胜了( )场.A.3B.4C.5D.66.某商店卖出两件衣服,每件60元,其中一件赚20%,另一件亏20%,那么这两件衣服卖出后,商店( )A.不赚不亏B.赚5元C.亏5元D. 赚10元 二.填空题(每题4分,共24分)7.当=x ________时,代数式24+x 与93-x 的值互为相反数.8.已知 ()0332=-+--m x m m 是关于x 的一元一次方程, 则m=________. 9.在梯形面积公式 S =12(a + b ) h 中, 用 S 、a 、h 表示b ,b = ________, 当16,3,4S a h ===时, b 的值为________.10.若关于x 的方程mx+2=2(m-x )的解是12x =,则m=________.11.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计).12.如图,一个长方形恰被分成六个正方形,其中最小的正方形面积是1平方厘米,则这个长方形的面积为________平方厘米. 三.解方程(每题5分,共30分)13). 5x +3=-7x+9 14). 14)13(2)1(5-=---x x x15).312x +=76x+ 16). 511241263x x x +--=+17).75.001.003.02.02.02.03=+-+xx 18).解关于x 的方程9(2)4(3m x m x m---=四.应用题(每题7分,共28分)19.甲仓库有粮120吨,乙仓库有粮90吨.从甲仓库调运多少吨到乙仓库,调剂后甲仓库存粮是乙仓库的一半.20.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?21.某城市按以下规定收取煤气费:每月使用煤气如果不超过60立方米,按每立方米0.8元收费;超过60立方米,超过部分按每立方米1.2元收费。
一元一次方程单元测试题及答案
一元一次方程单元测试题及答案测试题:1. 解方程:2x + 3 = 72. 解方程:4(x - 5) = 163. 解方程:3(2x - 1) + 2 = 5(x + 3) - 14. 解方程:5x + 3 = 2 - 4x5. 解方程:2(3x + 4) - 5(x - 2) = 146. 解方程:3(2x - 1) = 4(3x + 2) - 17. 解方程:6x - 7 = 5(x - 3)8. 解方程组:2x + 3y = 74x - 2y = 89. 解方程组:3x + y = 4x - 2y = -110. 解方程组:2x + y = 13x - 2y = 4答案及解析:1. 解方程:2x + 3 = 7解:首先,将方程中的常数项移动到等号的右边,得到2x = 7 - 3。
接着,将式子进行计算,得到2x = 4。
最后,将方程两边同时除以2,得到x = 2。
答案:x = 22. 解方程:4(x - 5) = 16解:首先,将括号内的式子进行计算,得到4x - 20 = 16。
接着,将常数项移动到等号的右边,得到4x = 16 + 20。
最后,将方程两边同时除以4,得到x = 9。
答案:x = 93. 解方程:3(2x - 1) + 2 = 5(x + 3) - 1解:首先,将括号内的式子进行计算,得到6x - 3 + 2 = 5x + 15 - 1。
接着,将常数项移动到等号的右边,得到6x - 1 = 5x + 14。
接着,将方程两边同时减去5x,得到x - 1 = 14。
最后,将方程右边的常数项移动到等号左边,得到x = 15。
答案:x = 154. 解方程:5x + 3 = 2 - 4x解:首先,将方程中的常数项移动到等号的右边,得到5x = 2 - 3 + 4x。
接着,将方程两边同时减去4x,得到x = 2 - 3。
最后,将右边的常数项进行计算,并化简方程,得到x = -1。
答案:x = -15. 解方程:2(3x + 4) - 5(x - 2) = 14解:首先,将括号内的式子进行计算,得到6x + 8 - 5x + 10 = 14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程单元测试
姓名: 计分:
一、选择题(每小题3分)
1.在方程23=-y x ,021=-+x x ,2
121=x ,0322=--x x 中一元一次方程的个数为( )
A .1个
B .2个
C .3个
D .4个
2.解方程3
112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x
D .1233-=-x x
3.方程x x -=-22的解是( )
A .1=x
B .1-=x
C .2=x
D .0=x
4.下列两个方程的解相同的是( )
A .方程635=+x 与方程42=x
B .方程13+=x x 与方程142-=x x
C .方程021=+x 与方程02
1=+x D .方程5)25(36=--x x 与3156=-x x 5.x 增加2倍的值比x 扩大5倍少3,列方程得( )
A .
352+=x x B .352-=x x C .353-=x x D .353-=x x 6.方程)1(42
42103-=++x x a 的解为3=x ,则a 的值为( ) A .2 B .22 C .10 D .-2
7.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。
若经过x 个月后,两厂库存钢材相等,则x =( )
A .3
B .5
C .2
D .4
8.某种产,商品的标价为120元,若以九折降价出售,相对于进货价仍获
利20%,该商品的进货价为( )。
A .80元
B .85元
C .90元
D .95元
二、填空题(每小题3分,共24分)
11.代数式12+a 与a 21+互为相反数,则=a 。
12.如果06312=+--a x 是一元一次方程,那么=a ,方程的解为
=x 。
13.若4-=x 是方程0862=--x ax 的一个解,则=a 。
14.如果)12(3125+m b a 与)3(21
221+-m b a 是同类项,则=m 。
15.已知023=+x ,则=-34x 。
16.已知梯形的下底为cm 6,高为cm 5,面积为225cm ,则上底的长等
于 。
17.要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6
厘米的的方钢x 厘米,可得方程为 。
18.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:⑴稿费
低于800元的不纳税;⑵稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费14%的税;⑶稿费高于4000元,应缴纳全部稿费的11%的税。
某老师获得了2000元稿费,他应纳税 元。
三、解方程(每题5分,共20分)
19.x x -=+212(写出检验过程) 20.2)3
1(35=--y
21.142312-+=-y y 22.17
.03.027.1-=-x x
四、解答题(每题6分,共12分)
23.设1511+=x y ,4
122+=x y ,当x 为何值时,1y 、2y 互为相反数?
24.已知3=x 是方程()241133=⎥⎦
⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛+x m x 的解,n 满足关系式12=+m n ,求n m +的值。
五、列方程,解应用题(25题6分,26题7分,27题7分,共20分)
25.在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,
使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?
26.一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由
甲、乙两人合做,并且施工期间乙休息7天,问几天完成
27.张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:
“如果老师买全票一张,则学生可享受半价优惠。
”乙旅行社说:“包括老师在内按全票价的6折优惠。
”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?。