2019年中考数学模拟冲刺试卷及答案

合集下载

2019年中考数学专题《全等三角形》复习冲刺训练含答案解析

2019年中考数学专题《全等三角形》复习冲刺训练含答案解析

中考复习专题训练全等三角形一、选择题1.下列命题中不成立的是()A. 矩形的对角线相等B. 三边对应相等的两个三角形全等C. 两个相似三角形面积的比等于其相似比的平方D. 一组对边平行,另一组对边相等的四边形一定是平行四边形2.判断两个直角三角形全等的方法不正确的有()A. 两条直角边对应相等B. 斜边和一锐角对应相等C. 斜边和一条直角边对应相等D. 两个锐角对应相等3.下面甲、乙、丙三个三角形中,和△ABC全等的是()A. 乙和丙B. 甲和乙C. 甲和丙D. 只有甲4.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是:()A. BC=B′C′B. ∠A=∠A′C. AC=A′C′D. ∠C=∠C′5.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是().A. ∠M=∠NB. AM=CNC. AB=CDD. AM∥CN6.如图,△AEB、△AFC中,∠E=∠F,∠B=∠C,AE=AF,则下列结论错误的是()A. ∠EAM=∠FANB. BE=CFC. △ACN≌△ABMD. CD=DN7.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A. 1个B. 2个C. 3个D. 4个8.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是()A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定9.如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是().A. SSSB. SASC. AASD. ASA10.如图,PA=PB,OE⊥PA,OF⊥PB,则以下结论:①OP是∠APB的平分线;②PE=PF③CA=BD;④CD∥AB;其中正确的有()个.A. 4B. 3C. 2D. 111.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE;下列结论中:①CE=BD;②∠ADB=∠AEB;③△ADC是等腰直角三角形;④CD•AE=EF•CG;一定正确的结论有()A. 1个B. 2个C. 3个D. 4个12.如图所示,在∠AOB的两边上截取AO=BO,OC=OD,连接AD、BC交于点P,连接OP,则下列结论正确的是( )①△APC≌△BPD ②△ADO≌△BCO ③△AOP≌△BOP ④△OCP≌△ODPA. ①②③④B. ①②③C. ②③④D. ①③④二、填空题13. 如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:________14.如图,线段AD与BC相交于点O,连结AB、CD,且∠B=∠D,要使△AOB≌△COD,应添加一个条件是 ________(只填一个即可)15.△ABC中,∠BAC∶∠ACB∶∠ABC=4∶3∶2,且△ABC≌△DEF,则∠DEF=________°.16.如图,AB=AC,点D在AB上,点E在AC上,DC、EB交于点F,△ADC≌△AEB,只需增加一个条件,这个条件可以是________.17.如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为________.18.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 ________块.19.如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为________.20.如图,∠A =∠D ,OA=OD, ∠DOC=50°,则∠DBC=________度.21.在Rt△ACB中,∠ACB=90°,点D在边BC上,连接AD,以点D为顶点,AD为一边作等边△ADE,连接BE,若BC=7,BE=4,∠CBE=60°,则∠EAB的正切值为________.22.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD﹣BE=DE.正确的是 ________(将你认为正确的答案序号都写上).三、解答题23.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.24.已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF,求证:AF=CE.25.如图,矩形ABCD,E、F在AB、CD上,且EF∥AD,M为EF的中点,连接AM、DM,求证:AM=DM.26.如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1.(1)求证:∠BPQ=60°(提示:利用三角形全等、外角的性质)(2)求BE的长.27.△ABC为等腰直角三角形,∠ABC=90°,点D在AB边上(不与点A,B重合),以CD为腰作等腰直角△CDE,∠DCE=90°.(1)如图1,作EF⊥BC于F,求证:△DBC≌△CFE;(2)在图1中,连接AE交BC于M,求的值;(3)如图2,过点E作EH⊥CE交CB的延长线于点H,过点D作DG⊥DC,交AC于点G,连接GH.当点D在边AB上运动时,式子的值会发生变化吗?若不变,求出该值;若变化请说明理由.答案解析一、选择题1.【答案】D【解析】【分析】A、矩形的对角线相等,成立;B、三边对应相等的两个三角形全等,成立;C、两个相似三角形面积的比等于其相似比的平方,成立;D、一组对边平行,另一组对边相等的四边形可以是等腰梯形.故选:D.【点评】本题考查学生对一些几何概念和定理的掌握情况,属于基础题。

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.13.(2019安徽省六安市模拟)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③△POF∽△BNF;④当△PMN ∽△AMP时,点P是AB的中点,其中一定正确的结论有.(填上所有正确的序号).14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy中,已知A(2,0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹角为60°,那么点P的坐标是.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.25.(2019重庆市长寿区模拟)在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H=.处,过点H作HN⊥HG交AB于N点,交AE于M点,则S△MNF26.(2019北京市海淀区模拟)一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.27.(2019福建省龙岩市模拟)如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.28.(2019深圳市光明新区模拟)用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.29.(2019江苏省徐州市模拟)我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.30.(2019山东省济南市模拟)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.【分析】由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积.【解答】解:设正三角形的边长为a,则a2×=2,解得a=2.则图中阴影部分的面积=2×﹣2=2.故答案是:2.【点评】考查了二次根式的应用.解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.根据二次根式恒等时,有理数部分与有理数部分和无理数部分与无理数部分对应相等的关系,列出恒等式即可解答【解答】解:(a+)(a+)==(b+)(c+)=(bc+2)+(b+c)根据题意得=(bc+2)+(b+c)∵a,b,c都为有理数,∴bc=a2,b+c=2a∴b(2a﹣b)=a2,∵b2﹣2ab+a2=0,∴(a﹣b)2=0,∴a=b=c又∵(a+)2=(a+﹣1)(b,∴(a+)含有因式(),而a又是有理数,故a=2,当a=b=c=2时,A=B=C,【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.得到等式找出abc之间的数量关系.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.【分析】(1)根据勾股定理可得CD,AD,BD的长度,当O,D,C共线时,OC的长度最大,即△AOB是等腰直角三角形时,OC的长度最大,可求t.(2)分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【解答】解:(1)∵BC=AC=5,AB=8,CD⊥AB∴BD=4=AD,∴由勾股定理得:CD=3∵AD=BD,∠AOB=90°∴OD=AB=4∵在△OCD中,OC<OD+DC∴当O,D,C三点共线时,OC值最大,即OD⊥AB,∵AD=BD,DO⊥AB∴BO=AO,且AB=8∴AO=BO=4,且点A的速度为每秒1个单位长度∴t==4(2)若BC∥x轴∴∠CBA=∠BAO且∠CDB=∠AOB∴△BOC∽△AOB∴,即∴t=若AC∥y轴,∴∠CAB=∠ABO且∠CDA=∠AOB∴△ACD∽△AOB∴即∴t=∴当t=或时,△ABC的边与坐标轴平行【点评】本题考查的是勾股定理,等腰三角形的性质,相似三角形的性质和判定,关键是利用分类思想解决问题.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.【解答】解:连接CD,∵在直角三角形ABC中,∠C=90°,∴AB===10,∵点D是AB的中点,∴CD=AD=AB=5,∴∠A=∠ACD,∵DM=DN,∴∠DMN=∠DNM,∵∠DMN=∠A+∠ADM,∠DNM=∠ACD+∠CDN,∴∠ADM=∠CDN,∴△ADM≌△CDN(SAS),∴AM=CN,∵∠CDM=∠MDN+∠CDN,∠A=∠MDN,∴∠CMD=∠CDM,∴AM=CD=5,∴AM=CN=AC﹣CM=3,∴MN=2.故答案为:2.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)【解答】解:如图所示:∵斜边与半圆相切,点B是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=4,∴OC=OB=2,BC=2.∴S阴影=S扇形BOD+S△BOC=+×2×2=+2.故答案为:+2.6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.【解答】解:如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.∵F A=FB,OA=OB,∴OF⊥AB,AH=BH=,∴sin∠BOH=,∴∠BOH=∠AOH=60°,∴∠AOB=120°∴∠C=∠AOB=60°,∵DB⊥BC,∴∠DBC=90°,∴∠CDB=30°,∵∠AFB=60°,∴∠ADB=∠AFB,∴点D的运动轨迹是以F为圆心,F A为半径的圆,∴当D在OF的延长线上时,△ABD的面积最大,最大面积=×(2+3)=6+3,故答案为6+3.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.【分析】连接BE,作EF⊥BD于F,由折叠的性质得:∠DAC=∠DAE,DE=CD=,求出,得出BE=DE=,由圆周角定理得出∠DAE=∠BAE=∠BDE=∠DBE,得出∠DAC=∠DAE=∠BAE,求出∠BAE=∠BDE=∠DBE=30°,由等腰三角形的性质和直角三角形的性质得出DF=BF,EF=DE=,求出DF=EF=,即可得出结果.【解答】解:连接BE,作EF⊥BD于F,如图所示:由折叠的性质得:∠DAC=∠DAE,DE=CD=,∵点E是的中点,∴,∴BE=DE=,∠DAE=∠BAE=∠BDE=∠DBE,∴∠DAC=∠DAE=∠BAE,∵∠CAB=90°,∴∠BAE=30°,∴∠BDE=∠DBE=30°,∵EF⊥BD,∴DF=BF,EF=DE=,∴DF=EF=,∴BD=2DF=;故答案为:.【点评】本题考查了翻折变换的性质、圆周角定理、垂径定理、等腰三角形的判定与性质、勾股定理等知识;熟练掌握圆周角定理,求出∠BAE=30°是解题关键.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.【分析】设PD=t.则PA=10﹣t.首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题.【解答】解:如图,设PD=t.则PA=6﹣t.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=10,在Rt△ABP中,∵AB2+AP2=PB2,∴62+(10﹣t)2=102,∴t=2或18(舍去),∴PD=2,∴t=2s时,B、E、P共线.故答案为:2.【点评】本题考查了矩形的性质、勾股定理等知识,解题的关键是学会利用特殊位置解决问题.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.【分析】如图,连接AC、BD交于点O,连接OM.首先说明点E从点A运动到点D时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点O,连接OM,∵BF⊥CE∴∠BFC=90°,∴点F的运动轨迹在以边长BC为直径的⊙M上,当点E从点A运动到点D时,点F的运动路径长为,∵四边形ABCD是菱形∴AB=BC=5,∠ABD=∠DBC=∠ABC=30°∵BM=MO∴∠MBO=∠BOM=30°,∴∠OMC=60°∴的长==π故答案为:π【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)【解答】解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴+=>0,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:【点评】本题考查圆的切线性质,主要涉及相似三角形的判定与性质,勾股定理,切线的性质等知识,题目综合程度较高,很好地考查学生综合运用知识的能力.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.【分析】作辅助线,构建直角三角形,设OF=x,则DF=x,OD=x,证明△DFC∽△OGD,则,得DC=,根据勾股定理列方程可得,计算x2=50﹣25,根据两条对角线乘积的一半可得菱形的面积.【解答】解:连接OE,CD交于点G,过D作DF⊥OB于F,∵∠AOB=45°,∴△ODF是等腰直角三角形,设OF=x,则DF=x,OD=x,∵四边形OCED是菱形,∴OE⊥CD,OG=EG=OE=5,∵OC=OD,∴∠ODG=∠DCF,∵∠DFC=∠OGD=90°,∴△DFC∽△OGD,∴,∴,DC =,在Rt △OCG 中,,解得x 2=50+25(舍)或50﹣25,∴菱形OCED 的面积=CD •OE =•10==50﹣50,故答案为:50﹣50.【点评】本题考查了菱形的性质、半径的性质、相似三角形的判定和性质、勾股定理等知识,寻找相似三角形利用相似三角形性质求线段是常用的数学方法.13.(2019安徽省六安市模拟)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③△POF ∽△BNF ;④当△PMN ∽△AMP 时,点P 是AB 的中点,其中一定正确的结论有 .(填上所有正确的序号).【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形,从而作出判断. 【解答】解:∵四边形ABCD 是正方形, ∴∠BAC =∠DAC =45°. 在△APE 和△AME 中,,∴△APE ≌△AME (ASA ),故①正确; ∴PE =EM =PM ,同理,FP=FN=NP.∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故③错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故④正确.故答案为:①②④.14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.【分析】根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.【解答】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF==4,∴EF=4﹣4,∴PD+PE的长度最小值为4﹣4,故答案为:4﹣4.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,所以所作的第2018个菱形的边长是()2017,故答案为()2017.【点评】此题主要考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是掌握探究规律的方法,属于中考常考题型.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB ∥x 轴,BC ∥y 轴,点C 在x 轴上,则△ABC 的面积为 .【分析】作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图,根据反比例函数比例系数k 的几何意义得S 矩形AEOD =1,S 矩形BFOD =4,于是得到S 矩形AEFB =3,然后根据矩形的性质和三角形面积公式易得S △ABC =S △FAB =1.5.【解答】解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图, ∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4, ∴S 矩形AEFB =4﹣1=3, ∴S △FAB =1.5, ∴S △ABC =S △FAB =1.5. 故答案为1.5.【点评】本题考查了反比例函数系数k 的几何意义,矩形的面积,熟练掌握反比例函数系数k 的几何意义是解题的关键.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy 中,已知A (2,0),B (0,6),M(0,2).点Q 在直线AB 上,把△BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ .如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是 .【分析】先求出OA=2,OB=6,OM=2,BM=OB﹣OM=4,tan∠BAO=,得出∠BAO=60°,AB=2OA=4,分∠PQB=120°或∠PQB=60°两种情况,(1)当∠PQB=120°时,又分两种情况:①延长PQ交OB于点N,则∠BQN=60°,QN⊥BM,由折叠得出BM=MP=4,求出BN=NM=BM=2,由勾股定理得出NP==2,ON=OM+NM=4,即可得出P点的坐标;②QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,即可得出P点的坐标;(2)当∠PQB=60°时,Q点与A点重合,AB=AP=4,OP=AP﹣OA=2,即可得出P点的坐标;综上情况即可P点的坐标.【解答】解:∵A(2,0),B(0,6),M(0,2),∴OA=2,OB=6,OM=2,BM=OB﹣OM=4,∴tan∠BAO===,∴∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,∵直线PQ与直线AB所构成的夹角为60°,∴∠PQB=120°或∠PQB=60°,(1)当∠PQB=120°时,分两种情况:①如图1所示:延长PQ交OB于点N,则∠BQN=60°,∴∠QNB=90°,即QN⊥BM,由折叠得:BM=MP=4,∠BQM=∠PQM,∵∠PQB=120°,∴∠BQM=∠PQM=120°,∴∠BQN=∠MQN=60°,∵QN⊥BM,∴BN=NM=BM=2,在Rt△PNM中,NP===2,ON=OM+NM=4,∴P点的坐标为:(2,4);②如图2所示:QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,∴P点的坐标为:(0,﹣2);(2)当∠PQB=60°时,如图3所示:Q点与A点重合,由折叠得:AB=AP=4,OP=AP﹣OA=4﹣2=2,∴P点的坐标为:(﹣2,0);综上所述:P点的坐标为:(2,4)或(0,﹣2)或(﹣2,0).【点评】本题考查了翻折变换的性质、直角三角形的性质、勾股定理、三角函数、坐标等知识,熟练掌握翻折变换的性质、直角三角形的性质,并进行分类讨论是关键.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC 的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.【点评】此题考查了圆周角定理,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意掌握转化思想的应用.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)【分析】根据已知条件得到当x=﹣1时,y>0,即a﹣b+c>0,故①正确;根据抛物线的对称轴为直线x=1,即﹣=1,得到3a+b≠0,故②错误;根据已知条件得到方程ax2+bx+c=n有两个相等的实数根,得到b2=4a(c﹣n),故③正确;根据抛物线的开口向下,得到y=n,于是得到直最大线y=n﹣1与抛物线由两个交点,即可得到一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确.【解答】解:∵抛物线顶点坐标为(1,n),∴抛物线的对称轴为直线x=1,∵与x轴的一个交点在点(3,0)和(4,0)之间,∴当x=﹣1时,y>0,即a﹣b+c>0,故①正确;∵抛物线的对称轴为直线x=1,即﹣=1,∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n),∴抛物线y=ax2+bx+c(a≠0)与直线y=n有唯一一个交点,即方程ax2+bx+c=n有两个相等的实数根,∴△=b2﹣4a(c﹣n)=0,∴b2=4a(c﹣n),故③正确;∵抛物线的开口向下,=n,∴y最大∴直线y=n﹣1与抛物线由两个交点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确;故答案为:①③④.【点评】本题考查的是二次函数图象与系数的关系,图象开口方向判断出a,由对称轴得出b,抛物线与y轴的交点判断c,抛物线与x轴交点的个数确定b2﹣4ac.22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.【分析】设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,通过角的关系得到PE∥BF,由平行得到△PEA∽△BFP;由相似得到x与y的关系,在Rt△FEP中,FE2=FP2+EP2,得到FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,结合x的取值范围,确定EF的范围.【解答】解:设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,∵∠AEP=∠EPF=∠PFB=90°,∴PE∥BF,∴△PEA∽△BFP,∴=,∴4y=3x,在Rt△FEP中,FE2=FP2+EP2,∴FE2=y2+(8﹣x)2,∴FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,∵0<x<8,∴当x=时,FE有最小值,当x=0时,EF有最大值8,∴≤EF<8.故答案为≤EF<8.【点评】本题考查二次函数最值,三角形相似,勾股定理,平行线的判定,是综合性很强的一道题;能够通过平行得到三角形相似,能够通过相似得到边的关系,利用勾股定理得到二次函数的解析式,再由二次函数的值的范围求解,因此熟练掌握相似、平行、二次函数最值的求法是解题的关键.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.【分析】分两种情况:直线BC在OA的下方和上方,画图计算边界时点c的值,可得c的取值.【解答】解:如图所示1,直线BC在OA的下方时当c=﹣1时,区域S内的整点有(1,0),(2,0),(3,0),有3个;当直线BC:y=+c过(1,﹣1)时,c=﹣,且经过(5,0)∴区域S内恰有4个整点,c的取值范围是﹣≤c<﹣1.如图2,直线BC在OA的上方时,∵点(2,2)在函数y=(x>0)的图象上,当直线BC:y=过(1,2)时,c=,。

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。

2019年中考数学模拟试卷含答案解析

2019年中考数学模拟试卷含答案解析

2019年初中毕业生数学考试模拟试卷及答案解析一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-23.计算3x 2-x 2的结果是( ) A .2B .2x2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40B .42、38C .40、42D .42、405.计算(a -2)(a +3)的结果是( ) A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +66.点A(2,-5)关于x 轴对称的点的坐标是( ) A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .659.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( ) A .32 B .23C .235D .265 二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m 3251336320363358073 12628成活的频率(精确到0.01)0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111mm m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图 阅读量/本 学生人数1 152 a3 b 45 (1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A(a ,m)在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B(1) 如图1,当a =-2时,P(t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D(d ,n)处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L:y=-x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1) 直接写出抛物线L的解析式(2) 如图1,过定点的直线y=kx-k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值(3) 如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10 ADBDBACCDB提示:9.设中间的数为x ,则这三个数分别为x-1,x ,x+1∴这三个数的和为3x ,所以和是3和倍数,又2019÷3=671,673除以8的余数为1,∴2019在第1列(舍去);2016÷3=672,672除以8的余数为0,∴2016在第8列(舍去);2013÷3-671,671除以8的余数为7,∴2013在第7列,所以这三数的和是是2013, 故选答案D.10.连AC 、DC 、OD ,过C 作CE ⊥AB 于E ,过O 作OF ⊥CE 于F ,∵BC 沿BC 折叠,∴∠CDB=∠H ,∵∠H+∠A=180°,∴∠CDA+∠CDB=180°,∴∠A=∠CDA ,∴CA=CD ,∵CE ⊥AD ,∴AE=ED=1,∵5OA =,AD=2,∴OD=1,∵OD ⊥AB ,∴OFED 为正方形,∴OF=1,5OC =,∴CF=2,CE=3,∴32CB =.OHFEDCBAOFEDCBA法一图 法二图法二 第10题 作D 关于BC 的对称点E ,连AC 、CE ,∵AB=4,225AE AO ==,∴BE=2,由对称性知,∠ABC=∠CBE=45°,∴AC=CE ,延长BA 至F ,使FA=BE ,连FC ,易证△FCA ≌△BCE ,∴∠FCB=90°,∴()223222BC FB AB BE ==+=.二、填空题11.2 12.0.9 13.11m - 14.30°或150° 15.24 16.32揭示:第15题 ()23206002y t =--+ 当t=20时,滑行到最大距离600m 时停止;当t=16时,y=576,所以最后4s 滑行24m. 第16题 延长BC 至点F ,使CF=AC ,∵DE 平分△ABC 的周长,AD=BC ,∴AC+CE=BE ,∴BE=CF+CE=EF ,∴DE ∥AF ,DE=12AF ,又∵∠ACF=120°,AC=CF ,∴33AF AC ==,∴32DE =. FEDCB AGABCDEF第16题法一答图 第16题法二答图法二 第16题 解析 作BC 的中点F ,连接DF ,过点F 作FG ⊥DE 于G ,设CE=x ,则BE=1+x ,∴BE=1+x ,∴BC=1+2x ,∴12CF x =+,∴12EF CF CE =-=,而1122DF AC ==,且∠C=60°,∴∠DFE=120°,∴∠FEG=30°,∴1124GF EF ==,∴34EG =,∴322DE EG ==. 三、解答题17、解析:原方程组的解为64x y =⎧⎨=⎩18.证明:∵BE=CF ,∴BE+EF=CF+EF ,∴BF=CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCE (SASA ),∴∠DEC=∠AFB ,∴GE=GF. 19.解析 (1)m=50,a=10,b=20 (2)11521032045500115050⨯+⨯+⨯+⨯⨯=(本)答:该年级全体学生在这次活动中课外阅读书箱的总量大约是1150本. 20.解析:(1)设A 型钢板x 块,则B 型钢板有(100-x )块.()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得2025x ≤≤.X=20或21或22或23或24或25,购买方案共有6种. (2)设总利润为W 元,则()()1002100120310014046000w x x x x x =+-++-=-+⎡⎤⎣⎦X=20时,max 140204600043200W =-⨯+=元. 获利最大的方案为购买A 型20块,B 型80块.21.(1)证明:如图①,连接OB ,OP ,在△OAP 和△OBP 中,OA OBOP OP AP BP =⎧⎪=⎨⎪=⎩,∴△OAP ≌△OBP(SSS ),∴∠OBP=∠OAP ,∵PA 是⊙O 的切线,∴∠OBP=∠OAP=90°,∴PB 是⊙O 的切线.H 图②图①ECBECBOOA PAP⑵如图②,连接BC ,AB 与OP 交于点H∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x 由⑴知 ∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x ∵AC 是⊙O 的直径,∴∠ABC =90°∵易证OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP易证△OAH ∽△CAB ,∴OH CB =OA AC =12,设OH =a ,∴CB =BP =2a 易证△HPB ∽△BPO ,∴HP BP =BP OP ,∴设HP =ya ,∴2yaa=2a a ya +解得 11172y --=(舍)或21172y -+= ∵OP ∥CB ,易证△HPE ∽△BCE ,∴PE CE =HP CB =2yaa=1174-+22、解:⑴将x A =-2代入y =8x 中得:y A =82-=-4 ∴A(-2,-4),B(-2,0)①∵t =1 ∴P(1,0),BP =1-(-2)=3∵将点B 绕点P 顺时针旋转90°至点C ∴x C =x P =t PC =BP =3 ∴C(1,3)②∵B(-2,0),P(t ,0)第一种情况:当B 在P 的右边时,BP =-2-t ∴x C =x P =t PC 1=BP =-2-t ∴C 1(t ,t +2) 第二种情况:当B 在P 的左边时,BP =2+t ∴x C =x P =t PC 2=BP =2+t ∴C 2(t ,t +2) 综上:C 的坐标为(t ,t +2) ∵C 在y =8x上 ∴t(t +2)=8 解得 t =2或-4 xyxyxyD 2D 1E 1E 2P BOCPBAOCBAOA⑵作DE ⊥y 轴交y 轴于点E ,将y A =m 代入y =8x 得:x A =8m ,∴A(8m ,m) ∴AO 2=OB 2+AB 2=228m +m 2,将y D =n 代入y =8x 得:x D =8n ,∴D(-8n ,n) ∴DO 2=DE 2+OE 2=28n ⎛⎫- ⎪⎝⎭+n 2,∴228m +m 2=28n ⎛⎫- ⎪⎝⎭+n 2,228m -228n =n 2-m 2,222264()n m m n -=n 2-m 2, (64-m 2n 2)(n 2-m 2)=0321CM NA BMCNBAP①当n 2-m 2=0时,n 2=m 2,∵m <0,n >0 ∴m +n =0 ②当64-m 2n 2=0时,m 2n 2=64,∵m <0,n >0 ∴mn =-8 综合得:m +n =0,或 mn =-823、证明: ⑴∵∠ABC =90°∴∠3+∠2=180°-∠ABC =180°-90°=90° 又∵AM ⊥MN ,CN ⊥MN∴∠M =∠N =90°,∠1+∠3=90° ∴∠1=∠2 ∴△ABM ∽△BCN⑵方法一:过P 点作PN ⊥AP 交AC 于N 点, 过N 作NM ⊥BC 于M 点∵∠BAP +∠APB =90°,∠APB +∠NPC =90° ∴∠BAP =∠NPC ,△BAP ∽△MP ∴AP BA BPPN MP MN== 又∵25tan 5PN PAC PA ∠== 设25MN a =,25PM b =,则5BP a =,5AB b =又∵BAP BCA ∠=∠,∴NPC BCA ∠=∠,∴NP NC =,245PC PM b == 又△BAP ∽△BCA ,BA BC BP BA=,∴2BA BP BC =⋅, ()()255545b a a b =⋅+,解得:55a b =, ∴255tan 525MN a a C MC b b ∠==== 方法二:过点C 作CE AP ⊥的延长线交于E 点,过P 作PF AC ⊥交AC 于点F ∵90ABC CEP ∠=∠=︒,BPA EPC ∠=∠,∴BAP ECP ACB ∠=∠=∠ ∵25tan 5PAC ∠=,∴设25CE m =,则5AE m = 由勾股定理得:35AC m =,∵ACP ECP ∠=∠, ∴PF PE =∴32APC CPE S AC AP S CE PE ∆∆=== ∵5AE m =,∴2PE m = ∴25tan tan 525PE ECP ACB EC ∠=∠===方法三:作AP 的垂直平分线交AB 于D 点,连DP 设C BAP x ∠=∠=,PAC y ∠=,∴290x y +=︒2BDP BAP DPA x ∠=∠+∠=902DPB x y PAC ∠=︒-==∠∵25tan 5PAC ∠=,令2BD a =,5BP a = 由勾股定理得:3DP a AD == ∴5tan tan 5BP C BAP AB ∠=∠== (3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ∵AE AB = ∴EH HB =,易知△AHB ∽△BKC ,25EH DA HK AC == 设3CK x =,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴4HB EH x == ∴5201022EH x HK x ===,∴3tan 14CK CEB EK ∠==24. 解析:(1)221y x x =-++(2)∵直线()40y kx k k =-+<,则()14y k x =-+ ∴直线MN 过定点P (1,4) 联立2421y kx k y x x =-+⎧⎨=-++⎩, 得()2230x k x k +--+= ∴2M N x x k +=-,3M N x x k ⋅=- ∴BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-= ∵()()()22242438N M M N M N x x x x x x k k k -=+-=---=-∴281k -= ∴3k =± ∵0k < ∴3k =-(3)设1L 为:22y x x t =-++ ∴1m t =-且C (0,t ),D (2,t ),F (1,0),设P (0,a )①△PCD ∽△POF 时, ∴CD CP OF OP =, ∴21t aa -=, ∴3t a =,此时必有一点P 满足条件②△DCP ∽△POF 时, ∴CD CP OP OF =, ∴21t a a -=, ∴220a at -+= ∵符合条件的点P 恰有两个, ∴第一种情况:220a at -+=有两个相等的实数根0∆=,∴22t =± ∵0t > ∴22t =, ∴1221m =-将22t =代入3t a =得:1223a =∴1P (0,223) 将22t =代入220a at -+=得:22a = ∴2P (0,2)第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解∴0∆>, 将3t a =代入220a at -+=得:22320a a -+= ∴1a =± ∵0a > ∴1a =, ∴3t =, 22m =将3t =代入220a at -+=得:31a =, ∴3P (0,1); 42a =, ∴4P (0,2) 综上所述:当1221m =-时,P (0,223)或P (0,2), 当22m =时,P (0,1)或P (0,2)。

2019届九年级数学 中考模拟试卷含解析

2019届九年级数学 中考模拟试卷含解析

2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。

2019年最新中考数学模拟试卷及答案605444

2019年最新中考数学模拟试卷及答案605444

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.已知等腰三角形一腰上的高线等于底边的一半,则这个等腰三角形的顶角等于( )A .120°B .90°C . 60°D .30° 2.把多项式22()4()x y x y -+-分解因式,其正确的结果是( )A .(22)(2)x y x y x y x y +--++-B .(53)(53)x y y x --C .(3)(3)x y y x --D . (3)(2)x y y x --3.下列多项式因式分解正确的是( )A .2244(2)x x x -+=-B .22144(12)x x x +-=-C .2214(12)x x +=+D .222()x xy y x y ++=+ 4.如果把分式22a b a b+-中的a ,b 都扩大 3 倍,那么分式的值( ) A .是原来的3 倍 B .是原来的 5 倍 C .是原来的13 D .不变5.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个6.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形7.一块试验田的形状是三角形(设其为ABC △),管理员从BC 边上的一点D 出发,沿DC CA AB BD →→→的方向走了一圈回到D 处,则管理员从出发到回到原处在途中身体( )A .转过90B .转过180C .转过270D .转过3608.下列说法正确的是( )A .周长相等的两个三角形全等B .面积相等的两个三角形全等C .三个角对应相等的两个三角形全等D .三条边对应相等的两个三角形全等 9.下列计算错误..的是( ) A .6a 2b 3÷(3a 2b-2ab 2)=2b 2-3abB .[12a 3+(-6a 2)]÷(-3a )=-4a 2+2aC .(-xy 2-3x )÷(-2x )=12y 2+32D .[(-4x 2y )+2xy 2]÷2xy=-2x+y 10.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是( )A .16B .14C .13D .1211.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( )A .∠A=∠A ′,∠B=∠B ′,AC=A ′C ′B .∠A=∠A ′,AB=A ′B ′,BC=B ′C ′C .∠B=∠B ′,BC=B ′C ′、AB=A ′B ′D .AB=A ′B ′,BC=B ′C ′,AC=A ′C ′12.如图,∠ADE 与∠DEC 是( )A .同位角B .内错角C .同旁内角D .不能确定13.如图,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=,则C ∠等于( )A .35B .75C .70 D .8014.) A .23 B .21 C .23 D .63 15.已知一个三角形的周长为39 cm ,一边长为12 cm ,另一边长为l5 cm ,则该三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .无法确定16.下列计算中正确的是( )A .2233546y yx x y ⋅=B .3213423(2)(4)8n n n n n x y x y x y +-+---=C . 22222()()n n n n x y xy x y -+--=-D .23226(7)(5)2a b ab c a b c =-。

2019年中考数学模拟冲刺试卷及答案

2019年中考数学模拟冲刺试卷及答案

2019年中考数学模拟冲刺试卷及答案本试卷分试题卷和答题卷两部分,试卷共6页,答题卷共6页,满分150分。

考试时间120分钟。

一.选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑...............) 1.16的平方根是( )A.4B.-4C.±4D.±82.下列运算正确的是( )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x += 3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个 4.如图,桌面上有一个一次性纸杯,它的俯视图应是( )5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( )A.该调查的方式是普查B.本地区只有40个成年人不吸烟C.样本容量是50D.本城市一定有100万人吸烟6 杭州银泰百货对上周女装的销售情况进行了统计,如下表所示:颜色 黄色 绿色 白色 紫色 红色 数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( ) A .平均数B . 众数C .中位数D .方差A B C D7.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ) A. 内切 B.相交 C.外切 D.外离8.在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ) A.2.5B.5C.10D.159.如右图,一次函数y =kx +b 的图象经过A 、B 两点, 则不等式kx +b < 0的解集是( )A.x <0B. 0< x <1C.x <1D. x >110.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A.12120元B.12140元C.12160元D.12200元 11.若2-=+b a ,且a ≥2b ,则( )A.a b 有最小值21B.a b有最大值1 C.b a 有最大值2 D.b a 有最小值98- 12.在矩形ABCD 中,有一个菱形BFDE (点E ,F 分别在线段AB ,CD 上),记它们的面积分别为ABCD S 和BFDE S ,现给出下列命题: ①若232+=BFDE ABCD S S ,则33tan =∠EDF ; ②若EF BD DE ⋅=2,则DF=2AD.则( )A. ①是真命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是真命题D. ①是假命题,②是假命题二.填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题卡相应位......置.上.) 13.函数2+=x y 中,自变量x 的取值范围是.14.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为20.01S ≈甲,20.002S ≈乙,则产量较为稳定的品种是_____________(填“甲”或“乙”).15.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度约为_________m.16.已知圆锥的底面半径为1cm,母线长为1cm,则它的侧面积是 cm 2.17.如图,在平面直角坐标系中,A ⊙与y 轴相切于原点O ,平行于x 轴的直线交A ⊙于M 、N 两点,若点M 的坐标是(42)--,,则弦M N 的长为 .18.如图,已知△OP 1A 1△、A 1P 2A 2、△A 2P 3A 3……均为等腰直角三角形,直角顶点P 1、P 2 、P 3……在函数4y x=(x >0)图象上,点A 1、A 2、A 3……在x 轴的正半轴上,则点P 2011的横坐标为 .三.解答题(本大题共10小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分16分)(1)计算:︒-+---30cos 4)21(|1|123(2)化简2)1(111-÷⎪⎭⎫ ⎝⎛--+x x x x xP 1OA 1A 2A 3P 3P 2yx510(第18题)下午5时早上10时第15题第17题20.(本小题满分12分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2;B布袋中有三个完全相同的小球,分别标有数字2-,3-和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=2--上的概率.x21.(本题满分12分)如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?22.(本题满分12分)已知:如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE⊥AD 的延长线于点E ,且 CE =CF . (1)求证:CE 是⊙O 的切线;(2)若AD =CD =6,求四边形ABCD 的面积.23.(本题满分12分)已知在图1、2、3中AC 均平分∠MAN .⑴ 在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,我们可得结论:AB +AD =AC ;在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(2)在图3中:(只要填空,不需要证明).①若∠MAN =60°,∠ABC +∠ADC =180°,则AB +AD = AC ;②若∠MAN =α(0°<α<180°),∠ABC +∠ADC =180°,则AB +AD = AC (用含AM N BD CCABNNMMDD AC第23题图1 第23题图2第23题图3α的三角函数表示).24.(本题满分12分)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计.(1)汽车载人时的速度为_______km/min;第一批学生到达博物馆用了_____分钟;原计划从学校出发到达博物馆的时间是______分钟;(2)求汽车在回头接第二批学生途中(即空载时)的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.25.(本题满分14分)如图,Rt △AOB 中,∠A =90°,以O 为坐标原点建立直角坐标系,使点A在x 轴正半轴上,OA =2,AB =8,点C 为AB 边的中点,抛物线的顶点是原点O ,且经过C 点.(1)填空:直线OC 的解析式为 _______ ; 抛物线的解析式为 _______ ;(2)现将该抛物线沿着线段OC 移动,使其顶点M 始终在线段OC 上(包括端点O 、C ),抛物线与y 轴的交点为D ,与AB 边的交点为E ;①是否存在这样的点D ,使四边形BDOC 为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE 的面积为S ,求S 的取值范围.数学参考答案及评分意见一.选择题:1234567891011 12 C B C B C B B A D C CA二.填空题(本大题共6小题,每小题4分,共计24分.)13.x ≥-2 14.甲15.4 16.π 17.3 18.20102 三.解答题:19.(本题满分16分) (1)︒-+---30cos 4)21(|1|123=23-1+8-23………………………………6分=7……………………………………………………8分(2)2)1(111-÷⎪⎭⎫⎝⎛--+x x x x x =)1(122---x x x x ×)1(-x ………………………………5分=xx-1………………………………8分20.(本小题满分12分)(1)………………………………6分或…………………………6分线y =2x --上的点Q 有:(1,-3);(2,-4)(2)落在直∴P=62=31………………………………12分 21.解:如图,∵CD ∥AB,∴∠CAB=30°,∠CBF=60°; ……………………2分∴∠BCA=60-30=30°,即∠BAC=∠BCA; ………………………………4分 ∴BC=AB=3米; ………………………………6分B A -2-3-41(1,-2) (1,-3) (1,-4)2(2,-2) (2,-3) (2,-4)Rt △BCF 中,∠CBF=3米,∠CBF=60°; ………………………………8分 ∴BF=BC=1.5米; ………………………………10分故x=BF-EF=0.7米. ………………………………12分 22.(1)连结OC .∵CF ⊥AB ,CE ⊥AD ,且CE=CF ∴∠CAE =∠CAB ∵ OC =OA ∴ ∠CAB =∠O CA ∴∠CAE =∠O CA∴∠O CA +∠ECA =∠CAE +∠ECA =90°……………………4分 又∵OC 是⊙O 的半径∴CE 是⊙O 的切线………………………………6分 (2)∵AD =CD∴∠DAC =∠DCA =∠CAB ∴DC //AB ∵∠CAE =∠O CA ∴OC//AD∴四边形AOCD 是平行四边形 ∴OC =AD =6,AB =12 ∵∠CAE =∠CAB ∴弧CD =弧CB ∴CD =CB =6∴△OCB 是等边三角形 ∴33=CF………………………………9分∴S 四边形ABCD =327233)126(2)(=⋅+=+CF AB CD …………12分23.解:⑴成立证法一:如图,过点C 分别作AM 、AN 的垂线,垂足分别为E 、F. ∵AC 平分∠MAN,∴CE =CF.∵∠ABC +∠ADC =180°,∠ADC +∠CDE =180°, EMDC∴∠CDE =∠ABC ………………………………3分, ∵∠CED =∠CFB =90°,∴△CED ≌△CFB,∴ED =FB,∴AB +AD =AF +BF +AE -ED =AF +AE,由⑴知AF +AE =AC, ∴AB +AD =AC ………………………………6分 证法二:如图,在AN 上截取AG =AC,连接CG . ∵∠CAB =60°,AG =AC,∴∠AGC =60°,CG =AC =AG , ∵∠ABC +∠ADC =180°,∠ABC +∠CBG =180°, ∴∠CBG =∠ADC,∴△CBG ≌△CDA, ∴BG =AD, ………………………………3分∴AB +AD =AB +BG =AG =AC, ………………………………6分 (2)①3;………………………………9分②2cos2α.………………………………12分24.(1)1.2km/min;50;100 ; ………………………………3分(2)1.8km/min; ………………………………6分 (3)能够合理安排.方案:从故障点开始,在第二批学生步行的同时出租车先把第一批学生送到途中放下,让他们步行,再回头接第二批学生,当两批学生同时到达博物馆,时间可提前10分钟. 理由:设从故障点开始第一批学生乘车t 1分钟,汽车回头时间为t 2分钟,由题意得:⎩⎨⎧=++=++12212112.18.1)(2.048)(2.02.1t t t t t t t .解得:⎩⎨⎧==163221t t . ………………10分从出发到达博物馆的总时间为:10+2×32+16=90(分钟).即时间可提前100-90=10(分钟). ………………………………12分 25.(1)y =2x ; ………………………………3分y =x 2; ………………………………6分(2)设解析式为m m x y 2)(2+-=,①则可得422=+m m ………………………………8分解得51±-=m(51--=m 舍去),所以51+-=m ………………………………10分2019年中考数学模拟冲刺试卷及答案②S=422++-m m=5)1(2+--m ………………………………12分而20≤≤m ………………………………13分 所以54≤≤m .………………………………14分。

2019年最新中考数学模拟试卷及答案520519

2019年最新中考数学模拟试卷及答案520519

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.已知在△ABC 和△A ′B ′C ′中,AB =A ′B ′,∠B=∠B ′,补充下面一个条件,不能说明△ABC ≌△A ′B ′C ′的是( )A . BC =B ′C ′ B .AC=A ′C ′ C .∠C=∠C ′D .∠A=∠A ′2.如果x y x ->,x y y +<,那么下列式子中,正确的是( )A .0x y +> 0x y -< C .0xy < D .0x y> 3.某班买电影票 55 张,共用了 85 元,其中甲种票每张2元,乙种票每张1元,设甲、乙两种票分别买了 x 张和y 张,则可列出方程组为( )A . 55285x y x y +=⎧⎨+=⎩B . 55201085x y x y +=⎧⎨+=⎩C . 25585x y x y +=⎧⎨+=⎩D . 55285x y x y +=⎧⎨+=⎩4.若 x ,y 是正整数,且5222x y ⋅=,则x ,y 的值有( )A .4 对B .3 对C .2 对D .1 对5.2200620082004-⨯的计算结果为( )A .1B .-1C .4D .-46.如图,可以写出一个因式分解的等式是( )A .2265(23)(2)a ab b b a b a ++=++B .22652(32)a ab b a a b ++=+C .2265(2)(3)a ab b a b a b ++=++D .2265(5)(2)a ab b a b a b ++=++7.计算220(2)2(2)----+-得( )OE AB DC A .9 B .112 C .1D .128.公因式是23ax -的多项式是( )A .2225ax a --B .22236a x ax --C .2223612ax a x ax --+D .3261224ax ax a x ---9.x (g )盐溶解在 a (g )水中,取这种盐水m (g ),含盐( )A .mx a (g )B .am x (g )C .am x a +(g )D .mx x a+(g ) 10.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( )A .PD=PCB .PD<PC C .PD>PCD .PD 和PC 的大小关系是不确定的11.如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60 B .50 C .45 D .3012.在下列条件中,不能说明△ABC ≌△A ′B ′C ′的是( )A .∠A=∠A ′,∠B=∠B ′,AC=A ′C ′ B .∠A=∠A ′,AB=A ′B ′,BC=B ′C ′C .∠B=∠B ′,BC=B ′C ′、AB=A ′B ′D .AB=A ′B ′,BC=B ′C ′,AC=A ′C ′13.下列是二元一次方程的是( )A .36x x -=B .32x y =C .10x y -=D .23x y xy -=14.中国足球队在训练时,教练安排了甲、乙两队进行一个对抗赛游戏. 要求甲队准确地 将球传到如图所示的浅色区域,要求乙队准确地将球传到如图所示的深色区域. 下列对对抗赛哪一个队获胜的机会大的说法中,正确的是( )A .甲队,浅色区域面积大于深色区域面积B .乙队,浅色区域面积小于深色区域面积C .甲队,深色区域面积大于浅色区域面积D .乙队,深色区域面积小于浅色区域面积15. 小明的书包里共有外观、质量完全一样的 5本作业簿,其中语文 2本,数学 2本,英语1 本,那么小明从书包里随机抽出一本,是教学作业簿的概率为( )A .12B .25C .13D .1516.将某图形先向左平移3个单位,再向右平移4个单位,则相当于( )。

2019年人教版中考数学模拟试题十套(含答案)

2019年人教版中考数学模拟试题十套(含答案)

中考数学模拟试题一一. 选择题。

(30分)1.在-2,0,3这四个数中,最大的数是( )A .-2. 去年中国GDP (国内生产总值)总量为636463亿元,用科学计数法表示636463亿为( )。

A .6.36463×1014 B. 6.36463×1013 C. 6.36463×1012 D. 63.6463×10123.在下列水平放置的几何体中,其三种视图都不可能是长方形的是( )A . B. C. D. 4.下列图形既是轴对称图形又是中心对称图形的是( )A . B. C. D. 5.下列计算结果正确的是( )A .222352x y x y x y -⋅= B. 23354222x y x y x y -⋅=- C. 3223557x y x y xy ÷= D. 22(2)(2)4x y x y x y --⋅+=-6.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2017年4月份用电量的调查结果:那么关于这10户居民用电量(单位:度),下列说法错误的是( )A .中位数是55 B.众数是60 C. 平均数是54 D.方差是297.用一个圆心角为120°,半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( ) A .1 B.12 C. 32D.2 8. 某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x 米,根据题意可列方程为( )A .()4804804150%x x -=- B. ()48048041+50%x x -=C.()48048041+50%x x-= D. 4804804(150%)x x -=-9.如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dm B. 22dm C. 25dm D. 45dm第9题图 第10题图10.如图,在△ABC 中,AB=AC=10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE=∠B=α,DE 交AC 于点E ,且4cos 5α=。

2019年最新版初三中考数学模拟试卷及答案4854838

2019年最新版初三中考数学模拟试卷及答案4854838

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下面计算中,能用平方差公式的是( ) A .(1)(1)a a +--B .()()b c b c ---+C .11()()22x y +-D .(2)(2)m n m n -+2.要了解一批种子的发芽天数,抽取了l00粒种子,考查其发芽天数,其中的100是( ) A .总体 B .个体C .总体的一个样本D .样本容量3.已知分式11x x -+的值为零,那么x 的值是( ) A .-1B .0C .1D .1±4.如图,将四边形AEFG 变换到四边形ABCD,其中E 、G 分别是AB 、AD 的中点.下列叙述不正确的是( )A .这种变换是相似变换B .对应边扩大原来的2倍C .各对应角角度不变D .面积扩大到原来的2倍5.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( ) A .PD=PC B .PD<PC C .PD>PC D .PD 和PC 的大小关系是不确定的6.如右图,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( ) A .9015x y x y +=⎧⎨=-⎩B .90215x y x y +=⎧⎨=-⎩C .90152x y x y +=⎧⎨=-⎩D .290215x x y =⎧⎨=-⎩7.一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为( ) A .6cmB .5cmC .8cmD .7cm8.下列计算27a 8÷31a 3÷9a 2的顺序不正确的是( )A .(27÷31÷9)a 8-3-2B .(27a 8÷31a 3)÷9a 2C .27a 8÷(31a 3÷9a 2)D .(27a 8÷9a 2)÷31a 39.下列计算中:(1)a m ·a n =a mn ; (2)(a m+n )2=a 2m+n ; (3)(2a n b 3)·(-61ab n -1)=-31a n+1b n+2;(4)a 6÷a 3= a 3 正确的有( )A .0个B .1个C .2个D .3个10.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是 ( )11.下列事件中,不可能事件是( )A .掷一枚六个面分别刻有1~6数码的均匀正方体骰子,•向上一面的点数是“5”B .任意选择某个电视频道,正在播放动画片C .肥皂泡会破碎D .在平面内,度量一个三角形的内角度数,其和为360°12. 一副三角板按如图方式摆放,且∠1 的度数比∠2 的度数大50°,若设∠1 =x °,∠2 = y °,则可得到方程组为( )A . 50180x y x y =-⎧⎨+=⎩B . 50180x y x y =+⎧⎨+=⎩C . 5090x y x y =-⎧⎨+=⎩D . 5090x y x y =+⎧⎨+=⎩13.计算a b a bb a a +⎛⎫-÷ ⎪⎝⎭的结果为( ) A .a bb - B .a bb+ C .a ba- D .a ba+ 14.已知方程组5354x y ax y +=⎧⎨+=⎩与方程组2551x y x by -=⎧⎨+=⎩有相同的解,则 a ,b 的值为( )A .a = 1,b =2B . a=-4 , b=-6C .a=-6,b=2D .a=14,b=2ABCD15. 已知x 是整数,且222218339x x x x ++++--为整数,则所有符合条件的x 的值的和为( ) A .12B .15C .18D .2016.下列长度的三条线段能组成三角形的是( ) A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm17.如图放置着含30°的两个全等的直角三角形ABC 和EBD ,现将△EBD 沿BD 翻折到△E ′BD 的位置,DE ′与AC 相交于点F ,则∠AFD 等于( ) A .45°B .30°C .20°D .15°18.如图,线段AC 、BD 交于点0,且AO=CO ,BO=DO ,则图中全等三角形的对数有( ) A .1对B . 2对C .3对D .4对19.计算326(3)m m ÷-正确的结果是( ) A .3m -B .2m -C .2mD .3m20.计算200820090.04(25)⨯-的结果正确的是( ) A .2009B . -25C .1D .-121.如果整式226x x m -+恰好是一个完全平方式,那么常数m 的值是( ) A . 3B .-3C .3±D .922.如图所示,∠l 和∠2是( ) A .同位角B .同旁内角C .内错角D .以上结论都不对23.若两条平行直线被第三条直线所截得的八个角中有一个角的度数已知. 则( ) A .只能求出其余三个角的度数B.只能求出其余五个角的度数C.只能求出其余六个角的度数D.能求出其余七个角的度数24.为了解噪声污染的情况,某市环保局抽样调查了80个测量点的噪声声级(单位:分贝),并进行整理后分成五组,绘制出频数分布直方图如图所示.已知从左到右的前四组的频数分别为l2,20,24,16,且噪声高于69.5分贝就会影响工作和生活,那么影响到工作和生活而需对附近区域进行治理的测量点所占百分比为()A.10%B.15%C.20%D.25%25.(-m)12÷(-m)3等于()A.m4 B.-m4 C.m9 D.-m926.下列语句中正确的是()A.小于钝角的角是锐角B.大于直角的角是钝角C.小于直角的角是锐角D.大于锐角的角是直角或钝角27.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A.0.6 B.0.5 C.0.4 D.0.328.下列语句中正确的是()A.自然数是正数B.0 是自然数C.带“-”号的数是负数D.一个数不是正数就是负数29.若 3 个不相等的有理数的代数和为 0,则下面结论正确的是()A.3 个加数全为 0B.最少有 2 个加数是负数C.至少有 1 个加数是负数D.最少有 2 个加数是正数30.按表示算式( ) A .72÷(-5)×3.2B .-72÷5×3.2C .-72÷5×(-3.2)D .72÷(-5)×(-3.2) 31.若两个有理数的和与积都是负数,则这两个有理数( ) A .都是负数 B .都是正数C .一正一负,且正数的绝对值较小D .无法确定32.实数a ,b 在数轴上的位置如图所示,那么下列式子中不成立的是( ) A .a b >B .a b <C .0ab >D .0ab>33. m 箱橘子a (kg ),则 3箱橘子的重量是( ) A .3am(kg ) B .3ma (kg ) C .3am (kg ) D .3am(kg ) 34.计算222222113(22)(46)32a cb a bc +-+---的结果是( ) A . 225106a b +B . 221106a b --C . 221106a b -+D . 225106a b -35.两个5次多项式的和的次数一定( ) A . 是5次B . 是10次C . 不大于5次D . 大于5次36.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利l5元,则这种服装每件的成本价是 ( ) A .120元B .125元C .135元D .14037.若22()()x y m x y -+=+,则m 等于( ) A .4xy -B .4xyC .2xy -D . 2xy38.下面对么AOB 的理解正确的是( ) A .∠AOB 的边是线段OA 、OB B .∠AOB 中的字母A 、O 、B 可调换次序 C .∠AOB 的顶点是0,边是射线OA 、OB D .∠AOB 是由两条边组成的39.数90,91,92,93的标准差是( )A B .54C D40.已知∠AOB=150°,0C 平分∠AOB ,OD 在∠AOB 的内部,且∠AOD=13∠AOB ,则∠COD= ( ) A .15°B .25°C .35°D .45°41.下列语句中正确的是 ( ) A .两条不相交的直线叫做平行线 B .一条直线的平行线只有一条C .在同一平面内的两条线段,若它们不相交,则一定互相平行D .在同一平面内,两条不相交的直线叫做平行线42.一副三角板不能拼出的角的度数是(拼接要求:既不重叠又不留空隙)( ) A .75°B .105°C .120°D .125°43.下列叙述中正确的个数是( )①三角形的中线、角平分线都是射线;②三角形的中线、角平分线都在三角形内部;③三角形的中线就是过一边中点的线段;④三角形三条角平分线交于一点. A .0个B .1个C .2个D .3个44.下列图形中不是轴对称图形的是 ( )45.如图所示,已知△ABC ≌△DCB ,那么下列结论中正确的是( ) A .∠ABC=∠CDB ,∠BAC=∠DCB ,∠ACB=∠DBC B .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠ABD C .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠DBC D .∠ABC=∠DBC ,∠BAC=∠CDB ,∠ACB=∠ACD46.如图所示,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆孔,最后将正方形纸片展开,得到的图案是( )47.从1 到9这九个自然教中任取一个,是2 的倍数或是3 的倍数的概率是( ) A .19B . 29C .12D .2348.计算(2)(3)x x -+的结果是( ) A .26x -B .26x +C . 26x x +-D .26x x --49.如图所示,一 块正方形铁皮的边长为 a ,如果一边截去6,另一边截去 5,那么所剩铁皮的面积( 阴影部分)表示成:①(5)(6)a a --;②256(5)a a a ---;③265(6)a a a ---;④25630a a a --+其中正确的有( ) A .1 个B . 2 个C .3 个D . 4 个50.设P=2y-2,Q=2y+3,且3P-Q=1,则y 的值是 ( ) A .0.4 B .2.5 C .-0.4 D .-2.551.在半径为5cm 的⊙O 中,有一点P 满足OP=3cm ,则过P 的整数弦有( ) A .1条B .3条C .4条D .无数条52.下列调查方式合适的是( )A .为了了解全国中小学生的睡眠状况,采用普查的方式B .为了对“神舟六号”零部件进行检查,采用抽样调查的方式C .为了了解我市居民的环保意识,采用普查的方式D .为了了解炮弹的杀伤力,采用抽样调查的方式53.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形. 其中一定能拼成的图形是( ) A .①②③B .①④⑤C .①②⑤D .②⑤⑥54.在样本12,8,14,6,10,13,15,9,11,16,8,12,14,9,13,5,8,11,7,10中,频率是0.3的组的范围是( ) A .4.5~7.5B .7.5~10.5C .10.5~13.5D .13.5~16.555.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=56.二次函数2()(0)y a x m m a =++≠,无论m 取什么实数,图象的顶点必在( ) A . 直线y=x 上B .直线y= 一x 上C . x 轴上D .y 轴上57.用长度一定的绳子围成一个矩形,如果矩形的一边长 x (m )与面积 y (m 2)满足函数2(12)144y x =--+,当边长 x 1,、x 2、x 3满足123<12x x x <<时,其对应的面积yl 、y2、y 3 的大小关系是( ) A .123y y y <<B .123y y y >>C .213y y y >>D .132y y y <<58.若a 、b 分别表示圆中的弦和直径的长,则( ) A .a>bB .a<bC . a=bD .a ≤b59.三角形的外心是( ) A . 三条高线的交点B .三条中线的交点C .三条中垂线的交点D .三条内角平分线的交点60.一种花边是由如图的弓形组成的,弧ACB 的半径为 5,弦 AB=8,则弓高 CD 为( )A .2B .52C .3D .16361. 如图,AC 是⊙O 的直径,点 B .D 在⊙O 上,图中等于12∠BOC 的角有( )A .1 个B . 2 个C .3D .462.如图,在□ABCD 中,∠B=100°,延长AD 至点F ,延长CD 至点E ,连结EF ,则∠E+∠F 等于( ) A .100° B .80° C .50°D .40°63.如图,点A ,D ,G ,M 在半圆O 上,四边形ABOC ,OFDE ,HMNO •都是矩形,•设BC=a ,EF=b ,NH=c ,则下列各式正确的是( ). A .a>b>cB .a=b=cC .c>a>bD .b>c>a64.把方程2460x x --=配方,化为2()x m n +=的形式应为( )A .2(4)6x -=B .2(2)4x -=C .2(2)0x -=D .2(2)10x -=65.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为( ) A .22cmB .2cmC .22cm D .21cm 66.两个相似菱形的边长比是 1:4,那么它们的面积比是( )D A .1:2B .1:4C .1:8D .1:1667.已知等腰梯形的底角为60,上底长为2,上、下底长之比为1:3,那么梯形的面积为( ) A.B.C.D.68.下列事件,是必然事件的是( )A .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是1B .掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是偶数C .打开电视,正在播广告D .抛掷一枚硬币,掷得的结果不是正面就是反面69.如图所示,已知渠道的截面是等腰梯形,尺寸如图所示,若它的内坡坡度是 0.8,则坡角的正弦值是( )A.41B .45C .54D.4170.河堤的横断面如图所示,堤坝 BC 高 5m ,迎水斜坡的长是 10 m ,则斜坡 AB 的坡度是( )A .1:2B .2:3C .`1D .1:371.已知⊙O 的半径为6cm ,如果一条直线和圆心O 的距离为5cm ,那么这条直线和这个圆的位置关系为( ) A .相离B .相交C .相切D .相切或相离AOB72.已钝角三角形三边长分别为 a 、b 、c (a>b> c ),外接圆半径和内切圆半径分别为 R 、r , 则能盖住这个三角形的圆形纸片的最小半径是( ) A .R B .rC .2a D .2c 73.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d .若直线l 与⊙O 有交点,则下列结论正确的是( )A .d =rB .d ≤rC .d ≥rD .d <r74.在以下的几何体中,主视图、左视图、俯视图完全相同的是( )A .B .C .D .75.在半径为 8 cm 的圆中有一条弧长为4πcm ,则这条弧所对的圆周角为( ) A .30°B .45°C .60°D .90°76.满足x <x 是( ) A . -1B .0C .-2,-1, 0D .1,-1, 077.下列说法中,正确的个数是( )①样本的方差越小,波动性越小,说明样本稳定性越好; ②一组数据的方差一定是正数;③一组数据的方差的单位与原数据的单位是一致的; ④一组数据的标准差越大,则这组数据的方差一定越大. A .1个B .2个C .3个D .4个78.下列属于一元一次不等式的是( ) A .10>8B .2132x y +>+C .12(1)12y y +>- D .235x +> 79.下列函数中,是二次函数的有( )(1)25y x =-;(2)23y x =--;(3)(1)(3)y x x =-+;(4)2y x =; (5)22(1)y x x =--;(6)2y x π= A .5 个B .4 个C .3 个D .2 个80.如果不等式组731x x x n +<-⎧⎨>⎩的解集是4x >,那么n 的取值范围是( )A .4n ≥B .4n ≤C .4n =D .64n <81.若点A (2,n )在x 轴上,则点B (n-2,n+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限82.半径为R ,弧长为l 的扇形可用计算公式12S lR =计算面积,其中变量是( )A .RB .lC .S 、RD .S 、l 、R83. 如图,点A 、B 、C 在一次函数2y x m =-+的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x 轴与y 轴的垂线. 则图中阴部分的面积之和是( ) A .1B . 3C .3(1)m -D .3(2)2m -84.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时,上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( ) A .37.2分钟B .48分钟C .30分钟D .33分钟85.下列不等式组的解,在数轴上表示为如图所示的是( ) A .1020x x ->⎧⎨+≤⎩B .1020x x -≤⎧⎨+<⎩C .1020x x +≥⎧⎨-<⎩D .1020x x +>⎧⎨-≤⎩86.下列命题:①有两个角相等的梯形是等腰梯形;②有两边相等的梯形是等腰梯形;③两条对角线相等的梯形是等腰梯形;④等腰梯形上、下底中点连线把梯形分成面积相等的两部分.其中真命题有 ( ) A .1个B .2个C .3个D .4个87.(-2)2 的结果是( )A .2B .-2C .±2D .488.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( ) A .24B .18C .16D .689.若2440y y ++,则xy 的值等于( )A .-6B .-2C .2D .690.据《武汉市2002年国民经济和社会发表统计公报》报告:武汉市2002年国内生产总值达l493亿元,比2001年增长11.8%,下列说法: ①2001年国内生产总值为l493(1-11.8%)亿元; ②2001年国内生产总值为1493111.8%-亿元;③2001年国内生产总值为1493111.8%+亿元;④若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是 ( ) A .③④B .②④C .①④D .①②③91.下列方程是一元二次方程的是( )A .12=+y xB .()32122+=-x x xC .413=+xx D .022=-x 92.方程0232=+-x x 的实数根有( ) A .4个B .3个C .2个D .1个93.如图,AB ,CD 相交于点0,则下列条件中能得到AC ∥BD 且AC=BD 的是( ) A .∠A=∠B ,∠C=∠D B .OA=B C .OC=ODD .∠A=∠B ,OA=OB94.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确...的是( )A .∠ACD=∠BB .CH=CE=EFC .AC=AFD .CH=HD95.下列所给的边长相同的正多边形的组合中,不能镶嵌平面的是( ) A .正三角形与正方形组合B .正三角形与正六边形组合C .正方形与正六边形组合D .正三角形、正方形、正六边形组合96.下列关于菱形的对角线的说法中错误..的是( ) A .互相平分 B .互相垂直 C .相等 D .每一条对角线平分一组对角97.在□ABCD 中,AC ,BD 交于点0,OM 是△OBC 的高,若点M 是BC 的中点,则□ABCD ( ) A .一定不是矩形B .不一定是矩形C .一定是矩形D .以上都不对98.0x ≤)的结果是( )A .B .-C .()x x y +D .()x x y -+99.不等式组475(1)22463x x x x-<-⎧⎨->-⎩的解在数轴上表示为( )A .B .C .D .100.在方程20ax bx c ++=(0a ≠)中,当240b ac -=时方程的解是( ) A .2b x a=±B .b x a=±C .2b x a=-D .2b x a=【参考答案】***试卷处理标记,请不要删除一、选择题1.B 2.D 3.C 4.D 5.A 6.B 7.D 8.C 9.C 10.C12.D 13.A 14.D 15.A 16.D 17.B 18.D 19.B 20.B 21.C 22.C 23.D 24.A 25.D 26.C 27.C 28.B 29.C 30.A 31.C 32.B 33.D 34.C 35.C 36.B 37.B 38.C 39.D解析:D.40.B 41.D 42.D 43.C45.C 46.C 47.D 48.C 49.D 50.B 51.C 52.D 53.B 54.C 55.A 56.B 57.A 58.D 59.C 60.A 61.C 62.B 63.B 64.D 65.C 66.D 67.A 68.D 69.A 70.C 71.B 72.A 73.B 74.C 75.B 76.C 77.B79.B 80.B 81.B 82.D 83.B 84.A 85.D 86.B 87.A 88.C 89.A 90.A 91.D 92.A 93.D 94.D 95.C 96.C 97.C 98.B 99.A 100.C。

2019年中考数学模拟试卷含答案

2019年中考数学模拟试卷含答案

2019年中考数学模拟试卷含答案2019年九年级数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.-3的相反数是()A。

3 B。

-3 C。

1/3 D。

-1/32.计算2×3的结果是()A。

5 B。

6 C。

23 D。

33.某市棚户区改造项目总占地亩。

这个数用科学计数法表示为()A。

1.29×10^5 B。

1.129×10^1 C。

1.129×10^4 D。

1.129×10^34.下列命题中错误的是()A。

两组对边分别对应相等的四边形是平行四边形B。

两条对角线相等的平行四边形是矩形C。

两条对角线垂直的平行四边形是菱形D。

两条对角线垂直且相等的四边形是正方形5.某同学一周中每天体育运动所花时间(单位:分钟)分别为:35,40,45,40,55,40,48.这组数据的中位数是()A。

35 B。

40 C。

45 D。

486.如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:AD=2:1,△ABC的面积是18,则△DEC的面积是()A。

8 B。

9 C。

12 D。

157.若关于x的一元二次方程kx^2-2x-1=0没有实数根,则k的取值范围是()A。

k>-1 B。

k>-1且k≠0 C。

k<1 D。

k<-18.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2)。

设AE=x(0<x<2),则以下哪个选项是正确的?A。

当x=1时,点P是正方形ABCD的中心。

B。

当x=1/2时,EF+GH=AC。

C。

当0<x<2时,六边形AEFCHG面积的最大值是3.D。

当0<x<2时,六边形AEFCHG周长的值不变。

二、填空题(本大题共10小题,每小题3分,共30分,把答案填在相应的空格内)9.分解因式:2x^2-8=2(x+2)(x-2)10.二次根式1-x有意义的条件是x≤1.11.已知∠α=20°,则∠α的余角等于70°。

2019年中考数学模拟试题(四)参考答案

2019年中考数学模拟试题(四)参考答案

2019年初中学生学业模拟考试试题(四)数学 参考答案一、选择题(本大题共14小题,每小题3分,满分42分)15. < 16.6 17. 40° 18. 4319. 15 三、解答题 20.(满分7分)解:原式221(1)2[]11(1)x x x x x --=-÷--- -----------------------3分 221(1)(1)12x x x x ---=-- ----------------------------5分 (1)x x =--2x x =-+ ---------------------------------7分-------------------------------------------------------------------------------------------------------------- 21. (满分7分)解:(1)60 ------------2分(2)60﹣12﹣9﹣6﹣24=9, -----------------3分 补图所示:----------------4分(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.-----------------------7分22. (满分7分)解:由题意可得,α=30°,β=60°,AD=100米,∠ADC=∠ADB=90°,∴在Rt△ADB中,α=30°,AD=100米,∴tanα===,∴BD=米,-----------------------2分在Rt△ADC中,β=60°,AD=100米,∴tanβ=,--------------------------4分∴CD=100米,∴BC=BD+CD=米,即这栋楼的高度BC是米.------------------------7分--------------------------------------------------------------------------------------------------------------- 23. (满分9分)(1)证明:连接OC,因为OA=OC,所以∠BAC=∠ACO.------------------------1分因为∠BAC=∠CAD,故∠ACO=∠CAD.------------------------2分所以OC∥AD,又已知AD丄MN,所以OC丄MN,所以,直线MN是⊙O的切线;------------------------4分(2)解:已知AB是⊙O的直径,则∠ACB=90°,又AD丄MN,则∠ADC=90°.因为CD=3,∠CAD=30°,所以AD =3,AC =6 -------------------------5分在Rt △ABC 和Rt △ACD 中,∠BAC =∠CAD ,所以Rt △ABC ∽Rt △ACD , ---------------------------7分 则, 则AB =4,所以⊙O 的半径为2. ----------------------------9分--------------------------------------------------------------------------------------------------------------- 24. (满分9分) 解:(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据题意,得:⎩⎨⎧=+=+2923263y x y x 解得:⎩⎨⎧==75y x答:一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元。

2019中考数学模拟试卷和答案三.doc

2019中考数学模拟试卷和答案三.doc

2019-2020年中考数学模拟试卷和答案(三)题 号一二三总 分(1 ~ 10)(11 ~ 16)171819 2021 222324得 分得 分评卷人A .B .C .D .2.已知 y 关于 x 的函数图象如图所示,则当 y 0 时,自变量 x 的取值范围是()A . x 0B . 1 x 1 或 x 2yC . x1 D . x1或 1 x 23.长度单位 1 纳米 109米,目前发现一种新型病毒直径为1O 12x25100 纳米,用科学记数法表示该病毒直径是()A . 25.1 10 6米B . 0.251 10 4米C . 2.51105 米D . 2.51 10 5米4.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、 CD 分别表示一楼、二楼地面的水平线,∠ ABC=150°,BC 的长是 8 m ,则乘电梯从点 B 到点C 上升的高度 h 是() A .83 mB . 4 m3C . 4 3 mD . 8 mCD150°hA B5. 下列事件:( 1)调查长江现有鱼的数量; ( 2)调查你班每位同学穿鞋的尺码;( 3)了解一批电视机的使用寿命; ( 4)校正某本书上的印刷错误. 最适合做全面调查的是().A .( 1)(3)B .( 1)( 4)C .(2)( 3)D .(2)( 4)6. 尺规作图作∠ AOB 的平分线方法如下:以O 为圆心,任意长为半径A画弧交 OA 、OB 于 C 、 D ,再分别以点C 、D 为圆心,以大于1CDCP2长为半径画弧, 两弧交于点 P ,作射线 OP ,由作法得△ OCP ≌△ ODP的根据是( )OD BA . SASB . ASAC .AASD . SSS7.如图,在等腰梯形 ABCD 中, AD ∥ BC , AD对角 线ACB点O,于AE BC , DFBC ,垂足分别为 E 、F ,设OAD =a , BC=b , BFCE则四边形 AEFD 的周长是( ) AA . 3a bB . 2( a b)C . 2baD . 4ab8.在平面直角坐标系中有两点A(6,2) , B(6,0) ,以原点为位似中心,相似比为 1∶ 3.把线段 AB 缩小,则过 A 点对应点的反比例函数的解析式为()A . y4B . y4 C . y418x3xD . y x3xy9.用长 4 米的铝材制成一个矩形窗框,使它的面积为3A (6,2)2422若设它的一边长为 x 米,根据题意列出关于 x 的方1B(6,0)25 米 ,2 O1 2 3 4 5 6 7x程为( ) 11A . x(4x) 24B . 2x(2 24225x)25 C . x(42x)24D . x(2 2425x)2510.二次函数 y ax 2 bx c 的图象如图所示,则一次函数y bx b 2 4ac 与反比例函数 y a b c 在同一坐标系内的图象大致为()xyyyyy1 O 1xO xxOxxO OA .B .C .D .得 分评卷人二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.计算:81 2 1 .y32时,关于 x 的方程 x 21A 12.当 m 满足4x m0 有两个不相等 S 12B的实数根.S 2313. 如图,点 A 、B 是双曲线 yA 、B 两点向 x 轴、 yOx上的点,分别经过x轴作垂线段,若 S阴影 1,则 S 1 S 2 . 14. 如图, PA 、 PB 分别与⊙ O 相切于点 A 、 B ,⊙ O 的切线 EF 分别交 PA 、 PB 于点 E 、F ,切点 C 在 AB 上,若 PA 长为 2,则△ PEF 的周长是 __.E APCOF B15. 如图,正方形ABCD的边长是 4cm,点G在边AB上,以BG为边向外作正方形GBFE ,连结 AE 、 AC 、 CE ,则△ AEC 的面积是_____________cm2.A DE G CF B C16. 如图,在锐角△ABC中,AB 4 2, BAC 45°,BACD 的平分线交 BC 于点 D,M 、N 分别是 AD 和 AB 上的动点,则MBM MN 的最小值是___________ .A N B三、解答题(本大题共 8 小题,共 80 分 . )解答应写明文字说明和运算步骤 .17.(本题共两小题,每小题 6 分,满分12 分)得分评卷人 2 1( 1)计算: 2 2sin 30°3 tan 45° .( 2)解分式方程: 2 1 .x 3 x 1得分评卷人18.(本小题满分 8 分)如图,ABCD 是正方形,点 G 是 BC 上的任意一点,DE⊥AG于 E,BF ∥ DE ,交AG于F.求证: AF BF EF . A DEFBCG得分评卷人19. (本小题满分 8 分)如图,一艘轮船以每小时20 海里的速度沿正北方向航行,在 A 处测得灯塔 C 在北偏西30°方向,轮船航行 2 小时后到达 B 处,在 B 处测得灯塔 C 在北偏西 60°方向.当轮船到达灯塔 C 的正东方向的 D 处时,求此时轮船与灯北塔 C 的距离.(结果保留根号)C D60°B30°A得分 评卷人 20. (本小题满分 8 分)某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图) .由于三月份开展促销活动,男、女服装的销售收入分别比二月份增长了40% 64%20 万元.,,已知第一季度男女服装的销售总收入为( 1)一月份销售收入为 万元, 二月份销售收入为万元, 三月份销售收入为万元;( 2)二月份男、女服装的销售收入分别是多少万元?一月份三月份 25%45%二月份 30%得 分评卷人21. (本小题满分 10 分)如图,在平面直角坐标系内, O 为原点,点 A 的坐标y为 ( 3,0),经过A 、 O 两点作半径为 5的交 y 轴AD2 ⊙C ,O x的负半轴于点 B .C( 1)求 B 点的坐标;D ,BDB( 2)过 B点作 ⊙C的切线交 x 轴于点的解析式.求直线得 分 评卷人 22. (本小题满分 10 分)袋中装有除数字不同其它都相同的六个小球,球上分别标有数字 1,2, 3, 4, 5,6.( 1)从袋中摸出一个小球,求小球上数字小于 3 的概率;( 2)将标有 1,2, 3 数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,求数字之和为偶数的概率. (要求用列表法或画树状图求解)得 分评卷人 23. (本小题满分12分)如图,⊙ O 的直径 AB=4,C 为圆周上一点, AC=2,过点 C 作⊙O 的切线 l ,过点 B 作 l 的垂线 BD ,垂足为 D , BD 与⊙ O 交于点 E .( 1) 求∠ AEC 的度数;D( 2)求证:四边形 OBEC 是菱形.CElABO得 分评卷人 24. (本小题满分 12 分)如图 1,已知抛物线经过坐标原点O 和 x 轴上另一点 E ,顶点 M 的坐标为 (2,4) ;矩形 ABCD 的顶点 A 与点 O 重合, AD 、AB 分别在x 轴、 y 轴上,且 AD 2 , AB 3 .( 1)求该抛物线所对应的函数关系式;( 2)将矩形 ABCD 以每秒 1 个单位长度的速度从图 1 所示的位置沿 x 轴的正方向匀速平行 移动,同时一动点 P.....从点 A出发向 B匀速移动.设它们运动的时间为t 秒也以相同的速度( 0≤ t ≤ 3 ),直线 AB 与该抛物线的交点为 N (如图 2 所示).①当 t5P 是否在直线 ME 上,并说明理由;时,判断点2②设以 P 、N 、C 、D 为顶点的多边形面积为S ,试问 S 是否存在最大值?若存在, 求出这个最大值;若不存在,请说明理由.yyMMNCBCBPDO(A) ExDO A E x图 1图 22010 年初中毕业学业考试(三)数学试题参考答案一、 选择题 ( 本大题共 10小题,每题 4分,满分 40分 )题 号1 2 3 4 5 6 7 8 9 10答 案ABDBDDABDD二、 填空题 ( 本大题共 6 小题,每题 5 分,满分 30 分 )1m911. 23 12.13. 4 14. 415. 8 16. 432三、 解答题(本大题共 8 小题,共 80 分)解答应写明文字说明和运算步骤.17. (本小题满分 12 分) (1) 解:原式= 2 1 3 1 = 1(2) 解:去分母得: 2 x1 x 3 解得 x1检验 x 1是原方程的解 所以,原方程的解为x118. (本小题满分 8 分)证明: ABCD 是正方形,AD AB , BAD 90°. DE ⊥ AG ,DEG AED 90°.ADEDAE 90°.又 BAFDAEBAD 90°,ADEBAF . BF ∥ DE ,AFB DEGAED .AFB AED 在 △ ABF 与 △ DAE 中, ADEBAF ,ADAB△ ABF ≌△ DAE (AAS) .BF AE .AF AE EF , AF BF EF .19. (本小题满分 8 分)解:由题意得CAB 30°,CBD60°,ACB 30°,BCACAB , BCAB 20 2 40 . CDB 90°, sin CBDCD.BCsin 60°CD3 , CDBC3 403 20 3 (海里).BC2 2 2此时轮船与灯塔C 的距离为 20 3 海里.20. (本小题满分 10 分)答案:( 1)5, 6, 9.( 2)设二月份男、女服装的销售收入分别为x 万元、 y 万元,根据题意,得x y,6(1 %%. 40 )x (1 64 ) y9x 3.5, 解之,得y 2.5.答:二月份男、女服装的销售收入分别为3.5 万元、 2.5 万元.21. (本小题满分 10 分)解:( 1)AOB 90°AB 是直径,且 AB 5在 Rt △ AOB 中,由勾股定理可得BOAB 2 AO 252 324B 点的坐标为 (0, 4)( 2)BD 是 ⊙C 的切线, CB 是 ⊙C 的半径BDAB ,ABD90°即DAB ADB 90°又 BDO OBD 90°DAB DBO AOB BOD 90° △ ABO ∽△ BDOOAOB OB 24216OBODOD33OAD 的坐标为16 ,3设直线 BD 的解析式为 y kxb(k 0, k 、 b 为常数 )则有 16 k b 0y3ADb 4O xk 3C4Bb4直线 BD 的解析式为 y3 x4 . 22. (本小题满分10 分) 4解:( 1)小于 3 的概率 P 2163( 2)列表如下树状图如下1 2 3开始45671 234 5 6 4 5 6 4 5 6和:5 6 7 6 7 8 7 8 95 6 7 86 7 8 9从表或树状图中可以看出其和共有9 种等可能结果,其中是偶数的有 4 种结果,所以和为偶数的概率P 4923.(本小题满分 12 分)解:( 1)在△ AOC 中, AC=2,D ∵AO= OC= 2,C E∴ △ AOC 是等边三角形.l∴ ∠ AOC= 60°,A B ∴∠ AEC= 30°.O(2)证明:∵ OC⊥ l, BD⊥ l .∴ OC∥ BD.∴ ∠ ABD=∠ AOC=60°.∵ AB 为⊙ O 的直径,∴ △ AEB 为直角三角形,∠ EAB=30°.∴∠ EAB=∠ AEC.∴四边形 OBEC为平行四边形.又∵ OB= OC= 2.∴四边形 OBEC 是菱形.24.(本小题满分 12 分)解:( 1)因所求抛物线的顶点M 的坐标为(2,4),故可设其关系式为y a( x 2) 2 4.又抛物线经过 O (0,0) ,于是得 a(0 2) 2 4 0 ,解得 a 1 .∴所求函数关系式为 y (x 2) 2 4 ,即 y x2 4x .( 2)①点P不在直线ME 上.根据抛物线的对称性可知 E 点的坐标为(4,0),又 M 的坐标为(2, 4),设直线ME的关系式为y kx b .4k b 0 k 2于是得,解得.2k b 4b8所以直线 ME 的关系式为 y 2x 8 .由已知条件易得,当 t5AP5 5 5 时, OA,∴ P, .222 2∵ P 点的坐标不满足直线 ME 的关系式 y2x 8 ,∴当 t5时,点 P 不在直线 ME 上.2② S 存在最大值.理由如下:∵点 A 在 x 轴的非负半轴上,且N 在抛物线上,∴ OAAP t ,∴点 P , N 的坐标分别为 (t , t ) 、 (t , t 2 4t ) ,∴ANt 2 4t ( 0 ≤ t ≤ 3 ),∴ AN AP ( t 2 4t) tt 2 3t t (3 t ) ≥ 0 ,∴ PNt 2 3t .( i )当 PN 0 ,即 t 0 或 t 3 时,以点 P ,N ,C ,D 为顶点的多边形是三角形,此三角形的高为 AD ,∴ S1DC AD 1 3 2 3 .2 2 ( ii )当 PN 0 时,以点 P ,N , C , D 为顶点的多边形是四边形, ∵ PN ∥ CD ,AD ⊥ CD ,1(CD1[32∴ SPN ) AD ( t 2 3t )] 2 t 2 3t 3t321 ,2 224其中( 0 t3 ),由 a 1 , 0 3 3 ,此时 S 最大 21 .2 43综上所述,当 t 时,以点 P ,N ,C ,D 为顶点的多边形面积有最大值,这个最大值为221 .4说明:( ii )中的关系式,当t 0 和 t 3 时也适合.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学模拟冲刺试卷及答案本试卷分试题卷和答题卷两部分,试卷共6页,答题卷共6页,满分150分。

考试时间120分钟。

注意事项:1. 答题前,考生务必将自己的姓名、考号用0.5mm 黑色墨水签字笔填写在答题卡上,并核对相关信息是否一致。

2. 选择题使用2B 铅笔填涂在机读卡对应题目标号的位置上,非选择题用0.5mm 墨水签字笔书写在答题卷的对应位置。

答在草稿纸、试卷上答题无效。

3. 考试结束后,将试题卷、答题卷、草稿纸一并交回。

一.选择题(本大题共12小题,每小题3分,共36分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑...............) 1.16的平方根是( )A.4B.-4C.±4D.±82.下列运算正确的是( )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x += 3.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个 4.如图,桌面上有一个一次性纸杯,它的俯视图应是( )5.某学习小组为了解本城市500万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟.对于这个数据收集与处理的问题,下列说法正确的是( )A.该调查的方式是普查B.本地区只有40个成年人不吸烟A B C DC.样本容量是50D.本城市一定有100万人吸烟6 杭州银泰百货对上周女装的销售情况进行了统计,如下表所示:颜色 黄色 绿色 白色 紫色 红色 数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是( ) A .平均数B . 众数C .中位数D .方差7.两圆的半径分别为3和7,圆心距为7,则两圆的位置关系是( ) A. 内切 B.相交 C.外切 D.外离8.在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ) A.2.5B.5C.10D.159.如右图,一次函数y =kx +b 的图象经过A 、B 两点, 则不等式kx +b < 0的解集是( )A.x <0B. 0< x <1C.x <1D. x >110.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A.12120元B.12140元C.12160元D.12200元 11.若2-=+b a ,且a ≥2b ,则( )A.a b 有最小值21B.a b有最大值1 C.b a 有最大值2 D.b a 有最小值98- 12.在矩形ABCD 中,有一个菱形BFDE (点E ,F 分别在线段AB ,CD 上),记它们的面积分别为ABCD S 和BFDE S ,现给出下列命题: ①若232+=BFDE ABCD S S ,则33tan =∠EDF ; ②若EF BD DE ⋅=2,则DF=2AD.则( )A. ①是真命题,②是真命题B. ①是真命题,②是假命题ABO yx12y =kx +bC. ①是假命题,②是真命题D. ①是假命题,②是假命题二.填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题卡相应位......置.上.) 13.函数2+=x y 中,自变量x 的取值范围是 .14.农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为20.01S ≈甲,20.002S ≈乙,则产量较为稳定的品种是_____________(填“甲”或“乙”).15.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度约为_________m.16.已知圆锥的底面半径为1cm,母线长为1cm,则它的侧面积是 cm 2.17.如图,在平面直角坐标系中,A ⊙与y 轴相切于原点O ,平行于x 轴的直线交A ⊙于M 、N 两点,若点M 的坐标是(42)--,,则弦M N 的长为 .18.如图,已知△OP 1A 1△、A 1P 2A 2、△A 2P 3A 3……均为等腰直角三角形,直角顶点P 1、P 2 、P 3……在函数4y x=(x >0)图象上,点A 1、A 2、A 3……在x 轴的正半轴上,则点P 2011的横坐标为 .三.解答题(本大题共10小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)P 1OA 1A 2A 3P 3P 2yx510(第18题)下午5时早上10时第15题第17题19.(本题满分16分)(1)计算:︒-+---30cos 4)21(|1|123(2)化简2)1(111-÷⎪⎭⎫ ⎝⎛--+x x x x x20.(本小题满分12分)有A 、B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2;B 布袋中有三个完全相同的小球,分别标有数字2-,3-和-4.小明从A 布袋中随机取出一个小球,记录其标有的数字为x,再从B 布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q 的一个坐标为(x,y ).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y =2x --上的概率.21.(本题满分12分)如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA =30°和∠DCB =60°,如果斑马线的宽度是AB =3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x 是多少?22.(本题满分12分)已知:如图,AB 是⊙O 的直径,C 、D 为⊙O 上两点,CF ⊥AB 于点F ,CE⊥AD 的延长线于点E ,且 CE =CF . (1)求证:CE 是⊙O 的切线;(2)若AD =CD =6,求四边形ABCD 的面积.23.(本题满分12分)已知在图1、2、3中AC 均平分∠MAN .⑴ 在图1中,若∠MAN =120°,∠ABC =∠ADC =90°,我们可得结论:AB +AD =AC ;在图2中,若∠MAN =120°,∠ABC +∠ADC =180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(2)在图3中:(只要填空,不需要证明).①若∠MAN =60°,∠ABC +∠ADC =180°,则AB +AD = AC ;②若∠MAN =α(0°<α<180°),∠ABC +∠ADC =180°,则AB +AD = AC (用含α的三角函数表示).24.(本题满分12分)有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km 的博物馆参观,10分钟后到达距离学校12km 处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km 后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度分别保持不变,学生步行速度不变,汽车离开学校的路程s (千米)与汽车行驶时间t (分钟)之间的函数关系如图,假设学生上下车时间忽略不计.(1)汽车载人时的速度为_______km/min;第一批学生到达博物馆用了_____分钟;原计划AM NBD CCABBNNMMD D AC第23题图1 第23题图2第23题图3从学校出发到达博物馆的时间是______分钟;(2)求汽车在回头接第二批学生途中(即空载时)的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.25.(本题满分14分)如图,Rt △AOB 中,∠A =90°,以O 为坐标原点建立直角坐标系,使点A在x 轴正半轴上,OA =2,AB =8,点C 为AB 边的中点,抛物线的顶点是原点O ,且经过C 点.(1)填空:直线OC 的解析式为 _______ ; 抛物线的解析式为 _______ ;(2)现将该抛物线沿着线段OC 移动,使其顶点M 始终在线段OC 上(包括端点O 、C ),抛物线与y 轴的交点为D ,与AB 边的交点为E ;①是否存在这样的点D ,使四边形BDOC 为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设△BOE 的面积为S ,求S 的取值范围.BO ACxyBOACxy数学参考答案及评分意见一.选择题:1234567891011 12 C B C B C B B A D C CA二.填空题(本大题共6小题,每小题4分,共计24分.)13.x ≥-2 14.甲15.4 16.π 17.3 18.2011220102+三.解答题:19.(本题满分16分) (1)︒-+---30cos 4)21(|1|123=23-1+8-23………………………………6分=7……………………………………………………8分(2)2)1(111-÷⎪⎭⎫⎝⎛--+x x x x x =)1(122---x x x x ×)1(-x ………………………………5分=xx-1………………………………8分20.(本小题满分12分)(1)………………………………6分或。

相关文档
最新文档