刚体习题及答案word版本

合集下载

刚体部分习题参考答案

刚体部分习题参考答案

m2 g.
4-26 小幅摆动的周期: T = 2π l12 + l22 ; g(l2 − l1 )
等值摆长:
l0
=
l12 + l2 2 l2 − l1
> l1 + l2
.
4-27
I
=
T12 T2 2 − T12
ml(l

T2 2 4π 2
g)
= 1.21×103 g ⋅ cm2
4-28
(1)
T= T0
T2 = T1e−0.3π = 53.3N .
a1
=
(m1R − m2r)R I c + m1R 2 + m2r 2
g,
a2
=
r R
a1
=
(m1R − m2r)r I c + m1R 2 + m2r 2
g;
T1
=
Ic + m2r(r + R) I c + m1R 2 + m2r 2
m1 g
,
T2
=
I c + m1r(r + R) I c + m1R 2 + m2r 2
ω
=
1 mr 2
h 2π
= 4.13 ×1016 md / s
4-4
v2
=
r1 r2
v1, tgθ2
=
v23 gr1v1
∝ v23;即v2增大,故θ2亦增大,θ2
> θ1.
4-5 ω' = 8 ω; 5
ΔEk
= 39 25
Ek0 ,增加的能量来自汽车的动力。
4-6 ω = v (这是转台反方向旋转地角速度) 。 2R

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析

《大学物理》刚体力学练习题及答案解析一、选择题1.刚体对轴的转动惯量,与哪个因素无关 [ C ](A)刚体的质量(B)刚体质量的空间分布(C)刚体的转动速度(D)刚体转轴的位置2.有两个力作用在一个有固定轴的刚体上. [ B ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的;(B) (1)、(2) 正确, (3)、(4)错误;(C) (1)、(2)、(3)都正确, (4)错误;(D) (1)、(2)、(3)、(4)都正确.3.均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的[ A ](A) 角速度从小到大,角加速度从大到小;(B) 角速度从小到大,角加速度从小到大;(C) 角速度从大到小,角加速度从大到小;(D) 角速度从大到小,角加速度从小到大.4.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,小球和地球所组成的系统,下列哪些物理量守恒( C )(A)动量守恒,角动量守恒(B)动量和机械能守恒(C)角动量和机械能守恒(D)动量,角动量,机械能守恒5.一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同,速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L以及圆盘的角速度ω则有( B )(A)L不变,ω增大(B)L不变,ω减小(C)L变大,ω不变(D)两者均不变6.一花样滑冰者,开始自转时,其动能为20021ωJ E =。

然后他将手臂收回,转动惯量减少为原来的1/3,此时他的角速度变为ω,动能变为E ,则下列关系正确的是( D ) (A )00,3E E ==ωω (B )003,31E E ==ωω (C )00,3E E ==ωω (D )003,3E E ==ωω1C 2.B ,3.A ,4.C ,5.B ,6.D二、填空1.当刚体受到的合外力的力矩为零时,刚体具有将保持静止的状态或_____________状态,把刚体的这一性质叫刚体___________。

刚体力学习题答案.docx

刚体力学习题答案.docx
体的半径分别为R和r,质量分别为M和m.绕在两柱体上的细绳分别与物体m1和m2相
连,m1和m2则挂在圆柱体的两侧,如3-8图所示.设R=0.20m,r=0.10m,m=4 kg,M=10
kg,m1=m2=2 kg,且开始时m1,m2离地均为h=2m.求:
(1)柱体转动时的角加速度;
(2)两侧细绳的张力.
2
1( J
2mr
2)
0
2
0
2
2
0
1
1
(5
2 4
0.22)
122
(5 2
4 0.82)
(2 )2
2
2
=183J
3-18如3-20图所示,质量为M,长为l的均匀直棒,可绕垂直于棒一端的水平轴O无摩擦地转动,它原来静止在平衡位置上. 现有一质量为m的弹性小球飞来,正好在棒的下端与棒垂
直地相撞.相撞后,使棒从平衡位置处摆动到最大角度30°处.
L2
m2
vr sin 30
1m1r2
2
2
v
1
2
故有
m2vr sin60 m22r sin30
2m1r
可解得:
(2 3 1)m2v
2m1r
3-16
一人站在一匀质圆板状水平转台的边缘
,转台的轴承处的摩擦可忽略不计
,人的质量
为m',转台的质量为
10m',半径为R.最初整个系统是静止的,这人把一质量为
m的石子
2
mv
6m'R
人的线速度为vR
mv
6m'
其中负号表示转台角速度转向和人的线速度方向与假设方向相反-
3-17一人站在转台上,两臂平举,两手各握一个m

(完整版)刚体的转动习题

(完整版)刚体的转动习题

17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。

今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。

4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。

刚体力学参考答案

刚体力学参考答案

mg —sin f A l sin三个独立方程有四个未知数,不能唯一确定。

【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。

设L 为每一子弹相对与 O 点的角动量大小,3为子弹射入前圆盘的角速度,3为子弹射入第五章刚体力学参考答案(2014)—、选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为 M 的定滑轮,绳的两端分别 悬有质量为 m 和m 的物体(m v m ),如图5-7所示•绳与轮之间无相对滑动•若某时刻滑轮 沿逆时针方向转动,则绳中的张力 (A)处处相等. (B) 左边大于右边. (C)右边大于左边. (D) 哪边大无法判断. 【提示】:逆时针转动时角速度方向垂直于纸面向外 ,由于m v m ,实际上滑轮在作减 速转动,角加速度方向垂直纸面向内 ,设滑轮半径为 R,受右端绳子向下拉 力为T 2,左端绳子向下拉力为 T i ,对滑轮由转动定律得:(T 2-T I )R=J [D ]2、【基础训练3】如图5-8所示,一质量为 m 的匀质细杆AB 壁上,B 端置于粗糙水平地面上而静止•杆身与竖直方向成 角,则 1 1(A)为 mg pos . (B) 为 mg g4 2 (C) 为 m®n m2m 1图5-7 A 端靠在粗糙的竖直墙 A 端对墙壁的压力大 .(D) 不能唯一确定 图5-8■:::;SKB 【提示】: 因为细杆处于平衡状态,它所受的合外力为零,以 B 为参考点,外力矩也是平衡的,则有:NAfBAN B mgN A lcon[C]3、基础训练(7) 一圆盘正绕垂直于盘面的水平光滑固定轴 两个质量相同,速度大小相同,方向相反并在一条直线上的子弹, 内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (C)减小. (B) (D)不变. 不能确定. O 转动,如图5-11射来子弹射入圆盘并且留在盘m<J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒[C ]4、【自测提高4】光滑的水平桌面上,有一长为 2L 、质量为m 的匀质细杆,可绕过其 中点且垂直于杆的竖直光滑固定轴 0自由转动,其转动惯量为 [mL ,起初杆静止•桌面上3有两个质量均为 m 的小球,各自在垂直于杆的方向上, 正对着杆的一端, 以相同速率v 相向运动,如图5-19所示•当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在 一起转动,则这一系统碰撞后的转动角速度应为…、 2v4v 6v 8v 12v (A)(B)• (C)• (D)(E)•3L5L7L9L7Lv y$ vO俯视图图 5-19【提示】:视两小球与细杆为一系统, 碰撞过程中系统所受合外力矩为零, 满足角动量守恒条件, 所以2 21 2lmv lmv [ml ml m(2l)]12可得答案(C )[A ] 5、【自测提高7】质量为m 的小孩站在半径为 R 的水平平台边缘上•平台可以绕通过 其中心的竖直光滑固定轴自由转动,转动惯量为 J .平台和小孩开始时均静止•当小孩突然 以相对于地面为 v 的速率在台边缘沿逆时针转向走动时, 旋转方向分别为【提示】:视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:一 ,口 Rmv mR 2,v 、0 Rmv J 可得 ---------------- ------ (一)。

刚体结构力学试题及答案

刚体结构力学试题及答案

刚体结构力学试题及答案一、选择题(每题4分,共20分)1. 刚体的转动惯量与物体的质量和形状有关,以下说法正确的是()。

A. 质量越大,转动惯量越大B. 质量分布越集中,转动惯量越小C. 质量分布越分散,转动惯量越大D. 转动惯量与物体的质量无关答案:C2. 刚体在力的作用下发生旋转,下列说法正确的是()。

A. 力矩的大小与力的大小成正比B. 力矩的大小与力臂的长度成反比C. 力矩的大小与力的大小和力臂的长度都成正比D. 力矩的大小与力的大小和力臂的长度都无关答案:C3. 刚体的角速度与线速度之间的关系是()。

A. 角速度是线速度的两倍B. 线速度是角速度的两倍C. 角速度与线速度成正比D. 角速度与线速度成反比答案:C4. 在刚体的平移运动中,下列说法正确的是()。

A. 刚体上任意两点的位移相同B. 刚体上任意两点的速度相同C. 刚体上任意两点的加速度相同D. 以上说法都正确答案:D5. 刚体的转动惯量与物体的转动轴有关,以下说法正确的是()。

A. 转动轴越靠近物体的重心,转动惯量越小B. 转动轴越远离物体的重心,转动惯量越大C. 转动轴的位置不影响转动惯量D. 转动轴的位置与转动惯量无关答案:A二、填空题(每题4分,共20分)1. 刚体的转动惯量定义为物体的质量与其到转轴的____的乘积。

答案:距离平方2. 刚体在力矩作用下产生的角加速度的大小与力矩成正比,与物体的____成反比。

答案:转动惯量3. 根据牛顿第二定律,刚体的角加速度等于力矩除以物体的____。

答案:转动惯量4. 刚体的角速度和角位移的单位分别是____和____。

答案:弧度每秒,弧度5. 刚体在平面内的运动可以分解为____和____。

答案:平移,旋转三、简答题(每题10分,共30分)1. 请简述刚体的转动惯量与哪些因素有关,并举例说明。

答案:刚体的转动惯量与物体的质量分布和转轴的位置有关。

例如,一个均匀的圆盘绕通过其质心的轴旋转时,其转动惯量较小;而如果绕通过其边缘的轴旋转,其转动惯量则较大。

刚体习题和答案

刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。

刚体习题和答案

刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=21ttdtdtdωθθθω角速度⎰=-⇒=21ttdtdtdβωωωβ角加速度1、基础训练(8)绕定轴转动的飞轮均匀地减速,t=0时角速度为5rad sω=,t=20s时角速度为0.8ωω=,则飞轮的角加速度β=-0.05 rad/s2 ,t=0到t=100 s时间内飞轮所转过的角度θ=250rad.【解答】飞轮作匀变速转动,据tωωβ=+,可得出:200.05rad stωωβ-==-据212t tθωβ=+可得结果。

♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJM=质点运动与刚体定轴转动对照[C] 1、基础训练(2)一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等.(B) 左边大于右边.(C) 右边大于左边.(D) 哪边大无法判断.【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m1<m2),实际上滑轮在作减速转动,角加速度方向垂直纸面向内,所以,由转动定律21()T T R Jβ-=可得:21T T>[ C] 2、自测提高(2)将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度为.如果以拉力2mg代替重物拉绳时,飞轮的角加速度m2m1O将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2.【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T ma TR J a R ββ-===所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比较二者可得出结论。

刚体力学习题解答.docx

刚体力学习题解答.docx

第三章习题解答3.13 某发动机飞轮在时间间隔t内的角位移为。

求 t时刻的角速度和角加速度。

解:3.14桑塔纳汽车时速为 166km/h,车轮滚动半径为 0.26m,发动机转速与驱动轮转速比为 0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m,发动机转速为 n1, 驱动轮转速为 n2, 汽车速度为 v=166km/h 。

显然,汽车前进的速度就是驱动轮边缘的线速度,,所以:3.15 如题 3-15图所示,质量为 m的空心圆柱体,质量均匀分布,其内外半径为 r1和r2,求对通过其中心轴的转动惯量。

解:设圆柱体长为 h ,密度为,则半径为 r,厚为 dr的薄圆筒的质量 dm 为:对其轴线的转动惯量为3.17 如题 3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。

解:如图所示,圆形细杆对过 O轴且垂直于圆形细杆所在平面的轴的转动惯量为 mR2,根据垂直轴定理和问题的对称性知:圆形细杆对过轴的转动惯量为 mR2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:3.18 在质量为 M ,半径为 R的匀质圆盘上挖出半径为 r的两个圆孔,圆孔中心在半径R的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。

解:大圆盘对过圆盘中心 o且与盘面垂直的轴线(以下简称 o轴)的转动惯量为.由于对称放置,两个小圆盘对 o轴的转动惯量相等,设为 I ’,圆盘质量的面密度σ=M/πR2,根据平行轴定理,设挖去两个小圆盘后,剩余部分对o轴的转动惯量为 I ”3.19一转动系统的转动惯量为I=8.0kgm 2,转速为ω=41.9rad/s,两制动闸瓦对轮的压力都为 392N,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为 r=0.4m,问从开始制动到静止需多长时间?解:由转动定理:制动过程可视为匀减速转动,3.20一轻绳绕于 r=0.2m的飞轮边缘,以恒力F=98N 拉绳,如题 3-20图(a)所示。

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案

《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。

2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。

4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。

因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。

5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。

6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。

刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。

刚体试题及答案

刚体试题及答案

刚体试题及答案1.(10分)半径为30cm 的飞轮从静止开始以 0.5 rad/s 2的匀角加速度转动,求飞轮边缘一点在飞轮转过2400时的切向加速度和法向加速度。

解:(1)(2)2.(10分)在质量为 M ,半径为 R 的匀质圆盘上挖出半径为 r 的两个圆孔,圆孔中心在半径 R 的中点,求剩余部分对通过大圆盘中心O 且与盘面垂直的轴线的转动惯量。

解:用填补法。

其中得3.(15分)在倾角为θ的斜面顶端固定一滑轮,用一根绳子缠绕数圈后引出与木块M 连接,M 与斜面摩擦系数为μ(如图),设滑轮质量为m ,半径为R ,轴处无摩擦。

试分析M 作加速运动的条件。

解: 由牛顿第二定律Ma N T M =--gμθsinN ’、mg 对转轴的力矩为零由转动定律得 αα221R J TR m==平动与转动的关系通过线量与角量联系起来:αR a =四个未知量 ()()+m-g=得M M a 2cos sin 2θμθM 作加速运动应满足的条件是: 0c o s s i n >θμθ-)/(15.050.030.02s m r a t=⨯==α)/(26.130.018024050.02222s m r r a n =⨯⨯⨯⨯===παθω210J J J J --=22212)2(2,2R m mr J J MR J +===由平行轴定理得:22r R M m =)/2(2122420r R r R M J --=0cos =g-θM Nμθ>an 即t4.(15分)一轻绳绕过固定在一起的两个同轴圆柱形刚体,圆柱体可绕OO’ 轴转动,两圆柱体半径分别为R 1 、R 2 (R 2 >R 1),质量分别为M 1 、M 2,绳下连接m1 、m2,求刚体转动时的角加速度。

解:隔离体受力分析如图11112222a T a T g=m-m=mg-m由转动定律得:α21212222111122)+=(-R M R M R T R T平动与转动的联系:αα2211R a R a ==222221111122222αR M R M R R )+m+()+m()g-m(m=讨论:Ⅰ)当m2R 2 >m1R 1时,α>0,则表明圆柱体实际转动方向与所设方向相同,即m2下降,而m1上升。

刚体定轴转动练习题及答案

刚体定轴转动练习题及答案

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。

设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。

B 角速度从小到大,角加速度从小到大。

C 角速度从大到小,角加速度从大到小。

D 角速度从大到小,角加速度从小到大。

3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。

(B )n a 、t a 的大小均保持不变。

(C )n a 的大小变化, t a 的大小恒定不变。

(D )n a 的大小恒定不变, t a 的大小变化。

5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

A 只有(1)是正确的。

B (1),(2)正确,(3),(4)错误。

(完整版)大学物理刚体的定轴转动习题及答案.doc

(完整版)大学物理刚体的定轴转动习题及答案.doc

第 4 章 刚体的定轴转动 习题及答案1. 刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时 ,角加速度不变。

刚体上任一点都作匀变速圆周运动, 因此该点速率在均匀变化,v l ,所以一定有切向加速度a t l ,其大小不变。

又因该点速度的方向变化,2所以一定有法向加速度a n l,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴 Z 转动时,动量矩定理的形式为M z dL z , M z 表示刚体对 Z 轴的合外力矩, L z 表示刚体对 Z 轴的动量矩。

dtL zml i i2I ,其中 I mlii2,代表刚体对定轴的转动惯量,所以M zdL z d I IdI 。

既M z I 。

dtdtdt所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3. 两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:( 1)如果它们的角动量相同,哪个轮子转得快?( 2)如果它们的角速度相同,哪个轮子的角动量大?答: (1)由于 L I ,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;( 2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4. 一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问 平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

(完整word版)刚体的平面运动作业习题参考答案1

(完整word版)刚体的平面运动作业习题参考答案1

8-1 图示四杆机构1OABO 中,AB B O OA 211==;曲柄OA 的角速度s rad /3=ω。

求当090=ϕ而曲柄B O 1重合于1OO 的延长线上时,杆AB 和曲柄B O 1的角速度。

参考答案:因OA 杆作定轴转动,故OA v A ⋅=ω。

AB 杆做平面运动其速度瞬心为O 点,s rad OAv AAB /3===ωω,而OA OB v AB B ⋅=⋅=ωω3, 所以s rad s rad BO OAB O v B B O /2.5/3333111≈==⋅==ωωω(逆时针)8-2 四连杆机构中,连杆AB 上固联一块三角板 ABD 。

机构由曲柄A O 1带动。

已知:曲柄的角速度s rad A O /21=ω;曲柄cm A O 101=,水平距离cm O O 521=;AD=5cm ,当A O 1铅垂时,AB 平行于21O O ,且AD 与1AO 在同一直线上;角030=ϕ。

求三角板ABD 的角速度和D 点的速度。

参考答案:三角板 ABD C ,由此可得:s rad ctg O O AO AO AC v A O A/07.121111=⋅+⋅==ϕωωs cm CD v D /35.25=⋅=ω8-7 如图所示,在振动机构中,筛子的摆动由曲柄连杆机构所带动。

已知曲柄OA 的转速cm OA r n 30min,/40==。

当筛子BC 运动到与点O 在同一水平线上时,090=∠BAO ,求此瞬时筛子BC 的速度。

解:由图示机构知BC 作平行移动,图示位置时,B v 与CBO 夹角为30°,与AB 夹角为60°。

Av Bv Dv Av CωAv Bv由题意知 m/s π40.030.03040π=⨯⨯=⋅=OA v A ω 由速度投影定理 AB B AB A v v )()(= 得 ︒=60cos B A v vm/s 2.51π8.060cos ==︒==AB BC v v v8-6 图示机构中,已知cm EF cm DE cm BD cm OA 310,10,10,10==== OA ωs rad /4=,在图示位置,曲柄OA 与水平线OB 垂直,且B 、D 和F 在同一铅直线上。

大学物理试题库刚体力学word文档

大学物理试题库刚体力学word文档

第三章 刚体力学一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系1、刚体做定轴转动,下列表述错误的是:【 】A ;各质元具有相同的角速度;B :各质元具有相同的角加速度;C :各质元具有相同的线速度;D :各质元具有相同的角位移。

2、半径为的飞轮,从静止开始以20rad/s 2的角加速度做定轴转动,则t=2s 时,飞轮边缘上一点的切向加速度τa =____________,法向加速度n a =____________,飞轮转过的角位移为_________________。

3、刚体任何复杂的运动均可分解为_______________和 ______________两种运动形式。

二、转动惯量1、刚体的转动惯量与______________ 和___________________有关。

2、长度为L ,质量为M 的均匀木棒,饶其一端A 点转动时的转动惯量J A =_____________,绕其中心O 点转动时的转动惯量J O =_____________________。

3、半径为R 、质量为M 的均匀圆盘绕其中心轴(垂直于盘面)转动的转动惯量J=___________。

4、两个匀质圆盘A 和B 的密度分别是A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J 则:【 】(A )B A J J >; (B )B A J J < (C )B A J J = (D )不能确定三、刚体动力学----转动定理、动能定理、角动量定理、角动量守恒1、一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转动.系统绕O 轴的转动惯量J =___________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =____ __;角加速度____ __.2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N ·m ,轮子对固定轴的转动惯量为J =15 kg ·m 2.在t =10 s 内,轮子的角速度由=0增大到=10 rad/s ,则M r =_______. 3、【 】银河系有一可视为物的天体,由于引力凝聚,体积不断收缩。

大学物理刚体习题

大学物理刚体习题

大学物理刚体习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题第三章 刚体的转动刚体的定轴转动47. 一定滑轮半径为R ,质量为M ,用一质量不计的绳绕在滑轮上,另一端系一质量为m 的物体并由静止释放,这时滑轮的角加速度为1β,若不系物体而用一力F = mg 拉绳子使滑轮转动,这时角加速度为2β,这时有()1β2β()1β2β (C )1β2β(D )无法判断 分析由转动定律M I β=本题中I 不变β的大小完全取决于M 的大小而 M TR =系物体m 时 : T mg <不系物体而用一力F = mg 时: TF mg ==因此力矩变大所以有12ββ<mF选49.一飞轮的转动惯量为J ,t = 0时角速度为0ω,轮子在转动过程中受到一力矩2ωk M-=,则当转动角速度为0/3ω时的角加速度β = 从0ω到0/3ω飞轮转动经过的时间t ∆= 解: (1) 求β当0/3ω时, 20()3M k ω=-由 M J β=, 可得此时 209k MJ J ωβ==-(2) d M J J dt ωβ== 2d k J dt ωω-=分离变量,两边积分32td kdt Jωωωω-=⎰⎰解得: 02J t k ω∆=50.长为l 的均匀直棒可绕其下端与棒垂直的水平光滑轴在竖直平面内转动。

抬起一端使与水平夹角为60=θ,棒对轴的转动惯量为231ml J =,由静止释放直棒,则t = 0时棒的β=?;水平位置时的β=?这时的ω=(1)求β 据转动定律M J β=, MJβ= 0t =时, cos 602lM mg =︒水平位置时, 2lM mg =代入MJβ=,可别解得034glβ= 和 32g l β= (2)求ωd d d d M J J J J dt d dt d ωωθωβωθθ====将cos 2l M mg θ=和213J ml =代入化简并积分得, 0033cos 2g d d l ωπθθωω=⎰⎰ 60可求得332g l ω=(本题还可用动能定律机械能守恒方便求解ω)2211sin 60223l mg ml ω︒=⋅ 332g lω⇒=51.一飞轮以min /600rev 的转速转动,其转动惯量为25.2m kg J ⋅=,以恒定力矩使飞轮在一分钟内停止转动,求该力矩M 。

刚体的定轴转动(带答案)【范本模板】

刚体的定轴转动(带答案)【范本模板】

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[C ](A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C)取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小.(B)角速度从小到大,角加速度从小到大。

(C)角速度从大到小,角加速度从大到小。

(D)角速度从大到小,角加速度从小到大。

3。

(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[D ](A)它受热或遇冷伸缩时,角速度不变。

(B)它受热时角速度变大,遇冷时角速度变小。

(C)它受热或遇冷伸缩时,角速度均变大.(D)它受热时角速度变小,遇冷时角速度变大。

4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ] (A)不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A)βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ](A )刚体不受外力矩的作用。

(B)刚体所受合外力矩为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

mvl mvl 1m2l
3
③弹性碰撞,故动能也守恒,有:
1m2v 1m v21(1m2) l 2
2 2 23
④碰后杆上升过程,杆与地球系统的机械能守恒:
1(1m2) l21m(1 gc l o )s
23
2
3
联立求解,得:
arcco2s3
例10.一个质量为 M半径为R 的匀质球壳可绕一光滑竖直中心轴 转动。轻绳绕在球壳的水平最大圆周上,又跨过一质量为 半径为
m,l o
解 ( 1 ) d: M dg m r
mdrgr
l
m rdr
l
1
M dM2 2 0
mr
l
dr
1 4
mgl
(2)由角动量定理:
M t J J 0 J 0
t J 0 0 l
(2) 木板获得的角速度
l L
A
例7.如图所示,滑轮转动惯量为 0.01kg.m2, 半径为 7cm,物体 的质量为 5kg,有一细绳与劲度系数 k=200N.m-1的弹簧相连,若 绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求: (1)当绳拉直、弹簧无伸长时使物体由静止开始下落,能达到 的最大距离。
(2)物体的速度达最大值时的位置及最大速率。 k
解:(1) mgx1kx2, x 2mg 0.4m 9
J
2
k
(2) 加速度为0时速度最大,滑轮受力矩为0
kx0 mg, x0m/g k0.24 m 5
m
m0 gx1 2m0 2v 1 2J0 21 2k0 2x
v0 [k(mJ/R2)] 1 2mg
1.3m s-1
人 : M gT2M a
物:
11 T1-2Mg=2Ma
2 a 7g
轮 : (T 2T 1)RJ
a R
o
T2
T1
A Ba
Mg
1
2 Mg
例2.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个 组合轮。小圆盘的半径为r,质量为m;大圆盘的半径r’=2r, 质量为m’=2m。组合轮可绕通过其中心且垂直于盘面的光滑水 平固定轴O转动,对O轴的转动惯量J=9mr2/2。两圆盘边缘上分 别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和B,如图
例8.一个内壁光滑的圆形细管,正绕光滑固定轴oo′转动,管是刚 性的,转动惯量是J0,半径为R,初速是ω0,一质量为m的小球静 止于A点,如图,由于微小扰动,小球向下滑动。
o
1.地球、环与小球系统的机械能守恒否?
2.小球的动量守恒否?
A
3.小球对oo′轴的角动量守恒否?
R
4.当小球到达B时,环的角速度为多少?
① 在小球下落过程中,对于小球与地球系统,只有重力做功, 所以机械能守恒,设v为小球碰前速度,有:
mg(1lcos)1m2v
2 ②球与杆的碰撞过程极短暂,可认为杆的位置还来不及变化,因 此球与杆系统的重力对定轴O无力矩,轴的支持力也无力矩,所 以系统在碰撞过程中对轴的角动量守恒,
设v’为小球碰后的速度,ω为杆碰后的角速度,有:
解 法 一 : 用转动定律求解
在恒力矩和摩擦力矩作用下,0—10s内有:
MMr J1
1 1t1
MMr
Jω1 t1
移去恒力矩后,0—90s内有:
Mr J2
01 2t2
Mr
J2
t2
J Mt1t2
1(t1 t2)
54kgm2

解题过程尽可能用文字式,最后再带入数字。
解法二:
0-10s: 0-90s:
用角动量定理求解
(M M r)t1J10
(M rt2)0J1
联立得: M 1 t2 tJ1(t1t2)
JM 1 t2/t1(t1t2)54kgm2
例4.一圆盘绕过盘心且与盘面垂直的轴 o 以角速度 按图示方
向转动,若射来两颗完全相同的子弹,方向相反并在同一条直
线上,子弹射入圆盘并留在其中,则子弹射入后的瞬间,盘的
轮的角速度是多少?
θ A v0 cos
v0 sin
R
例6.一块质量为M=1kg 的木板,高L=0.6m,可以其一边为轴自 由转动。最初板自由下垂.今有一质量m=10g的子弹,垂直击中 木板A点,l=0.36m,子弹击中前速度为500m/s,穿出后的速度 为200m/s, 求: (1) 子弹给予木板的冲量
角速度
(A)增大;(B)减小;
(C)不变;(D)不能确定。
mO
m
mO
m
例5.一车轮,轴光滑,在竖直面内转动,质量为M,J=MR2, 轮原静止,一质量为m的子弹以速度v0沿与水平方向成θ角射 中轮缘A处,并留在A处。设作用时间极短,问: (1)以车轮、子弹为研究系统
➢ 撞击前后系统的动量是否守恒?为什么? ➢ 动能是否守恒?为什么? ➢ 角动量是否守恒?为什么? (2)子弹和轮开始一起运动时,
m 的匀质圆盘,此圆盘具有光滑水平轴,然后在下端系一质量也 为 m的物体,如图。求当物体由静止下落h 时的速度v。
例11.如图所示,一均匀细杆长为 l ,质量为 m,平放在摩擦系数
为μ的水平桌面上,设开始时杆以角速度 ω0 绕过中心 o 且垂直于
桌面的轴转动,试求:
0
(1)作用在杆上的摩擦力矩;
(2)经过多长时间杆才会停止转动。
例1.一轻绳绕过一定滑轮,滑轮轴光滑,滑轮
的质量为 M/4,均匀分布在其边缘上,绳子 A
端有一质量为 M的人抓住了绳端,而在绳的另
一端 B 系了一质量为 M/2 的重物,如图示。设 A
人从静止开始以相对绳匀速向上爬时,绳与滑
轮间无相对滑动,求 B 端重物上升的加速度?
B
解:受力分析如图示,
由题意 a人=aB=a
B
小球相对于环的速度多少?
5.当小球到达C时,环的角速度及小球
C
相对于环的速度各是多少?
o′
例9.长为l质量为m匀质细杆可绕通过其上端的水平固定轴O转 动,另一质量也为m的小球,用长为l的轻绳系于O轴上,如图。 开始时杆静止在竖直位置,现将小球在垂直于轴的平面内拉开 一定角度,然后使其自由摆下与杆端发生弹性碰撞,结果使杆 的最大摆角为π/3,求小球最初被拉开的角度θ。
所示。这一系统从静止开始运动,绳与盘无相对滑动,绳的长 度不变。已知r = 10 cm.求: (1) 组合轮的角加速度; (2) 当物体A上升h=40 cm时,组合轮的角速度ω。
O m ,r
m , r
A
B
例3.以 30N·m 的恒力矩作用在有固定轴的飞轮上,10s 内飞轮的 转速由零增大到5rad/s ,此时移去该恒力矩,飞轮因摩擦力距的 作用经 90s 而停止,试计算此飞轮对其固定轴的转动惯量。
相关文档
最新文档