人教版九年级上学期期中试卷2

合集下载

人教版2022-2023学年九年级英语上册期中测试卷含答案

人教版2022-2023学年九年级英语上册期中测试卷含答案

2022-2023学年第一学期九年级期中质量调研英语试题本试题分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分,共10页,满分150分。

考试时间为120分钟。

答卷前,请考生务必将自己的姓名、座号和准考证号涂写在答题卡上,并同时将姓名、座号和准考证号填写在试卷规定的位置。

考试结束后,将本试卷和答题卡一并交回。

选择题部分共90分I.听力测试(30分)A) 听录音,从每组句子中选出一个你所听到的句子。

每个句子听一遍。

( ) 1. A. Good learners learn well. B. I used to be short.C. Tea is grown in Hangzhou.( ) 2. A. I can’t spell the word. B. It isn’t made by hand.C. You don’t need to rush.( ) 3. A. How delicious the food is! B. What a nice festival it is!C. How beautiful the lantern is!( ) 4. A. Have you studied with a group? B. Is there a park near here?C. Is it made of glass?( ) 5. A. What should we start with? B. How does it work?C. Why is it special?B) 在录音中,你将听到五段对话,每段对话后有一个小题,从每小题A、B、C中选出能回答所给问题的正确答案。

每段对话听两遍。

( ) 6. What does Cindy find it difficult to learn?A. Grammar.B. Pronunciation.C. V ocabulary.( ) 7. When is Annie’s mother’s birthday?A. Last Monday.B. This Monday.C. Next Monday.( ) 8. How does Cathy get to school on rainy days?A. By bike.B. By bus.C. By taxi.( ) 9. Who cleaned the classroom today?A. Jack.B. Bob.C. Tony.( ) 10. What did Amy use to be like?A. She used to be heavy and short.B. She used to wear glasses.C. She used to be thin and tall.C) 在录音中,你将听到一段对话,对话后有五个小题,从每小题A、B、C中选出能回答所给问题的正确答案。

2023年九年上学期人教版九年级上册语文期中考试试卷

2023年九年上学期人教版九年级上册语文期中考试试卷

2023年九年上学期人教版九年级上册语文期中考试试卷第一部分:选择题(共30分,每小题2分)1. 下列句子中,没有语病的一句是()A. 我买了八本书B. 他自己画了一幅画C. 他整日无所事事D. 她和他都去了北京2. “小南国”中的“南国”最初的意思是()A. 中国的南方地区B. 茶马古道上的南方地区C. 印度尼西亚D. 泰国3. “床前明月光,疑是地上霜”,这句话的意思是()A. 床前的月光很亮,地上好像有霜B. 床前有明月当照,恍惚以为仙境C. 床前碧草如茵,明月如霜常伴君D. 半夜得些惊吓,余皆发自牢骚4. “麻雀虽小,五脏俱全”,这句话的意思是()A. 虽然麻雀小,但它五脏俱全B. 麻雀是最小的鸟类,但是和其他鸟类一样有五脏C. 麻雀固然小,但也有五脏六腑D. 麻雀最重要的器官是五脏5. 古人说过:“九十老翁能耐疏,不画龙点睛难”的意思是()A. 九十岁的老人能够唠叨得很细致,一幅好画如果没有点睛,也不能获取观众的好评B. 九十岁的老人尽管事情听起来凌乱,仍然有广泛的智慧和生活经验C. 要想画好龙,除了基本功要扎实外,还要有心得的点缀D. 九十岁的老人并不需要点缀,他所说的话就足够明晰了......第二部分:非选择题(70分)一、填空题(每小题2分,共20分)1. 理通了字音、字形、字义三者之间的关系,才能读明白一个单词的____________、写对一个单词的____________、用好一个单词的____________。

(适当选用“读音”“字形”“意义”“拼写”“运用”等词)2. “穷则变,变则通,通则久”,这句话告诉我们,当我们遇到________时,我们应该不断改变才能摆脱困境,实现自我提升。

(适当选用“窘境”“机遇”“压力”等词)3. 有的人在失败面前退缩、自怨自艾,而有的人在失败面前黯然神伤却不放弃,乃是因为他们懂得了“____________”的真正含义。

(请补充完整引言和作者姓名)4. 她勤奋好学,____________在音乐比赛上面不断进取、不断超越,终于获得了金牌。

2023-2024学年全国初中九年级上语文人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上语文人教版期中考试试卷(含答案解析)

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个作品是鲁迅的短篇小说集?A.《呐喊》B.《彷徨》C.《朝花夕拾》D.《野草》2. 《水浒传》中绰号“智多星”的是?A.宋江B.吴用C.林冲D.武松3. 下列诗句中,使用了对偶修辞手法的是?A.大漠孤烟直,长河落日圆。

B.海内存知己,天涯若比邻。

C.欲穷千里目,更上一层楼。

D.山重水复疑无路,柳暗花明又一村。

4. 下列成语中,与“杯弓蛇影”意思相近的是?A.草木皆兵B.风声鹤唳C.画蛇添足D.守株待兔5. 下列哪个节气标志着春季的到来?A.立春B.惊蛰C.清明D.谷雨二、判断题(每题1分,共5分)1. 《红楼梦》的作者是曹雪芹。

()2. “两表”指的是《出师表》和《陈情表》。

()3. “五岳”中的东岳是泰山。

()4. 《西游记》中的孙悟空有七十二变。

()5. 词语“滥竽充数”出自《战国策》。

()三、填空题(每题1分,共5分)1. “学而不思则____,思而不学则殆。

”2. “青青子____,悠悠我心。

”3. 《咏柳》中“不知细叶谁裁出,二月春风似____。

”4. “山不在高,有仙则名;水不在深,有____则灵。

”5. “粉身碎骨浑不怕,要留清白在____。

”四、简答题(每题2分,共10分)1. 请简述《西游记》中孙悟空大闹天宫的原因。

2. 请简要介绍《三国演义》中的赤壁之战。

3. 请解释成语“胸有成竹”的意思。

4. 请简述《背影》一文中父亲为儿子买橘子的情节。

5. 请列举出唐代诗人杜甫的三个代表作品。

五、应用题(每题2分,共10分)1. 请用“虽然……但是……”的关联词造句。

2. 请将下列句子改写为反问句:“这难道不是你的错吗?”3. 请将下列句子改为双重否定句:“他一定会来。

”4. 请用“如果……就……”的关联词造句。

5. 请仿写句子:“书籍是智慧的钥匙。

”六、分析题(每题5分,共10分)1. 请分析《红楼梦》中林黛玉的性格特点。

2. 请分析《岳阳楼记》中作者表达的思想感情。

2024-2025学年人教版九年级上册数学期中测试卷

2024-2025学年人教版九年级上册数学期中测试卷

2024-2025学年人教版九年级上册数学期中测试卷一、单选题1.抛物线28y x =-的顶点坐标是( )A .()8,0-B .()0,8-C .()0,8D .()8,0 2.一元二次方程2 120x x --=的解是( )A .1234x x ==,B .1234x x =-=,C .1234x x ==-,D .1234x x =-=-,3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 4.当函数()21y a x bx c =+++是二次函数时,a 的取值为( )A .1a =B .1a =-C .1a ≠-D .1a ≠ 5.关于x 的一元二次方程2220kx x -+= 有两个相等的实数根,则k 的值是( ) A .4k = B .12k = C .2k =- D .14k =6.已知a 是一元二次方程2240x x --=的一个根,则代数式222024a a -+的值为( )A .2024+B .2024-C .2024D .2028 7.函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )A .B .C .D .8.已知二次函数()()222211y k x k x =-+++与x 轴有交点,则k 的取值范围在数轴上表示正确的是( )A .B .C .D .9.已知二次函数()245y x a x a =+-+-(a 为常数)的图象经过()m n -,和()m n ,两点,则二次函数与y 轴的交点坐标为( )A .()0,1B .()0,1-C .()0,5-D .()0,410.如图,一块含30︒角的直角三角板ABC 绕点B 顺时针旋转到A BC ''△的位置,使得A 、B 、C '三点在同一条直线上,则三角板ABC 旋转的角度是( )A .30︒B .60︒C .90︒D .120︒11.2024年春节刚过,国内新能源汽车车企纷纷开展降价促销活动.某款新能源汽车今年3月份的售价为25万元,5月份的售价为18万元,设该款汽车这两月售价的月均下降率是x ,则下列方程正确的是( )A .()225118x -=B .()218125x -= C .()218125x -= D .()2251218x -= 12.如图1是太原晋阳湖公园一座抛物线型拱桥,按如图2所示建立坐标系,在正常水位时水面宽30AB =米,当水位上升5米时,则水面宽20CD =米,则函数表达式为( )A .2115y x =-B .2125y x =-C .2115y x =D .2125y x =二、填空题13.在平面直角坐标系中,点(45)P -,关于原点对称点P '的坐标是. 14.若a ,b 为方程2320x x -+=的两个实数根,则232a a ab -+的值为.15.抛物线231010y x x =--与x 轴的其中一个交点坐标是(,0)m ,则2264m m -+的值为. 16.如图,抛物线21462y x x =-+与y 轴交于点A ,与x 轴交于点B ,线段CD 在抛物线的对称轴上移动(点C 在点D 下方),且3CD =.当AD BC +的值最小时,点C 的坐标为.三、解答题17.解方程:(1)230x x -=.(2)()23x x +=.18.已知二次函数2246y x x =-++,设其图象与x 轴的交点分别是A 、B (点A 在点B 的左边),与y 轴的交点是C ,求:(1)A 、B 、C 三点的坐标;(2)设抛物线的顶点为D ,求BCD △的面积.19.如图,平面直角坐标系中,ABC V 的位置如图所示:(1)请在图中作出ABC V 绕原点 O 逆时针旋转90︒得到的111A B C △;(2)作出111A B C △关于原点对称的222A B C △,并写出2B 的坐标.20.如图,二次函数21y x bx c =-++的图象交x 轴于点()3,0A -和点()1,0B ,交y 轴于点C ,且点C 、D 是二次函数图象上关于对称轴对称的一对点,一次函数2y mx n =+的图象经过点B 、D .(1)求二次函数的解析式;(2)根据图象直接写出不等式2x bx c mx n -++<+的解集为________.21.将下列方程化成一元二次方程的一般形式,并写出二次项系数、一次项系数和常数项.(1)2312x x -=;(2)()2243x x x x -=-;(3)关于x 的方程()220mx nx mx nx q p m n -++=-+≠.22.如图,抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点,且(1,0)A -.(1)求抛物线的解析式;(2)判断ABC V 的形状,并证明你的结论;(3)点P 是x 轴上的一个动点,当PC PD +的值最小时,求点P 的坐标.23.如图,已知抛物线21y x bx c =++与直线22y x =+的一个交点A 在y 轴上、另一交点为点B ,直线2y x =+与x 轴交于点C ,抛物线的对称轴为直线1x =,交x 轴于点D .(1)求抛物线的解析式;(2)直接写出12y y >时x 的取值范围;(3)点P 是抛物线上A B 、之间的一点,连接CP DP 、,当C D P △面积最小时,求点P 的坐标. 24.一款服装每件进价为80元,销售价为120元时,每天可售出20件,为了扩大销售量,增加利润,经市场调查发现,如果每件服装降价1元,那么平均每天可多售出2件.(1)设每件服装降价x 元,则每天销售量增加______件,每件商品盈利______元(用含x 的代数式表示);(2)在让利于顾客的情况下,每件服装降价多少元时,商家平均每天能盈利1200元?(3)商家能达到平均每天盈利1800元吗?请说明你的理由.25.某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额1y (万元)与销售量x (吨)的函数解析式为15y x =;成本2y (万元)与销售量x (吨)的函数图象是如图所示的抛物线的一部分,其中17,24⎛⎫⎪⎝⎭是其顶点.(1)求出成本2y关于销售量x的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额-成本)。

精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版

精品人教版2019-2020学年九年级数学上册期中模拟试卷(二)解析版

人教版2019-2020学年九年级数学上册期中模拟试卷(二)一.选择题(共8小题,满分6分)1.一元二次方程x2=3x的解为()A.x=0B.x=3C.x=0或x=3D.x=0 且x=32.方程2x2+5=7x根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根3.将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是()A.y=﹣3(x﹣1)2﹣2B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2D.y=﹣3(x+1)2+24.(3分)如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°5.在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°后得到点P′,则点P′的坐标是()A.(﹣2,3)B.(3,﹣2)C.(﹣3,2)D.(2,﹣3)6.如图,∠AOB=100°,点C在⊙O上,且点C不与A、B重合,则∠ACB的度数为()A.50°B.80°或50°C.130°D.50°或130°7.如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°8.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个二.填空题(共8小题,满分18分)9.(3分)当a=时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程.10.(3分)平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是.11.(3分)二次函数y=﹣x2﹣2x+3的最大值是.12.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.13.(3分)已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为.14.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.15.如图,P是⊙O的直径AB延长线上的一点,PC切⊙O于点C,∠APC的平分线交AC于点D.若∠APC=40°,则∠CDP=.16.如图,已知点C是的一点,圆周角∠ACB为125°,则圆心角∠AOB=度.三.解答题(共2小题,满分16分,每小题8分)17.(8分)解方程与不等式:(1)(x﹣3)(x﹣2)+33=(x+9)(x+1)(2)(2x+3)(2x﹣3)<4(x﹣2)(x+3)18.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.四.解答题(共2小题)19.如图,在正方形网格中,△ABC的三个顶点都在格点上,点O也在格点上.(1)画△A'B'C',使△A'B'C'与△ABC关于直线OP成轴对称,点A的对应点是A';(2)画△A''B''C'',使△A''B''C''与△A'B'C'关于点O成中心对称,点A'的对应点是A''.20.在平面直角坐标系中,O为原点,点A(2,0),点B(0,),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.五.解答题(共2小题,满分20分,每小题10分)21.(10分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.22.(10分)如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D 的直线于F,且∠BDF=∠CDB,BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)连结MN,猜想MN与AB的位置有关系,并给出证明.六.解答题(共2小题,满分20分,每小题10分)23.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?24.(10分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?七.解答题(共1小题)25.在矩形ABCD中,AB=6,AD=8,点E是对角线BD上一动点.(1)如图1,当CE⊥BD时,求DE的长;(2)如图2,作EM⊥EN分别交边BC于M,交边CD于N,连MN.①若,求tan∠ENM;②若E运动到矩形中心O,连CO.当CO将△OMN分成两部分面积比为1:2时,直接写出CN的长.八.解答题(共1小题)26.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分6分)1.【解答】解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.2.【解答】解:方程化为2x2﹣7x+5=0,因为△=(﹣7)2﹣4×2×5=9>0,所以方程有两个不相等的实数根.故选:A.3.【解答】解:将抛物线y=﹣3x2向左平移1个单位所得直线解析式为:y=﹣3(x+1)2;再向下平移2个单位为:y=﹣3(x+1)2﹣2,即y=﹣3(x+1)2﹣2.故选:C.4.【解答】解:∵CA=CB,∴∠CBA=∠CAB=25°,∵△ABC绕点A顺时针进行旋转,得到△ADE.点B恰好在DE的延长线上,∴∠D=∠ABC=25°,∠DAE=∠BAC=25°,AD=AB,∴∠ABD=25°,∴∠ABD=∠CAB,∴AC∥BD,∴∠D+∠DAC=180°,∴∠EAB=180°﹣25°﹣25°﹣25°=105°.故选:C.5.【解答】解:如图,过P、P′两点分别作x轴,y轴的垂线,垂足为A、B,∵线段OP绕点O顺时针旋转90°,∴∠POP′=∠AOB=90°,∴∠AOP=∠P′OB,且OP=OP′,∠P AO=∠P′BO=90°,∴△OAP≌△OBP′,即P′B=P A=3,BO=OA=2,∴P′(3,﹣2).故选:B.6.【解答】解:当点C在优弧上时,∠AC′B=∠AOB=×100°=50°,当点C在劣弧上时,∠ACB=(360°﹣∠AOB)=×(360°﹣100°)=130°.故选:D.7.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.8.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.二.填空题(共8小题,满分18分)9.【解答】解:∵(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,∴a﹣3≠0,|a|﹣1=2,解得:a=﹣3,即当a=﹣3时,(a﹣3)x|a|﹣1﹣x=5是关于x的一元二次方程,故答案为:﹣3.10.【解答】解:根据中心对称的性质,得点P(﹣2,﹣3)关于原点对称点P′的坐标是(2,﹣3).故答案为:(2,﹣3).11.【解答】解:∵y=﹣x2﹣2x+3=y=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴当x=﹣1时,y取得最大值4,故答案为:4.12.【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.13.【解答】解:设方程的另一个根为x2,则﹣1×x2=﹣3,解得:x2=3,故答案为:3.14.【解答】解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).15.【解答】解:如图,连接OC,∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∴∠A=∠ACO=∠COP,∵PD为∠APC的平分线,∴∠APD=∠CPD=∠CPO,∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.故答案为:45°.16.【解答】解:在优弧AB上取点D,连接AD,BD,∵∠ACB=125°,∴∠ADB=180°﹣125°=55°,∴∠AOB=110°,故答案为:110.三.解答题(共2小题,满分16分,每小题8分)17.【解答】解:(1)x2﹣5x+6+33=x2+10x+9,x2﹣5x﹣x2﹣10x=9﹣6﹣33,﹣15x=﹣30,x=2;(2)4x2﹣9<4(x2+x﹣6),4x2﹣9<4x2+4x﹣24,4x2﹣4x2﹣4x<﹣24+9,﹣4x<﹣15,x>.18.【解答】解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.四.解答题(共2小题)19.【解答】解:(1)如图所示,△A'B'C'为所求三角形;(2)如图所示,△A''B''C''为所求三角形.20.【解答】解:∵点A(2,0),点B(0,),∴OA=2,OB=.在Rt△ABO中,由勾股定理得AB=.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=,∴AA′==.五.解答题(共2小题,满分20分,每小题10分)21.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.22.【解答】(1)证明:∵直径AB经过弦CD的中点E,∴AB⊥CD,.∴∠BOD=2∠CDB.∵∠BDF=∠CDB,∴∠BOD=∠CDF,∵∠BOD+∠ODE=90°,∴∠ODE+∠CDF=90°,即∠ODF=90°,∴DF是⊙O的切线;(2)猜想:MN∥AB.证明:连结CB.∵直径AB经过弦CD的中点E,∴,.∴∠CBA=∠DBA,CB=BD.∵OB=OD,∴∠DBA=∠ODB.∴∠AOD=∠DBA+∠ODB=2∠DBA=∠CBD,∵∠BCG=∠BAG,∴△CBN∽△AOM,∴.∵AO=OD,CB=BD,∴,∴,∵∠ODB=∠MDN,∴△MDN∽△ODB,∴∠DMN=∠DOB,∴MN∥AB.六.解答题(共2小题,满分20分,每小题10分)23.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.24.【解答】解:(1)根据题意得y=(70﹣x﹣50)(300+20x)=﹣20x2+100x+6000,∵70﹣x﹣50>0,且x≥0,∴0≤x<20;(2)∵y=﹣20x2+100x+6000=﹣20(x﹣)2+6125,∴当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.七.解答题(共1小题)25.【解答】解:(1)∵矩形ABCD中,AB=6,AD=8∴∠BCD=90°,BC=AD=8,CD=AB=6∴BD==10∵CE⊥BD∴∠CED=∠BCD=90°∵∠CDE=∠BDC∴△CDE∽△BDC∴∴DE=(2)①如图1,过点M作MF⊥BD于点F,过点N作NG⊥BD于点G∵,BD=10∴BD=BE+DE=3DE+DE=4DE=10∴DE=,BE=设MF=a,NG=b∵∠BFM=∠C=90°,∠FBM=∠CBD∴△FBM∽△CBD∴∴BF==a∴EF=BE﹣BF=a同理可证:△GDN∽△CDB∴∴DG==b∴EG=DE﹣DG=b∵EM⊥EN∴∠MEN=∠MFE=∠NGE=90°∴∠MEF+∠NEG=∠MEF+∠EMF=90°∴∠EMF=∠NEG∴△EMF∽△NEG∴∴EF•EG=NG•MF∴(a)(b)=ba整理得:16a=90﹣27b∴在Rt△MEN中,tan∠ENM==②如图2,过点M作MF⊥BD于点F,MP⊥OC于点P,过点N作NG⊥BD于点G,NQ⊥OC于点Q,设OC 与MN交点为H∵点O为矩形中心,BD=10∴OB=OD=OC=BD=5由①可得,设MF=a,NG=b,则BF==a,DG==b,OF•OG=NG•MF∴OF=OB﹣BF=5﹣a,OG=OD﹣DG=5﹣b∴(5﹣a)(5﹣b)=ab整理得:16a=60﹣9b∴=设CN=5x∵∠NCQ=∠BDC,∠NQC=∠BCD=90°∴△NCQ∽△BDC∴=∴CQ=CN=3x,NQ=CN=4x∴OQ=OC﹣CQ=5﹣3x∵∠MPO=∠MON=∠OQN=90°∴∠MOP+∠NOQ=∠NOQ+∠ONQ=90°∴∠MOP=∠ONQ∴△MOP∽△ONQ∴i)若S△OMH=2S△ONH,且两三角形都以OH为底∴MP=2NQ=8x∴解得:x=∴CN=ii)若2S△OMH=S△ONH,则MP=NQ=2x∴解得:x=∴CN=综上所述,CN的长为或.八.解答题(共1小题)26.【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=﹣2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(﹣2m+6),∴m2+6m﹣9=0,解得:m=﹣3±3,∵1≤m<3,∴m=3(﹣1),∴P′(3﹣3,12﹣6)综上所述:P点坐标为:(,3),(3﹣3,12﹣6).。

人教版九年级上册数学期中考试试卷含答案解析

人教版九年级上册数学期中考试试卷含答案解析

人教版九年级上册数学期中考试试题一、选择题。

(每小题只有一个正确答案)1.已知方程2430x x -+=,它的二次项系数、一次项系数、常数项分别是()A .0、4、3B .1、4、3C .1、4-、3D .0、4-、32.已知一元二次方程2230x x b +-=的一个根是1,则b =()A .3B .0C .1D .53.一元二次方程2310x x -+=的两根之和为()A .13B .2C .3-D .34.对于抛物线221y x x =--,下列说法中错误的是()A .顶点坐标为()12,-B .对称轴是直线1x =C .当1x >时,y 随x 的增大减小D .抛物线开口向上5.抛物线2(1)2y x =-+可以由抛物线2x y =平移而得到,下列平移正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.右图所示,已知二次函数2y ax bx c =++的图象如图所示,则a 、b 、c 满足()A .0a <,0b >,0c >B .0a >,0b <,0c >C .0a <,0b <,0c <D .0a <,0b <,0c >7.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 等于()A .116°B .32°C .58°D .64°8.如图,AB 是O 的弦,半径OC AB ⊥于点D ,且8cm AB =,5cm OC =,则DC 的长是()A .3cmB .2.5cmC .2cmD .1cm9.如图,四边形ABCD 内接于O ,F 是 CD上一点,且 DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若105ABC ∠=︒,25BAC ∠=︒,则E ∠的度数为()A .60︒B .45︒C .50︒D .30°10.如图,在平面直角坐标系中,已知抛物线2y ax bx =+的对称轴为34x =,且经过点A (2,1),点P 是抛物线上的动点,P 的横坐标为()02m m <<,过点P 作PB x ⊥轴,垂足为B ,PB 交OA 于点C ,点O 关于直线PB 的对称点为D ,连接CD ,AD ,过点A 作AE ⊥x 轴,垂足为E ,则当m =()时,ACD ∆的周长最小.A .1B .1.5C .2D .2.5二、填空题11.一元二次方程x 2﹣4=0的解是_________.12.二次函数()2214y x =+-,当x =________时,y 的最小值是_______.13.若二次函数228y x x c =++的图像上有()11,A y -,()24,B y ,()31,C y 三点,则1y ,2y ,3y 的大小关系是______.14.如图,二次函数y =ax 2+bx +3的图象经过点A (﹣1,0),B (3,0),那么一元二次方程ax 2+bx+3=0的根是_____.15.如图A ,B ,C 是圆O 上的3点,且四边形OABC 是菱形,若点D 是圆上异于A ,B ,C 的另一点,则ADC ∠的度数是_______.16.如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ ,当点P 在BC 上移动时,则PQ 长的最大值为__________.17.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为____________;(2)不等式ax 2+bx +c>0的解集为________;(3)y 随x 的增大而减小的自变量x 的取值范围为________;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________.三、解答题18.解方程:(1)24x x=(2)23100x x --=19.如图,已知抛物线2122y x =-+与直线222y x =+交于A ,B 两点,(1)求A ,B 两点的坐标。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案(含两套题)

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案(含两套题)
25.(12分)在正方形ABCD中,点E在射线BC上(不与点B、C重合),连接DB,DE,将DE绕点E逆时针旋转90°得到EF,连接BF.
(1)如图1,点E在BC边上.
①依题意补全图1;
②若AB=6,EC=2,求BF的长;
(2)如图2,点E在BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系.
∴∠ODA=90°,AD=BD=8cm,
在Rt△ODA中,由勾股定理得
OD= cm,
∵OC=10cm,
∴CD=OC-OD=4cm,故选C.
【点睛】本题考查了垂径定理,勾股定理.能根据垂径定理求出AD的长是解题的关键.
4. B
【解析】
【分析】先求圆锥的母线,再根据公式求侧面积.
【详解】由勾股定理得:母线 ,
(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;
(2)如图2,过点M作MC⊥AB于点C,P是MN的中点,连接MB,NA,PC,试探究∠MCP,∠NAB,∠MBA之间的数量关系,并证明.
24.(12分)已知:如图1,在平面直角坐标系中,⊙P的圆心 ,半径为5,⊙P与抛物线 的交点A、B、C刚好落在坐标轴上.
三、解答题(共9小题,总分72分)
17.(6分)已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.
(1)△ABC绕点C顺时针旋转90°得到△A1B1C;
(2)画△A1B1C关于点O的中心对称图形△A2B2C2.
18.(6分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
人教版2022--2023学年度第一学期期中测试卷
九年级 数学
(满分:120分 时间:100分钟)
题号

人教版九年级上册数学期中考试试题及答案

人教版九年级上册数学期中考试试题及答案

人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。

人教版九年级上册数学期中考试试卷及答案

人教版九年级上册数学期中考试试卷及答案

人教版九年级上册数学期中考试试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.方程2x x =的解是()A .1x =B .0x =C .11x =,20x =D .11x =-,20x =3.对于二次函数y=(x-1)2+2的图象,下列说法正确的是()A .开口向下B .对称轴是x=-1C .顶点坐标是(1,2)D .与x 轴有两个交点4.已知点A (2,﹣2),如果点A 关于x 轴的对称点是B ,点B 关于原点的对称点是C ,那么C 点的坐标是()A .(2,2)B .(﹣2,2)C .(﹣1,﹣1)D .(﹣2,﹣2)5.已知x =2是一元二次方程x 2+mx+2=0的一个解,则m 的值是()A .﹣3B .3C .0D .0或36.若关于x 的一元二次方程2x 2x m 0-+=没有实数根,则实数m 的取值范围是()A .1m <B .1m >-C .1m >D .1m <-7.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为()A .B .C .D .8.对于任意实数x ,多项式x 2-5x+8的值是一个()A .非负数B .正数C .负数D .无法确定9.已知关于x 的一元二次方程x2+2x+m ﹣2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为()A .6B .5C .4D .310.若t 是一元二次方程()200ax bx c a ++=≠的根,则判别式24b ac =- 和完全平方式2(2)M at b =+的关系是()A .M =B . M >C .M< D .大小关系不能确定二、填空题11.如果关于x 的方程(m ﹣3)27mx -﹣x+3=0是一元二次方程,那么m 的值为_____12.把抛物线y =2x 2向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为_____.13.如图,在ABC 中,20BAC =︒∠,将ABC 绕点A 按顺时针方向旋转50°得到AB C ''△,则C AB ∠'的度数为______.14.若x=1是方程2ax 2+bx=3的根,当x=2时,函数y=ax 2+bx 的函数值为_____.15.已知二次函数y =ax 2+4ax+c 的图象与x 轴的一个交点为(﹣1,0),则它与x 轴的另一个交点的坐标是_____.16.二次函数y =ax 2+bx+c 的图象如图所示,下列结论:①abc <0;②3a+c <0;③b 2﹣4ac >0;④16a+4b+c >0.其中正确结论的个数是:___.17.二次函数y=x 2-2x -3与x 轴交点交于A 、B 两点,交y 轴于点C ,则△OAC 的面积为____三、解答题18.解方程:2(23)5(23)x x -=-19.抛物线2y ax =与直线23y x =-交于点()1,A b .(1)求a ,b 的值;(2)求抛物线2y ax =与直线2y =-的两个交点B ,C 的坐标(点B 在点C 右侧).20.如图所示,在宽为16m ,长为20m 的矩形耕地上,修筑同样宽的两条道路(互相垂直),把耕地分成大小不等的四块试验田,要使试验田的面积为285m 2,道路应为多宽?21.如图,已知二次函数y =ax 2+bx+c 的图象过A (2,0),D (﹣1,0)和C (4,5)三点.(1)求二次函数的解析式;(2)在同一坐标系中画出直线y =x+1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.22.已知:关于x 的方程x 2﹣(k +2)x +2k =0(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a =1,另两边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.23.如图,A ,B ,C ,D 为矩形的四个顶点,16cm AB =,6cm AD =,动点P ,Q 分别从点A,C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动,当点P运动到点B停止时,点Q也随之停止运动,问P,Q两点从出发经过几秒时,点P,Q间的距离是10cm?24.如图,在等边△BCD中,DF⊥BC于点F,点A为直线DF上一动点,以B为旋转中心,把BA顺时针方向旋转60°至BE,连接EC.(1)当点A在线段DF的延长线上时,①求证:DA=CE;②判断∠DEC和∠EDC的数量关系,并说明理由;(2)当∠DEC=45°时,连接AC,求∠BAC的度数.25.已知一元二次方程x2-4x+3=0的两根是m,n且m<n.如图,若抛物线y=-x2+bx+c的图像经过点A(m,0)、B(0,n).(1)求抛物线的解析式.(2)若(1)中的抛物线与x轴的另一个交点为C.根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?(3)点P在线段OC上,作PE⊥x轴与抛物线交于点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.参考答案1.C 2.C 3.C 4.D 5.A 6.C 7.D 8.B 9.B 10.A 11.-3【分析】根据一元二次方程的定义解答即可.【详解】∵关于x 的方程(m ﹣3)27m x -﹣x+3=0是一元二次方程,∴27=2m -,m-3≠0,故答案为-3.12.y =2(x+3)2﹣2【分析】根据二次函数图象与几何变换的方法即可求解.【详解】解:y=2x 2向左平移3个单位,再向下平移2个单位,所得抛物线的解析式为y=2(x+3)2-2;故答案是:y=2(x+3)2-2.13.70°【解析】根据旋转可得=50CAC '∠︒,再根据角之间的和差关系可得答案.【详解】解:∵将ABC 绕点A 按顺时针方向旋转50°得到A B C '''V ,∴=50CAC '∠︒,∵=20BCA ∠︒,∴+=50+20=70C AB CAC BCA ''∠=∠∠︒︒︒,故答案为;70°.14.6【分析】由x=1是方程2ax 2+bx=3的根,得到2a+b=3,由x=2时,得到函数y=ax 2+bx=4a+2b=2(2a+b ),代入即可.【详解】∵x=1是方程2ax 2+bx=3的根,∴2a+b=3,∴当x=2时,函数y=ax 2+bx=4a+2b=2(2a+b )=6,故答案为6.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是掌握图象上的点的坐标适合解析式.15.(﹣3,0)【解析】先求出抛物线的对称轴,再根据轴对称性求出与x 轴的另一个交点坐标,x 轴的两个交点到对称轴距离相等.【详解】解:二次函数y=ax 2+4ax+c 的对称轴为:x=42aa-=2-∵二次函数y=ax 2+4ax+c 的图象与x 轴的一个交点为(-1,0),∴它与x 轴的另一个交点坐标是(-3,0).【点睛】本题主要考查抛物线与x 轴的交点,解题的关键是熟练掌握抛物线的对称性,根据对称性找到交点坐标.16.3【解析】【分析】根据二次函数图像的性质(开口方向、对称轴、与坐标轴交点以及特殊点的值),确定对应代数值的符号即可.【详解】解:图像开口方向向上,所以0a >,对称轴为12ba-=,20b a =-<图像与y 轴交点在x 轴下方,∴0c <∴0abc >,①错误;由图像可得,当1x =-时,0y <,即0a b c -+<,∴30a c +<,②正确;图像与x 轴有两个交点,∴240b ac ->,③正确;由图像可知,当2x =-时,0y >,又因为(2,)y -关于1x =对称的点为(4,)y ∴当4x =时,0y >,即1640a b c ++>,④正确所以正确的个数为3故答案为3【点睛】此题考查了二次函数的图像与系数的关系,解题的关键是根据函数图像确定出对应代数值的符号.17.32或92【解析】【详解】∵在223y x x =--中,当0x =时,3y =-,∴点C 的坐标为(0,-3).∵在223y x x =--中,当0y =时,可得2230x x --=,解得1231x x ==-,,∴点A 、B 中,一个点的坐标为(3,0),另一个点的坐标为(-1,0).当点A 的坐标为(3,0)时,S △OAC =193322⨯⨯=;当点A 的坐标为(-1,0)时,S △OAC =133122⨯⨯=;∴△OAC 的面积为92或32.18.132x =或24x =【解析】【分析】把原方程式移项可得2(23)5(23)0x x ---=,利用提公因式法求解即可.【详解】把原方程式变形为:2(23)5(23)0x x ---=,∴(23)(235)0x x ---=,∴(23)(28)0x x --=解得:132x =或24x =.【点睛】本题考查了提公因式法求解一元二次方程,掌握提公因式法解一元二次方程是解题的关键.19.(1)1a b ==-;(2)点C 坐标(2)-,点B 坐标2)-.【解析】【分析】(1)将点A 代入23y x =-求出b ,再把点A 代入抛物线2y ax =求出a 即可.(2)解方程组即可求出交点坐标.【详解】解:(1) 点()1,A b 在直线23y x =-上,1b ∴=-,∴点A 坐标(1,1)-,把点(1,1)A -代入2y ax =得到1a =-,1a b ∴==-.(2)由22y x y ⎧=-⎨=-⎩解得2x y ⎧⎪⎨=-⎪⎩2x y ⎧=⎪⎨=-⎪⎩∴点C 坐标(,2)-,点B 坐标,2)-.【点睛】本题考查二次函数性质,解题的关键是灵活掌握待定系数法,学会利用方程组求函数图象交点坐标.20.1m 【解析】【分析】设道路宽为xm ,根据试验田的面积=试验田的长×试验田的宽列出方程进行求解即可.【详解】设道路宽为xm ,则根据题意,得(20-x )(16-x)=285,解得:x 1=35,x 2=1,∵16-x>0,即x<16,∴x=35舍去,∴x=1,答:道路宽为1m .【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.21.(1)y =12x 2﹣12x ﹣1;(2)图详见解析,﹣1<x <4.【解析】【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;画出图象,再根据图象直接得出答案.【详解】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴42011645a b cca b c++⎧⎪-⎨⎪++⎩==,=∴a=,12b=﹣12,c=﹣1,∴二次函数的解析式为y=12x2﹣12x﹣1;(2)当y=0时,得12x2﹣12x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);∴图象如图,∴当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.【点睛】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x轴的交点问题,是中档题,要熟练掌握.22.(1)见解析;(2)5【解析】【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出△≥0,可得方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b、c的长,并根据三角形三边关系检验,综合后求出△ABC的周长.【详解】(1)证明:由题意知:Δ=(k+2)2﹣4•2k=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)解:当b=c时,Δ=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∴△ABC的周长为5.【点睛】本题考查了根的判别式△=b2-4ac:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.也考查了等腰三角形的性质以及三角形三边的关系.23.1.6或4.8秒【解析】【分析】作PE⊥CD,垂足为E,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.【详解】解:过点P做PE⊥CD交CD于E.QE=DQ-AP=16-5t ,在Rt △PQE 中,PE 2+QE 2=PQ 2,可得:(16-5t )2+62=102,解得t 1=4.8,t 2=1.6.答:P 、Q 两点从出发开始1.6s 或4.8s 时,点P 和点Q 的距离是10cm .24.(1)①证明见解析②∠DEC+∠EDC=90°;(2)150°或30°【解析】(1)①证明△BAD ≌△BEC ,即可证明.②分别求出BCD ∠和BCE ∠的度数,即可求出∠DEC 和∠EDC 的数量关系.(2)分三种情况进行讨论.【详解】解:(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴BA BE ABE =∠=,60°,在等边△BCD 中,DB BC ∴=,60DBC ∠=︒60DBA DBC FBA FBA ∴∠=∠+∠=︒+∠,60CBE FBA ∠=︒+∠ ,DBA CBE ∴∠=∠,∴△BAD ≌△BEC ,∴DA=CE ;②判断:∠DEC+∠EDC=90°.DB DC =Q ,DA BC ⊥,1302BDA BDC ∴∠=∠=︒,∵△BAD ≌△BEC ,∴∠BCE=∠BDA=30°,在等边△BCD 中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD =90°,∴∠DEC+∠EDC=90°.(2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1),由(1)可得,DCE ∆是直角三角形,90DCE ︒∴∠=,当45DEC ∠=︒时,9045EDC DEC ∠=-∠=︒︒,EDC DEC ∴∠=∠,CD CE ∴=,由(1)得DA=CE ,∴CD=DA ,在等边BDC 中,BD CD =,BD DA CD ∴==,60BDC ∴∠=︒,DA BC ⊥ ,1302BDA CDA BDC ∴∠=∠=∠=︒,在BDA V 中,DB DA =,180-752BDABAD ∠∴∠=︒=︒,在DCA △中,DA DC =,180-752ADCDAC ∠∴∠=︒=︒,7575150BAC BAD DAC ︒︒∴∠=∠+∠=+=︒.②当点A 在线段DF 上时(如图2),以B 为旋转中心,把BA 顺时针旋转60︒至BE.60BA BE ABE ∴=∠=︒,,在等边BDC 中,60BD BC DBC =∠=︒,,DBC ABE ∴∠=∠,--DBC ABC ABE ABC ∠∠=∠∠,DBA EBC ∠=∠,DBA ∴∆≌CBE ∆,DA CE ∴=,在Rt DFC ∆90DFC =︒∠,,DF ∴<DC ,∵DA <DF ,DA=CE ,∴CE <DC ,由②可知DCE ∆为直角三角形,∴∠DEC≠45°.③当点A 在线段FD 的延长线上时(如图3),同第②种情况可得DBA ∆≌CBE ∆,DA CE ADB ECB ∴=∠=∠,,在等边BDC 中,60BDC BCD ∠=∠=︒,DA BC ⊥ ,1302BDF CDF BDC ∴∠=∠=∠=︒,180150ADB BDF ∴∠=︒-∠=︒,150ECB ADB ∴∠=∠=︒,90DCE ECB BCD ∴∠=∠-∠=︒,当45DEC ∠=︒时,9045EDC DEC ∠=-∠=︒︒,EDC DEC ∴∠=∠,CD CE ∴=,∴AD=CD=BD ,∵150ADB ADC ∠=∠=︒,180-152ADB BAD ∠∴∠=︒=︒,180-152CDA CAD ∠=︒∠=︒,30BAC BAD CAD ∴∠=∠+∠=︒,综上所述,BAC ∠的度数是150︒或30.︒25.(1)抛物线的解析式为y=-x 2-2x+3;(2)当-3<x<0时,抛物线的图像在直线BC 的上方;(3)P 点的坐标是(-1,0)【解析】【分析】(1)用待定系数法求解;(2)作直线BC ,求交点C 坐标,可得;(3)设直线BC 交PE 于F ,P 点坐标为(a ,0),则E 点坐标为(a ,-a 2-2a+3),再求得直线BC 的解析式为y=x+3,点F 在直线BC 上,所以点F 的坐标满足直线BC 的解析式,即2232a a --+=a+3.【详解】(1)∵x 2-4x+3=0的两个根为x 1=1,x 2=3∴A 点的坐标为(1,0),B 点的坐标为(0,3)又∵抛物线y=-x 2+bx+c 的图像经过点A(1,0)、B(0,3)两点10233b c b c c -++==-⎧⎧∴⎨⎨==⎩⎩得∴抛物线的解析式为y=-x 2-2x+3;(2)作直线BC由(1)得,y=-x2-2x+3∵抛物线y=-x2-2x+3与x轴的另一个交点为C令-x2-2x+3=0解得:x1=1,x2=-3∴C点的坐标为(-3,0)由图可知:当-3<x<0时,抛物线的图像在直线BC的上方.(3)设直线BC交PE于F,P点坐标为(a,0),则E点坐标为(a,-a2-2a+3),∵直线BC将△CPE的面积分成相等的两部分.∴F是线段PE的中点.即F点的坐标是(a,2232a a--+),∵直线BC过点B(0,3)和C(-3,0),易得直线BC的解析式为y=x+3,∵点F在直线BC上,所以点F的坐标满足直线BC的解析式,即2232a a--+=a+3,解得a1=-1,a2=-3(此时P点与点C重合,舍去),∴P点的坐标是(-1,0).【点睛】二次函数与一次函数应用.。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
【详解】解:A、是轴对称图形,不是中心对称图形,故A选项错误;
B、既是轴对称图形,又是中心对称图形,故B选项错误;
C、是中心对称图形,不是轴对称图形,故C选项正确;
D、是轴对称图形,不是中心对称图形,故D选项错误;故选C.
【点睛】本题主要考查了中心对称与轴对称图形的概念,解题的关键在于能够熟练掌握中心对称图形与轴对称图形的相关知识.
14.从一块直径是 的圆中剪出一个圆心角为90°的扇形,将减下来的扇形围成一个圆锥,圆锥底面圆的半径是___________.
15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为_______.
A. B.
C. D.
8.如图, 是 的内接三角形, , 是直径, ,则 的长为( )
A.4B. C. D.
9.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点D(x2,y2)是抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②若y2>y1,则x2>4;③若0≤x2≤4,则0≤y2≤5a;④若方程a(x+1)(x﹣3)=﹣1有两个实数根x1和x2,且x1<x2,则﹣1<x1<x2<3.其中正确结论的个数是( )
【详解】如图,连接 ,
分别与 相切于 两点,
,



.故选B.
【点睛】本题考查了圆的切线的性质,圆周角定理,求得 是解题的关键.
7. B
【解析】
【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.

人教版2022-2023九年级英语第一学期期中检测卷

人教版2022-2023九年级英语第一学期期中检测卷

2022-2023学年第一学期期中质量检测试卷九年级英语一、听力理解(20小题,每小题1分,共20分)第一节:听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳答案,并将其标号填入题前括号内。

每段对话读两遍。

()1.What’s the boy’s father?A.A doctor B.A worker C.A teacher()2.Where are the two speakers?A.In a library B.In a bookstore C.In a clothes shop()3.What does the woman want to do?A.Go fishing B.Go boating C.Go swimming()4.How did the boy go to school?A.On foot B.By bike C.By bus()5.When is the man going to Beijing?A.On Thursday B.On Friday C.On Saturday第二节:听下面几段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳答案,并将其标号填入题前括号内。

每段对话或独白读两遍。

听下面一段对话,回答第6至第7两个小题。

()6.What did the woman think of her trip to Hong Kong?A.Boring B.Wonderful C.So-so()7.Who met the woman at the airport?A.Her uncle B.Her aunt C.Her friend听下面一段对话,回答第8至第9两个小题。

()8.What’s the possible relationship between the two speakers?A.Teacher and student B.Doctor and patient C.Friends()9.What would the woman like to have?A.Coffee B.Milk C.Tea听下面一段对话,回答第10至第12三个小题。

人教版九年级数学上册期中试卷(含答案)

人教版九年级数学上册期中试卷(含答案)

人教版九年级数学上册期中试卷九年级数学满分:120分时间:120分钟注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版九年级上21~24章。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

1.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点B按顺时针方向旋转90°,得到△A′BC′,将△A′BC′向下平移2个单位,得△A″B′C″,那么点C的对应点C″的坐标是()。

A.(3, 2) B.(3, 3) C.(4, 3) D.(4, 2)2.已知关于x的一元二次方程(k-1)x2+2kx+1=0根的情况是()。

A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.下面是小明同学用配方法解方程2x2-12x-1=0的过程:解:2x2-12x-1=0 (1)x2-6x=1 (2)x2-6x+9=1+9 (3)(x-3)2=10,x-3=±10 (4)∴x1=3+10,x2=3-10最开始出现错误的是()。

A.第1步B.第2步C.第3步D.第4步4.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为10厘米,AB=16厘米。

若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分5.已知抛物线y=ax2+bx+m(a≠0)是由抛物线y=x2-2x+m向左平移2个单位得到,若点A(-2, y1),B(-1, y2),C(1, y3)都在抛物线y=ax2+bx+m(a≠0)上,则y1, y2, y3之间的大小关系是()。

期中测试二(原卷版)九年级物理全一册期中期末考点大串讲(人教版)

期中测试二(原卷版)九年级物理全一册期中期末考点大串讲(人教版)

2022-2023学年上学期期中测试卷二(人教版)九年级物理(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2.测试范围:人教版九年级全一册:第十三章——第十六章。

第Ⅰ卷一、单项选择题:本题共10小题,每小题3分,共30分。

1.根据下表中的数据,下列判断正确的是()一些物质的比热容[J/(kg•℃)]水 4.2×103铝0.88×103煤油、冰 2.1×103干泥土0.84×103沙石0.92×103铜0.39×103A.物质的比热容与物质的状态无关B.在阳光照射下,干泥土比湿泥土升温慢C.质量相等的铝块和铜块升高相同的温度,铝块吸收的热量多D.因为水的比热容较大,所以沿海地区比内陆地区昼夜温差大2.关于下面四幅图的说法正确的是()第2题图第7题图A.甲图:发生热传递时,热量总是从内能大的物体传递给内能小的物体B.乙图:一块0°C的冰熔化成0°C的水后,温度不变,内能不变C.丙图:瓶内空气推开瓶盖的演示实验与热机的如图冲程原理相同,都是机械能转化为内能D.丁图:通过做功的方式增加内能3.A、B、C、D四个带电体,若A吸引B,B排斥C,C吸引D,已知D带正电荷,则A带()A.负电B.正电C.不带电D.无法判断4.用同种材料制成的粗细均匀的某段金属导体,对于其电阻大小下列说法正确的是()A.当导体两端电压和通过导体的电流为零时,导体的电阻为零B.当导体被均匀拉长至原来的二倍时,他的电阻减小为原来的一半C.电阻是导体本身的一种性质,所以温度无论如何变化,电阻也不可能变为零D.电阻是导体本身的一种性质,与电压和电流无关5.已知铜的比热容是铅的比热容的3 倍,质量相等的铜块和铅块,吸收相同的热量后互相接触;则下列说法中正确的是()A.铜块一定向铅块传热B.铅块可能向铜块传热C.接触时,铜块温度更高D.接触时,铅块温度更高6.某四冲程内燃机的飞轮转速为3600/minr,则在每秒钟内A.曲轴转120转B.对外做功60次C.完成120个冲程D.完成60个工作循环7.如图所示的电路,以下说法正确的是()A.闭合开关S、S1后灯L1、L2串联B.闭合开关S、S1后,电流表A1测L2的电流C.闭合开关S、S1后,电流表A2示数等于A1的示数D.闭合开关S、断开开关S1后,电流表A1示数不变,电流表A2示数变小8.如图所示的电路中,两个小灯泡的规格相同.闭合开关后,只有一个小灯泡发光,电压表指针偏转明显.则故障可能是()第8题图第12题图第14题图第15题图A.1L短路B.1L断路C.2L短路D.2L断路9.下列说法正确的是A.水结成冰后,分子间的作用力减小B.扩散现象只发生在气体、液体之间C.对人体安全的电压是36V D.一个电子所带的电荷量为1.9×10-16C10.初三的小明同学体育锻炼完回到教室,用两个相同的杯子从饮水机分别接了部分热水和部分冷水,准备用两杯水混合来得到温度适宜的饮用水。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案
A. B. C. D.
2.如图所示的正三棱柱的主视图是()
A. B. C. D.
3.疫情期间进入学校都要进入测温通道,体温正常才可进入学校,昌平某校有2个测温通道,分别记为A、B通道,学生可随机选取其中 一个通道测温进校园.某日早晨该校所有学生体温正常.小王和小李两同学该日早晨进校园时,选择同一通道测温进校园的概率是( )
A.11.5米B.11.75米C.11.8米D.12.25米
13.已知(x2+y2)2﹣y2=x2+6,则x2+y2的值是( )
A.﹣2B.3C.﹣2或3D.﹣3或2
14.如图,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有()
【详解】解:列表格如下:
A
B
A
A,A
B,A
B
A,B
B,B
由表可知,共有4种等可能的结果,其中小王和小李从同一个测温通道通过的有2种可能,
所以小王和小李从同一个测温通道通过的概率为 .故选:C
【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
22.(8分)解方程:
(1)(2x﹣5)2﹣9=0;
(2)4x2+2x﹣1=0;
(3)(x+3)(x﹣1)=5;
(4)2(x﹣3)2=x2﹣9.
23.(4分)如图,△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.以点C为位似中心,在网格中画出△A2B2C,使△A2B2C与△ABC位似,且位似比为2:1,并直接写出△A2B2C的面积.

人教版九年级语文上册第一学期期中综合测试卷(2024年秋)

人教版九年级语文上册第一学期期中综合测试卷(2024年秋)

人教版九年级语文上册第一学期期中综合测试卷(2024年秋)一、语文积累与综合运用(35分)1.默写。

(10分)(1)闲来垂钓碧溪上,____________________。

[李白《行路难》(其一)](2)____________________,无家问死生。

(杜甫《月夜忆舍弟》)(3)沉舟侧畔千帆过,____________________。

(刘禹锡《酬乐天扬州初逢席上见赠》)(4)____________________,枳花明驿墙。

(温庭筠《商山早行》)(5)酿泉为酒,____________________。

(欧阳修《醉翁亭记》)(6)但愿人长久,____________________。

(苏轼《水调歌头》)(7)范仲淹《岳阳楼记》中从时间角度描写岳阳楼景象千变万化的句子是:__________________,__________________。

(8)《沁园春·雪》上片中化静为动,并运用了比喻和对偶修辞的句子是:________________,____________________。

2.阅读下面的文字,完成(1)—(3)题。

(12分)那些小河早已枯干了/河底也已画满了车辙,/北方的土地和人民/在kě求着/那滋润生命的流泉啊!/枯死的林木/与低矮的住房/稀疏地,阴郁地/散布在灰暗的天幕下;/天上,/看不见太阳,/只有那结成大队的雁群/惶乱的雁群/击着黑色的翅膀/叫出它们的不安与悲苦,/从这荒凉的地域逃亡/逃亡到/绿荫蔽天的南方去了……北方是悲哀的/而万里的黄河/汹yǒnɡ着混浊的波涛/给广大的北方/倾泻着灾难与不幸;/而年代的风霜/刻画着/广大的北方的/贫穷与饥饿啊。

(1)根据拼音写汉字,给加点字注音。

(4分)车辙.()kě()求惶.()乱汹yǒnɡ()(2)这首诗节选自《艾青诗选》中的《______》,诗中描写了多个意象,有干枯的小河、________、________、混浊的波涛等,这些意象给诗歌奠定了________的感情基调。

2023-2024学年全国初中九年级上英语人教版期中考试试卷(含答案解析)

2023-2024学年全国初中九年级上英语人教版期中考试试卷(含答案解析)

示例:20232024学年全国初中九年级上英语人教版期中考试试卷一、听力部分(共30分)1. 短对话理解(每小题2分,共10分)(1)听对话,选择正确答案。

A. She is a teacher.B. She is a student.C. She is a doctor.(2)听对话,选择正确答案。

A. They are in a library.B. They are in a classroom.C. They are in a restaurant.(3)听对话,选择正确答案。

A. He is going to the cinema.B. He is going to the park.C. He is going to the supermarket.(4)听对话,选择正确答案。

A. She likes playing basketball.B. She likes playing football.C. She likes playing volleyball.(5)听对话,选择正确答案。

A. They are talking about their hobbies.B. They are talking about their families.C. They are talking about their school.2. 长对话理解(每小题2分,共10分)(1)听对话,回答问题。

What are they talking about?(2)听对话,回答问题。

Where are they going?(3)听对话,回答问题。

Why are they going there?(4)听对话,回答问题。

How are they going there?(5)听对话,回答问题。

What are they planning to do there?二、阅读理解部分(共40分)1. 阅读短文,回答问题(每小题2分,共10分)(1)阅读短文,回答问题。

《21世纪教育网精品期中试卷》 人教版 九年级上学期期中考试试题(二)

《21世纪教育网精品期中试卷》 人教版 九年级上学期期中考试试题(二)

人教版九年级上学期期中考试试题(三)答案一、选择题1、C2、B3、D4、C5、C6、D7、C8、C9、D 10、A 11、D 12、B 13、B 14、C 15、D二、填空题16、大吸热17、引无规则运动18、25 空气19、做功增大20、小于9021、热值250022、正电荷并23、并L1不能发光开关对L2不起作用24、同种绝缘体25、4.5 1.526、串灯泡亮度电流27、电压电流28、变亮长度三、作图与实验探究题29、如图所示30、如图所示31、(1)质量(2)大于60(3)232、(1)如图(2)右(3)10(4)R与L成正比关系(5)错误电流表的测量值可能超过所选量程的最大值33、(1)断开L2断路(2)L1短路(3)不能电压表正负接线柱接反(4)只测量了一次改用不同规格的灯泡再测几次。

四、计算题31、解:(1)水吸收的热量Q =cm (t -t 0)=4.2×103 J/(kg·℃) ×50 kg ×(30 ℃-20 ℃)=2. 1×106 J(2)需要燃烧的液化气623732.110J 4.210m 5.010J /mQ V q -⨯===⨯⨯32、解:(1)水吸收的热量是:Q 吸=cm (t -t 0)=4.2×103 J/(kg·℃) ×10 kg ×(100 ℃-20 ℃)=3. 36×106 J(2)1.4kg 的烟煤完全燃烧放出的热量是Q 吸=qm =3×107 J/ kg ×1.4kg =4.2×107 J(3)热效率是:%8102.41036.376=⨯⨯==JJ Q Q 放吸η 33、解:(1)完全燃烧5×l010kg 标准煤能放出多少热量:Q =qm =2.9×107J/kg ×5×1010kg =1.45×1018J ,(2)由ρ=V m 可得,V =ρm =311/2102.1mkg kg ⨯=6×1010m 3 (3)已知 E =3.06×1017JQ =1.45×1018J ,η=Q E =JJ 18171045.11006.3⨯⨯=21.1%;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年九年级(上)数学测试卷
一、选择题(每小题3分,共30分)
1.下列安全标志图中,是中心对称图形的是()
A. B. C.
D.2.下列一元二次方程没有实数根的是()A.X 2-1=0. B.x 2=0 C.x 2+1=0.
D.x 2+x-1=0.3.用配方法解方程x 2+8x+9=0,变形后的结果正确的是()
A.(x+4)2=-7
B.(x+4)2=-9
C.(x+4)2=7
D.(x+4)2=254.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175亿元,二月、三月平均每月的增长率是多少若设甲均每月的增长率为x ,根据题意,可列方程为()
A.50(1+x)2=175
B.50+50(1+x)+50(1+x)2=175
C.50(1+x)+50(1+x)2=175
D.50+50(1+x)2=175
5.设A(-2,y 1),B(1,y 2);C(2,y 3)是抛物线y=-(x+1)-3上的三点则y 1,y 2,y 3的大小关系为(
)A.Y 1>y 2>y 3 B.y 1>y 3>y 2 C.y 3>y 2>y 1 D.y 3>y 1>y 2
6.把抛物线y=x 2向左平移2个单位,再向上平移1个单位,所得的抛物线的解析式是()
A.y=3(x-2)2+1
B.y=3(x-2)2-1
C.y=3(x+2)2+1
D.y=3(x+2)2-1
7.如图,△ABC 是等边三角形,点P 在△ABC 内;PA=2,将△PAB 绕点A 逆时针旋转得到△P 1AC ,则P 1P 的长等于(
)A.2 B.3 C.2
3
D.1
8.如图,把菱形ABOC 绕0顺时针旋转得到菱形DFOE ,则下列角中不是旋转角的是()A.∠COF B.∠A0D C.∠BOF
D.∠COE
第7题第8题
9.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t 2+24t+1.则下列说法中正确的是()
A.点火后9s 和点火后13s 的升空高度相同
B.点火后24s 火箭落于地面
C.点火后10s 的升空高度为139m
D.火箭升空的最大高度为145m
10.在同一直角坐标系中,函数y=mx+m 和函数y=-mx 2+2x+2(m 是常数,且m ≠0)的图象可能是()
A. B. C. D.
二.填空题;(每小题3分,共15分)
11.平面直角坐标系中,点P(3,1-a)与点Q(b+2,3)关于原点对称,则a+b=
12.如图,在△ABO 中,AB ⊥0B ,0B=3,∠A0B=30°,把△ABO 绕点0旋转150°后得到△A 1B 1O ,则点A 1的坐
标为
第12题第13题
13.一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,当水面离桥拱顶的高度OC 是4m 时,水面的宽度AB 为32m.求函数关系式为
14.如图,含有30°的直角三角板△ABC,∠BAC=90°,∠C=30°,将△ABC绕着点A逆时针旋转,得到△AMN,使得点B落在BC边上的点M处,过点N的直线1//BC;则∠1=
第14题第15题
15.如图,一段抛物线:y=-x(x-5)(0≤x≤5),记为C1,它与x轴交于点0,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3交x轴于点A3:…如此进行下去,得到一“波浪线”,若点P(2021,m)在此“波浪线”上,则m的值为
三.解答题:(共75分)
16.(8分)已知:关于x的方程x2+2kx+k2-1=0.
(1)试说明无论k取何值时,方程总有两个不相等的实数根。

(2)如果方程有一个根为3,试求2K2+12k+2019的值。

17.(9分).如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于原点对称的△A1B1C1,并写出A1,B1,C1的坐标:
(2)请画出△ABC绕点B逆时针旋转900后的△A2B2C2。

(3)请在x轴上求一点D使DB+DC的和最小。

18.(9分)
我们已学完全平方公式:a2±2ab+b2=(a±b)2,观察下列式子:x2+4x+2=(x+2)2-2≥-2;-x2+2x-3=-(x-1)2-2≤-2,并完成下列问题
(1)-2x2-4x+1=-2(x+m)2+n≤n,则m=;n=;
(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一个长方形花圃,为了设计一个面积尽可能大的花圃,如图设长方形一边长度为x米,完成下列任务:
①列式:用含x的式子表示花圃的面积:;
②请说明当x取何值时,花圃的最大面积是多少平方米?
19.(9分)已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,-4),它与x轴的一个交点坐标为(1,0)
(1)求抛物线的解析式,并写出它与x轴的另一个交点坐标。

(2)直接写出当函数值为非负数时,自变量x的取值范围。

(3)若ax2+bx+c+k=0有实数根,直接写出k的取值范围.
20.(9分)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点0沿逆时针方向旋转90°得到△OA1B1,(1)线段A1B1的长是,∠AOA1的度数是
(2)连接AA1,求证:四边形OAA1B1是平行四边形。

(3)求四边形OAA1B1的面积。

21.(10分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,竹林长寿山在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:
(1)求y与x之间的函数关系式;
(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?
22.(10分)如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)BE和DG的数量关系是,BE和DG的位置关系是;
(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;
3,正方形ECGF绕点C旋转过程中,若A、C、E三点(3)设正方形ABCD的边长为4,正方形ECGF的边长为2
共线,直接写出DG的长。

23.(11分)如图,抛物线y=-x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A(-1,0),C(0,3).
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在P点,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形
CDBF的面积最大?求四边形CDBF的最大面积及此时点E的坐标.。

相关文档
最新文档