高中生物核酸知识点梳理
核酸知识点高中生物
核酸知识点1.什么是核酸?核酸是生物体中的重要有机物质,它是构成生物体遗传信息的基础。
核酸分为DNA(脱氧核酸)和RNA(核糖核酸)两种类型。
2.DNA的结构DNA是双螺旋结构,由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶)组成。
这些碱基通过氢键连接在一起,形成一个螺旋状的DNA链。
3.DNA的功能DNA是储存和传递遗传信息的分子。
它通过编码蛋白质合成所需的基因信息,并控制生物体的生长、发育和功能。
4.RNA的结构RNA是单链结构,由四种碱基(腺嘌呤、鸟嘌呤、尿嘧啶和胞嘧啶)组成。
与DNA不同的是,RNA中的胸腺嘧啶被尿嘧啶替代。
5.RNA的功能RNA具有多种功能。
其中,mRNA(信使RNA)将DNA上的遗传信息转录成蛋白质合成所需的信息,tRNA(转运RNA)通过与mRNA相互作用,将氨基酸运输到蛋白质合成的位置,rRNA(核糖体RNA)与蛋白质结合,形成核糖体,参与蛋白质的合成。
6.DNA复制DNA复制是指在细胞分裂前将DNA分子复制成两个完全相同的分子。
这个过程是通过DNA聚合酶酶的作用,在核酸链上逐个配对新的碱基进行的。
7.DNA转录DNA转录是指将DNA中的遗传信息转录成RNA的过程。
这个过程是通过RNA聚合酶酶的作用,在DNA模板链上逐个配对新的碱基进行的。
8.RNA翻译RNA翻译是指将mRNA上的遗传信息翻译成蛋白质的过程。
这个过程是通过核糖体上的rRNA和tRNA的配对及酶的作用完成的。
9.突变和遗传突变是指DNA序列发生的变化,它是遗传变异的重要来源。
突变可能导致基因功能的改变,进而影响生物体的性状和适应能力。
10.应用核酸知识在生物技术和医学领域有着广泛的应用。
例如,通过对DNA和RNA 的研究,科学家可以揭示生物体的起源和进化关系,开发新药物和治疗方法,进行疾病的诊断和预防。
总结:核酸是构成生物体遗传信息的分子,包括DNA和RNA两种类型。
DNA是双螺旋结构,储存和传递遗传信息;RNA是单链结构,具有多种功能。
高中生物(新教材)《核酸是遗传信息的携带者》
知识点一
知识点二
知识点三
当堂检测
课时作业
解析
答案
题型三 DNA 与 RNA 的比较 [例 3] 下图表示生物体内核苷酸的模式图,下列说法正确的是( )
A.DNA 和 RNA 的不同点只在 b 方面 B.DNA 和 RNA 中的 a 表示的含义不同 C.DNA 中特有的 c 为 T D.人体内的 c 有 4 种,b 有 2 种
遗传、变异和蛋白质的生物合成
要的作用。
知识点一
知识点二
知识点三
当堂检测
课时作业
ห้องสมุดไป่ตู้
中具有极其重
归纳总结 不同生物的核酸、核苷酸及碱基的情况
知识点一
知识点二
知识点三
当堂检测
课时作业
题型二 核酸的结构及功能 [例 2] 下列有关遗传信息的叙述,正确的是( ) A.遗传信息只储存在 DNA 分子中 B.HIV 病毒的遗传信息储存在 RNA 分子中 C.所有生物的 DNA 都具有相同的脱氧核苷酸排列顺序 D.组成 DNA 的脱氧核苷酸只有 4 种,所以连成长链时,其排列顺序是 有限的
课时作业
提示
问题思考
、
、
全称是什么?
提示:
胸腺嘧啶脱氧核苷酸;
尿嘧啶核糖核苷酸;
腺嘌呤脱氧核苷酸或腺嘌呤核糖核苷酸。
知识点一
知识点二
知识点三
当堂检测
课时作业
提示
b.核糖核苷酸:构成□17 RNA 的基本单位,如图:
其中 U 的中文名称:□20
有 4 种。
尿嘧啶 。由于碱基有 4 种,故核糖核苷酸
类与生物种类的关系。
知识点一
知识点二
知识点三
高中生物核酸知识点梳理.doc
高中生物核酸知识点梳理高中生物核酸知识点梳理篇一1、生命系统的结构层次依次为:细胞组织器官系统个体种群群落生态系统细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞2、光学显微镜的操作步骤:对光低倍物镜观察移动视野中央(偏哪移哪)高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻②真核细胞:有核膜,有染色体,如酵母菌,各种动物注:病毒无细胞结构,但有DNA或RNA4、蓝藻是原核生物,自养生物5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。
细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同8、组成细胞的元素①大量无素:C、H、O、N、P、S、K、Ca、Mg②微量无素:Fe、Mn、B、Zn、Mo、Cu③主要元素:C、H、O、N、P、S④基本元素:C⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的化合物为蛋白质。
10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。
(2)还原糖鉴定材料不能选用甘蔗(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液)11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2 C COOH,各种氨基酸的区别在于R基的不同。
12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键( NH CO )叫肽键。
13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数肽链条数14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。
高考生物必备知识点:DNA(脱氧核糖核酸)
2019年高考生物必备知识点:DNA(脱氧核糖核酸)查字典生物网的小编给各位考生整理了2019年高考生物必备知识点:DNA(脱氧核糖核酸) ,希望对大家有所帮助。
更多的资讯请持续关注查字典生物网。
脱氧核糖核酸(英语:Deoxyribonucleic acid,缩写为DNA)又称去氧核糖核酸,是一种分子,双链结构,由脱氧核糖核苷酸(成分为:脱氧核糖及四种含氮碱基)组成。
可组成遗传指令,引导生物发育与生命机能运作。
主要功能是长期性的资讯储存,可比喻为蓝图或食谱。
其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA 所需。
带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。
组成简单生命最少要265到350个基因。
DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,脱氧核糖核酸又称去氧核糖核酸,是一种生物大分子,可组成遗传指令,引导生物发育与生命机能运作。
主要功能是信息储存,可比喻为“蓝图”或“食谱”。
其中包含的指令,是建构细胞内其他的化合物,如蛋白质与核糖核酸所需。
带有蛋白质编码的DNA片段称为基因。
DNA是一种长链聚合物,组成单位为四种脱氧核苷酸,即腺嘌呤脱氧核苷酸(dAMP 脱氧腺苷)、胸腺嘧啶脱氧核苷酸(dTMP 脱氧胸苷)、胞嘧啶脱氧核苷酸(dCMP 脱氧胞苷)、鸟嘌呤脱氧核苷酸(dGMP 脱氧鸟苷)。
而脱氧核糖(五碳糖)与磷酸分子借由酯键相连,组成其长链骨架,排列在外侧,四种碱基排列在内侧。
每个糖分子都与四种碱基里的其中一种相连,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,指导蛋白质的合成。
读取密码的过程称为转录,是以DNA双链中的一条单链为模板转录出一段称为mRNA(信使RNA)的核酸分子。
多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。
在细胞内,DNA能与蛋白质结合形成染色体,整组染色体则统称为染色体组。
高中生物必修1教学课件知识点-核酸的结构组成
8 种核苷酸。
[巩固练习]
1.细胞内携带遗传信息的物质是( B )
A.核苷酸 B.核酸 C.脱氧核苷酸 D.核糖核苷酸
2.能正确描述脱氧核苷酸各成分连接关系的是( B ) A.磷酸-核糖-碱基 B.磷酸-脱氧核糖-碱基
C.磷酸-碱基-脱氧核糖
D.脱氧核糖-磷酸-碱基
3.组成核酸的碱基和核苷酸分别有多少种( D )
(注:噬菌体只含DNA;
答案:[
C ]
烟草含DNA和RNA;
烟草花叶病毒只含RNA)
脱氧核糖核苷酸与核糖核苷酸的区别
重点突破
五碳糖 H
⑴ 五碳糖不同
五碳糖 OH
核糖
脱氧核糖
⑵
含氮碱基不同 腺嘌呤 鸟嘌呤 胞嘧啶 尿嘧啶 (A) (G) (C) (U)
含氮碱基
腺嘌呤(A) 鸟嘌呤(G) 胞嘧啶(C) 胸腺嘧啶(T)
DNA的化学结构
(1)基本组成单位:脱氧(核糖)核苷酸
A
腺嘌呤脱氧核苷酸
课堂小结:DNA、RNA的主要区别
DNA
基本单位 五碳糖 含氮碱基 结 构 脱氧核糖核苷酸 脱氧核糖 A,G,C,T 双螺旋(双链)
RNA
核糖核苷酸 核糖 A,G,C,U 单链 细胞质
遇吡罗红呈红色
细胞核(少数存在 主要存在部位 于线粒体、叶绿体
显色反应
遇甲基绿呈绿色
脱氧核苷酸 1、脱氧核糖核酸的基本单位是__________ ,它 4 A、 G、 C、 T 可分为_______ 种,含氮碱基为______________________ 核糖核苷酸,它可分 2、核糖核酸的基本单位是__________
A. 4,8
B. 5,5
C. 5,4
高中生物(人教版)核酸有关概念解释+思维导图
基因
• 具有遗传效应的DNA/RNA片段(具有复制、 转录、翻译、重组突变和调控等功能)
• 基因(遗传因子)是产生一条多肽链或功 能RNA所需的全部核苷酸序列。
• 基因是控制生物性状的基本遗传单位
结构基因 基因中编码RNA或蛋白质的碱基序列。 (1)原核生物结构基因:连续的,RNA合成不需 要剪接加工; (2)真核生物结构基因:由外显子(编码序列) 和内含子(非编码序列)两部分组成。
等位基因
• 等位基因,是指位于一对同源染色体相同 位置上控制同一性状不同形态的基因。
• 细菌、病毒没有染色体没有等位基因 • A和A、a和a属于相同基因不属于等位基因
DNA
• DNA是主要的遗传物质
染色体(质)
• 染色体由DNA和蛋白质构成 • 染色体是DNA的主要载体 • 染色体存在于真核生物细胞核内
遗传信息
• 指生物为复制与自己相同的东西、由亲代 传递给子代、或各细胞每次分裂时由细胞 传递给细胞的信息,即碱基对的排列顺序(或 指DNA分子的脱氧核苷酸的排列顺序)。
储存和携带的区别: DNA和RNA都可以携带遗传信息,但是对 于具有细胞结构的生物和DNA病毒,只有 DNA能贮存遗传信息,RNA病毒遗传信息 贮存在RNA中
下图是染色体和DNA的关系图,分析回答下列问题。
(1)据染色体和DNA的关系示意图,简要概括染色体、DNA和基因三者之间的 关系_____________。 (2)染色体在体细胞内是_____________存在的,DNA分子也是_____存在的, DNA分子上控制某一性状的小片段,称为__________,它也是________存在的。 (3)图中a表示的结构是________ ,b表示的结构是_____________,c表示的 结构是 ___________。 (4)生物主要的遗传物质是___________,而遗传物质的主要载体是________, 控制人类各种性状如有无耳垂等的是___________。
高中生物必修一核酸知识点总结
高中生物必修一核酸知识点总结一、核酸的种类细胞生物含两种核酸:DNA和RNA病毒只含有一种核酸:DNA或RNA核酸包括两大类:一类是脱氧核糖核酸DNA;一类是核糖核酸RNA。
二、核酸的结构1、核酸是由核苷酸连接而成的长链CHONP。
DNA的基本单位脱氧核糖核苷酸,RNA的基本单位核糖核苷酸。
核酸初步水解成许多核苷酸。
基本组成单位—核苷酸核苷酸由一分子五碳糖、一分子磷酸、一分子含氮碱基组成。
根据五碳糖的不同,可以将核苷酸分为脱氧核糖核苷酸简称脱氧核苷酸和核糖核苷酸。
2、DNA由两条脱氧核苷酸链构成。
RNA由一条核糖核苷酸连构成。
3、核酸中的相关计算:1若是在含有DNA和RNA的生物体中,则碱基种类为5种;核苷酸种类为8种。
2DNA的碱基种类为4种;脱氧核糖核苷酸种类为4种。
3RNA的碱基种类为4种;核糖核苷酸种类为4种。
三、核酸的功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。
核酸在细胞中的分布——观察核酸在细胞中的分布:材料:人的口腔上皮细胞试剂:甲基绿、吡罗红混合染色剂原理:DNA主要分布在细胞核内,RNA大部分存在于细胞质中。
甲基绿使DNA呈绿色,吡罗红使RNA呈现红色。
盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA与蛋白质分离。
结论:真核细胞的DNA主要分布在细胞核中。
线粒体、叶绿体内含有少量的DNA。
RNA 主要分布在细胞质中。
核酸大分子可分为两类:脱氧核糖核酸DNA和核糖核酸RNA,在蛋白质的复制和合成中起着储存和传递遗传信息的作用。
核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。
1五碳糖——DNA是脱氧核糖;RNA是核糖。
2碱基——DNA是A、T、C、G不含U;RNA是A、U、C、G不含T。
3DNA通常是双螺旋结构;RNA通常是单链,局部可形成双螺旋结构。
高中生物蛋白质核酸知识点带答案
第4节蛋白质是生命活动的主要承担者一、蛋白质的功能1. 许多蛋白质是构成细胞和生物体结构的重要物质,称为________________。
2. 细胞中的化学反应离不开酶的___________。
绝大多数酶都是____________。
3. 有些蛋白质能够__________机体的生命活动,如胰岛素。
4. 有些蛋白质具有__________功能,如血红蛋白。
5. 有些蛋白质有__________功能,如_________可以帮助人体抵御病菌和病毒等抗原的侵害。
二、蛋白质的基本组成单位——氨基酸1. 人体中组成蛋白质的氨基酸有________种。
2. 氨基酸分子的结构通式画在右侧空白处______________。
3. 氨基酸的结构特点:①每种氨基酸至少都含有一个__________(__________)和一个__________(__________)。
*注意两种基团的写法②每种氨基酸都有一个氨基和一个羧基连接在___________________上,这个碳原子上还连接着一个氢原子和一个_____________,用__________表示。
③各种氨基酸之间的区别在于__________的不同。
4. 根据人体细胞能否合成,将组成人体蛋白质的氨基酸分为必需氨基酸和非必需氨基酸,其中__________________是人体细胞不能合成的,必须从外界环境中获取。
三、蛋白质的结构及其多样性1. 蛋白质是以____________为基本单位构成的________________。
2. 蛋白质的元素组成是__________________。
3. 氨基酸分子首先通过互相结合的方式进行连接:一个氨基酸分子的_________(—COOH)和另一个氨基酸分子的__________(—NH2)相连接,同时脱去一分子__________,这种结合方式叫做__________。
连接两个氨基酸分子之间的化学键叫做__________。
高中生物核酸知识点归纳
高中生物核酸知识点归纳分享借鉴.高中生物核酸知识点11.核酸的简介由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一.最早由米歇尔于_68年在脓细胞中发现和分离出来.核酸广泛存在于所有动物.植物细胞.微生物内.生物体内核酸常与蛋白质结合形成核蛋白.不同的核酸,其化学组成.核苷酸排列顺序等不同.根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA.DNA是储存.复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所.核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长.遗传.变异等一系列重大生命现象中起决定性的作用.核酸在实践应用方面有极重要的作用,现已发现近_种遗传性疾病都和DNA结构有关.如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致.肿瘤的发生.病毒的感染.射线对机体的作用等都与核酸有关.70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种.如应用遗传工程方法已能使大肠杆菌产生胰岛素.干扰素等珍贵的生化药物2.核酸的研究历史核酸是怎么发现的?_69年,F.Miescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为核质 (nuclein).核酸(nucleic acids),但这一名词于Miescher的发现_年后才被正式启用,当时已能提取不含蛋白质的核酸制品.早期的研究仅将核酸看成是细胞中的一般化学成分,没有人注意到它在生物体内有什么功能这样的重要问题.核酸为什么是遗传物质?_44年,Avery等为了寻找导致细菌转化的原因,他们发现从S 型肺炎球菌中提取的DNA与R型肺炎球菌混合后,能使某些R型菌转化为S型菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生.结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质.从此核酸是遗传物质的重要地位才被确立, 人们把对遗传物质的注意力从蛋白质移到了核酸上.双螺旋的发现核酸研究中划时代的工作是Watson和Crick于_53年创立的DNA 双螺旋结构模型.模型的提出建立在对DNA下列三方面认识的基础上:1.核酸化学研究中所获得的DNA化学组成及结构单元的知识,特别是Chargaff于_50-_53年发现的DNA化学组成的新事实;DNA中四种碱基的比例关系为A/T=G/C=1;2._线衍射技术对DNA结晶的研究中所获得的一些原子结构的最新参数;3.遗传学研究所积累的有关遗传信息的生物学属性的知识.综合这三方面的知识所创立的DNA双螺旋结构模型,不仅阐明了DNA分子的结构特征,而且提出了DNA作为执行生物遗传功能的分子,从亲代到子代的DNA复制(replication)过程中,遗传信息的传递方式及高度保真性.其正确性于_58年被Meselson和Stahl的著名实验所证实.DNA双螺旋结构模型的确立为遗传学进入分子水平奠定了基础,是现代分子生物学的里程碑.从此核酸研究受到了前所未有的重视.对核酸研究有突出贡献的科学家沃森Watson, James Dewey美国生物学家克里克Crick, Francis Harry Compton英国生物物理学家3.核酸的分子结构一. 核酸的一级结构核酸是由核苷酸聚合而成的生物大分子.组成DNA的脱氧核糖核苷酸主要是dAMP.dGMP.dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP.GMP.CMP和UMP.核酸中的核苷酸以3’,5’磷酸二酯键构成无分支结构的线性分子.核酸链具有方向性,有两个末端分别是5’末端与3’末端.5’末端含磷酸基团,3’末端含羟基.核酸链内的前一个核苷酸的3’羟基和下一个核苷酸的5’磷酸形成3’,5’磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基..通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide).二. DNA的空间结构(一)DNA的二级结构DNA二级结构即双螺旋结构(double heli_structure)._世纪50年代初Chargaff等人分析多种生物DNA的碱基组成发现的规则.DNA双螺旋模型的提出不仅揭示了遗传信息稳定传递中DNA半保留复制的机制,而且是分子生物学发展的里程碑.DNA双螺旋结构特点如下:①两条DNA互补链反向平行.②由脱氧核糖和磷酸间隔相连而成的亲水骨架在螺旋分子的外侧,而疏水的碱基对则在螺旋分子内部,碱基平面与螺旋轴垂直,螺旋旋转一周正好为_个碱基对,螺距为 3.4nm,这样相邻碱基平面间隔为0.34nm并有一个36?的夹角.③DNA双螺旋的表面存在一个大沟(majorgroove)和一个小沟(minorgroove),蛋白质分子通过这两个沟与碱基相识别.④两条DNA链依靠彼此碱基之间形成的氢键而结合在一起.根据碱基结构特征,只能形成嘌呤与嘧啶配对,即A 与T相配对,形成2个氢键;G与C相配对,形成3个氢键.因此G与C之间的连接较为稳定.⑤DNA双螺旋结构比较稳定.维持这种稳定性主要靠碱基对之间的氢键以及碱基的堆集力(stackingforce).生理条件下,DNA双螺旋大多以B型形式存在.右手双螺旋DNA除B型外还有A 型.C型.D型.E型.此外还发现左手双螺旋Z型DNA.Z型DNA是_79年Rich等在研究人工合成的CGCGCG的晶体结构时发现的.Z-DNA的特点是两条反向平行的多核苷酸互补链组成的螺旋呈锯齿形,其表面只有一条深沟,每旋转一周是_个碱基对.研究表明在生物体内的DNA分子中确实存在Z-DNA区域,其功能可能与基因表达的调控有关.DNA二级结构还存在三股螺旋DNA,三股螺旋DNA中通常是一条同型寡核苷酸与寡嘧啶核苷酸-寡嘌呤核苷酸双螺旋的大沟结合,三股螺旋中的第三股可以来自分子间,也可以来自分子内.三股螺旋DNA存在于基因调控区和其他重要区域,因此具有重要生理意义.(二) DNA三级结构——超螺旋结构DNA三级结构是指DNA链进一步扭曲盘旋形成超螺旋结构.生物体内有些DNA 是以双链环状DNA形式存在,如有些病毒DNA,某些噬菌体DNA,细菌染色体与细菌中质粒DNA,真核细胞中的线粒体DNA.叶绿体DNA都是环状的.环状DNA分子可以是共价闭合环,即环上没有缺口,也可以是缺口环,环上有一个或多个缺口.在DNA双螺旋结构基础上,共价闭合环DNA(covalentlyclose circular DNA)可以进一步扭曲形成超螺旋形(super helicalform).根据螺旋的方向可分为正超螺旋和负超螺旋.正超螺旋使双螺旋结构更紧密,双螺旋圈数增加,而负超螺旋可以减少双螺旋的圈数.几乎所有天然DNA中都存在负超螺旋结构.(三) DNA的四级结构——DNA与蛋白质形成复合物在真核生物中其基因组DNA要比原核生物大得多,如原核生物大肠杆菌的DNA 约为4.7_1_kb,而人的基因组DNA约为3_1_kb,因此真核生物基因组DNA通常与蛋白质结合,经过多层次反复折叠,压缩近__0倍后,以染色体形式存在于平均直径为5μm的细胞核中.线性双螺旋DNA折叠的第一层次是形成核小体(nucleosome).犹如一串念珠,核小体由直径为_nm_5.5nm的组蛋白核心和盘绕在核心上的DNA构成.核心由组蛋白H2A.H2B.H3和H4各2分子组成,为八聚体,_6 bp长的DNA以左手螺旋盘绕在组蛋白的核心1.75圈,形成核小体的核心颗粒,各核心颗粒间有一个连接区,约有60bp双螺旋DNA和1个分子组蛋白H1构成.平均每个核小体重复单位约占DNA _bp.DNA组装成核小体其长度约缩短7倍.在此基础上核小体又进一步盘绕折叠,最后形成染色体.高中生物核酸知识点2遗传信息的携带者——核酸一核酸的分类细胞生物含两种核酸:DNA和RNA病毒只含有一种核酸:DNA或RNA核酸包括两大类:一类是脱氧核糖核酸(DNA);一类是核糖核酸(RNA).二.核酸的结构1.核酸是由核苷酸连接而成的长链(C H O NP).DNA的基本单位脱氧核糖核苷酸,RNA的基本单位核糖核苷酸.核酸初步水解成许多核苷酸.基本组成单位—核苷酸(核苷酸由一分子五碳糖.一分子磷酸.一分子含氮碱基组成).根据五碳糖的不同,可以将核苷酸分为脱氧核糖核苷酸(简称脱氧核苷酸)和核糖核苷酸.2.DNA由两条脱氧核苷酸链构成.RNA由一条核糖核苷酸连构成.3.核酸中的相关计算:(1)若是在含有DNA和RNA的生物体中,则碱基种类为5种;核苷酸种类为8种.(2)DNA的碱基种类为4种;脱氧核糖核苷酸种类为4种.(3)RNA的碱基种类为4种;核糖核苷酸种类为4种.三.核酸的功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传.变异和蛋白质的生物合成中具有极其重要的作用.核酸在细胞中的分布——观察核酸在细胞中的分布:材料:人的口腔上皮细胞试剂:甲基绿.吡罗红混合染色剂原理:DNA主要分布在细胞核内,RNA大部分存在于细胞质中.甲基绿使DNA呈绿色,吡罗红使RNA呈现红色.盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,同时使染色质中的DNA与蛋白质分离.结论:真核细胞的DNA主要分布在细胞核中.线粒体.叶绿体内含有少量的DNA.RNA主要分布在细胞质中.高中生物核酸知识点3一.核酸的种类:脱氧核糖核酸(DNA)和核糖核酸(RNA)二.核酸:是细胞内携带遗传信息的物质,对于生物的遗传.变异和蛋白质的合成具有重要作用.三.组成核酸的基本单位是:核苷酸,是由一分子磷酸.一分子五碳糖(DNA为脱氧核糖.RNA为核糖)和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸.四.DNA所含碱基有:腺嘌呤(A).鸟嘌呤(G)和胞嘧啶(C).胸腺嘧啶(T)RNA所含碱基有:腺嘌呤(A).鸟嘌呤(G)和胞嘧啶(C).尿嘧啶(U)五.核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体.叶绿体内也含有少量的DNA;RNA主要分布在细胞质中.高中生物核酸知识点。
高中生物核酸知识点总结
高中生物核酸知识点总结1.核酸:(1)种类①脱氧核糖核酸(DNA);②核糖核酸(RNA)。
(2)功能:核酸是细胞内携带遗传信息的物质,在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。
2.核酸的组成元素:C、H、O、N、P3.核酸基本组成单位:核苷酸(1分子核苷酸包括1分子含氮碱基、1分子五碳糖、1分子磷酸)。
4.核苷酸的分类:①4种脱氧核苷酸:磷酸+脱氧核糖(C5H10O4)+含氮碱基(A/T/G/C)②4种核糖核苷酸:磷酸+核糖(C5H10O5)+含氮碱基(A/U/G/C)③DNA和RNA的比较分类脱氧核糖核酸(DNA)核糖核酸(RNA)组成单位脱氧核苷酸核糖核苷酸成分磷酸H3PO4五碳糖脱氧核糖核糖含氮碱基A/G/C/TA/G/C/U结构双链双螺旋一般为单链主要存在部位细胞核细胞质显色反应遇甲基绿呈绿色遇吡罗红呈红色5.水解产物①核酸初步水解产物:核苷酸;彻底水解产物:五碳糖、磷酸、含氮碱基。
②DNA初步水解产物:脱氧核苷酸;彻底水解产物:脱氧核糖、磷酸、含氮碱基(A/G/C/T)。
③RNA初步水解产物:核糖核苷酸;彻底水解产物:核糖、磷酸、含氮碱基(A/G/C/U)。
6.DNA和RNA的分布(1)真核细胞①DNA主要分布在细胞核里,少量分布在细胞质里(线粒体和叶绿体);②RNA主要分布在细胞质里。
(2)原核细胞①DNA主要分布在拟核,少量分布在质粒(细胞质里存在的小型环状DNA分子);②RNA主要分布在细胞质里。
7.总结对比核酸五碳糖碱基核苷酸原核生物和真核生物DNA和RNA2种5种8种病毒DNA或RNA1种4种4种8.病毒①病毒体内只含有1种核酸,DNA或者RNA;②如果某1种生物体内含有2种核酸,那么它一定不是病毒。
9.总结①DNA病毒和所有的细胞生物的遗传物质是DNA;②RNA病毒的遗传物质是RNA;③就整个生物界而言,DNA是主要的遗传物质;④就某一种具体的生物而言,它的遗传物质就是DNA,或者就是RNA(而非主要是)。
高中生物 核酸专题
为什么DNA(或RNA)分子具 有多样性?
提示:从蛋白质的多样性得到启发
重点突破
脱氧核苷酸与核糖核苷酸有何区别?
碱基 胸腺嘧啶(T) 鸟嘌呤(G)
胞嘧啶(C) 腺嘌呤(A)
磷酸
脱氧核糖
碱基 尿嘧啶(U) 鸟嘌呤(G)
胞嘧啶(C) 腺嘌呤(A)
磷酸
OH
核糖
脱氧核糖核苷酸
核糖核苷酸
A、G、C、U
结构
单链
想一想:组成核酸的碱基和核苷酸分别有多少种? 碱基:5种 核苷酸:8种
巩固练习:
1、豌豆叶肉细胞中的核酸,含有的碱基种类是:
A、1种 A、1种 B、4种 B、3种 C、5种 C、5种 2、由 碱基A、G、C、T所组成的核苷酸的种类有 3、组成人体内核酸的碱基、五碳糖、核苷酸各有
有细胞生物
真核生物
原核生物 遗传物质是DNA
非细胞生物
大多数病毒 极少数病毒
(SARS、HIV病毒)
遗传物质是RNA
病毒的遗传物质是DNA 或RNA. 一切生物的遗传物质是 DNA和 RNA .(核酸) DNA 是主要的遗传物质。
绝大多数生物的遗传物质是DNA.
(分类)
名称 简称 基本组成单位 成 分 磷酸 五碳糖 碱基 结构
第2章 组成细胞的分子
第3节 遗传信息的携带者 -----核酸
一、核酸的分类和功能
1.分类 脱氧核糖核酸(DNA) 核糖核酸(RNA)
2.功能: 核酸是一切生物的遗传物质。 对于生物体的遗传、变异和蛋白 质的生物合成有极重要的作用。
课堂活动
二、核酸的分布
任务:阅读教材26~27页实验,了解 实验原理和实验步骤。
核酸检测物理知识点总结
核酸检测物理知识点总结一、核酸的结构与性质1.1 核酸的化学结构核酸是一种由核苷酸经过磷酸二脂酸酯键连接形成的生物大分子,包括DNA和RNA两种类型。
DNA由脱氧核糖核苷酸组成,RNA由核糖核苷酸组成。
核苷酸由核苷和磷酸二脂酸组成,核苷包括一个含氮碱基和一个糖分子,磷酸二脂酸作为链的连接部分。
1.2 核酸的物理性质核酸具有许多特殊的物理性质,如双螺旋结构、碱基配对、DNA超螺旋等。
其中双螺旋结构是DNA的典型结构,由两条螺旋形成,而碱基配对是通过氢键将两条链连接在一起,碱基的配对规律是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。
此外,DNA还具有超螺旋结构,这种结构形式使得DNA在细胞分裂时更容易分离。
1.3 核酸的光学性质核酸具有一定的光学性质,如吸收光谱、荧光光谱等。
DNA和RNA在紫外光下有显著的吸收,其中DNA在260nm处有最大吸收峰,而RNA在260nm处有一个稍微红移的吸收峰。
此外,核酸还具有荧光发射的性质,一些荧光染料可以与核酸结合产生荧光信号,用于核酸的检测和定量分析。
二、核酸检测的原理与技术2.1 核酸检测的原理核酸检测的原理是通过特定的技术手段来识别和检测样品中的核酸序列,常用的技术包括PCR(聚合酶链式反应)、分子杂交、核酸电泳、原位杂交等。
PCR是最常用的核酸扩增技术,通过模拟细胞内DNA复制的过程来扩增目标DNA序列,从而实现对目标基因的检测和分析。
2.2 核酸检测的技术手段核酸检测的技术手段包括一系列的实验方法和设备,如核酸提取、PCR扩增、凝胶电泳、原位杂交、微阵列技术等。
其中核酸提取是核酸检测的首要环节,其目的是从样品中提取出目标DNA或RNA序列,为后续的PCR扩增和检测做准备;PCR扩增是一种快速、高效、特异性强的核酸扩增技术,可将目标核酸的复制数量扩大上百万倍,从而实现对微量核酸的检测和分析。
2.3 核酸检测的应用核酸检测技术在临床医学、疾病预防和控制、食品安全监测等领域有着广泛的应用,如临床诊断中的传染病检测、肿瘤基因检测、遗传病筛查等;疾病预防和控制中的病毒核酸监测、病原微生物检测、环境污染监测等;食品安全监测中的食源性疾病的检测、转基因食品的检测等。
【高中生物】核酸的结构与生物学功能
(生物科技行业)核酸的结构与生物学功能核酸的结构与生物学功能核酸是生物体内极其重要的生物大分子,是生命的最基本的物质之一。
最早是瑞士的化学家米歇尔于1870年从脓细胞的核中分离出来的,由于它们是酸性的,并且最先是从核中分离的,故称为核酸。
核酸的发现比蛋白质晚得多。
核酸分为脱氧核糖核酸(简称DNA)和核糖核酸(简称RNA)两大类,它们的基本结构单位都是核苷酸(包含脱氧核苷酸)。
1.核酸的基本单位——核苷酸每一个核苷酸分子由一分子戊糖(核糖或脱氧核糖)、一分子磷酸和一分子含氮碱基组成。
碱基分为两类:一类是嘌呤,为双环分子;另一类是嘧啶,为单环分子。
嘌呤一般均有A、G2种,嘧啶一般有C、T、U3种。
这5种碱基的结构式如下图所示。
由上述结构式可知:腺嘌呤是嘌呤的6位碳原子上的H被氨基取代。
鸟嘌呤是嘌呤的2位碳原子上的H被氨基取代,6位碳原子上的H被酮基取代。
3种嘧啶都是在嘧啶2位碳原子上由酮基取代H,在4位碳原子上由氨基或酮基取代H而成,对于T,嘧啶的5位碳原子上由甲基取代了H。
凡含有酮基的嘧啶或嘌呤在溶液中可以发生酮式和烯醇式的互变异构现象。
结晶状态时,为这种异构体的容量混合物。
在生物体内则以酮式占优势,这对于核酸分子中氢键结构的形成非常重要。
例如尿嘧啶的互变异构反应式如下图。
酮式(2,4–二氧嘧啶)烯酸式(2,4–二羟嘧啶)在一些核酸中还存在少量其他修饰碱基。
由于含量很少,故又称微量碱基或稀有碱基。
核酸中修饰碱基多是4种主要碱基的衍生物。
tRNA中的修饰碱基种类较多,如次黄嘌呤、二氢尿嘧啶、5–甲基尿嘧啶、4–硫尿嘧啶等,tRNA中修饰碱基含量不一,某些tRNA中的修饰碱基可达碱基总量的10%或更多。
核苷是核糖或脱氧核糖与嘌呤或嘧啶生成的糖苷。
戊糖的第1碳原子(C1)通常与嘌呤的第9氮原子或嘧啶的第1氮原子相连。
在tRNA中存在少量5–核糖尿嘧啶,这是一种碳苷,其C1是与尿嘧啶的第5位碳原子相连,因为这种戊糖与碱基的连接方式特殊(为C—C连接),故称为假尿苷如下图。
核酸检测原理高中生物
核酸检测原理高中生物核酸检测原理主要通过基因的检测和分析来确定某种疾病的存在与否。
核酸是生物体内存在的一种含有遗传信息的化合物。
在核酸检测中,常用的检测对象是DNA(脱氧核糖核酸)或RNA(核糖核酸)。
DNA包含了生物体的遗传信息,而RNA则在生物体中起到了遗传信息转移和蛋白质合成的作用。
核酸检测的原理可以简单地概括为:通过提取待检测样本中的核酸,并利用特定的检测方法对核酸进行扩增和分析,从而确定样本中是否存在目标基因片段。
核酸检测的具体步骤如下:1. 样本采集:根据需要检测的疾病或目标基因,在患者的体液、组织或其他来源中采集样本,例如唾液、血液、尿液等。
2. 核酸提取:将采集的样本进行处理,提取出其中的核酸分子。
提取方法通常包括细胞裂解、蛋白质消化和酒精沉淀等步骤,以获取纯净的核酸溶液。
3. 扩增:核酸扩增是核酸检测的关键步骤。
常见的扩增方法有聚合酶链反应(PCR)和转录反转录聚合酶链反应(RT-PCR)等。
扩增过程中,利用特定的引物(primer)选择性地扩大目标基因片段的数量,从而增加后续分析的灵敏度。
4. 分析和检测:扩增后的核酸样品通常会通过凝胶电泳、实时荧光PCR、蛋白质芯片等方法进行分析和检测。
这些方法可以根据目标基因的长度、浓度、变异等特征,对核酸进行定性和定量分析。
5. 结果解读:根据分析和检测结果,结合临床数据和相关标准,对样本的核酸进行结果解读。
正常情况下,目标基因片段存在且浓度足够时,可以确定该样本为阳性;否则,可以确定该样本为阴性。
总之,核酸检测是一种通过提取、扩增和分析样本中的核酸分子,从而确定目标基因片段是否存在的方法。
它已经广泛应用于临床医学、病原微生物检测等领域,并在判断疾病的早期诊断和治疗中发挥着重要作用。
高中生物 核酸
tRNA的二级结构: 三叶草形结构(P313)
第四节 单核苷酸的衍生物
ADP(腺苷二磷酸) ATP(腺苷三磷酸) cAMP(3’,5’ - 环腺苷酸)
ADP
NH2
6
N
75
N
8
1
OH
OH
HO P O P O
4
2
N
9
O
N
3
O
O
H
H
H
H
HO OH
ATP
N
7
8
OH OH OH HO P O P O P O
N
9
O
O
O
O
H
H
H
H
OH OH
NH2
6
5
N
1
4
2
N
3
cAMP
N
7 8
O H
N
9
O
H
H
H
OP O
OH
OH
NH2
6
5
N
1
4
2
N
3
H
H
OH H
NH2
6
5
N
1
4
2
N
3
尿苷酸
OH HO P O
O H
O
4 5
6
N
O
1
HH
H
OH OH
NH
3 2
O
第三节 核酸的结构
一、核酸的一级结构
组成核酸的核苷酸之间连接键的性质及核 苷酸的排列顺序。
连接键——3’,5’磷酸二酯键 (P309)
高中生物001-知识讲解——核酸的结构和基因
高考总复习 核酸的结构和基因编稿:宋辰霞 审稿:闫敏敏【考纲要求】1.掌握两种核酸的结构 2.掌握有关核酸结构的一些计算 3.了解核酸可以做为遗传物质的原因 4.理解基因的概念及结构特点 【考点梳理】 要点一、核酸的结构核酸是生物大分子,单体为核苷酸。
1.DNA (脱氧核糖核酸)的结构(1)平面结构:由两条反向平行的脱氧核苷酸链构成 ①磷酸和脱氧核糖交替排列于外侧,构成DNA 的基本骨架 ②内侧碱基(通过氢键连接)互补配对形成碱基对:碱基有A 、T 、C 、G 4种,配对方式为:A-T (通过2个氢键连接),G-C (通过3个氢键连接) (2)立体结构:两条反向平行的脱氧核苷酸链形成规则的双螺旋结构 2.有关DNA 分子中碱基互补配对的一些计算规律(1)DNA 双螺旋结构中,A=T 、C=G ,所以不配对的两个碱基(如A 和G 或C 和T 或A 和C 或G 和T )之和占整个DNA 分子碱基比例的50%(2)DNA 双螺旋结构两条链中的每条链(A+T )/(G+C )的比值相等,且与整个DNA 分子中的该比值也相等:设两条链为1链、2链:则A 1=T 2、T 1=A 2、C 1=G 2、G 1=C 2, 所以(3)中该比值互为倒数。
、C 1=G 2、G 1=C 2, 所以注意:理解这些规律后可灵活运用于习题中,提高解题速率。
3.RNA 的结构(1)空间结构:通常为单链,稳定性较DNA 的双螺旋结构差。
(2)与DNA 的区别:五碳糖—核糖,含氮碱基—A 、U 、C 、G(3)种类:mRNA(信使RNA)、 rRNA (核糖体RNA )、 tRNA (转运RNA :三叶草型)要点二、核酸可做为遗传物质的原因1.核酸的碱基排列顺序多种多样,可携带大量遗传信息。
2. 核酸上的遗传信息可以通过转录、翻译表达出来,控制生物的性状。
3. 核酸的结构稳定,可通过复制传递给子代。
要点三、基因(单体为四种核糖核苷酸)tRNA mRNA核糖体中有rRNA1.基因的概念和特点(1)基因的概念:基因是有遗传效应的DNA或RNA片段。
高中生物核酸知识点
高中生物核酸知识点一、核酸的种类:脱氧核糖核酸DNA和核糖核酸RNA二、核酸:是细胞内携带遗传信息的物质,对于生物的遗传、变异和蛋白质的合成具有重要作用。
三、组成核酸的基本单位是:核苷酸,是由一分子磷酸、一分子五碳糖DNA为脱氧核糖、RNA为核糖和一分子含氮碱基组成;组成DNA的核苷酸叫做脱氧核苷酸,组成RNA的核苷酸叫做核糖核苷酸。
四、DNA所含碱基有:腺嘌呤A、鸟嘌呤G和胞嘧啶C、胸腺嘧啶TRNA所含碱基有:腺嘌呤A、鸟嘌呤G和胞嘧啶C、尿嘧啶U五、核酸的分布:真核细胞的DNA主要分布在细胞核中;线粒体、叶绿体内也含有少量的DNA;RNA主要分布在细胞质中。
1.种类:生物体中的核酸有2种,DNA脱氧核糖核酸和RNA核糖核酸。
2.结构1基本单位:核苷酸8种2核酸的构成3.功能:核酸是细胞内携带遗传信息的物质。
在生物体的遗传、变异和蛋白质的生物合成中具有极其重要的作用。
1.探究不同生物的核酸、核苷酸及碱基的情况2.核酸DNA与RNA与蛋白质的异同点3.探究核酸与蛋白质之间的关系1核酸控制蛋白质的合成2DNA多样性蛋白质多样性生物多样性易错警示规避组成细胞的分子在物种特异性上的失分点蛋白质、核酸的结构及种类具有物种特异性,因而可以从分子水平上,通过分析不同物种的核酸和蛋白质来区分或判断不同物种间的亲缘关系,也可用于刑事案件的侦破或亲子鉴定,但生物体内的水、无机盐、糖类、脂质、氨基酸等则不具有物种特异性。
1.对生物体的遗传性、变异性和蛋白质的生物合成具有重要作用的物质是A.氨基酸B.葡萄糖C.核酸D.核苷酸2.组成DNA的结构的基本成分是①核糖②脱氧核糖③磷酸④腺嘌呤、鸟嘌呤、胞嘧啶⑤胸腺嘧啶⑥尿嘧啶A.①③④⑤B.①②④⑥C.②③④⑤D.②③④⑥3.吡罗红甲基绿染色剂的作用是A.仅使DNA呈现绿色B.仅使RNA呈现红色C.只能使一种物质呈现特定的颜色D.既使DNA呈现绿色,也可以使RNA呈现红色4.下列关于核酸的叙述中,正确的是A.核酸由C、H、O、N元素组成B.除病毒外,一切生物都有核酸存在C.核酸是一切生物的遗传物质D.组成核酸的基本单位是脱氧核苷酸5.关于DNA的叙述中,正确的是A.只存在于细胞核中B.只存在于细胞质中C.主要存在于细胞核中D.主要存在于细胞质中6.“观察DNA和RNA在细胞中的分布”的实验中没有用到的试剂是A.质量分数为0.9%的NaCl溶液B.质量分数为8%的盐酸C.吡罗红、甲基绿染色剂D.斐林试剂7.“观察DNA和RNA在细胞中的分布”的实验顺序是①取细胞制片②用吡罗红甲基绿染色剂染色③水解④盖上盖玻片⑤冲洗涂片A.①③②④⑤B.⑤③④②①C.②③④①⑤D.①③⑤②④<>的人还:感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中生物核酸知识点梳理
1、生命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统
细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞
2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)
→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜
3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核
①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻
注:病毒无细胞结构,但有DNA或RNA
5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质
6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。
细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折
8、组成细胞的元素
①大量无素:C、H、O、N、P、S、K、Ca、Mg
②微量无素:Fe、Mn、B、Zn、Mo、Cu
③主要元素:C、H、O、N、P、S
④基本元素:C
⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O
9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重
中含量最多的
化合物为蛋白质。
10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成
砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀
粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。
(2)还原糖鉴定材料不能选用甘蔗
(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加
A液,再加B液)
11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区别在于R基的不同。
12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键。
13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数—肽链条数
14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。
15、每种氨基酸分子至少都含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个
碳原子还连接一个氢原子和一个侧链基因。
16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称DNA;一类是核糖核酸,简称RNA,核酸基本组成单位核苷酸。
17、蛋白质功能:
①结构蛋白,如肌肉、羽毛、头发、蛛丝
②催化作用,如绝大多数酶
③运输载体,如血红蛋白
④传递信息,如胰岛素
⑤免疫功能,如抗体
18、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(—COOH)与另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,如图:
HOHHH
NH2—C—C—OH+H—N—C—COOHH2O+NH2—C—C—N—C—COOH
R1HR2R1OHR2
19、DNA、RNA
全称:脱氧核糖核酸、核糖核酸
分布:细胞核、线粒体、叶绿体、细胞质
染色剂:甲基绿、吡罗红
链数:双链、单链
碱基:ATCG、AUCG
五碳糖:脱氧核糖、核糖
组成单位:脱氧核苷酸、核糖核苷酸
代表生物:原核生物、真核生物、噬菌体、HIV、SARS病毒
20、主要能源物质:糖类
细胞内良好储能物质:脂肪
人和动物细胞储能物:糖原
直接能源物质:ATP
一、DNA分子的结构
5种元素:C、H、O、N、
4种脱氧核苷酸
3个小分子:磷酸、脱氧核糖、含氮碱基
2条脱氧核苷酸长链
1种空间结构——双螺旋结构(沃森和克里克)
双螺旋结构:(1)由两条反向平行脱氧核苷酸长链盘旋而成得双螺旋结构
(2)磷酸和脱氧核糖交替连接构成基本骨架
DNA分子中,脱氧核苷酸数=脱氧核糖数=磷酸数=含氮碱基数(1个磷酸可连接1个或2个脱氧核糖)
二、互补配对原则及其推论(双链DNA分子)
A=TG=CA+G=C+T=(A+G+C+T)
嘌呤碱基总数=嘧啶碱基总数
2个互补配对的碱基之和与另外两个互补配对碱基之和相等
2个不互补配对的碱基之和占全部碱基数的一半
三、DNA分子的复制
1、复制时间:有丝分裂间期和减数第一次分裂间期
2、复制场所:(只要有DNA得地方就有DNA复制和DNA转录)
A真核生物:细胞核(主要)、线粒体、叶绿体
B原核生物:拟核、细胞核(基质)
C宿主细胞内
3、DNA复制条件:
①模板:亲代DNA的两条链
②原料:4种尤里的脱氧核苷酸
③能量:ATP
④酶:DNA解旋酶、RNA聚合酶
4、DNA复制特点:
①边解旋边复制
②半保留复制
5、准确复制的原因
①DNA分子独特的双螺旋结构提供精确模板
②碱基互补配对原则保证复制准确进行
6、DNA复制的意义:
讲遗传信息从亲代传给子代,保持了遗传信息的连续性
四、DNA复制的有关计算
1、1个DNA分子复制n次,形成2n个DNA分子
2、1个DNA分子含有某种碱基m个,则经复制n次,需游离的该种碱基为m(2n-1),第n次复制需游离的该种脱氧核苷算m﹡2n-1
3、一个含15N的DNA分子,放在含14N的培养基上培养n次,后代中含有15N的DNA分子有2个,后代中含有15N的DNA链有2条,含有14N的DNA分子有2n个,含14N的DNA链有2n+1-2
3、Mg:叶绿体的组成元素。
很多酶的激活剂。
植物缺镁时老叶易出现叶脉失绿。
4、B:促进花粉的萌发和花粉管的伸长,缺乏植物会出现花而不实。
5、I:甲状腺激素的成分,缺乏幼儿会患呆小症,成人会患地方性甲状腺肿。
6、K:血钾含量过低时,会出现心肌的自动节律异常,并导致心律失常。
9、Zn:是某些酶的组成成分,也是酶的活化中心。
如催化吲哚
和丝氨酸合成色氨酸的酶中含有Zn,没有Zn就不能合成吲哚乙酸。
所以缺Zn引起苹果、桃等植物的小叶症和丛叶症,叶子变小,节间
缩短。
看了高中生物核酸知识点梳理的人还看:。