8 小学奥数——计数问题 试题及解析
8 小学奥数——计数问题 试题及解析
小学奥数——计数问题一.选择题(共44小题)1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.62.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.1743.由3,4,5,6排成没有重复数字的四位数,从小到大排起来,6345是第()A.16个B.17个C.18个D.19个4.从城堡到幸福岛有()种不同的走法.A.2B.3C.45.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路,那么从甲地经乙地到丙地共有多少条不同的路?()A.10B.24C.4D.66.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A.768种B.32种C.24种D.2的10次方中7.从甲地到乙地有两条不同的路可走,从乙地到丙地有4条不同的路可走,则从甲地经乙地去丙地有()条不同的路可走.A.8B.6C.4D.28.12月20日、21日、22日三天为期末考试时间,每天考一年级和二年级,三年级和四年级,五年级和六年级中的一个年级段.一共有()种考试时间安排.A.6B.9C.129.冬冬要把三个小球放入三个箱子,其中三个小球的颜色分别是红色、黄色和蓝色,而三个箱子的颜色也分别是红色、黄色和蓝色.如果这些箱子都可以空着不放球,那么有()种不同的放球方法.A.3B.6C.9D.2710.若把英语单词hello的字母顺序写错了,则可能出现的错误共有()A.119种B.36种C.59种D.48种11.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.712.一个盒子里装有标号为124的24张卡片,要从盒子里任意抽取卡片,至少要抽出( )张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.1513.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.2914.红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有()排座位上坐的人数相同.A.3B.4C.5D.615.盒中有形状、大小、质料相同的红、白、黑颜色的球各10个,摸出若干个,要保证摸出的球中至少有3个球同色,摸出球的个数至多为()个.A.3B.5C.6D.716.小孟有10张飞行系精灵、15张草系精灵和20张火系精灵的卡片,她把45张卡片放在袋子里闭着眼睛向外摸卡片,那么他至少摸()张,才能保证摸出的卡片中同时有飞行系精灵和火系精灵的卡片.A.17B.26C.35D.3617.有红、黄、蓝三种颜色同样大小的球各5个混在一起,至少要摸出()个才能保证摸出2个红球.A.3B.12C.418.明明玩掷骰子游戏,掷两个骰子,要保证掷出的骰子总数至少有两次相同,他最少应掷( )次.A.7B.12C.1319.在扑克牌的红桃、黑桃、方块、梅花各13张,共有52张牌,至少从中抽出()张牌,才能保证其中有2张花色相同的牌.A.2B.3C.5D.2620.一副扑克牌共有54张,至少抽出()张,才能保证其中必会有4张牌的点数相同.A.24B.42C.32D.2321.在口袋里有同样形状和大小的蓝球8个,黄球14个,白球10个,我们摸出()个球能保证其中一定有一个黄球.A.19B.23C.2522.3294个人中,最少能找到()人同一天生日.A.8B.9C.10D.1823.一个袋子里有红、黄、蓝色三种球各5个,每次至少拿()个才能保证有2个相同颜色的球.A.4B.2C.524.袋子里有5个黄球、3个白球、1个篮球(除颜色外其他完全相同),任意摸出一个,摸到()的可能性大.A.黄球B.白球C.篮球25.某校有15人,老师让每人用0,1,2,3这四个数字任意写出一个没有重复数字的自然数,那么其中至少有()人写的数相同.A.3B.4C.5D.626.学校买来了红、黄、蓝三种颜色的球,规定每位学生最多可以借两个不同颜色的球,那么至少要有几位学生借球,就可以保证必有两位学生借的球的颜色完全一样?()A.5B.6C.7D.827.某班学生去买语文书、数学书、外语书.买书的情况是:有买一本的,二本的,也有三本的,至少要去()位学生才能保证一定有两位同学买到相同的书(每种书最多买一本).A.3B.6C.828.有红、黄、蓝、绿、白五种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有三颗颜色相同?()A.3B.11C.15D.1629.某班有50个学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可参加1个、2个或3个兴趣小组.问班级中至少有几个学生参加的项目完全相同?()A.6B.7C.8D.930.质料、型号相同的红、白、黑色袜子各5双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成2双(只要两只袜子同色,即为一双),至多摸出()只.A.4B.5C.6D.731.从19这9张数字卡片中至少取出()张,就能保证一定有两张卡片上的数字之和是偶数.A.2B.3C.432.某班一次数学测验,10道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有7道题所有人都做对了,有3道题所有人都只做对了其中1道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有()人.A.49B.41C.37D.2833.18个小朋友中,()小朋友在一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个34.袋子里有18个大小相同的彩色球,其中红球有3个,黄球有5个,绿球有10个.现在要一次从袋中取出若干个球,使得这若干个球中至少有5个球是同色的,那么从袋中一次取出球的个数至少是()A.5个B.8个C.12个D.13个35.一只黑色口袋里有四种颜色的球,每种颜色的球足够多个,它们的形状,大小都相同,只是颜色不同.一次至少取出()个,才能保证其中至少有5个球的颜色相同.A.5B.9C.13D.1736.220名学生参加百分制的考试(得分以整数计),没有三名以上的学生得分相同.则恰有三名同学得分相同的分数最少有()个.A.17B.18C.19D.2037.四年级六个班举行拔河比赛,要求每班要与其他各班进行一场比赛,一共要举行()场比赛.A.4B.5C.6D.1538.四年级六个班进行篮球比赛,每两个班之间都要进行一场比赛,一共要进行()场比赛.A.10B.15C.20D.3039.有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场.A.20B.39C.41D.8040.奥运五福娃贝贝、晶晶、欢欢、迎迎、妮妮在鸟巢奥运馆见面了,每两个福娃都会握一次手,当贝贝握了4次手,晶晶握了3次手,欢欢握了2次手,迎迎握了1次手时,妮妮握了()次手.A.4B.3C.2D.141.同学们进行广播操比赛,全班正好排成相等的6行.小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人.A.42B.44C.48D.5442.一只平底锅,每次只能烙2张鸡蛋饼,两面都要烙,烙一面均需3分钟,那么烙5张鸡蛋饼,最少需要()分钟.A.15B.20C.18D.3043.姐姐杀好鱼后,让弟弟帮忙烧鱼,他洗鱼2分钟、切鱼2分钟、切姜片和葱花1分钟、洗锅2分钟、将锅烧热2分钟、将油烧热3分钟、煎烧鱼5分钟,各工序共花了17分钟.聪明的小朋友,如果是你烧鱼,你最少需要多少时间呢?()A.12B.13C.14D.1544.小芳早上起床,洗脸刷牙5分钟,吃妈妈已经准备好的早饭10分钟,听广播15分钟,步行到学校10分钟.如果学校在8:00开始上课,小芳最迟几时就要起床?()A.7:20B.7:30C.7:35参考答案与试题解析一.选择题(共44小题)1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.6【解析】根据分析可得336+=(次)答:他最少要试6次,才能确保打开箱子.故选:D.2.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.174【解析】因为每淘汰1名选手就要有一场比赛,所以只剩最后第一名,需要淘汰5121511-=名,答:这次乒乓球比赛一共要比赛511场.故选:B.3.由3,4,5,6排成没有重复数字的四位数,从小到大排起来,6345是第()A.16个B.17个C.18个D.19个【解析】四个数字不重复的有:432124⨯⨯⨯=(个)3做千位的有:3216⨯⨯=(个)4做千位的有:3216⨯⨯=(个)5做千位的有:3216⨯⨯=(个)6做千位的有:3216⨯⨯=(个)而6做千位的有(从小到大):6345,6354,6435,6453,6534,6543,⨯+=(个)63119答:可以组成24个没有重复数字的四位数,把它们排起来,从小到大6345是第19个数.故选:D.4.从城堡到幸福岛有()种不同的走法.A.2B.3C.4【解析】224⨯=(种);答:从城堡到幸运岛共有4种不同的走法.故选:C.5.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路,那么从甲地经乙地到丙地共有多少条不同的路?()A.10B.24C.4D.6【解析】根据分析可得:⨯=(条)4624答:那么从甲地经乙地到丙地共有24条不同的路.故选:B.6.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A.768种B.32种C.24种D.2的10次方中【解析】=根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有54321120⨯⨯⨯⨯=种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120524÷=种.第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共有⨯⨯⨯⨯=种2222232综合两步,就有2432768⨯=种.故选:A.7.从甲地到乙地有两条不同的路可走,从乙地到丙地有4条不同的路可走,则从甲地经乙地去丙地有()条不同的路可走.A.8B.6C.4D.2【解析】248⨯=(条).即从甲地经乙地去丙地有8条不同的路可走.故选:A.8.12月20日、21日、22日三天为期末考试时间,每天考一年级和二年级,三年级和四年级,五年级和六年级中的一个年级段.一共有()种考试时间安排.A.6B.9C.12【解析】根据分析可得,⨯⨯=(种)3216答:一共有6种考试时间安排.故选:A.9.冬冬要把三个小球放入三个箱子,其中三个小球的颜色分别是红色、黄色和蓝色,而三个箱子的颜色也分别是红色、黄色和蓝色.如果这些箱子都可以空着不放球,那么有()种不同的放球方法.A.3B.6C.9D.27【解析】33327⨯⨯=(种)答:有27种不同的放球方法.故选:D.10.若把英语单词hello的字母顺序写错了,则可能出现的错误共有()A.119种B.36种C.59种D.48种【解析】54321120⨯⨯⨯⨯=有两个l所以120260÷=原来有一种正确的,所以60159-=;故选:C.11.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.7【解析】从1至10这10个整数中,和等于10的有:(1,9)、(2、8);(3、7);(4、6);考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,即617+=(个),答:至少取7个数,才能保证其中有两个数的和等于10.故选:D.12.一个盒子里装有标号为124-的24张卡片,要从盒子里任意抽取卡片,至少要抽出( )张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.15【解析】将这24张卡片分成这样的两组:第一组:1、2、3、4、9、10、11、12、17、18、19、20;第二组:5、6、7、8、13、14、15、16、21、22、23、24,只要在第一组中加入一个第二组的数,或在第二组中加入第一组的一个数,都能保证有两张卡片的标号之差为4.13.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.29【解析】根据题干分析可得,可以这样取牌:大小王、16-全取、1个7(或大小王、1个7、813-全取)总共27张牌,再随便取一张牌就必定有2张牌的和等于14了.所以要满足题目至少要取27128+=张.故选:C.14.红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有()排座位上坐的人数相同.A.3B.4C.5D.6【解析】6502427÷≈,也就是说平均每排坐大约27人;我们这样安排,24 25 26 27 28 29 30,重复三遍这样坐,坐的人数:(24252627282930)3567++++++⨯=(人),还剩下:68056783-=(人),分别是26、28、29.这样相同的人数至少4排.答:至少有4排坐的人数同样多;故选:B.15.盒中有形状、大小、质料相同的红、白、黑颜色的球各10个,摸出若干个,要保证摸出的球中至少有3个球同色,摸出球的个数至多为()个.A.3B.5C.6D.7【解析】因为一共有3种颜色的球,所以最差的情况是,摸出6个球,红、白、黑颜色的球各2个,只要再摸出1个球,就能保证摸出的球中至少有3个球同色,所以摸出球的个数至多为:+=(个)617答:要保证摸出的球中至少有3个球同色,摸出球的个数至多为7个.故选:D.16.小孟有10张飞行系精灵、15张草系精灵和20张火系精灵的卡片,她把45张卡片放在袋子里闭着眼睛向外摸卡片,那么他至少摸()张,才能保证摸出的卡片中同时有飞行系精灵和火系精灵的卡片.A.17B.26C.35D.36【解析】根据题干分析可得:++=(张)1520136答:至少需要取36张.故选:D.17.有红、黄、蓝三种颜色同样大小的球各5个混在一起,至少要摸出()个才能保证摸出2个红球.A.3B.12C.4【解析】55212++=(个)答:至少要摸出12个才能保证摸出2个红球.故选:B.18.明明玩掷骰子游戏,掷两个骰子,要保证掷出的骰子总数至少有两次相同,他最少应掷( )次.A.7B.12C.13【解析】11112+=(次),答:至少要掷12次.故选:B.19.在扑克牌的红桃、黑桃、方块、梅花各13张,共有52张牌,至少从中抽出()张牌,才能保证其中有2张花色相同的牌.A.2B.3C.5D.26【解析】415+=(张);故选:C.20.一副扑克牌共有54张,至少抽出()张,才能保证其中必会有4张牌的点数相同.A.24B.42C.32D.23【解析】根据点数特点可以分别看做13个抽屉,分别是:1、2、3、K⋯,考虑最差情况:先摸出2张王牌,然后每个抽屉又都摸出了3张牌,共摸出313241⨯+=张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有4张牌在同一个抽屉,即4张牌点数相同,即:41142+=(张),答:至少抽出42张,才能保证其中必会有4张牌的点数相同.故选:B.21.在口袋里有同样形状和大小的蓝球8个,黄球14个,白球10个,我们摸出()个球能保证其中一定有一个黄球.A.19B.23C.25【解析】810119++=(个)答:我们摸出19个球能保证其中一定有一个黄球.故选:A.22.3294个人中,最少能找到()人同一天生日.A.8B.9C.10D.18【解析】32943669÷=(人)答:3294个人中,最少能找到9人同一天生日.故选:B.23.一个袋子里有红、黄、蓝色三种球各5个,每次至少拿()个才能保证有2个相同颜色的球.A.4B.2C.5【解析】根据分析可得,314+=(个);答:每次至少拿4个才能保证有2个相同颜色的球.故选:A.24.袋子里有5个黄球、3个白球、1个篮球(除颜色外其他完全相同),任意摸出一个,摸到()的可能性大.A.黄球B.白球C.篮球【解析】5319++=摸出黄球的可能性是:5 599÷=摸出白球的可能性是3 399÷=摸出篮球的可能性是1 199÷=答:摸出黄球的可能性最大.故选:A.25.某校有15人,老师让每人用0,1,2,3这四个数字任意写出一个没有重复数字的自然数,那么其中至少有()人写的数相同.A.3B.4C.5D.6【解析】把0,1,2,3这四个数字看作4个抽屉,把15名学生看作“物体个数”,15433÷=⋯(人)314+=(人)答:至少有4个学生写的数相同.故选:B.26.学校买来了红、黄、蓝三种颜色的球,规定每位学生最多可以借两个不同颜色的球,那么至少要有几位学生借球,就可以保证必有两位学生借的球的颜色完全一样?()A.5B.6C.7D.8【解析】红、黄、蓝共有红蓝、红黄、蓝黄三种组合.3317++=(个)答:那么至少要有7位学生借球,就可以保证必有两位学生借的球的颜色完全一致.故选:C.27.某班学生去买语文书、数学书、外语书.买书的情况是:有买一本的,二本的,也有三本的,至少要去()位学生才能保证一定有两位同学买到相同的书(每种书最多买一本).A.3B.6C.8【解析】根据题干分析可得,买书情况一共有3317++=(种),把这7种情况看成7个抽屉,要保证有两位买书的类型相同,因此买书的人数要大于7,+=(人)718答:至少要去8位学生才能保证一定有两位同学买到相同的书.故选:C.28.有红、黄、蓝、绿、白五种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有三颗颜色相同?()A.3B.11C.15D.16【解析】25111⨯+=(颗),答:一次至少要取11颗珠子,才能保证其中一定有三颗颜色相同.故选:B.29.某班有50个学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可参加1个、2个或3个兴趣小组.问班级中至少有几个学生参加的项目完全相同?()A.6B.7C.8D.9【解析】根据题干,只参加一个学习班的有3种情况,参加两个学习班的有朗读与音乐、朗读与书法,书法与音乐3种情况,参加3个兴趣小组的有1种情况,共有3317++=种情况,将这7种情况当做7个抽屉,⋯名学生,÷=名15077+=(名),718答:班级中至少有8个学生参加的项目完全相同.故选:C.30.质料、型号相同的红、白、黑色袜子各5双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成2双(只要两只袜子同色,即为一双),至多摸出()只.A.4B.5C.6D.7【解析】因为一共有3种颜色的袜子,所以4只袜子必有1双,剩下2只不同色的袜子,最差的情况是,再摸出一只袜子,和剩下的2只袜子的颜色都不同,只要再摸出一只袜子,一定可以配成1双,所以再增加2只袜子,才可以配成1双,所以要能配成2双(只要两只袜子同色,即为一双),至多摸出:+=(只)426答:要能配成2双(只要两只袜子同色,即为一双),至多摸出6只.故选:C.31.从19-这9张数字卡片中至少取出()张,就能保证一定有两张卡片上的数字之和是偶数.A.2B.3C.4【解析】在19-中,奇数有1、3、5、7、9,偶数有2、4、6、8,因为奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数,从最极端情况考虑:假设抽出了2张,一张奇数,一张偶数,这样再取出一张,一定保证有两张卡片上的数字之和是偶数,所以取出3张即可保证;故选:B.32.某班一次数学测验,10道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有7道题所有人都做对了,有3道题所有人都只做对了其中1道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有()人.A.49B.41C.37D.28【解析】(1)在3道题中,每道都有4个选项,其中有且仅有1个选项是正确的,只选对其中一道,这样的选项组合情况为:①第一道选对,第二、三道全选错的情况数位1339⨯⨯=.②第二道选对,第一、三道全选错的情况数为3139⨯⨯=.③第三道选对,第一、二道全选错的情况数为3319⨯⨯=总计99927++=(2)将这27种情况看做是27个抽屉,学生看做是放到抽屉的物体,至少有1抽屉放了2个物体.根据抽屉原理二得:物体数27(21)128=⨯-+=.所以参加这次测验的同学至少有28人.故选:D.33.18个小朋友中,()小朋友在一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个【解析】181216÷=⋯,112+=(个),答:18个小朋友中,至少有2个小朋友在一个月出生.故选:B.34.袋子里有18个大小相同的彩色球,其中红球有3个,黄球有5个,绿球有10个.现在要一次从袋中取出若干个球,使得这若干个球中至少有5个球是同色的,那么从袋中一次取出球的个数至少是()A.5个B.8个C.12个D.13个【解析】根据题干分析可得:344112+++=(个),答:从袋中一次取出球的个数至少是12个;故选:C.35.一只黑色口袋里有四种颜色的球,每种颜色的球足够多个,它们的形状,大小都相同,只是颜色不同.一次至少取出()个,才能保证其中至少有5个球的颜色相同.A.5B.9C.13D.17【解析】根据分析可得:⨯+=(个);44117答:一次至少取出17个,才能保证其中至少有5个球的颜色相同.故选:D.36.220名学生参加百分制的考试(得分以整数计),没有三名以上的学生得分相同.则恰有三名同学得分相同的分数最少有()个.A.17B.18C.19D.20【解析】按照百分制计分,那么得分情况有101种:即0分,1分,2分,3分,100⋯分;把这101种得分情况看做101个抽屉,因为2201012⋯(人),÷=(人)18所以没有三名以上的学生得分相同,所以恰有三名同学得分相同的分数最少有18个;故选:B.37.四年级六个班举行拔河比赛,要求每班要与其他各班进行一场比赛,一共要举行()场比赛.A.4B.5C.6D.15【解析】56215⨯÷=(场);故选:D.38.四年级六个班进行篮球比赛,每两个班之间都要进行一场比赛,一共要进行()场比赛.A.10B.15C.20D.30【解析】56215⨯÷=(场);答:一共要举行15场比赛.故选:B.39.有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场.A.20B.39C.41D.80【解析】40139-=(场)故选:B.40.奥运五福娃贝贝、晶晶、欢欢、迎迎、妮妮在鸟巢奥运馆见面了,每两个福娃都会握一次手,当贝贝握了4次手,晶晶握了3次手,欢欢握了2次手,迎迎握了1次手时,妮妮握了()次手.A.4B.3C.2D.1【解析】每人都要和另外4个人握一次手,已知a握了4次,则a与b、c、d、e各握了一次;b握了3次,由于此时d只握了1次,是和a握的,则b与a、c、e握的,此时c已握了2次,即和a,b握的;所以e此时也握了两次,即和a、b握的.故选:C.41.同学们进行广播操比赛,全班正好排成相等的6行.小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人.A.42B.44C.48D.54【解析】5137-+=(人)7642⨯=(人)故选:A.42.一只平底锅,每次只能烙2张鸡蛋饼,两面都要烙,烙一面均需3分钟,那么烙5张鸡蛋饼,最少需要()分钟.A.15B.20C.18D.30【解析】要使煎5张饼的时间最短,应首先煎2张饼,然后再煎3张饼.煎前2张饼需要的时间:236⨯=(分钟);煎最后3张饼时,应先往锅中放入两张饼,先煎熟一面后拿出一张,再放入另一张,当再煎熟一面时把熟的一张拿出来,再放入早拿出的那张饼,使两张同时熟,所以一共需要339⨯=分钟;+=(分钟)6915故选:A.43.姐姐杀好鱼后,让弟弟帮忙烧鱼,他洗鱼2分钟、切鱼2分钟、切姜片和葱花1分钟、洗锅2分钟、将锅烧热2分钟、将油烧热3分钟、煎烧鱼5分钟,各工序共花了17分钟.聪明的小朋友,如果是你烧鱼,你最少需要多少时间呢?()A.12B.13C.14D.15【解析】根据题干分析可得:先洗锅,需要2分钟→洗鱼需要2分钟(同时烧热锅节约2分钟)→切鱼需要2分钟、切葱花、姜片需要1分钟(同时烧热油节约3分钟)→煎鱼需要5分钟,这样花费的时间最少是2212512++++=(分钟),答:最少需要12分钟.故选:A.44.小芳早上起床,洗脸刷牙5分钟,吃妈妈已经准备好的早饭10分钟,听广播15分钟,步行到学校10分钟.如果学校在8:00开始上课,小芳最迟几时就要起床?()A.7:20B.7:30C.7:35【解析】5101025++=(分钟)8时25-分7=时35分即小芳起床最晚是7时35分.故选:C.。
小学奥数奥数计数问题
乘法原理:如果完成一件事需要n个步骤,其中,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…… 完成第n步有m n种不同的方法,那么完成这件事情共有m1 ×m2 ×……×m n种不同的方法。
例1 上海到天津每天有 2 班飞机,4 趟火车,6 班汽车,从天津到北京有 2 班汽车。
假期小茗有一次长途旅游,他从上海出发先到天津,然后到北京,共有多少种走法?例2 “IMO”是国际奥林匹克的缩写,把这 3 个字母用红、黄、蓝三种颜色的笔来写,共有多少种写法?【巩固】在日常生活中,人们用来装饭、菜的有餐碗和餐盘,用来吃饭的有餐勺、餐叉和餐筷。
如果一种装饭菜的和一种吃饭的餐具配作一套,那么以上这些可以组成不重复的餐具多少套?例3 小红、小明准备在5×5的方格中放黑、白棋子各一枚,要求两枚不同的棋子不在同一行也不在同一列,共有多少种方法?【巩固】右图中共有 16 个方格,要把 A、B、C、D 四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?例4 用数字0,1,2,3,4,组成三位数,符合下列条件的三位数各多少个?①各个位上的数字允许重复;②各个位上的数字不允许重复;【巩固】由数字 0、1、2、3 组成三位数,问:①可组成多少个不同的三位数?②可组成多少个没有重复数字的三位数?【拓展】由数字 1、2、3、4、5、6 共可组成多少个没有重复数字的四位奇数?例5 把1~100 这100 个自然数分别写在100 张卡片上,从中任意选出两张,使他们的差为奇数的方法有多少种?小结:应用乘法原理解决问题时要注意:①做一件事要分成几个彼此互不影响的独立的步骤来完成;②要一步接一步的完成所有步骤;③每个步骤各有若干种不同的方法。
加法原理:一般地,如果完成一件事有 k 类方法,第一类方法中有 m1 种不同做法,第二类方法中有 m2 种不同做法,…,第 k 类方法中有 mk 种不同的做法,则完成这件事共有:N=m1+m2+…+mk种不同的方法.例6 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150 本,不同的科技书200 本,不同的小说100 本.那么,小明借一本书可以有多少种不同的选法?例7 一个口袋内装有3 个小球,另一个口袋内装有8 个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?例8 如图,从甲地到乙地有4 条路可走,从乙地到丙地有2 条路可走,从甲地到丙地有3 条路可走.那么,从甲地到丙地共有多少种走法?例9 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?例10 从1 到500 的所有自然数中,不含有数字4 的自然数有多少个?例11 如图,一只小甲虫要从 A 点出发沿着线段爬到 B 点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?例 12 如图,要从 A 点沿线段走到 B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?家庭作业:1.由数字 1、2、3、4、5、6、7、8 可组成多少个:①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8 的没有重复数字的三位数?⑤百位为 8 的没有重复数字的三位偶数?2.某市的电话号码是六位数的,首位不能是 0,其余各位数上可以是 0~9 中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?3.图中有 7 个点和十条线段,一只甲虫要从 A 点沿着线段爬到 B 点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?4.现有一角的人民币 4 张,贰角的人民币 2 张,壹元的人民币 3 张,如果从中至少取一张,至多取 9 张,那么,共可以配成多少种不同的钱数?5.将10 颗相同的珠子分成三份,共有多少种不同的分法?分给三个人有多少种分法?6.有红、白、黄、蓝四种颜色的彩旗各 1 面,不同的旗可以表示不同的信号,不同的颜色排列也可以表示不同的信号,这 4 面旗可以发出多少种信号?7.从最小的五个质数中,每次取出两个数,分别作为一个分数的分子和分母,一共可以组成多少个真分数?8.用1,2,3,4 这四种数码组成五位数,数字可以重复,至少有连续三位是 1 的五位数有多少?9.从1 到500 的所有自然数中,不含数字 2 的自然数有多少个?n Ⅰ 排列在实际生活中把一些事物进行有序的排列,计算共有多少种排法,这就是数学上的排列问题。
小学奥数专题枚举法_通用版
2019年小学奥数计数专题——枚举法1.如图,有8张卡片,上面分别写着自然数l至8.从中取出3张,要使这3张卡片上的数字之和为9.问有多少种不同的取法?2.从l至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?3.现有1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?4.妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份.问:共有多少种不同的订?6.在所有四位数中,各个数位上的数字之和等于34的数有多少个?7.有25本书,分成6份.如果每份至少一本,且每份的本数都不相同,有多少种分法? 8.小明用70元钱买了甲、乙、丙、丁4种书,共10册.已知甲、乙、丙、丁这4种书每本价格分别为3元、5元、7元、11元,而且每种书至少买了一本.那么,共有多少种不同的购买方法?9.甲、乙、丙、丁4名同学排成一行.从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?10.abcd代表一个四位数,其中a,b,c,d均为l,2,3,4中的某个数字,但彼此不同,例如2134.请写出所有满足关系a<b,b>e,c<d的四位数abcd来.11.一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字.问一共有多少个这样的数?12.3件运动衣上的号码分别是1,2,3,甲、乙、丙3各穿一件.现有25个小球,首先发给甲1个球,乙2个球,丙3个球.规定3人从余下的球中各取球一次,其中穿l 号衣的人取他手中球数的1倍,穿2号衣的人取他手中球数的3倍,穿3号衣的人取他手中球数的4倍,取走之后还剩下两个球.那么,甲穿的运动衣的号码是多少? 13.甲、乙两人打乒乓球,谁先连胜两局谁赢;如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.那么一共有多少种可能的情况?14.用7张长2分米、宽1分米的长方形不干胶,贴在一张长7分米、宽2分米的木板上,将其盖住,共有多少种不同的拼贴方式?在这里,如果两种方案可以通过旋转而互相得到,那么就认为是同一种.15.用对角线把正八边形剖分成三角形,要求这些三角形的顶点是正八边形的顶点,那么共有多少种不同的方法?在这里,如果两种剖分方法可以通过恰当的旋转、反射,或者旋转加反射而互相得到,那么就认为是同一种.16.新年到了,爸爸要给小昊买一个四阶魔方作为圣诞礼物,这个魔方的价格是28元8角。
计数问题的奥数题
计数问题的奥数题
关于计数问题的奥数题
红、黄、蓝、白四种颜色不同的小旗,各有2,2,3,3面,任意取出三面按顺序排成一行,表示一种信号,问:共可以表示多少种不同的信号?如果白旗不能打头又有多少种?
【答案解析】
取出的3面旗子,可以是一种颜色、两种颜色、三种颜色,应按此进行分类
第一类,一种颜色:都是蓝色的.或者都是白色的,2种可能;
第二类,两种颜色:(4×3)×3=36
第三类,三种颜色:4×3×2=24
所以,根据加法原理,一共可以表示2+36+24=62种不同的信号.
白棋打头的信号,后两面旗有4×4=16种情况.所以白棋不打头的信号有62-16=46种.。
小学奥数系列训练题-几何计数|通用版
2015年小学奥数计数专题——几何计数1.用3根等长的火柴可以摆成一个等边三角形.如图,用这样的等边三角形拼合成一个更大的等边三角形.如果这个大等边三角形昀每边由20根火柴组成,那么一共要用多少根火柴?2.如图,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?3.图是一个跳棋棋盘,请你计算出棋盘上共有多少个棋孔?4.如图,在桌面上,用6个边长为l的正三角形可以拼成一个边长为1的正六边形.如果在桌面上要拼出一个边长为6的正六边形,那么,需要边长为1的正三角形多少个?5.如图,其中的每条线段都是水平的或竖直的,边界上各条线段的长度依次为5厘米、7厘米、9厘米、2厘米和4厘米、6厘米、5厘米、1厘米.求图中长方形的个数,以及所有长方形面积的和.6.如图,18个边长相等的正方形组成了一个3×6的方格表,其中包含“*”的长方形及正方形共有多少个?7.图是由若干个相同的小正方形组成的.那么,其中共有各种大小的正方形多少个?8.图中共有多少个三角形?9.图是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.那么,图中包含“*”的各种大小的正三角形一共有多少个?10.如图,AB,CD,EF,MN互相平行,则图中梯形个数与三角形个数的差是多少?11.在图中,共有多少个不同的三角形?12.如图,一块木板上有13枚钉子.用橡皮筋套住其中的几枚钉子,可以构成三角形、正方形、梯形等等,如图.那么,一共可以构成多少个不同的正方形?13.如图,用9枚钉子钉成水平和竖直间隔都为1厘米的正方阵.用一根橡皮筋将3枚不共线的钉子连结起来就形成一个三角形.在这样得到的三角形中,面积等于1平方厘米的三角形共有多少个?14.如图,木板上钉着12枚钉子,排成三行四列的长方阵.那么用橡皮筋共可套出多少个不同的三角形?15.如图,正方形ACEG的边界上有A,B,C,D,E,F,G这7个点,其中B,D,F分别在边AC,CE,EG上.以这7个点中的4个点为顶点组成的不同四边形的个数等于多少?16.数一数下列图形中各有多少条线段.17.数出下图中总共有多少个角.18.数一数下图中总共有多少个角?19.如下图中,各个图形内各有多少个三角形?20.如下图中,数一数共有多少条线段?共有多少个三角形?21.如右图中,共有多少个角?22.在图中(单位:厘米):①一共有几个长方形?②所有这些长方形面积的和是多少? 37421812523.由20个边长为1的小正方形拼成一个45 长方形中有一格有“☆”图中含有“☆”的所有长方形(含正方形)共有 个,它们的面积总和是 。
小学奥数计数经典例题解析【四篇】
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是为⼤家整理的《⼩学奥数计数经典例题解析【四篇】》供您查阅。
【第⼀篇】例题:有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成⼀列放在书架上,让数学书排在⼀起,外语书也恰好排在⼀起的排法共有( ?)种.(结果⽤数值表⽰) 解:把3本数学书“*”在⼀起看成⼀本⼤书,2本外语书也“*”在⼀起看成⼀本⼤书,与其它3本书⼀起看作5个元素,共有A(5,5)种排法; ⼜3本数学书有A(3,3)种排法,2本外语书有A(2,2)种排法; 根据分步计数原理共有排法A(5,5)A(3,3)A(2,2)=1440(种).【第⼆篇】 例题:6个球放进5个盒⼦,有多少种不同的⽅法? 其实,由抽屉原理可知,必然有两个球在⼀起。
所以答案是 C(6, 2)X A(5,5) 其实就是6取2,与5的阶乘的积【第三篇】例.若有A、B、C、D、E五个⼈排队,要求A和B两个⼈必须站在相邻位置,则有多少排队⽅法? 【解析】:题⽬要求A和B两个⼈必须排在⼀起,⾸先将A和B两个⼈“*”,视其为“⼀个⼈”,也即对“A,B”、C、D、E“四个⼈”进⾏排列,有种排法。
⼜因为*在⼀起的A、B两⼈也要排序,有种排法。
根据分步乘法原理,总的排法有种。
【第四篇】有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。
若将这些书排成⼀列放在书架上,让数学书排在⼀起,外语书也恰好排在⼀起的排法共有多少种? 【解析】:把3本数学书“*”在⼀起看成⼀本⼤书,2本外语书也“*”在⼀起看成⼀本⼤书,与其它3本书⼀起看作5个元素,共有种排法;⼜3本数学书有种排法,2本外语书有种排法;根据分步乘法原理共有排法种。
【提⽰】:运⽤*法解决排列组合问题时,⼀定要注意“*”起来的⼤元素内部的顺序问题。
解题过程是“先*,再排列”。
小学奥数 计数之归纳法 精选例题练习习题(含知识点拨)
前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系.【例1】如图所示,在2×2方格中,画一条直线最多穿过3个方格;在3×3方格中,画一条直线最多穿过5个方可知;那么在5×5方格中,画一条直线,最多穿过个方格。
【考点】计数之归纳法【难度】2星【题型】填空【关键词】希望杯,四年级,复赛,第14题,6分【解析】边长每多1,穿过的方格多2,那么5×5的最多穿过3+2+2+2=9个方格【答案】9【例2】一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【考点】计数之归纳法【难度】3星【题型】解答【解析】方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n条直线时,最多可将平面分成2+2+3+4+…+n=()12n n++1个部分.方法二:如果已有k条直线,再增加一条直线,这条直线与前k条直线的交点至多k个,因而至多被分成k+1段,每一段将原有的部分分成两个部分,所以至多增加k+1个部分.于是3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.一般的有k条直线最多将平面分成:1+1+2+…+k=()12k k++1个部分,所以五条直线可以分平面为16个部分.例题精讲教学目标7-6-1.计数之归纳法【答案】16【巩固】平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分? 【考点】计数之归纳法 【难度】4星 【题型】解答 【解析】 假设用a k 表示k 条直线最多能把圆的内部分成的部分数,这里k =0,1,2,……a 0=1a 1=a 0+1=2 a 2=a 1+2=4 a 3=a 2+3=7 a 4=a 3+4=11 ……故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分【答案】5051部分【例 3】 平面上10个两两相交的圆最多能将平面分割成多少个区域? 【考点】计数之归纳法 【难度】4星 【题型】解答 【解析】 先考虑最简单的情形.为了叙述方便,设平面上k 个圆最多能将平面分割成k a 个部分.141312111098765432187652134431221从图中可以看出,12a =,24221a ==+⨯,38422a ==+⨯,414823a ==+⨯,…… 可以发现k a 满足下列关系式:()121k k a a k -=+-.实际上,当平面上的(1k -)个圆把平面分成1k a -个区域时,如果再在平面上出现第k 个圆,为了保证划分平面的区域尽可能多,新添的第k 个圆不能通过平面上前()1k -个圆之间的交点.这样,第k 个圆与前面()1k -个圆共产生2(1)k ⨯-个交点,如下图:这2(1)k ⨯-个交点把第k 个圆分成了2(1)k ⨯-段圆弧,而这2(1)k ⨯-段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了2(1)k ⨯-个部分.所以,()121k k a a k -=+-. 那么,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯=12122...272829a =+⨯+⨯++⨯+⨯+⨯ ()2212...78992=+⨯+++++=.故10个圆最多能将平面分成92部分.【答案】92【例 4】 10个三角形最多将平面分成几个部分?【考点】计数之归纳法 【难度】4星 【题型】解答 【解析】 设n 个三角形最多将平面分成n a 个部分.1n =时,12a =;2n =时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有236⨯=(个)交点.这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即2223a =+⨯.3n =时,第三个三角形与前面两个三角形最多有4312⨯=(个)交点,从而平面也增加了12个部分,即:322343a =+⨯+⨯. …… 一般地,第n 个三角形与前面()1n -个三角形最多有()213n -⨯个交点,从而平面也增加()213n -⨯个部分,故()()222343213224213332n a n n n n ⎡⎤=+⨯+⨯++-⨯=++++-⨯=-+⎣⎦; 特别地,当10n =时,2103103102272a =⨯+⨯+=,即10个三角形最多把平面分成272个部分.【答案】272【例 5】 一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分? 【考点】计数之归纳法 【难度】4星 【题型】解答【解析】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分. 所以三个长方形最多能将平面分成10+12+4=26.【小结】n 个图形最多可把平面分成部分数:直线:()112n n ⨯++;圆:()21n n +⨯-;三角形:()231n n +⨯⨯- ; 长方形:()241n n +⨯⨯-.【答案】26【例 6】 在平面上画5个圆和1条直线,最多可把平面分成多少部分? 【考点】计数之归纳法 【难度】5星 【题型】解答 【解析】 先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.同样的道理,5个圆最多将平面分成22个部分.再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.【答案】32【例7】在一个西瓜上切6刀,最多能将瓜皮切成多少片?【考点】计数之归纳法【难度】4星【题型】解答【解析】将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切1刀时,瓜皮被切成两份,当切第2刀时,由于切割线相交,所以瓜皮被切成4分,……,切第n次时,新增加的切割线与原来的切割线最多有()n-个交点.这21些交点将第n条切割线分成()n-,所以21n-段,也就是说新增加的切割线使瓜皮数量增加了()21在西瓜上切6刀,最多能将瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【答案】32【例8】在一大块面包上切6刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)【考点】计数之归纳法【难度】5星【题型】解答【解析】题目相当于6个平面能将空间划分为多少个部分.通过找规律来寻找递推关系,显然的1个平面能将空间划分成2块,2个平面能将空间划分成4块,3个平面能将空间划分成8个平面,当增加到第四个平面时,第四个平面这能将原来空间中的8个部分中的其中几个划分.如图:注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成7个部分,而每一部分将原来三个平面划分的8个空间中的7个划分成两份,所以4个平面能将空间划分成+=个部分.8715同样的第五个平面与前四个平面分别相交成4条直线,这四条直线能将第5个平面分割成1123411++++=个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空间中的区域增加到151126+==个部分.当增加到6个平面时,第六个平面共被划分成11234516+++++=个部分,所以第6个平面能将空间中的区块数增加到261642+=个部分.所以6刀能将面包切成42块.【答案】42。
小学数学《计数问题》练习题(含答案)
小学数学《计数问题》练习题(含答案)知识点:1. 图形的计数.2. 排列组合3. 容斥原理图形计数中常见的几类:1、数线段、三角形,(锐)角的个数.①我们可以按照线段的左端点的位置分为A,B,C三类.如下图所示,以A为左端点的线段有3条,以B为左端点的线段有2条,以C为左端点的线段有1条.所以共有3+2+1=6(条).②我们也可以按照一条线段是由几条小线段构成的来分类.如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有3条,由两条小线段构成的线段有2条,由三条小线段构成的线段有1条.数线段时线段的条数与图上的点存在一定的关系.例题中共有4个点,线段的条数为3+2+1=6(条). 由此,我们可以推广到一般情况:如果图中有N个点,那么线段的总条数为:(N-1)+(N-2)+(N-3)+…+3+2+1即:(1)2n n⨯-第一个图中三角形的个数是:3+2+1=6(个),第二个图中锐角的个数是:4+3+2+1=10(个)数三角形、数角的方法与数线段的的方法相似,所以计算线段总条数的公式,同样也适用于数三角形和数(锐)角.2、数长方形的个数.以BC为宽的长方形有5+4+3+2+1=15(个)(CD上有一条线段就有一个以BC为宽的长方形);同理:以AB、AC为宽的长方形有15个.共有长方形15+15+15=45(个).注意到在AC上有几条线段就有几个不同的宽: (5+4+3+2+1)×(2+1)=45(个)由此,我们可以推广到一般情况:当一边上含有n条基本线段,另一边上含有m条基本线段时,长方形的总数为(n+…+3+2+1)×(m+…+3+2+1).3、数正方形的个数.图中共有正方形9×3+8×2+7×1=50(个).由此,我们可以推广到一般情况:如果一个长方形的一条边被分成n等份,另一条边被分成m等份,且长和宽上的每一份相等,那么这个长方形中正方形的总数为:nm+(n-1)(m-1)+(n-2)(m-2)+…+(n-m+1)×1(其中n≥m).如果长方形的两条边都相等,那么就成了一个正方形,如下图:图中共有正方形4×4+3×3+2×2+1=30(个)由此我们可以得出:如果一个大正方形的每条边都被分成n等份,那么这个大正方形中所有正方形的总数为:n2+(n一1)2+(n一2)2+…+32+22+12.在数学竞赛和小升初的考试中,会出现一些比较复杂的图形,这就需要我们根据图形的构成方法和自身特点,选择适当的方法.常见的计数图形的方法有多退少补法、分类法、列表法、转化法等.遇到一些复杂的图形计数问题时,常常需要把几种方法结合起来使用,下面我们就通过一些例题来进行分析.【例1】数一数图中有多少条线段?仔细观察图2—1—2,不难发现其中一共有50个点,运用上面的公式易求线段的总条数.【分析】图中共有线段:49+48+47+46+…+3+2+1=50×(50—1)÷2=1225(条)说明:如果要计数的线段是共线线段,只要数出其中共有几个点,就可以直接运用上面的公式求出线段的总条数.【巩固】数一数,右图中共有线段_______条.【分析】AG,AB中共有线段: (3+2+1)×2=12(条)EF,CD,BC,AC中共有线段(2+1)×4=12(条)所以,总共有线段: 12+12=24(条).【例2】分别数出图中每个图形中三角形的总个数?【分析】仔细观察图中的两个图形可以发现:每个三角形中,有两条边是由A点引出的,而第三条边是BC或HI上的线段,BC或HI上线段的条数就与三角形的个数一一对应了.于是数三角形个数的问题可以转化为数线段条数的问题.先看图(1),根据数线段的规律可知,BC边上共有(5+4+3+2+1)=15条线段,也就是说图(1)中有15个三角形.再看图(2),它仅仅是在图(1)的基础上又画了一条割线所构成的;同样的道理,HI边上也有15条线段,因此以HI边上的线段为第三边的三角形也有15个,所以图(2)中共有(15×2)=30个三角形.解:(1)5+4+3+2+1=15(个)(2)(5+4+3+2+1)×2=30(个)【例3】(北京市第七届“迎春杯”决赛试题)下图中共有____个正方形.【分析】这个图可以先看成是3个没有重叠的4×4正方形来数,然后再把重叠的部分2个2×2正方形的个数减掉.这就利用了多退少补的方法.每个4×4正方形中有:边长为1的正方形42个;边长为2的正方形32个;边长为3的正方形22个;边长为4的正方形12个;总共有42+32+22+12=30(个)正方形.现有3个4 × 4的正方形,它们重叠部分是2个2 ×2的正方形.因此,图中正方形的个数是30×3—5×2=80(个)【例4】(南京市第三届“兴趣杯”少年数学邀请赛试题)数一数,右图中三角形共有______个.【分析】利用对称性,分情况计算.类似于△ABH的三角形共有6个;类似于△AGH的三角形共有6个;类似于△ABJ的三角形共有12个;类似于△ABC的三角形共有6个;类似于△AEC的三角形共有2个.于是,图中共有三角形6+6+12+6+2=32(个).【例5】(第二届“华数杯”决赛试题)图中有多少个平行四边形?【分析】这个题要用分类法来计数更合适,不妨把图1转变为图2来讨论.仔细观察和分析图2可以从以下两个方面来对平行四边形分类:(1)平行四边形的方向,图中阴影部分图形代表三种基本平行四边形,它们组成的平行四边形分别以A、B、C类表示.(2)平行四边形所含基本平行四边形的个数.下面我们列表统计如下:图中平行四边形的个数为:(6+6+2+1)×2+(5+4)=39(个).说明:在用分类法计数图形时,如何合理地选择分类的标准是非常重要的;恰当地结合列表法来统计,可以化繁为简,一目了然.1、关于排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≤n)元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,我们把它记做mnp(m≤n),m(1)(2) (1)mnp n n n n m=---+14444244443共个数.其中!(1) (1)nnP n n n==⨯-⨯⨯2、关于组合一般地,从n个不同元素中取出m个(m≤n)元素组成一组不计较组内各元素的次序,叫做从n个不同元素中取出m个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n个不同元素中取出m个元素(m≤n)的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数.记作(1) (1)!mmnn n n mCm⨯-⨯⨯-+=64444744448个数这就是组合数公式.【例6】(1)有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人站成一排)【分析】这是个排列问题.由于4人中必须有一个人拍照,所以,每张照片只能有3人,可以看成有3个位置由这3人来站.由于要选一人拍照,也就是要从四个人中选3人照相,所以,问题就转化成从四个人中选3人,排在3个位置中的排列问题.要计算的是有多少种排法.由排列数公式,共可能有:种不同的拍照情况.【巩固】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?【分析】先排独唱节目,四个节目随意排,有44P=24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应23P=6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.(2)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中火车有4班,汽车有3班,轮船有2班.问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?【分析】这是组合问题.一天中乘坐火车有4种走法,乘坐汽车有3种走法,乘坐轮船有2种走法,所以一天中从甲地到乙地共有:4+3+2=9(种)不同走法.【例7】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第1阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第3阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1到4名的名次.问:整个赛程一共需要进行多少场比赛?C=15场,共8个小组,有【分析】第l阶段中,每个小组内部的6个人每2人要赛一场,组内赛26C=6场,共4个小组,15×8=120场;第2阶段中,每个小组内部4人中每2人赛一场,组内赛24有6×4=24场;第3阶段赛2+2=4场.根据加法原理,整个赛程一共有120+24+4=148场比赛.【例8】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?C=20种选法.由【分析】先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36乘法原理,共有8×7×20=1120种不同的选法.【例9】如下图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?【分析】从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B 的全部走法时,只要用加法原理求和即可.解:从A点先经过C到B点共有:1×3=3(种)不同的走法.从A点先经过D到B点共有:2×3=6(种)不同的走法.所以,从A点到B点共有:3+6=9(种)不同的走法.同学们对这个题目可能很陌生,为了搞清楚什么是“容斥原理”,大家先一起回答两个问题:(1) 如右图(1),两个面积都是4厘米2的正方形摆在桌面上,它们遮盖住桌面的面积是8厘米2吗?(2) 如右图(2),一个正方形每条边上有6个点,四条边上一共有24个点吗?聪明的同学马上就会发现:(1) 两个正方形的面积和是8厘米2,现在它们有一部分重叠了.因此盖住桌面的面积应当从两个正方形的面积和中减去重叠的这部分面积,所以盖住桌面的面积应少于8厘米2.(2) 四个角上的点每个点都在两条边上,因此被重复计算了,在求四条边上共有多少点时,应当减去重复计算的点,所以共有 6×4-4=20(个)点.这两个问题,在计算时,都采用了“去掉”重复的数值(面积或个数)的方法.当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉.在一些计数问题中,经常遇到有关集合元素个数的计算.我们用|A|表示有限集A 的元素个数.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成: |A ∪B|=|A|+|B|-|A ∩B|,我们称这一公式为包含与排除原理,简称容斥原理.图示如右:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A ∩B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A 、B 的并集A ∪B 的元素的个数,可分以下两步进行:第一步:分别计算集合A 、B 的元素个数,然后加起来,即先求|A|+|B|(意思是把A 、B 的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C=|A ∩B|(意思是“排除”了重复计算的元素个数).【例10】 某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人,那么语文成绩得满分的有多少人?【分析】 数学或语文至少有一科得满分的有45 - 29=16人,这16个人中数学得满分的有10人,那么数学没有得满分的有6人,这些人必定是语文得了满分,又知有3人两科均得满分,则语文得满分的一共有6+3=9人.【例11】 求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?【分析】“既不是5的倍数也不是6的倍数”的反面情况就是“是5的倍数或者是6的倍数”.记A :1~100中5的倍数,205100=÷,有20个; B :1~100中6的倍数,4166100ΛΛ=÷,有16个;B A I :1~100中5和6的公倍数,即30的倍数,10330100ΛΛ=÷,有3个.依据公式,1~100中5的倍数或6的倍数共有3331620=-+个,则既不是5的倍数也不是6的倍数的数有6733100=-个.【例12】 学而思画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的.现在知道五、六年级共有25幅画,那么其他年级的画共有多少幅?【分析】不是六年级的画中包括五年级的画,同样不是五年级的画中也包括了六年级的画,又16比15大1,说明五年级比六年级多1幅,又知两个年级共有25幅画,则五年级的画有132)125(=÷+幅,因此其他年级的画有31316=-幅.【例13】 某校五年级共有110人,参加语文、英语、数学三科活动小组,每人至少参加一组.已知参加语文小组的有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63人,只参加数学小组的有21人.那么三组都参加的有多少人?【分析】设参加语文小组的人组成集合为A ,参加英语小组的人组成集合为B ,参加数学小组的人组成集合为C.A CB 语文数学英语那么不只参加一种小组的人有:110-16-15-21=58,为|A ∩B|+|B ∩C|+|A ∩C|+|A ∩B ∩C|; 不只参加语文小组的人有:52-16=36|A ∩B|+|A ∩C|+|A ∩B ∩C|; 不只参加英语小组的人有:61-15=46|A ∩B|+|B ∩C|+|A ∩B ∩C|; 不只参加数学小组的人有:63-21=42|B ∩C|+|A ∩C|+|A ∩B ∩C|; 于是,三组都参加的人|A ∩B ∩C|有36+46+42-2×58=8人.【附1】数一数,右图中共有多少条线段?【分析】数线段要分类数:我把它分成两大类:“个人”和“集体”.“个人”:5条 ;“集体”:3+2+1=6 (条);共5个这样的集体, 所以共5×(3+2+1)+5=35(条).【附2】(第六届迎春杯决赛)用三根等长的火柴可以摆成一个等边三角形.用这样的等边三角形如图所示,拼合成一个大的等边三角形.如果这个大的等边三角形的底为20根火柴长,那么一共要多少根火柴?【分析】注意引导学生用“分层数的思路”.把大的等边三角形分为20“层”分别计算火柴的根数:最上一“层”只用了3根火柴;从上向下数第二层用了3×2=6根火柴;从上向下数第三层用了3×3=9根火柴;…… 从上向下数第20层用了3×20=60根火柴.所以,总共要用火柴:3×(1+2+3+…+20)=630(根).【附3】(北京市第六届“迎春杯”决赛)如图是中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有____种不同的放置方法.【分析】设甲方先放棋子,乙方后放棋子.那么甲方可以把棋子放在棋盘的任意位置,故甲方有10×9=90种不同的放置方法.对应甲方的第一种放法,乙方按规定必须去掉甲方棋子所在的行与列,而放置在剩下的任意位置,所以乙方有9×8=72种不同的放置方法.因此,总共有72×90=6480种不同的放置方法.【附4】有100位旅客,其中有10人既不懂英语又不懂俄语,有75人懂英语,83人懂俄语.问既懂英语又懂俄语的有多少人?【分析】法1 :在100人中懂英语或俄语的有:100-10=90(人).又因为有75人懂英语,所以只懂俄语的有:90-75=15(人).从83位懂俄语的旅客中除去只懂俄语的人,剩下的83-15=68(人)就是既懂英语又懂俄语的旅客.法 2 :学会把公式进行适当得变换,由容斥原理,得:|A∩B|=|A|+|B|-|A∪B|=75+83-90=68(人).【附5】三年级科技活动组共有63人.在一次剪贴汽车模型和装配飞机模型的定时科技活动比赛中,老师到时清点发现:剪贴好一辆汽车模型的同学有42人,装配好一架飞机模型的同学有34人.每个同学都至少完成了一项活动.问:同时完成这两项活动的同学有多少人?【分析】因42+34=76,76>63,所以必有人同时完成了这两项活动.由于每个同学都至少完成了一项活动,根据包含排除法知,42+34-(完成了两项活动的人数)=全组人数,即76-(完成了两项活动的人数)=63.由减法运算法则知,完成两项活动的人数为76-63=13(人).也可画图分析.1. 如右图,数数有多少个三角形?【分析】法1:常规方法(分类数),第一类(含1个基本三角形,最小的):1+3+5=9(个);第二类(含4个基本三角形,次大的):3个;第三类(含9个基本三角形,最大的):1个.法2:我们可以换个角度分层,将右图从上到下分成最基本的3层,第一层有1个小三角,第一层有3个小三角,第一层有5个小三角,第一层+第二层有1个较大的三角形,第二层+第三层有2个较大的三角形,第一层+第二层+第三层有最大的一个三角形,所以共:1+3+5+1+2+1=13(个)三角形.在数的过程中注意可将三角形分成尖朝上和朝下两类.2. (第十一届迎春杯决赛)如图是由18个大小相同的小正三角形拼成的四边形.其中某些相邻的小正三角形可以拼成较大的正三角形若干个.那么图中包含“*”号的大、小正三角形一共有多少个?【分析】分三类进行计数(设小正三角形边长为1)包含*的三角形中,边长为1的正三角形有1个;边长为2的正三角形有4个;边长为3的正三角形有1个;因此,图中包含“*”的所有大、小正三角形一共有:1+4+1=6(个).3. 从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?C=20种选法.由【分析】先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36乘法原理,共有8×7×20=1120种不同的选法.4. 某班要在42名同学中选出3名同学去参加夏令营,问共有多少种选法?如果在42人中选3人站成一排,有多少种站法?分析由组合数公式,共有种不同的选法;由排列数公式,共有p=42×41×40=68880342种不同的站法.5. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?【分析】A圆表示学画画的人,B圆表示学钢琴的人,C表示既学钢琴又学画画的人,图中A圆不含阴影的部分表示只学画画的人:43-37=6,图中B圆不含阴影的部分表示只学钢琴的人:58-37=21.6. 一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?【分析】45-(26+22-12)=9(人).。
小学奥数五年级测试及答案(计数综合)
一、计数综合(一)
如果你的文档出现显示不全的问题,请调整页边距,或将图片缩小查看。
第1题
第2题
第3题
第5题
第6题
试题答案
第1题:
正确答案:B 答案解析
第2题:
正确答案:C 答案解析
第3题:
正确答案:B 答案解析
第4题:正确答案:A 答案解析
第5题:正确答案:B 答案解析
正确答案:D
答案解析
第7题:
正确答案:D
答案解析
二、计数综合(二)第1题
第2题
第4题
第5题
试题答案
第1题:
正确答案:B 答案解析
第2题:正确答案:B 答案解析
第3题:正确答案:C 答案解析
第4题:正确答案:C 答案解析
第5题:正确答案:A 答案解析。
8 小学奥数——计数问题 试题及解析
小学奥数——计数问题一.选择题(共44小题)1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.62.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.1743.由3,4,5,6排成没有重复数字的四位数,从小到大排起来,6345是第()A.16个B.17个C.18个D.19个4.从城堡到幸福岛有()种不同的走法.A.2B.3C.45.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路,那么从甲地经乙地到丙地共有多少条不同的路?()A.10B.24C.4D.66.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A.768种B.32种C.24种D.2的10次方中7.从甲地到乙地有两条不同的路可走,从乙地到丙地有4条不同的路可走,则从甲地经乙地去丙地有()条不同的路可走.A.8B.6C.4D.28.12月20日、21日、22日三天为期末考试时间,每天考一年级和二年级,三年级和四年级,五年级和六年级中的一个年级段.一共有()种考试时间安排.A.6B.9C.129.冬冬要把三个小球放入三个箱子,其中三个小球的颜色分别是红色、黄色和蓝色,而三个箱子的颜色也分别是红色、黄色和蓝色.如果这些箱子都可以空着不放球,那么有()种不同的放球方法.A.3B.6C.9D.2710.若把英语单词hello的字母顺序写错了,则可能出现的错误共有()A.119种B.36种C.59种D.48种11.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.712.一个盒子里装有标号为124的24张卡片,要从盒子里任意抽取卡片,至少要抽出()张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.1513.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.2914.红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有()排座位上坐的人数相同.A.3B.4C.5D.615.盒中有形状、大小、质料相同的红、白、黑颜色的球各10个,摸出若干个,要保证摸出的球中至少有3个球同色,摸出球的个数至多为()个.A.3B.5C.6D.716.小孟有10张飞行系精灵、15张草系精灵和20张火系精灵的卡片,她把45张卡片放在袋子里闭着眼睛向外摸卡片,那么他至少摸()张,才能保证摸出的卡片中同时有飞行系精灵和火系精灵的卡片.A.17B.26C.35D.3617.有红、黄、蓝三种颜色同样大小的球各5个混在一起,至少要摸出()个才能保证摸出2个红球...A.3B.12C.418.明明玩掷骰子游戏,掷两个骰子,要保证掷出的骰子总数至少有两次相同,他最少应掷() 次.A.7B.12C.1319.在扑克牌的红桃、黑桃、方块、梅花各 13 张,共有 52 张牌,至少从中抽出 () 张牌,才能保证其中有 2 张花色相同的牌.A.2B.3C.5 D .2620.一副扑克牌共有 54 张,至少抽出 () 张,才能保证其中必会有 4 张牌的点数相同.A.24B.42C.32D .2321.在口袋里有同样形状和大小的蓝球 8 个,黄球 14 个,白球 10 个,我们摸出 () 个球能保证其中一定有一个黄球.A.19B.23C.2522.3294 个人中,最少能找到 () 人同一天生日.A.8B.9C.10D .1823.一个袋子里有红、黄、蓝色三种球各 5 个,每次至少拿 () 个才能保证有 2 个相同颜色的球.A.4B.2C.524.袋子里有 5 个黄球、3 个白球、1 个篮球(除颜色外其他完全相同),任意摸出一个,摸到 () 的可能性大.A.黄球B.白球C.篮球25.某校有 15 人,老师让每人用 0,1,2,3 这四个数字任意写出一个没有重复数字的自然数,那么其中至少有 () 人写的数相同.A.3B.4C.5D.626.学校买来了红、黄、蓝三种颜色的球,规定每位学生最多可以借两个不同颜色的球,那么至少要有几位学生借球,就可以保证必有两位学生借的球的颜色完全一样?()A.5B.6C.7D.827.某班学生去买语文书、数学书、外语书.买书的情况是:有买一本的,二本的,也有三本的,至少要去 () 位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)A.3B.6C.828.有红、黄、蓝、绿、白五种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多., .一次至少要取几颗珠子,才能保证其中一定有三颗颜色相同?() A.3 B.11 C.15D .1629.某班有 50 个学生,他们都参加了课外兴趣小组活动内容有美术、声乐、书法,每个人可参加 1 个、2 个或 3 个兴趣小组.问班级中至少有几个学生参加的项目完全相同?()A.6B.7C.8D.930.质料、型号相同的红、白、黑色袜子各 5 双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成 2 双(只要两只袜子同色,即为一双),至多摸出 () 只. A.4 B.5 C.6D.731.从1 9 这 9 张数字卡片中至少取出 () 张,就能保证一定有两张卡片上的数字之和是偶数.A.2B.3C.432.某班一次数学测验,10 道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有 7 道题所有人都做对了,有 3 道题所有人都只做对了其中 1 道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有 () 人.A.49B.41C.37D .2833.18 个小朋友中, () 小朋友在一个月出生.A.恰好有 2 个B.至少有 2 个C.有 7 个D.最多有 7 个34.袋子里有 18 个大小相同的彩色球,其中红球有 3 个,黄球有 5 个,绿球有 10 个.现在要一次从袋中取出若干个球,使得这若干个球中至少有 5 个球是同色的,那么从袋中一次取出球的个数至少是 ()A.5 个B.8 个C.12 个D .13 个35.一只黑色口袋里有四种颜色的球,每种颜色的球足够多个,它们的形状,大小都相同,只是颜色不同.一次至少取出 () 个,才能保证其中至少有 5 个球的颜色相同.A.5B.9C.13D .1736.220 名学生参加百分制的考试(得分以整数计) 没有三名以上的学生得分相同 则恰有三名同学得分相同的分数最少有 () 个.A.17B.18C.19D .2037.四年级六个班举行拔河比赛,要求每班要与其他各班进行一场比赛,一共要举行 () 场比赛.(A.4B.5C.6 D .1538.四年级六个班进行篮球比赛,每两个班之间都要进行一场比赛,一共要进行() 场比赛.A.10B.15C.20 D .3039.有 40 名羽毛球运动员参加淘汰制的比赛, 即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是 () 场. A.20 B.39C.41D .8040.奥运五福娃贝贝、晶晶、欢欢、迎迎、妮妮在鸟巢奥运馆见面了,每两个福娃都会握一次手,当贝贝握了 4 次手,晶晶握了 3 次手,欢欢握了 2 次手,迎迎握了 1 次手时,妮妮握了 () 次手.A.4B.3C.2D.141.同学们进行广播操比赛,全班正好排成相等的 6 行.小红排在第二行,从头数,她站在第5 个位置,从后数她站在第 3 个位置,这个班共有 () 人.A.42B.44C.48D .5442.一只平底锅,每次只能烙 2 张鸡蛋饼,两面都要烙,烙一面均需 3 分钟,那么烙 5 张鸡蛋饼,最少需要 () 分钟. A.15B.20C.18D .3043.姐姐杀好鱼后,让弟弟帮忙烧鱼,他洗鱼 2 分钟、切鱼 2 分钟、切姜片和葱花 1 分钟、洗锅 2 分钟、将锅烧热 2 分钟、将油烧热 3 分钟、煎烧鱼 5 分钟,各工序共花了 17 分钟.聪明的小朋友,如果是你烧鱼,你最少需要多少时间呢?()A.12B.13C.14D .1544.小芳早上起床,洗脸刷牙 5 分钟,吃妈妈已经准备好的早饭 10 分钟,听广播 15 分钟,步行到学校 10 分钟.如果学校在 8: 00 开始上课,小芳最迟几时就要起床? ()A. 7: 20B. 7:30C. 7:35参考答案与试题解析一.选择题(共44小题)1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.6【解析】根据分析可得3+3=6(次)答:他最少要试6次,才能确保打开箱子.故选:D.2.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.174【解析】因为每淘汰1名选手就要有一场比赛,所以只剩最后第一名,需要淘汰512-1=511名,答:这次乒乓球比赛一共要比赛511场.故选:B.3.由3,4,5,6排成没有重复数字的四位数,从小到大排起来,6345是第()A.16个B.17个C.18个D.19个【解析】四个数字不重复的有:4⨯3⨯2⨯1=24(个)3做千位的有:3⨯2⨯1=6(个)4做千位的有:3⨯2⨯1=6(个)5做千位的有:3⨯2⨯1=6(个)6做千位的有:3⨯2⨯1=6(个)而6做千位的有(从小到大):6345,6354,6435,6453,6534,6543,6⨯3+1=19(个)答:可以组成24个没有重复数字的四位数,把它们排起来,从小到大6345是第19个数.故选:D.4.从城堡到幸福岛有()种不同的走法.A.2B.3C.4【解析】2⨯2=4(种);答:从城堡到幸运岛共有4种不同的走法.故选:C.5.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路,那么从甲地经乙地到丙地共有多少条不同的路?()A.10B.24C.4D.6【解析】根据分析可得:4⨯6=24(条)答:那么从甲地经乙地到丙地共有24条不同的路.故选:B.6.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A.768种B.32种C.24种D.2的10次方中【解析】=根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5⨯4⨯3⨯2⨯1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种.第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共有2⨯2⨯2⨯2⨯2=32种综合两步,就有24⨯32=768种.故选:A.7.从甲地到乙地有两条不同的路可走,从乙地到丙地有4条不同的路可走,则从甲地经乙地去丙地有()条不同的路可走.A.8B.6C.4D.2【解析】2⨯4=8(条).即从甲地经乙地去丙地有8条不同的路可走.故选:A.8.12月20日、21日、22日三天为期末考试时间,每天考一年级和二年级,三年级和四年级,五年级和六年级中的一个年级段.一共有()种考试时间安排.A.6B.9C.12【解析】根据分析可得,3⨯2⨯1=6(种)答:一共有6种考试时间安排.故选:A.9.冬冬要把三个小球放入三个箱子,其中三个小球的颜色分别是红色、黄色和蓝色,而三个箱子的颜色也分别是红色、黄色和蓝色.如果这些箱子都可以空着不放球,那么有()种不同的放球方法.A.3B.6C.9D.27【解析】3⨯3⨯3=27(种)答:有27种不同的放球方法.故选:D.10.若把英语单词hello的字母顺序写错了,则可能出现的错误共有()A.119种B.36种C.59种D.48种【解析】5⨯4⨯3⨯2⨯1=120有两个l所以120÷2=60原来有一种正确的,所以60-1=59;故选:C.11.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.7【解析】从1至10这10个整数中,和等于10的有:(1,9)、(2、8);(3、7);(4、6);考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,即6+1=7(个),答:至少取7个数,才能保证其中有两个数的和等于10.故选:D.12.一个盒子里装有标号为1-24的24张卡片,要从盒子里任意抽取卡片,至少要抽出()张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.15【解析】将这24张卡片分成这样的两组:第一组:1、2、3、4、9、10、11、12、17、18、19、20;第二组:5、6、7、8、13、14、15、16、21、22、23、24,只要在第一组中加入一个第二组的数,或在第二组中加入第一组的一个数,都能保证有两张卡片的标号之差为4.13.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.29【解析】根据题干分析可得,可以这样取牌:大小王、1-6全取、1个7(或大小王、1个7、8-13全取)总共27张牌,再随便取一张牌就必定有2张牌的和等于14了.所以要满足题目至少要取27+1=28张.故选:C.14.红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有()排座位上坐的人数相同.A.3B.4C.5D.6【解析】650÷24≈27,也就是说平均每排坐大约27人;我们这样安排,24252627282930,重复三遍这样坐,坐的人数:(24+25+26+27+28+29+30)⨯3=567(人),还剩下:680-567=83(人),分别是26、28、29.这样相同的人数至少4排.答:至少有4排坐的人数同样多;故选:B.15.盒中有形状、大小、质料相同的红、白、黑颜色的球各10个,摸出若干个,要保证摸出的球中至少有3个球同色,摸出球的个数至多为()个.A.3B.5C.6D.7【解析】因为一共有3种颜色的球,所以最差的情况是,摸出6个球,红、白、黑颜色的球各2个,只要再摸出1个球,就能保证摸出的球中至少有3个球同色,所以摸出球的个数至多为:6+1=7(个)答:要保证摸出的球中至少有3个球同色,摸出球的个数至多为7个.故选:D.16.小孟有10张飞行系精灵、15张草系精灵和20张火系精灵的卡片,她把45张卡片放在袋子里闭着眼睛向外摸卡片,那么他至少摸()张,才能保证摸出的卡片中同时有飞行系精灵和火系精灵的卡片.A.17B.26C.35D.36【解析】根据题干分析可得:15+20+1=36(张)答:至少需要取36张.故选:D.17.有红、黄、蓝三种颜色同样大小的球各5个混在一起,至少要摸出()个才能保证摸出2个红球.A.3B.12C.4【解析】5+5+2=12(个)答:至少要摸出12个才能保证摸出2个红球.故选:B.18.明明玩掷骰子游戏,掷两个骰子,要保证掷出的骰子总数至少有两次相同,他最少应掷( )次.B.12C.13A.7【解析】11+1=12(次),答:至少要掷12次.故选:B.19.在扑克牌的红桃、黑桃、方块、梅花各13张,共有52张牌,至少从中抽出()张牌,才能保证其中有2张花色相同的牌.A.2B.3C.5D.26【解析】4+1=5(张);故选:C.20.一副扑克牌共有54张,至少抽出()张,才能保证其中必会有4张牌的点数相同.A.24B.42C.32D.23【解析】根据点数特点可以分别看做13个抽屉,分别是:1、2、3、⋯K,考虑最差情况:先摸出2张王牌,然后每个抽屉又都摸出了3张牌,共摸出3⨯13+2=41张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有4张牌在同一个抽屉,即4张牌点数相同,即:41+1=42(张),答:至少抽出42张,才能保证其中必会有4张牌的点数相同.故选:B.21.在口袋里有同样形状和大小的蓝球8个,黄球14个,白球10个,我们摸出()个球能保证其中一定有一个黄球.A.19B.23C.25【解析】8+10+1=19(个)答:我们摸出19个球能保证其中一定有一个黄球.故选:A.22.3294个人中,最少能找到()人同一天生日.A.8B.9C.10D.18【解析】3294÷366=9(人)答:3294个人中,最少能找到9人同一天生日.故选:B.23.一个袋子里有红、黄、蓝色三种球各5个,每次至少拿()个才能保证有2个相同颜色的球.A.4B.2C.5【解析】根据分析可得,.3 + 1 =4 (个 ) ;答:每次至少拿 4 个才能保证有 2 个相同颜色的球.故选: A .24.袋子里有 5 个黄球、3 个白球、1 个篮球(除颜色外其他完全相同),任意摸出一个,摸到 () 的可能性大.A.黄球【解析】 5 + 3 + 1 = 9B.白球C.篮球摸出黄球的可能性是: 5 ÷ 9 = 59摸出白球的可能性是 3 ÷ 9 =摸出篮球的可能性是1 ÷ 9 = 391 9答:摸出黄球的可能性最大.故选: A .25.某校有 15 人,老师让每人用 0,1,2,3 这四个数字任意写出一个没有重复数字的自然数,那么其中至少有 () 人写的数相同.A.3B.4C.5D.6【解析】把 0,1,2,3 这四个数字看作 4 个抽屉,把 15 名学生看作“物体个数”,15 ÷ 4 = 3⋯3 (人 )3 + 1 =4 (人 )答:至少有 4 个学生写的数相同.故选: B .26.学校买来了红、黄、蓝三种颜色的球,规定每位学生最多可以借两个不同颜色的球,那么至少要有几位学生借球,就可以保证必有两位学生借的球的颜色完全一样?()A.5B.6C.7D.8【解析】红、黄、蓝共有红蓝、红黄、蓝黄三种组合.3 + 3 + 1 = 7 (个 )答:那么至少要有 7 位学生借球,就可以保证必有两位学生借的球的颜色完全一致 故选: C .27.某班学生去买语文书、数学书、外语书.买书的情况是:有买一本的,二本的,也有三本...的,至少要去 () 位学生才能保证一定有两位同学买到相同的书(每种书最多买一本) A.3B.6C.8【解析】根据题干分析可得,买书情况一共有3 + 3 + 1 = 7 (种 ) ,把这 7 种情况看成 7 个抽屉,要保证有两位买书的类型相同,因此买书的人数要大于 7,7 + 1 = 8 (人 )答:至少要去 8 位学生才能保证一定有两位同学买到相同的书.故选: C .28.有红、黄、蓝、绿、白五种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多一次至少要取几颗珠子,才能保证其中一定有三颗颜色相同?() A.3 B.11 C.15D .16【解析】 2 ⨯ 5 + 1 = 11 (颗 ) ,答:一次至少要取 11 颗珠子,才能保证其中一定有三颗颜色相同.故选: B .29.某班有 50 个学生,他们都参加了课外兴趣小组活动内容有美术、声乐、书法,每个人可参加 1 个、2 个或 3 个兴趣小组.问班级中至少有几个学生参加的项目完全相同?()A.6B.7C.8D.9【解析】根据题干,只参加一个学习班的有 3 种情况,参加两个学习班的有朗读与音乐、朗读与书法,书法与音乐 3 种情况,参加 3 个兴趣小组的有 1 种情况,共有 3 + 3 + 1 = 7 种情况,将这 7 种情况当做 7 个抽屉,50 ÷ 7 = 7 名 ⋯1 名学生,7 + 1 = 8 (名 ) ,答:班级中至少有 8 个学生参加的项目完全相同.故选: C .30.质料、型号相同的红、白、黑色袜子各 5 双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成 2 双(只要两只袜子同色,即为一双),至多摸出 () 只. A.4 B.5 C.6D.7【解析】因为一共有 3 种颜色的袜子,所以 4 只袜子必有 1 双,剩下 2 只不同色的袜子,最差的情况是,再摸出一只袜子,和剩下的 2 只袜子的颜色都不同,( 只要再摸出一只袜子,一定可以配成 1 双,所以再增加 2 只袜子,才可以配成 1 双,所以要能配成 2 双(只要两只袜子同色,即为一双),至多摸出:4 + 2 = 6 (只 )答:要能配成 2 双(只要两只袜子同色,即为一双),至多摸出 6 只.故选: C .31.从1 - 9 这 9 张数字卡片中至少取出 () 张,就能保证一定有两张卡片上的数字之和是偶数.A.2B.3C.4【解析】在1 - 9 中,奇数有 1、3、5、7、9,偶数有 2、4、6、8,因为奇数 + 奇数 = 偶数,偶数 + 偶数 = 偶数,奇数 + 偶数 = 奇数,从最极端情况考虑:假设抽出了 2 张,一张奇数,一张偶数,这样再取出一张,一定保证有两张卡片上的数字之和是偶数,所以取出 3 张即可保证;故选: B .32.某班一次数学测验,10 道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有 7 道题所有人都做对了,有 3 道题所有人都只做对了其中 1 道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有 () 人.A.49B.41C.37D .28【解析】 1)在 3 道题中,每道都有 4 个选项,其中有且仅有 1 个选项是正确的,只选对其中一道,这样的选项组合情况为:①第一道选对,第二、三道全选错的情况数位1⨯ 3 ⨯ 3 = 9 .②第二道选对,第一、三道全选错的情况数为3 ⨯1⨯ 3 = 9 .③第三道选对,第一、二道全选错的情况数为3 ⨯ 3 ⨯1 = 9总计 9 + 9 + 9 = 27(2)将这 27 种情况看做是 27 个抽屉,学生看做是放到抽屉的物体,至少有 1 抽屉放了 2个物体.根据抽屉原理二得:物体数 = 27 ⨯ (2 - 1) + 1 = 28 .所以参加这次测验的同学至少有28 人.故选: D ., .33.18 个小朋友中, () 小朋友在一个月出生.A.恰好有 2 个B.至少有 2 个C.有 7 个D.最多有 7 个【解析】18 ÷ 12 = 1⋯6 ,1 + 1 =2 (个 ) ,答:18 个小朋友中,至少有 2 个小朋友在一个月出生.故选: B .34.袋子里有 18 个大小相同的彩色球,其中红球有 3 个,黄球有 5 个,绿球有 10 个.现在要一次从袋中取出若干个球,使得这若干个球中至少有 5 个球是同色的,那么从袋中一次取出球的个数至少是 ()A.5 个B.8 个C.12 个D .13 个【解析】根据题干分析可得: 3 + 4 + 4 + 1 = 12 (个 ) ,答:从袋中一次取出球的个数至少是 12 个;故选: C .35.一只黑色口袋里有四种颜色的球,每种颜色的球足够多个,它们的形状,大小都相同,只是颜色不同.一次至少取出 () 个,才能保证其中至少有 5 个球的颜色相同.A.5B.9C.13D .17【解析】根据分析可得:4 ⨯ 4 + 1 = 17 (个 ) ;答:一次至少取出 17 个,才能保证其中至少有 5 个球的颜色相同.故选: D .36.220 名学生参加百分制的考试(得分以整数计) 没有三名以上的学生得分相同 则恰有三名同学得分相同的分数最少有 () 个.A.17B.18C.19D .20【解析】按照百分制计分,那么得分情况有 101 种:即 0 分,1 分,2 分,3 分, ⋯100 分;把这 101 种得分情况看做 101 个抽屉,因为 220 ÷ 101 = 2 (人 )⋯18 (人 ) ,所以没有三名以上的学生得分相同,所以恰有三名同学得分相同的分数最少有 18 个;故选: B .37.四年级六个班举行拔河比赛,要求每班要与其他各班进行一场比赛,一共要举行 () 场比赛.A.4B.5C.6D .15(【解析】 5 ⨯ 6 ÷ 2 = 15 (场 ) ;故选: D .38.四年级六个班进行篮球比赛,每两个班之间都要进行一场比赛,一共要进行() 场比赛.A.10B.15C.20 D .30【解析】 5 ⨯ 6 ÷ 2 = 15 (场 ) ;答:一共要举行 15 场比赛.故选: B .39.有 40 名羽毛球运动员参加淘汰制的比赛, 即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是 () 场. A.20 B.39C.41D .80【解析】 40 - 1 = 39 (场 )故选: B .40.奥运五福娃贝贝、晶晶、欢欢、迎迎、妮妮在鸟巢奥运馆见面了,每两个福娃都会握一次手,当贝贝握了 4 次手,晶晶握了 3 次手,欢欢握了 2 次手,迎迎握了 1 次手时,妮妮握了 () 次手.A.4B.3C.2D.1【解析】每人都要和另外 4 个人握一次手,已知 a 握了 4 次,则 a 与 b 、 c 、 d 、 e 各握了一次; b 握了 3 次,由于此时 d 只握了 1 次,是和 a 握的,则 b 与 a 、 c 、 e 握的,此时 c 已握了 2 次,即和 a ,b 握的;所以 e 此时也握了两次,即和 a 、 b 握的.故选: C .41.同学们进行广播操比赛,全班正好排成相等的 6 行.小红排在第二行,从头数,她站在第5 个位置,从后数她站在第 3 个位置,这个班共有 () 人.A.42B.44C.48D .54【解析】 5 - 1 + 3 = 7 (人 )7 ⨯ 6 = 42 (人 )故选: A .42.一只平底锅,每次只能烙 2 张鸡蛋饼,两面都要烙,烙一面均需 3 分钟,那么烙 5 张鸡蛋饼,最少需要()分钟.A.15B.20C.18D.30【解析】要使煎5张饼的时间最短,应首先煎2张饼,然后再煎3张饼.煎前2张饼需要的时间:2⨯3=6(分钟);煎最后3张饼时,应先往锅中放入两张饼,先煎熟一面后拿出一张,再放入另一张,当再煎熟一面时把熟的一张拿出来,再放入早拿出的那张饼,使两张同时熟,所以一共需要3⨯3=9分钟;6+9=15(分钟)故选:A.43.姐姐杀好鱼后,让弟弟帮忙烧鱼,他洗鱼2分钟、切鱼2分钟、切姜片和葱花1分钟、洗锅2分钟、将锅烧热2分钟、将油烧热3分钟、煎烧鱼5分钟,各工序共花了17分钟.聪明的小朋友,如果是你烧鱼,你最少需要多少时间呢?()A.12B.13C.14D.15【解析】根据题干分析可得:先洗锅,需要2分钟→洗鱼需要2分钟(同时烧热锅节约2分钟)→切鱼需要2分钟、切葱花、姜片需要1分钟(同时烧热油节约3分钟)→煎鱼需要5分钟,这样花费的时间最少是2+2+1+2+5=12(分钟),答:最少需要12分钟.故选:A.44.小芳早上起床,洗脸刷牙5分钟,吃妈妈已经准备好的早饭10分钟,听广播15分钟,步行到学校10分钟.如果学校在8:00开始上课,小芳最迟几时就要起床?()A.7:20B.7:30C.7:35【解析】5+10+10=25(分钟)8时-25分=7时35分即小芳起床最晚是7时35分.故选:C.。
小学奥数:计数之对应法.专项练习及答案解析
前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式. 模块一、图形中的对应关系【例1】在8×8的方格棋盘中,取出一个由三个小方格组成的“L ”形(如图),一共有多少种不同的方法?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答【解析】 注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形 每一种取法,有一个点与之对应,这就是图中的A 点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L ”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数 由于在 8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】196【例 2】 在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答例题精讲教学目标7-6-3计数之对应法【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形,所以棋盘上横、竖共有13⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色⨯长方形68296小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为÷=个.96248【答案】48【巩固】用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【答案】80种【例 3】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C =个三角形. 【答案】56个三角形【例 4】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD 上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数.【考点】计数之图形中的对应关系 【难度】4星 【题型】解答C D BA【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【答案】756个交点模块二、数字问题中的对应关系【例 5】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个. 【答案】210个【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【答案】120种【例 6】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1.可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=L 14243个相乘种.【答案】19982种【例 7】 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【关键词】小学数学竞赛【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.【答案】12504个模块三、对应与阶梯型标数法【例 8】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB 424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【答案】604800种【例 9】 学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【关键词】学而思杯,5年级,第7题【解析】 方法一:如下所示,共有42种不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----, 12345----。
小学奥数 计数之对应法 精选练习例题 含答案解析(附知识点拨及考点)
前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.模块一、图形中的对应关系【例 1】 在8×8的方格棋盘中,取出一个由三个小方格组成的“L ”形(如图),一共有多少种不同的方法? 【考点】计数之图形中的对应关系 【难度】3星 【题型】解答【解析】 注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形 每一种取法,有一个点与之对应,这就是图中的A 点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L ”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数 由于在 8×8的棋盘上,内部有7×7=49(个)交叉点, 第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】196【例 2】 在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个? 【考点】计数之图形中的对应关系 【难度】3星 【题型】解答例题精讲教学目标7-6-3计数之对应法【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形,所以棋盘上横、竖共有13⨯长方形68296⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【答案】48【巩固】用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【答案】80种【例3】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3 856C=个三角形.【答案】56个三角形【例 4】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD 上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数. 【考点】计数之图形中的对应关系 【难度】4星 【题型】解答CD【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【答案】756个交点模块二、数字问题中的对应关系【例 5】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【答案】210个【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【答案】120种【例 6】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1. 可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【答案】19982种【例 7】 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个? 【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答 【关键词】小学数学竞赛【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.【答案】12504个模块三、对应与阶梯型标数法【例 8】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱? 【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【答案】604800种【例 9】 学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法. 【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答 【关键词】学而思杯,5年级,第7题【解析】 方法一:如下所示,共有42种不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----, 12345----。
奥数计数问题及答案解析
奥数计数问题及答案解析奥数对学生们的脑力锻炼有着一定的作用,快来做做奥数题来锻炼自己吧!下面是为大家收集到的奥数计数问题及答案,供大家参考。
题型:计数问题难度:如果一个大于9的整数,其每个数位上的数字都比它右边数位上的数字小,那么我们称它为"迎春数".那么,小于xx的"迎春数"共有个。
【答案解析】这是一道组合计数问题.方法一:枚举法――按位数分类计算.一、两位数中,"迎春数"个数(1)十位数字是1,这样的"迎春数"有12,13,…,19,共8个;(2)十位数字是2,这样的"迎春数"有23,…,29,共7个;(3)十位数字是3,这样的"迎春数"有34,…,39,共6个;(4)十位数字是4,这样的"迎春数"有45,…,49,共5个;(5)十位数字是5,这样的"迎春数"有56,…,59,共4个;(6)十位数字是6,这样的"迎春数"有67,68,69,共3个;(7)十位数字是7,这样的"迎春数"有78,79,共2个;(8)十位数字是8,这样的"迎春数"只有89这1个;(9)没有十位数字是9的两位的"迎春数";所以两位数中,"迎春数"共有36个.二、三位数中,"迎春数"个数(1)百位数字是1,这样的"迎春数"有123-129,134-139,…,189,共28个;(2)百位数字是2,这样的"迎春数"有234-239,…,289,共21个;(3)百位数字是3,这样的"迎春数"有345-349,…,389,共15个;(4)百位数字是4,这样的"迎春数"有456-459,…,489,共10个;(5)百位数字是5,这样的"迎春数"有567-569,…,589,共6个;(6)百位数字是6,这样的"迎春数"有678,679,689,共3个;(7)百位数字是7,这样的"迎春数"只有789,这1个;(8)没有百位数字是8,9的三位的"迎春数";所以三位数中,"迎春数"共有84个.三、1000-1999的自然数中,"迎春数"个数(1)前两位数字是12,这样的"迎春数"有1234-1239,…,1289,共21个(2)前两位数字是13,这样的"迎春数"有1345-1349,…,1389,共15个;(3)前两位数字是14,这样的"迎春数"有1456-1459,…,1489,共10个;(4)前两位数字是15,这样的"迎春数"有1567-1569,…,1589,共6个;(5)前两位数字是16,这样的"迎春数"有1678,1679,1689,共3个;(6)前两位数字是17,这样的"迎春数"只有1789这1个;(7)没有前两位数字是18,19的四位的"迎春数";所以四位数中,"迎春数"共有56个.四、2000-xx的自然数中,没有"迎春数"所以小于xx的自然数中,"迎春数"共有36+84+56=176个.方法二:利用组合原理?小于xx的"迎春数",只可能是两位数、三位数和1000多的数.计算两位"迎春数"的个数,它就等于从1-9这9个数字中任意取出2个不同的数字,每一种取法对应于一个"迎春数",即有多少种取法就有多少个"迎春数".显然不同的取法有9×8÷2=36中,所以两位的"迎春数"共有36个.同样计算三位数和1000多的数中"迎春数"的个数,它们分别有9×8×7÷3÷2÷1=84个和8×7×6÷3÷2÷1=56个.所以小于xx的自然数中,"迎春数"共有36+84+56=176个。
小学奥数计数之标数法经典例题讲解【三篇】
小学奥数计数之标数法经典例题讲解【三篇】
解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”
这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
明确了行
走路径的方向,就可使用标数法实行计算。
如图所示,小蜜蜂从A出发到B处共有89种不同的回家方法。
【第二篇】
例1.按图中箭头所指的方向行走,从A到I共有多少条不同的路线?
解答:
第1步:在起点A处标1。
再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。
第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点
C处标1+1=2。
同理重复点F,点D,点E,点G,点H,点I
【第三篇】
分析:既然要走最短路线,自然是不能回头走,所以从A地到B地
的过程中只能向右或向下走.
我们首先来确认一件事,如下图
从A地到P点有m种走法,到Q点有n种走法,那么从A地到B地有多少种走法呢?
就是用加法原理,一共有m+n种走法.
这个问题明白了之后,我们就能够来解决这道例题了:
首先因为只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不能够走回头路).
我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法.。
小学四年级奥数计数问题及解析
小学四年级奥数计数问题及解析奥数的学习并没有我们想象的那么难,只要用心我们依旧能够把奥数学习好的。
我们一起来看一下这篇小学四年级奥数计数问题吧。
假如一个大于9的整数,其每个数位上的数字都比它右边数位上的数字小,那么我们称它为"迎春数".那么,小于2021的"迎春数"共有个。
【答案解析】这是一道组合计数问题.方法一:枚举法――按位数分类运算.一、两位数中,"迎春数"个数(1)十位数字是1,如此的"迎春数"有12,13,…,19,共8个;(2)十位数字是2,如此的"迎春数"有23,…,29,共7个;(3)十位数字是3,如此的"迎春数"有34,…,39,共6个;(4)十位数字是4,如此的"迎春数"有45,…,49,共5个;(5)十位数字是5,如此的"迎春数"有56,…,59,共4个;(6)十位数字是6,如此的"迎春数"有67,68,69,共3个;(7)十位数字是7,如此的"迎春数"有78,79,共2个;(8)十位数字是8,如此的"迎春数"只有89这1个;(9)没有十位数字是9的两位的"迎春数";因此两位数中,"迎春数"共有36个.二、三位数中,"迎春数"个数(1)百位数字是1,如此的"迎春数"有123-129,134-139,…,189,共28个;(2)百位数字是2,如此的"迎春数"有234-239,…,289,共21个;(3)百位数字是3,如此的"迎春数"有345-349,…,389,共15个;(4)百位数字是4,如此的"迎春数"有456-459,…,489,共10个;(5)百位数字是5,如此的"迎春数"有567-569,…,589,共6个;(6)百位数字是6,如此的"迎春数"有678,679,689,共3个;(7)百位数字是7,如此的"迎春数"只有789,这1个;(8)没有百位数字是8,9的三位的"迎春数";因此三位数中,"迎春数"共有84个.三、1000-2021的自然数中,"迎春数"个数(1)前两位数字是12,如此的"迎春数"有1234-1239,…,1289,共21个(2)前两位数字是13,如此的"迎春数"有1345-1349,…,1389,共15个;(3)前两位数字是14,如此的"迎春数"有1456-1459,…,1489,共10个;(4)前两位数字是15,如此的"迎春数"有1567-1569,…,1589,共6个;(5)前两位数字是16,如此的"迎春数"有1678,1679,1689,共3个;(6)前两位数字是17,如此的"迎春数"只有1789这1个;(7)没有前两位数字是18,19的四位的"迎春数";因此四位数中,"迎春数"共有56个.四、2021-2021的自然数中,没有"迎春数"因此小于2021的自然数中,"迎春数"共有36+84+56=176 个.方法二:利用组合原理?小于2021的"迎春数",只可能是两位数、三位数和1000多的数.运算两位"迎春数"的个数,它就等于从1-9这9个数字中任意取出2个不同的数字,每一种取法对应于一个"迎春数",即有多少种取法就有多少个"迎春数".明显不同的取法有9×8÷2=36 中,因此两位的"迎春数"共有36个.同样运算三位数和1000多的数中"迎春数"的个数,它们分别有9×8×7÷3÷2÷1=84个和8×7×6÷3÷2÷1=56 个.因此小于2021的自然数中,"迎春数"共有36+84+56=176 个。
小学四年级奥数计数问题及答案
小学四年级奥数计数问题及答案奥数的学习并没有我们想象的那么难,只要用心我们还是可以把奥数学习好的。
我们一起来看一下这篇小学四年级奥数计数问题吧。
如果一个大于9的整数,其每个数位上的数字都比它右边数位上的数字小,那么我们称它为"迎春数".那么,小于2021的"迎春数"共有个。
【答案解析】这是一道组合计数问题.方法一:枚举法――按位数分类计算.一、两位数中,"迎春数"个数(1)十位数字是1,这样的"迎春数"有12,13,…,19,共8个;(2)十位数字是2,这样的"迎春数"有23,…,29,共7个;(3)十位数字是3,这样的"迎春数"有34,…,39,共6个;(4)十位数字是4,这样的"迎春数"有45,…,49,共5个;(5)十位数字是5,这样的"迎春数"有56,…,59,共4个;(6)十位数字是6,这样的"迎春数"有67,68,69,共3个;(7)十位数字是7,这样的"迎春数"有78,79,共2个;(8)十位数字是8,这样的"迎春数"只有89这1个;(9)没有十位数字是9的两位的"迎春数";所以两位数中,"迎春数"共有36个.二、三位数中,"迎春数"个数(1)百位数字是1,这样的"迎春数"有123-129,134-139,…,189,共28个;(2)百位数字是2,这样的"迎春数"有234-239, (289)共21个;(3)百位数字是3,这样的"迎春数"有345-349, (389)共15个;(4)百位数字是4,这样的"迎春数"有456-459, (489)共10个;(5)百位数字是5,这样的"迎春数"有567-569, (589)共6个;(6)百位数字是6,这样的"迎春数"有678,679,689,共3个;(7)百位数字是7,这样的"迎春数"只有789,这1个;(8)没有百位数字是8,9的三位的"迎春数";所以三位数中,"迎春数"共有84个.三、1000-2021的自然数中,"迎春数"个数(1)前两位数字是12,这样的"迎春数"有1234-1239,…,1289,共21个(2)前两位数字是13,这样的"迎春数"有1345-1349,…,1389,共15个;(3)前两位数字是14,这样的"迎春数"有1456-1459,…,1489,共10个;(4)前两位数字是15,这样的"迎春数"有1567-1569,…,1589,共6个;(5)前两位数字是16,这样的"迎春数"有1678,1679,1689,共3个;(6)前两位数字是17,这样的"迎春数"只有1789这1个;(7)没有前两位数字是18,19的四位的"迎春数";所以四位数中,"迎春数"共有56个.四、2021-2021的自然数中,没有"迎春数"所以小于2021的自然数中,"迎春数"共有36+84+56=176 个. 方法二:利用组合原理?小于2021的"迎春数",只可能是两位数、三位数和1000多的数.计算两位 "迎春数"的个数,它就等于从1-9这9个数字中任意取出2个不同的数字,每一种取法对应于一个"迎春数",即有多少种取法就有多少个"迎春数".显然不同的取法有9×8÷2=36 中,所以两位的"迎春数"共有36个.同样计算三位数和1000多的数中"迎春数"的个数,它们分别有9×8×7÷3÷2÷1=84个和8×7×6÷3÷2÷1=56 个. 所以小于2021的自然数中,"迎春数"共有36+84+56=176 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数——计数问题一.选择题(共44小题)1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.62.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.1743.由3,4,5,6排成没有重复数字的四位数,从小到大排起来,6345是第()A.16个B.17个C.18个D.19个4.从城堡到幸福岛有()种不同的走法.A.2B.3C.45.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路,那么从甲地经乙地到丙地共有多少条不同的路?()A.10B.24C.4D.66.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A.768种B.32种C.24种D.2的10次方中7.从甲地到乙地有两条不同的路可走,从乙地到丙地有4条不同的路可走,则从甲地经乙地去丙地有()条不同的路可走.A.8B.6C.4D.28.12月20日、21日、22日三天为期末考试时间,每天考一年级和二年级,三年级和四年级,五年级和六年级中的一个年级段.一共有()种考试时间安排.A.6B.9C.129.冬冬要把三个小球放入三个箱子,其中三个小球的颜色分别是红色、黄色和蓝色,而三个箱子的颜色也分别是红色、黄色和蓝色.如果这些箱子都可以空着不放球,那么有()种不同的放球方法.A.3B.6C.9D.2710.若把英语单词hello的字母顺序写错了,则可能出现的错误共有()A.119种B.36种C.59种D.48种11.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.712.一个盒子里装有标号为124的24张卡片,要从盒子里任意抽取卡片,至少要抽出( )张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.1513.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.2914.红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有()排座位上坐的人数相同.A.3B.4C.5D.615.盒中有形状、大小、质料相同的红、白、黑颜色的球各10个,摸出若干个,要保证摸出的球中至少有3个球同色,摸出球的个数至多为()个.A.3B.5C.6D.716.小孟有10张飞行系精灵、15张草系精灵和20张火系精灵的卡片,她把45张卡片放在袋子里闭着眼睛向外摸卡片,那么他至少摸()张,才能保证摸出的卡片中同时有飞行系精灵和火系精灵的卡片.A.17B.26C.35D.3617.有红、黄、蓝三种颜色同样大小的球各5个混在一起,至少要摸出()个才能保证摸出2个红球.A.3B.12C.418.明明玩掷骰子游戏,掷两个骰子,要保证掷出的骰子总数至少有两次相同,他最少应掷( )次.A.7B.12C.1319.在扑克牌的红桃、黑桃、方块、梅花各13张,共有52张牌,至少从中抽出()张牌,才能保证其中有2张花色相同的牌.A.2B.3C.5D.2620.一副扑克牌共有54张,至少抽出()张,才能保证其中必会有4张牌的点数相同.A.24B.42C.32D.2321.在口袋里有同样形状和大小的蓝球8个,黄球14个,白球10个,我们摸出()个球能保证其中一定有一个黄球.A.19B.23C.2522.3294个人中,最少能找到()人同一天生日.A.8B.9C.10D.1823.一个袋子里有红、黄、蓝色三种球各5个,每次至少拿()个才能保证有2个相同颜色的球.A.4B.2C.524.袋子里有5个黄球、3个白球、1个篮球(除颜色外其他完全相同),任意摸出一个,摸到()的可能性大.A.黄球B.白球C.篮球25.某校有15人,老师让每人用0,1,2,3这四个数字任意写出一个没有重复数字的自然数,那么其中至少有()人写的数相同.A.3B.4C.5D.626.学校买来了红、黄、蓝三种颜色的球,规定每位学生最多可以借两个不同颜色的球,那么至少要有几位学生借球,就可以保证必有两位学生借的球的颜色完全一样?()A.5B.6C.7D.827.某班学生去买语文书、数学书、外语书.买书的情况是:有买一本的,二本的,也有三本的,至少要去()位学生才能保证一定有两位同学买到相同的书(每种书最多买一本).A.3B.6C.828.有红、黄、蓝、绿、白五种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有三颗颜色相同?()A.3B.11C.15D.1629.某班有50个学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可参加1个、2个或3个兴趣小组.问班级中至少有几个学生参加的项目完全相同?()A.6B.7C.8D.930.质料、型号相同的红、白、黑色袜子各5双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成2双(只要两只袜子同色,即为一双),至多摸出()只.A.4B.5C.6D.731.从19这9张数字卡片中至少取出()张,就能保证一定有两张卡片上的数字之和是偶数.A.2B.3C.432.某班一次数学测验,10道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有7道题所有人都做对了,有3道题所有人都只做对了其中1道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有()人.A.49B.41C.37D.2833.18个小朋友中,()小朋友在一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个34.袋子里有18个大小相同的彩色球,其中红球有3个,黄球有5个,绿球有10个.现在要一次从袋中取出若干个球,使得这若干个球中至少有5个球是同色的,那么从袋中一次取出球的个数至少是()A.5个B.8个C.12个D.13个35.一只黑色口袋里有四种颜色的球,每种颜色的球足够多个,它们的形状,大小都相同,只是颜色不同.一次至少取出()个,才能保证其中至少有5个球的颜色相同.A.5B.9C.13D.1736.220名学生参加百分制的考试(得分以整数计),没有三名以上的学生得分相同.则恰有三名同学得分相同的分数最少有()个.A.17B.18C.19D.2037.四年级六个班举行拔河比赛,要求每班要与其他各班进行一场比赛,一共要举行()场比赛.A.4B.5C.6D.1538.四年级六个班进行篮球比赛,每两个班之间都要进行一场比赛,一共要进行()场比赛.A.10B.15C.20D.3039.有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场.A.20B.39C.41D.8040.奥运五福娃贝贝、晶晶、欢欢、迎迎、妮妮在鸟巢奥运馆见面了,每两个福娃都会握一次手,当贝贝握了4次手,晶晶握了3次手,欢欢握了2次手,迎迎握了1次手时,妮妮握了()次手.A.4B.3C.2D.141.同学们进行广播操比赛,全班正好排成相等的6行.小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人.A.42B.44C.48D.5442.一只平底锅,每次只能烙2张鸡蛋饼,两面都要烙,烙一面均需3分钟,那么烙5张鸡蛋饼,最少需要()分钟.A.15B.20C.18D.3043.姐姐杀好鱼后,让弟弟帮忙烧鱼,他洗鱼2分钟、切鱼2分钟、切姜片和葱花1分钟、洗锅2分钟、将锅烧热2分钟、将油烧热3分钟、煎烧鱼5分钟,各工序共花了17分钟.聪明的小朋友,如果是你烧鱼,你最少需要多少时间呢?()A.12B.13C.14D.1544.小芳早上起床,洗脸刷牙5分钟,吃妈妈已经准备好的早饭10分钟,听广播15分钟,步行到学校10分钟.如果学校在8:00开始上课,小芳最迟几时就要起床?()A.7:20B.7:30C.7:35参考答案与试题解析一.选择题(共44小题)1.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行,小明忘记了密码,他最少要试()次,才能确保打开箱子.A.9B.8C.7D.6【解析】根据分析可得336+=(次)答:他最少要试6次,才能确保打开箱子.故选:D.2.一次乒乓球比赛,共有512名乒乓球运动员参加比赛.比赛采用淘汰制赛法,两个人赛一场,失败者被淘汰,将不再参加比赛;获胜者进入下轮比赛,如此进行下去,直到决赛出第一名为止,这次乒乓球比赛一共要比赛()场.A.1024B.511C.256D.174【解析】因为每淘汰1名选手就要有一场比赛,所以只剩最后第一名,需要淘汰5121511-=名,答:这次乒乓球比赛一共要比赛511场.故选:B.3.由3,4,5,6排成没有重复数字的四位数,从小到大排起来,6345是第()A.16个B.17个C.18个D.19个【解析】四个数字不重复的有:432124⨯⨯⨯=(个)3做千位的有:3216⨯⨯=(个)4做千位的有:3216⨯⨯=(个)5做千位的有:3216⨯⨯=(个)6做千位的有:3216⨯⨯=(个)而6做千位的有(从小到大):6345,6354,6435,6453,6534,6543,⨯+=(个)63119答:可以组成24个没有重复数字的四位数,把它们排起来,从小到大6345是第19个数.故选:D.4.从城堡到幸福岛有()种不同的走法.A.2B.3C.4【解析】224⨯=(种);答:从城堡到幸运岛共有4种不同的走法.故选:C.5.从甲地到乙地有4条不同的路,从乙地到丙地有6条不同的路,那么从甲地经乙地到丙地共有多少条不同的路?()A.10B.24C.4D.6【解析】根据分析可得:⨯=(条)4624答:那么从甲地经乙地到丙地共有24条不同的路.故选:B.6.有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有()A.768种B.32种C.24种D.2的10次方中【解析】=根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有54321120⨯⨯⨯⨯=种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120524÷=种.第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共有⨯⨯⨯⨯=种2222232综合两步,就有2432768⨯=种.故选:A.7.从甲地到乙地有两条不同的路可走,从乙地到丙地有4条不同的路可走,则从甲地经乙地去丙地有()条不同的路可走.A.8B.6C.4D.2【解析】248⨯=(条).即从甲地经乙地去丙地有8条不同的路可走.故选:A.8.12月20日、21日、22日三天为期末考试时间,每天考一年级和二年级,三年级和四年级,五年级和六年级中的一个年级段.一共有()种考试时间安排.A.6B.9C.12【解析】根据分析可得,⨯⨯=(种)3216答:一共有6种考试时间安排.故选:A.9.冬冬要把三个小球放入三个箱子,其中三个小球的颜色分别是红色、黄色和蓝色,而三个箱子的颜色也分别是红色、黄色和蓝色.如果这些箱子都可以空着不放球,那么有()种不同的放球方法.A.3B.6C.9D.27【解析】33327⨯⨯=(种)答:有27种不同的放球方法.故选:D.10.若把英语单词hello的字母顺序写错了,则可能出现的错误共有()A.119种B.36种C.59种D.48种【解析】54321120⨯⨯⨯⨯=有两个l所以120260÷=原来有一种正确的,所以60159-=;故选:C.11.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.7【解析】从1至10这10个整数中,和等于10的有:(1,9)、(2、8);(3、7);(4、6);考虑最差情况:取出6个数是:数字5、10和四组数据中的其中一个,再任意取出1个都会出现两个数的和是10,即617+=(个),答:至少取7个数,才能保证其中有两个数的和等于10.故选:D.12.一个盒子里装有标号为124-的24张卡片,要从盒子里任意抽取卡片,至少要抽出( )张卡片,才能保证抽出的卡片中一定有两张卡片标号之差为4(大标号减去小标号,卡片9只看作9,不能看成6,同样,卡片6只看作6,不能看成9).A.3B.13C.14D.15【解析】将这24张卡片分成这样的两组:第一组:1、2、3、4、9、10、11、12、17、18、19、20;第二组:5、6、7、8、13、14、15、16、21、22、23、24,只要在第一组中加入一个第二组的数,或在第二组中加入第一组的一个数,都能保证有两张卡片的标号之差为4.13.一副扑克牌有54张,将大小王视为0点,A视为1点,J视为11点,Q视为12点,K视为13点,任意抽出若干张牌,不计花色,如果要求每次抽出的牌中必定有2张牌的点数之和等于14,那么至少要取()张牌.A.26B.27C.28D.29【解析】根据题干分析可得,可以这样取牌:大小王、16-全取、1个7(或大小王、1个7、813-全取)总共27张牌,再随便取一张牌就必定有2张牌的和等于14了.所以要满足题目至少要取27128+=张.故选:C.14.红星小学礼堂共24排座位,每排30座位,全校650人到礼堂开会,那么,至少有()排座位上坐的人数相同.A.3B.4C.5D.6【解析】6502427÷≈,也就是说平均每排坐大约27人;我们这样安排,24 25 26 27 28 29 30,重复三遍这样坐,坐的人数:(24252627282930)3567++++++⨯=(人),还剩下:68056783-=(人),分别是26、28、29.这样相同的人数至少4排.答:至少有4排坐的人数同样多;故选:B.15.盒中有形状、大小、质料相同的红、白、黑颜色的球各10个,摸出若干个,要保证摸出的球中至少有3个球同色,摸出球的个数至多为()个.A.3B.5C.6D.7【解析】因为一共有3种颜色的球,所以最差的情况是,摸出6个球,红、白、黑颜色的球各2个,只要再摸出1个球,就能保证摸出的球中至少有3个球同色,所以摸出球的个数至多为:+=(个)617答:要保证摸出的球中至少有3个球同色,摸出球的个数至多为7个.故选:D.16.小孟有10张飞行系精灵、15张草系精灵和20张火系精灵的卡片,她把45张卡片放在袋子里闭着眼睛向外摸卡片,那么他至少摸()张,才能保证摸出的卡片中同时有飞行系精灵和火系精灵的卡片.A.17B.26C.35D.36【解析】根据题干分析可得:++=(张)1520136答:至少需要取36张.故选:D.17.有红、黄、蓝三种颜色同样大小的球各5个混在一起,至少要摸出()个才能保证摸出2个红球.A.3B.12C.4【解析】55212++=(个)答:至少要摸出12个才能保证摸出2个红球.故选:B.18.明明玩掷骰子游戏,掷两个骰子,要保证掷出的骰子总数至少有两次相同,他最少应掷( )次.A.7B.12C.13【解析】11112+=(次),答:至少要掷12次.故选:B.19.在扑克牌的红桃、黑桃、方块、梅花各13张,共有52张牌,至少从中抽出()张牌,才能保证其中有2张花色相同的牌.A.2B.3C.5D.26【解析】415+=(张);故选:C.20.一副扑克牌共有54张,至少抽出()张,才能保证其中必会有4张牌的点数相同.A.24B.42C.32D.23【解析】根据点数特点可以分别看做13个抽屉,分别是:1、2、3、K⋯,考虑最差情况:先摸出2张王牌,然后每个抽屉又都摸出了3张牌,共摸出313241⨯+=张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有4张牌在同一个抽屉,即4张牌点数相同,即:41142+=(张),答:至少抽出42张,才能保证其中必会有4张牌的点数相同.故选:B.21.在口袋里有同样形状和大小的蓝球8个,黄球14个,白球10个,我们摸出()个球能保证其中一定有一个黄球.A.19B.23C.25【解析】810119++=(个)答:我们摸出19个球能保证其中一定有一个黄球.故选:A.22.3294个人中,最少能找到()人同一天生日.A.8B.9C.10D.18【解析】32943669÷=(人)答:3294个人中,最少能找到9人同一天生日.故选:B.23.一个袋子里有红、黄、蓝色三种球各5个,每次至少拿()个才能保证有2个相同颜色的球.A.4B.2C.5【解析】根据分析可得,314+=(个);答:每次至少拿4个才能保证有2个相同颜色的球.故选:A.24.袋子里有5个黄球、3个白球、1个篮球(除颜色外其他完全相同),任意摸出一个,摸到()的可能性大.A.黄球B.白球C.篮球【解析】5319++=摸出黄球的可能性是:5 599÷=摸出白球的可能性是3 399÷=摸出篮球的可能性是1 199÷=答:摸出黄球的可能性最大.故选:A.25.某校有15人,老师让每人用0,1,2,3这四个数字任意写出一个没有重复数字的自然数,那么其中至少有()人写的数相同.A.3B.4C.5D.6【解析】把0,1,2,3这四个数字看作4个抽屉,把15名学生看作“物体个数”,15433÷=⋯(人)314+=(人)答:至少有4个学生写的数相同.故选:B.26.学校买来了红、黄、蓝三种颜色的球,规定每位学生最多可以借两个不同颜色的球,那么至少要有几位学生借球,就可以保证必有两位学生借的球的颜色完全一样?()A.5B.6C.7D.8【解析】红、黄、蓝共有红蓝、红黄、蓝黄三种组合.3317++=(个)答:那么至少要有7位学生借球,就可以保证必有两位学生借的球的颜色完全一致.故选:C.27.某班学生去买语文书、数学书、外语书.买书的情况是:有买一本的,二本的,也有三本的,至少要去()位学生才能保证一定有两位同学买到相同的书(每种书最多买一本).A.3B.6C.8【解析】根据题干分析可得,买书情况一共有3317++=(种),把这7种情况看成7个抽屉,要保证有两位买书的类型相同,因此买书的人数要大于7,+=(人)718答:至少要去8位学生才能保证一定有两位同学买到相同的书.故选:C.28.有红、黄、蓝、绿、白五种颜色的小珠子放在同一个口袋里,每种颜色的珠子都足够多.一次至少要取几颗珠子,才能保证其中一定有三颗颜色相同?()A.3B.11C.15D.16【解析】25111⨯+=(颗),答:一次至少要取11颗珠子,才能保证其中一定有三颗颜色相同.故选:B.29.某班有50个学生,他们都参加了课外兴趣小组.活动内容有美术、声乐、书法,每个人可参加1个、2个或3个兴趣小组.问班级中至少有几个学生参加的项目完全相同?()A.6B.7C.8D.9【解析】根据题干,只参加一个学习班的有3种情况,参加两个学习班的有朗读与音乐、朗读与书法,书法与音乐3种情况,参加3个兴趣小组的有1种情况,共有3317++=种情况,将这7种情况当做7个抽屉,⋯名学生,÷=名15077+=(名),718答:班级中至少有8个学生参加的项目完全相同.故选:C.30.质料、型号相同的红、白、黑色袜子各5双,拆开后混装在暗箱中,从中摸出若干只袜子,要能配成2双(只要两只袜子同色,即为一双),至多摸出()只.A.4B.5C.6D.7【解析】因为一共有3种颜色的袜子,所以4只袜子必有1双,剩下2只不同色的袜子,最差的情况是,再摸出一只袜子,和剩下的2只袜子的颜色都不同,只要再摸出一只袜子,一定可以配成1双,所以再增加2只袜子,才可以配成1双,所以要能配成2双(只要两只袜子同色,即为一双),至多摸出:+=(只)426答:要能配成2双(只要两只袜子同色,即为一双),至多摸出6只.故选:C.31.从19-这9张数字卡片中至少取出()张,就能保证一定有两张卡片上的数字之和是偶数.A.2B.3C.4【解析】在19-中,奇数有1、3、5、7、9,偶数有2、4、6、8,因为奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数,从最极端情况考虑:假设抽出了2张,一张奇数,一张偶数,这样再取出一张,一定保证有两张卡片上的数字之和是偶数,所以取出3张即可保证;故选:B.32.某班一次数学测验,10道选择题,每道题给出了四个选项,其中有且仅有一个选项是正确的,有7道题所有人都做对了,有3道题所有人都只做对了其中1道题,老师作考试分析时发现:这三道题选用选项的各种情况都有,且至少有两个同学选对,选错的情况完全相同.那么,参加这次测验的同学至少有()人.A.49B.41C.37D.28【解析】(1)在3道题中,每道都有4个选项,其中有且仅有1个选项是正确的,只选对其中一道,这样的选项组合情况为:①第一道选对,第二、三道全选错的情况数位1339⨯⨯=.②第二道选对,第一、三道全选错的情况数为3139⨯⨯=.③第三道选对,第一、二道全选错的情况数为3319⨯⨯=总计99927++=(2)将这27种情况看做是27个抽屉,学生看做是放到抽屉的物体,至少有1抽屉放了2个物体.根据抽屉原理二得:物体数27(21)128=⨯-+=.所以参加这次测验的同学至少有28人.故选:D.33.18个小朋友中,()小朋友在一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个【解析】181216÷=⋯,112+=(个),答:18个小朋友中,至少有2个小朋友在一个月出生.故选:B.34.袋子里有18个大小相同的彩色球,其中红球有3个,黄球有5个,绿球有10个.现在要一次从袋中取出若干个球,使得这若干个球中至少有5个球是同色的,那么从袋中一次取出球的个数至少是()A.5个B.8个C.12个D.13个【解析】根据题干分析可得:344112+++=(个),答:从袋中一次取出球的个数至少是12个;故选:C.35.一只黑色口袋里有四种颜色的球,每种颜色的球足够多个,它们的形状,大小都相同,只是颜色不同.一次至少取出()个,才能保证其中至少有5个球的颜色相同.A.5B.9C.13D.17【解析】根据分析可得:⨯+=(个);44117答:一次至少取出17个,才能保证其中至少有5个球的颜色相同.故选:D.36.220名学生参加百分制的考试(得分以整数计),没有三名以上的学生得分相同.则恰有三名同学得分相同的分数最少有()个.A.17B.18C.19D.20【解析】按照百分制计分,那么得分情况有101种:即0分,1分,2分,3分,100⋯分;把这101种得分情况看做101个抽屉,因为2201012⋯(人),÷=(人)18所以没有三名以上的学生得分相同,所以恰有三名同学得分相同的分数最少有18个;故选:B.37.四年级六个班举行拔河比赛,要求每班要与其他各班进行一场比赛,一共要举行()场比赛.A.4B.5C.6D.15【解析】56215⨯÷=(场);故选:D.38.四年级六个班进行篮球比赛,每两个班之间都要进行一场比赛,一共要进行()场比赛.A.10B.15C.20D.30【解析】56215⨯÷=(场);答:一共要举行15场比赛.故选:B.39.有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场.A.20B.39C.41D.80【解析】40139-=(场)故选:B.40.奥运五福娃贝贝、晶晶、欢欢、迎迎、妮妮在鸟巢奥运馆见面了,每两个福娃都会握一次手,当贝贝握了4次手,晶晶握了3次手,欢欢握了2次手,迎迎握了1次手时,妮妮握了()次手.A.4B.3C.2D.1【解析】每人都要和另外4个人握一次手,已知a握了4次,则a与b、c、d、e各握了一次;b握了3次,由于此时d只握了1次,是和a握的,则b与a、c、e握的,此时c已握了2次,即和a,b握的;所以e此时也握了两次,即和a、b握的.故选:C.41.同学们进行广播操比赛,全班正好排成相等的6行.小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人.A.42B.44C.48D.54【解析】5137-+=(人)7642⨯=(人)故选:A.42.一只平底锅,每次只能烙2张鸡蛋饼,两面都要烙,烙一面均需3分钟,那么烙5张鸡蛋饼,最少需要()分钟.A.15B.20C.18D.30【解析】要使煎5张饼的时间最短,应首先煎2张饼,然后再煎3张饼.煎前2张饼需要的时间:236⨯=(分钟);煎最后3张饼时,应先往锅中放入两张饼,先煎熟一面后拿出一张,再放入另一张,当再煎熟一面时把熟的一张拿出来,再放入早拿出的那张饼,使两张同时熟,所以一共需要339⨯=分钟;+=(分钟)6915故选:A.43.姐姐杀好鱼后,让弟弟帮忙烧鱼,他洗鱼2分钟、切鱼2分钟、切姜片和葱花1分钟、洗锅2分钟、将锅烧热2分钟、将油烧热3分钟、煎烧鱼5分钟,各工序共花了17分钟.聪明的小朋友,如果是你烧鱼,你最少需要多少时间呢?()A.12B.13C.14D.15【解析】根据题干分析可得:先洗锅,需要2分钟→洗鱼需要2分钟(同时烧热锅节约2分钟)→切鱼需要2分钟、切葱花、姜片需要1分钟(同时烧热油节约3分钟)→煎鱼需要5分钟,这样花费的时间最少是2212512++++=(分钟),答:最少需要12分钟.故选:A.44.小芳早上起床,洗脸刷牙5分钟,吃妈妈已经准备好的早饭10分钟,听广播15分钟,步行到学校10分钟.如果学校在8:00开始上课,小芳最迟几时就要起床?()A.7:20B.7:30C.7:35【解析】5101025++=(分钟)8时25-分7=时35分即小芳起床最晚是7时35分.故选:C.。