1.1简单几何体

合集下载

初一-数学最新-第一章 1.1生活中的立体图形

初一-数学最新-第一章 1.1生活中的立体图形

生活中的立体图形导入(进入美妙的世界啦~)介绍几种常见的几何体1 .柱体①正方体:它有 8 个顶点、 12 条棱、 6 个面,其中 12 条梭长都相等, 6 个面都是相等的正方形.②长方体:它有 8 个顶点、 12 条棱、 6 个面,其中各个面都是长方形(或正方形),且相对的两个面大小相等.③棱柱体:〔如图( 1 ) ( 2 )〕,图中上下两个面称棱柱的底面,周围的面称棱柱的侧面,面与面的交线是棱柱的梭.其中侧面与侧面的交线是侧棱,棱与棱的交点是顶点.(正方体和长方体是特殊的梭柱,它们都是四棱柱.正方体是特殊的长方体.)④圆柱:图( 3 )中上下两个圆面是圆柱的底面,这两个底面是半径相同的圆,周围是圆柱的侧面.棱柱和圆柱统称柱体.2 .锥体①圆锥:〔如图( 4 )〕图中的圆面是圆锥的一个底面,中间曲面是圃锥的一个侧面,圆锥还有一个顶点.②棱锥:〔如图( 5 )〕图中下面多边形面是梭锥的一个底面,其余各三角形面是棱锥的侧面,各侧面的交线是棱锥的侧棱,各侧棱的交点是棱锥的顶点.棱锥和回锥统称锥体.n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

3 .台体①圆台:〔如图( 6 )〕图中上下两个不同的国面是圆台的底面,中间曲面是圆台的一个侧面.②棱台:〔如图( 7 )〕图中上、下两个多边形是棱台的底面,其余四边形面是棱台的侧面,各侧面的交线是棱台的侧棱,底面和侧面誉。

的交线是棱,梭与侧棱的交点是棱台的顶点.4 .球体:〔如图( 8 )〕图中半圆绕其直径旋转而成的几何体,如篮球、足球等都是球体.图形是由点、线、面构成的(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

知识典例(注意咯,下面可是黄金部分!)例1、你能否将下列几何体进行分类?并请说出分类的依据。

必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征

必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征
棱锥的性质:
侧面、对角面都是三角形;平行于底面的截面 与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
想一想:
用一个平行于棱锥底面的平面去截棱 锥,得到怎样的两个几何体?
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
侧棱
F A
ED
B
侧面
C
顶点
的公共边叫侧棱,侧面与底面
的公共顶点叫棱柱的顶点。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
D’
GG’
C’
A’
F’
F
B’
HH ’
D
E E’
C
A
B
答:都是棱柱.
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一对可以作为棱 柱的底面. 棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
用一个平行于棱锥底面 的平面去截棱锥,底面与截 面之间的部分是棱台。
D’
D A’
C’
B’
C
A
B
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱 台,分别叫做三棱台,四棱台,五棱台…
棱台的表示方法:

学案3:§1.1 空间几何体的结构 第1课时 棱柱、棱锥、棱台的结构特征

学案3:§1.1 空间几何体的结构 第1课时 棱柱、棱锥、棱台的结构特征

1.1空间几何体的结构第1课时棱柱、棱锥、棱台的结构特征学习目标:1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.(重点)2.理解棱柱、棱锥、棱台之间的关系.(难点)3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单物体的结构和有关计算.(易混点)[自主预习·探新知]1.空间几何体概念定义空间几何体空间中的物体,若只考虑这些物体的和,而不考虑其他因素,那么由这些物体抽象出来的就叫做空间几何体2.空间几何体的分类分类定义图形及表示相关概念空间几何体多面体由若干个围成的几何体,叫做多面体面:围成多面体的各个棱:相邻两个面的顶点:的公共点旋转体由一个平面图形绕着它所在平面内的一条旋转所形成的叫做旋转体轴:形成旋转体所绕的3.棱柱、棱锥、棱台的结构特征分类定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱如图可记作:棱柱ABCD­底面(底):两个互相的面侧面:其余各面侧棱:相邻侧面的顶点:侧面与底面的A′B′C′D棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥S­ABCD底面(底):侧面:有公共顶点的各个侧棱:相邻侧面的顶点:各侧面的棱台用一个的平面去截棱锥,底面与截面之间的部分叫做棱台如图可记作:棱台ABCD­A′B′C′D′上底面:原棱锥的下底面:原棱锥的侧面:其余各面侧棱:相邻侧面的公共边顶点:侧面与上(下)底面的公共顶点[基础自测]1.思考辨析(1)棱柱的侧面都是平行四边形.()(2)有一个面是多边形,其余各面都是三角形的几何体叫棱锥.()(3)用一个平面去截棱锥,底面和截面之间的部分叫棱台.()2.下列关于棱柱的说法中正确的是()A.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形B.棱柱的一条侧棱的长叫做棱柱的高C.棱柱的两个互相平行的平面一定是棱柱的底面D.棱柱的所有面中,至少有两个面互相平行3.下面四个几何体中,是棱台的是()4.一个棱柱至少有________个面,顶点最少的一个棱台有________条侧棱.[合作探究·攻重难]类型1棱柱的结构特征例1下列说法中,正确的是()A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形[规律方法]棱柱结构特征问题的解题策略1.有关棱柱概念辨析问题应紧扣棱柱定义:①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个面平行,再看是否满足其他特征.2.多注意观察一些实物模型和图片便于反例排除.[跟踪训练]1.下列关于棱柱的说法错误..的是()A.所有的棱柱两个底面都平行B.所有的棱柱一定有两个面互相平行,其余各面每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面类型2棱锥、棱台的结构特征例2 (1)如图1­1­1,在三棱台A′B′C′­ABC中,截去三棱锥A′­ABC,则剩余部分是()图1­1­1A.三棱锥B.四棱锥C.三棱柱D.三棱台(2)下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.[规律方法]判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点[跟踪训练]2.如图1­1­2所示,观察以下四个几何体,其中判断正确的是()图1­1­2A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱类型3多面体的表面展开图[探究问题]1.棱柱的侧面展开图是什么图形?正方体的表面展开图又是怎样的?2.棱台的侧面展开图又是什么样的?例3(1)某同学制作了一个对面图案均相同的正方体礼品盒,如图1­1­3所示,则这个正方体礼品盒的平面展开图应该为(对面是相同的图案)()图1­1­3(2)如图1­1­4是三个几何体的平面展开图,请问各是什么几何体?图1­1­4母题探究:1. 将本例(1)中改为:水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图1­1­5是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()图1­1­5A.1B.6C.快D.乐2.将本例(2)的条件改为:一个几何体的平面展开图如图1­1­6所示.(1)该几何体是哪种几何体?(2)该几何体中与“祝”字面相对的是哪个面?“你”字面相对的是哪个面?[规律方法]多面体展开图问题的解题策略1.绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.2.由展开图复原几何体:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.[当堂达标·固双基]1.下列几何体中是棱柱的个数有()图1­1­7A.5个B.4个C.3个D.2个2.下列说法中正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等3.下列描述中,不是棱锥的结构特征的为()A.三棱锥的四个面都是三角形B.棱锥都是有两个面互相平行的多边形C.棱锥的侧面都是三角形D.棱锥的侧棱相交于一点4.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).图1­1­85.试从正方体ABCD­A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.图1­1­9参考答案[自主预习·探新知]1.形状大小空间图形2.平面多边形定直线封闭几何体多边形公共边棱与棱定直线3.平行四边形平行多边形三角形平行于棱锥底面平行公共边公共顶点多边形面三角形面公共边公共顶点截面底面[基础自测]1.[提示](1)√(2)×其余各面都是有一个公共顶点的三角形.(3)×截面需与底面平行.2.D[由棱柱的定义,知A不正确,例如长方体;只有直棱柱才满足选项B的条件,故B 不正确;C不正确,例如正六棱柱的相对侧面互相平行;D显然正确.故选D.]3.C[由棱台的概念知,侧棱延长应交于一点,故选C.]4.53[面最少的棱柱是三棱柱,它有5个面;顶点最少的一个棱台是三棱台,它有3条侧棱.]例1.D[A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD­A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.][跟踪训练]1.C[对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的几何体叫做棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱,所以C错误.]例2 (1)B(2)②③[(1)剩余部分为四棱锥,选B.(2)①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;②正确,棱台的侧面一定是梯形,而不是平行四边形;③正确,由棱锥的定义知棱锥的侧面只能是三角形;④错误,如图所示,四棱锥被平面P AC截成的两部分都是棱锥.][跟踪训练]2.C[图①中的几何体不是由棱锥截来的,且上、下底面不是相似的图形,所以①不是棱台;图②中的几何体上、下两个面不平行,所以②不是圆台;图③中的几何体是棱锥.图④中的几何体前、后两个面平行,其他面是平行四边形,且每相邻两个平行四边形的公共边平行,所以④是棱柱.故选C.][探究问题]1.[提示]棱柱的侧面展开图是平行四边形;正方体的表面展开图如图:2.[提示]棱台的侧面展开图是多个相连的梯形.例3 .[解](1)由选项验证可知选A.(2)图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱特点;图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥特点;图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点.把平面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.母题探究:1. B[将图形折成正方体知选B.]2.[解](1)该几何体是四棱台.(2)与“祝”相对的面是“前”,与“你”相对的面是“程”.图1­1­6[当堂达标·固双基]1.D[①③是棱柱.]2.B[棱柱的侧面都是四边形,A不正确;正方体和长方体都是特殊的四棱柱,正确;所有的几何体的表面都能展成平面图形,球不能展开为平面图形,C不正确;棱柱的各条棱都相等,应该为侧棱相等,所以D不正确;故选B.]3.B[由棱锥的结构特征知,B不正确.选B.]4.①③④⑥⑤[①③④是棱柱;⑥是棱锥;⑤是棱台.]5.[解](1)如图(1)所示,三棱锥A1­AB1D1(答案不唯一).(1)(2)(2)如图(2)所示,三棱锥B1­ACD1(答案不唯一).(3)如图(3)所示,三棱柱A1B1D1­ABD(答案不唯一).(3)。

北师大版-数学-七年级上册- 1.1 生活中的立体图形教材解读

北师大版-数学-七年级上册- 1.1 生活中的立体图形教材解读

1.1 生活中的立体图形新知概览:知识要点课标要求中考考点节内对应例题节内对应习题生活中常见几何体的基本特征及其分类认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类识别柱体、锥体、球体试练例1,2,3;易错典例1;题型典例1,2,3,4,6;新题精炼1,2,9,10,11,12,11棱柱的特征知道常见几何体的特征求棱柱的棱数,面数试练例4,5;题型典例7;新题精炼3,4,7,8,9,10,12图形的构成要素认识点、线、面,理解“点动成线、线动成面、面动成体”探索平面图形旋转的旋转体试练例6;易错典例2;题型典例4,5,6;中考典例1新题,5,6,13,14本节重、难点1.重点:几何体的识别、分类.2.难点:旋转问题及几何体顶点、棱数、面数的推导转化.知识全解知识点1生活中常见几何体的基本特征及其分类知识衔接:几何图形包括立体图形和平面图形. 1.平面图形:数学上所说的平面没有边界,可以向四面八方无限延伸.如果一个图形的各个部分都在同一个平面内,那么这个图形是平面图形,常见的平面图形有三角形、正方形、长方形、平行四边形、梯形、圆等.2.如图1—1—1我们学过长方体,正方体等称为立体图形,这样的几何图形上的点不都在在同一平面内.知识详解:(1)几何体的分类:(2)几何体的基本特征:体是由面围成的;面有两种,平面和曲面. ①柱体的相同点是上下两个面完全相同.不同点是圆柱的底面是圆,侧面是一个曲面,直棱柱底面是多边形,侧面都是长方形; ②锥体相同点是都有一个顶点.不同点是圆锥的底面是一个圆,侧面是一个曲面,棱锥的底面是一个多边形,侧面都是三角形;③球体由一个曲面围成. 知识警示:长方体 正方体1—1—1(1)立体图形是由一个或几个面围成的,如:球是有一个面围成的,而长方体是由六个面围成的,组成棱柱和棱锥的面都是平的,而组成圆锥、圆柱、球的面都是曲的.(2)我们直研究直棱柱,不作特殊说明,棱柱都指直棱柱;(3)长方体、正方体是棱柱;(4)几何体的分类可按“有无顶点”、“有无曲面”等不同的标准来区分.【试练例题1】如图1—1—2所示,请分别指出下列物体的形状分别类似于哪种几何体.思路导引:观察实物轮廓、分析轮廓特征、抽象几何体.解:茶叶盒类似棱柱;地球仪类似球体;魔方类似棱柱;字典类似棱柱;金字塔类似棱锥;彩笔类似棱柱.方法:由实物的形状想象几何体是一个观察、体验、抽象的过程,解决此类问题应从实物的轮廓特征入手,抽象出几何体,进而确定是哪种几何体,即“有物悟形”、“由形命名”.【试练例题2】如图1—1—3将下列几何体进行分类,并说明理由.思路导引:把几何体进行分类,一定要注意根据不同的分类标准,分类情况不尽相同,切记不要混淆分类标准,分类要做到不重不漏.解:如一类是(1)(2)(4)(5)是柱体,另一类(3)(7)是椎体,第三类(6)是球体;1—1—21—1—3或一类是(1)(4)(5)(7),有平面围成,另一类(2)(3)(6),有曲面参与围成.方法:几何体分类,先确定分类标准,按有无曲面来分较常用,在此标准下几何体可分为多面体(围成几何体的面都是平面)和旋转体(由平面图形旋转形成,围成几何体的面有曲面).【试练例题3】如图1—1—4所示,陀螺是由下面哪两个几何体组合而成的()A. 长方体和圆锥B. 长方形和三角形C. 圆和三角形D. 圆柱和圆锥思路导引:根据立体图形的特征对图进行分析知:该图上部分是圆柱,下部分是圆锥.解:D.方法:先判断原几何体是曲面还是平面围成,再判断是否能分割为柱体、锥体还是球体.知识点2棱柱的相关概念及特征知识衔接:1.在小学里我们认识了六种常见的几何体,它们分别是长方体、正方体、圆柱、圆锥和球体.2.我们通过学习,已知道圆柱的侧面展开图是长方形.知识详解:(1)在棱柱里,任何相邻的两个面的交线都叫做棱,相邻两个侧面的交线交做侧棱,棱柱的所有侧棱都相等.棱柱的上、下底面是相同的图形,都是多边形,侧面都是长方形.(2)棱柱的特征是:①有两个面互相平行;②其余各面都是平行四边形;③每相邻两个四边形的公共边互相平行.知识警示:一般地,n棱柱有2n个顶点,3n条棱(其中有n条是侧棱),(n+2)个面(2个底面,n个侧面).【试练例题4】如图1—1—5所示棱柱(1)这个棱柱的底面是____________边形.1—1—4(2)这个棱柱有____________个侧面,侧面的形状是____________边形.(3)侧面的个数与底面的边数____________.(填“相等”或“不相等”)(4)这个棱柱有____________条侧棱,一共有____________条棱.(5)如果CC′=3 cm,那么BB′=____________cm.思路导引(1)观察图形,易知此棱柱为三棱柱;所以底面是3边形,这个棱柱有3个侧面,侧面形状是四边形;利用棱柱侧棱都相等,可求得BB′.答案:1.(1)三(2)3 四(3)相等(4)3 9 (5)3.方法:结合图形解决棱柱的问题,知识就显得较为容易.知识点3棱柱的分类知识详解:人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……知识警示:(1)底面是n边形的棱柱称为n棱柱,长方体和正方体都是四棱柱.(2)正方体的六个面形状、大小都相同,都是正方形,正方体的12条棱都相等.【试练例题5】如图1—1—6请说出下面物体是哪种棱柱.思路导引根据棱柱的分类,观察这几个棱柱的底面,分别是三角形、四边形、六边形,所以这几个物体分别是:三棱柱、四棱柱、六棱柱.答案:三棱柱、四棱柱、六棱柱.方法:判断棱柱的种类,我们可以看棱柱底面是几边形,即可判断其是几棱柱.知识点4图形的构成要素知识详解:1.几何图形都是由点、线、面、体组成的.(1)点是构成图形的基本元素,是线与线相交的地方,即线与线相交成点.点无大小之分,1—1—6只有位置之别;(2)线无粗细,可以有长度,它可分为直线、曲线,面与面相交成线;(3)面无厚薄,可分为平面、曲面.平面是向四周无限延伸的.2.用运动观点看几何基本图形之间的关系:点动成线,线动成面,面动成体.如:流星可以看作一个点,它划破夜空,就形成了线;直升飞机的螺旋桨快速旋转形成了一个圆面,这可以说线动成面;三角板绕它的一条直角边旋转一周,形成一个圆锥体.点动成线,线动成面,面动成体,这样就组合成了各种各样的几何图形,形成了丰富多彩的图形世界.知识警示:(1)线、面、体都是由点组成的,即点是构成图形的基本元素;(2)面与面的交线可能是直线,也可能是曲线;(3)点是最简单的几何图形.【试练例题6】用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.如图1—1—7绕虚线旋转得到的几何体是()思路导引:根据旋转及线动成面的知识可得旋转后的图形为:两边为圆锥,中间为圆柱,结合实际生活经验此题易解.解:D.方法:长方形绕其一边所在直线旋转一周形成了一个圆柱; 半圆绕其直径所在直线旋转一周形成球;三角形形绕其一边所在直线旋转一周形成圆锥.易错易混辨析易错点1不能正确判断几何体的类型【易错典例1】如图1—1—8各几何体中,柱体是第_____个.1—1—7A B C D1—1—8易错总结:柱体包括棱柱和圆柱,他们的上下两个底面完全相同,部分同学因忽略柱体的这一共同特征二误认为(1)(3)是柱体而出错,正确答案是(2)(4).易错点2判断由平面图形旋转而成的立体图形时,出现漏解或错解【易错典例2】以如图1—1—9所示的三角形的边为轴旋转一周后所得到的几何体可以是右图中的_________(填序号).1—1—9易错总结:本题是一个直角三角形围绕任意一条直角边旋转一周,部分同学可能因习惯于只绕竖直的AB旋转只选(2)或分绕直角边旋转和斜边旋转两种情况而不考虑两直角边的长短漏选(3),还可能因为绕斜边AC形成图形不熟悉而漏选(4),正确为答案应是(2)(3)(4).基础经典全析题型1立体图形的识别【题型典例1】如图1—1—10下列各几何体中,直棱柱的个数是()1—1—10A .5B .4C .3D .2思路导引:直棱柱由上、下两个底面以及侧面组成;上下两个底面可以是全等的多边形,侧面是长方形.抓住直棱柱侧面为长方形进行选择. 题型2常见几何体的分类【题型典例2】如图1—1—11将下列几何体分类,(1)柱体有:_________,锥体有_______(填序号);(2)与众不同的一个你认为是_____,因为____________; (3)自己制定一个标准,将下列图形分类,说明你的分类标准.思路导引:(1)根据柱体有两个底面,锥体一个底面来区分;(2)可以从围成几何体的面数和曲、平来考虑;(3)不唯一,如有无曲面等标准.解:(1)柱体分为圆柱和棱柱,所以柱体有:1、2、3;锥体包括棱锥与圆锥,所以锥体有5、6;(2)球属于单独的一类;(3)分类标准是有无曲面,因此1、3、6是一类,是有平面围成,2、4、5是一类,是有至少一个曲面参与围成.方法:几何体的分类,一般分为柱体、锥体和球,也常按组成它们的面是否有曲面来划分,还可以按有没有顶点来划分. 题型3对棱柱的基本要素的判断【题型典例3】 如图1—1—12是一个直七棱柱,它的底面边长都是2cm ,侧棱长是5cm ,观察这个棱柱,请回答下列问题:(1)这个七棱柱共有多少个面?它们的形状分别是什么形状?哪些面的形状、面积完全相同?侧面的面积和是多少?(2)这个七棱柱一共有多少条棱?它们的长度分别是多少? (3)这个七棱柱一共有多少个顶点?解:(1)这个七棱柱共有9个面,上下两个面是七边形,侧面是长方形,上下两个面的形状相同,面积相等,七个侧面的形状相同,面积相等.1—1—11 1—1—12要求侧面的面积和只需求出1个侧面长方形的面积,再乘以7即可.2×5×7=70(cm2).(2)这个七棱柱一共有21条棱,它们的侧棱长都是5cm,其余棱长都是2cm.(3)这个七棱柱一共有14个顶点.点拨:通过对本节内容的学习,我们一定要养成善于观察、通过求解分析寻找规律的良好习惯,只有这样,才能把所学知识融会贯通.题型4关于点、线、面、体的认识【题型典例4】(1)笔尖可以看作一个点,这个点在纸上运动时,形成了,这表明了现象;(2)时钟秒针旋转时,形成一个圆面,这说明了_______________,一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了___________________.思路导引:根据点、线、面之间的形成关系来解答点动成线,线动成面,面动成体.解:(1)线,点动成线;(2)线动成面,面动成体.方法:点动成线,线动成面,面动成体.综合创新探究题型5利用点、线、面、体之间的关系探索图形的旋转问题【题型典例5】圆柱是由长方形绕着它的一边旋转一周所得到的,如图1—1—13下列四个平面图形绕着直线旋转一周可以得到左图的是()思路导引:由于左图是由两个圆柱组合而成,根据“圆柱是由长方形绕着它的一边旋转一周所得到的”这一规律,即可作出正确判断.解:解:根据选项中图形的特点,A.可以通过旋转得到两个圆柱;故本选项正确;A B C D1—1—13B.可以通过旋转得到一个圆柱,一个圆筒;故本选项错误;C.可以通过旋转得到一个圆柱,两个圆筒;故本选项错误;D.可以通过旋转得到三个圆柱;故本选项错误故选A.方法:点动成线,线动成面,面动成体.解答此类题目一要理解长方形、三角形、半圆等常见平面图形旋转所形成的几何体特征,二要熟练将几何体或平面图形分解成熟悉的几何图形.题型6 求几何体的体积【题型典例6】一直棱柱,其中两底面为正方形,其面积和为32;四个侧面均为长方形,其面积和为80.求此直棱柱的体积.思路导引:根据直棱柱的底面积求出直棱柱的底面边长,再根据侧面相同与面积和求出高从而计算面积.解:直棱柱的底面积为32÷2=16,所以底面边长是4,又因为四个侧面为相同的长方形,且面积和为80,所以每个侧面面积是20,所以高位5,所以体积是16×464.方法:棱柱、圆柱的体积公式都是底面积乘以高.题型7 棱柱的顶点数、面数和棱数之间的关系【题型典例7】如图1—1—14,左面的几何体叫三棱柱,它有五个面,9条棱,6个顶点,中间和右边的几何体分别是四棱柱和五棱柱.(1)四棱柱有_______个顶点,________条棱,_______个面;(2)五棱柱有________个顶点,______条棱,_______个面;(3)你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?(4)n棱柱有几个顶点,几条棱,几个面吗?思路导引:结合已知三棱柱、四棱柱和五棱柱的特点,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱.1—1—14解:(1)四棱柱有8个顶点,12条棱,6个面;(2)五棱柱有10个顶点,15条棱,7个面;(3)六棱柱有12个顶点,18条棱,8个面;七棱柱有14个顶点,21条棱,9个面;(4)n棱柱有(n+2)个面,2n个顶点和3n条棱.方法:常见棱柱的顶点数、面数和棱数之间的熟练关系,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱.备战中考考点1探索图形的旋转问题中考典例1将如图1—1—15所示的直角三角形绕直线l旋转一周,得到的立体图形是()思路导引:根据题意作出图形,即可进行判断.解:B.点拨:将直角三角形绕直角边旋转一周,可得到圆锥,绕斜边旋转一周,可得到两个圆锥的组合体(2011•铜仁.第3题.4分)变式练习1将图1—1—16所示的直角梯形绕直线l旋转一周,得到的立体图形是()A B C D1—1—15思路导引:根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,故选C.新题精炼基础巩固1.如图1—1—17观察下列实物模型,其形状是圆柱体的是()2.下列图形中不是立体图形的是()A.圆锥B.圆柱C.圆D.球3.如图1—1—18是一个生日蛋糕盒,这个盒子有几条棱()A.6条B.12条C.18条D.24条4.下列立体图形中,有五个面的是()A.四棱锥B.五棱锥C.四棱柱D.五棱柱5.将下面的直角梯形绕直线l旋转一周,可以得到如图1—1—19立体图形的是()6.汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A.点动成线B.线动成面C.面动成体D.以上都不对7.若一个棱柱的底面是一个七边形,则它的侧面必须有_____个长方形,它一共有_____个面,______个顶点.8.一个棱柱有18条棱,那么它的底面一定是______边形.9.六棱柱有_____个顶点,有_______条侧棱.知识点1题型2A.B.C.D.1—1—17A.B.C.D.1—1—191—1—18知识点1 题型1知识点2 题型3知识点2 题型2知识点3 题型4知识点3 题型4知识点2题型3知识点2题型3知识点2题型110.如图1—1—20至少找出下列几何体的4个共同点.11.(1)如图1—1—21下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.(2)将这些几何体分类,并写出分类的理由.如图1—1—22下面的图形表示四棱柱的是()1—1—20()()()()1—1—211—1—22知识点2 题型1知识点3 题型2知识点3 题型6知识点3题型7(2)猜想:由上面的探究你能得到一个什么结论?(3)验证:再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数是否满足上述关系.(4)应用(2)的结论对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式.根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?新题精炼答案基础巩固1.D思路导引:圆柱的上下底面都是圆,所以正确的是D.2.C思路导引:圆是平面图形3.C思路导引:观察图形可知上下面的棱数都是6,侧面的棱数是6.则这个盒子的棱数为:6+6+6=18.4.A思路导引:要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.5.B面动成体.由题目中的图示可知:此几何体是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.6.B 思路导引:汽汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.7.7,9,14思路导引: n棱柱有个侧面且都是长方形,有(n+2)个面,2n个顶点.8.六思路导引: n棱柱有3n条棱,两个底面共有2n条,每个底面n条棱,即故底面有n条边.9.7.12,6思路导引通过观察六棱柱可知,六棱柱有12个顶点、有六条侧棱.点拨:我们知道四棱柱有8个顶点,五棱柱有10个顶点,六棱柱有四个顶点……,以此类推n棱柱有2×n个顶点.10.思路导引:观察图形,可以从图形的组成、侧面等回答.解:答案不惟一,如:都由平面组成,侧面都是长方形,都有上下底面,都有侧棱等.11.(1)针对立体图形的特征,直接填写它们的名称即可.(2)可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.解:(1)从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.(2)观察图形,按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.能力提升12.A思路导引:根据多面体意义,没有曲面参与围成,故只有第二、四符合要求.13.2思路导引:根据棱柱体积等于底面积乘以高代入求解即可.14.思路导引:(1)四面体为三棱锥,顶点数为4,面数为4,棱数为6,V+F-E=2;长方体的顶点数为6,面数为8,棱数为12,V+F-E=2;五棱柱的顶点数为7,面数为10,棱数为(2)V+F-E=2;(3)例如六棱柱,有顶点数为12,面数为8,棱数为18,12+8-18=2符合上述关系,所以满足;(4)因为不满足欧拉公式,所以不可能.。

最新北师大版七年级数学上册课件:1.1 生活中的立体图形(第1课时)

最新北师大版七年级数学上册课件:1.1 生活中的立体图形(第1课时)
2.学会对几何体的分类,了解圆柱与圆锥及棱柱的区别.
1.认识基本几何体,认识棱柱并能快速得出棱柱的棱 数、顶点数和面数.
探究新知
1.1 生活中的立体图形/
知识点1 立体图形的认识
在小明的书房中,哪些物体的形状与你在小学学过的几何体类似?
请参观我的简易 书房.
探究新知
想一想1
1.图中哪些 物体的形状 与长方体、 正方体类似? 2.哪些物体 的形状与圆 柱、圆锥类 似?
D.八棱柱
课堂检测
1.1 生活中的立体图形/
基础巩固题
1.对棱柱而言,下列说法不正确的是( B ) A.所有侧面都是平行四边形 B.所有棱长都相等 C.上、下底面的形状相同 D.相邻两个侧面的交线叫做侧棱
2.长方体、正方体是棱柱吗? 答:长方体和正方体是四棱柱.
课堂检测
1.1 生活中的立体图形/
1.1 生活中的立体图形/
能力提升题
如图是一个六棱柱模型,它的底面边长都是5 cm,侧棱 长4 cm,观察这个模型,回答下列问题:
(1)这个六棱柱一共有多少个面?它们分别是什么 形状?哪些面的形状、面积完全相同?
(2)这个六棱柱一共有多少条棱?侧棱长的和是多少?
(3)这个六棱柱的所有侧面的面积之和是多少?
探究新知
柱体
1.1 生活中的立体图形/
长方体
圆锥
圆柱

棱柱
球体
棱锥
锥体
探究新知
1.1 生活中的立体图形/
素养考点 1 识别现实生活中的几何体
例1 分别说出下列日常生活中常见物体所属立体图形的形状
名称.(1)高尔夫球;(2)火柴盒;(3)电池;(4)用转笔刀削成
的铅笔尖. 解:(1)高尔夫球—球体; (2)火柴盒—棱柱; (3)电池——圆柱; (4)用转笔刀削成的铅笔尖——圆锥.

北师大版七年级上册数学1.1生活中的立体图形(定稿)

北师大版七年级上册数学1.1生活中的立体图形(定稿)

(4 )
(5 )
(6)
锥体: (5)
球体: (3)
柱体: (1)(2)(4)(6)
练习4
1
2
3
有曲面:(3)(4)(5) 无曲面: (1)(2)(6)
4
5
6
有顶点: (1)(2)(5)(6) 无顶点: (3)(4)
知识点2
棱柱是按底面的边数来命名的
三棱柱
棱 柱
四棱柱
五棱柱
• • • • • • 六棱柱
棱锥
1.生活中常见的立体图形分为球体、柱体、椎体
圆柱
棱柱
柱 体



棱锥
圆锥
球体
1.生活中常见的立体图形分为球体、柱体、椎体
棱柱

柱体 圆柱

图 球体
棱柱:两个面互相平行且相同, 其余各面都是平行四边形
圆柱:两个底面平行且为圆面, 侧面是曲的面

棱锥
锥体
圆锥
棱锥:有一个面是多边形,其余 各面是有一个公共顶点的三角形
圆锥:底面是圆,侧面是曲的面
2.常见的几何体的分类
(1)按照围成几何体的面有无曲面分类: 有曲面: 无曲面:
(2)按照有无顶点分类: 有顶点: 无顶点:
练习1
下列图形中为圆柱的是 (4)
圆台
(5)
棱台
上述图形中为棱柱的是 (2)
练习2
观察下面的几何体,哪些是棱柱?
练习3
(1 )
(2)
(3 )
有多个顶点.
补充:圆柱与圆锥有什么相同点与不同点?
底面、侧面、顶点
几何体 图形
不同点大小相同 的底面; 无顶点.
有一个底面, 有一个顶点.

1.1 简单几何体

1.1  简单几何体
第一章 立体几何初步
§1 简单几何体
1.认识柱、 1.认识柱、锥、台、球的结构特征,并能运用这些特征 认识柱 球的结构特征, 描述现实生活中简单物体的结构. 描述现实生活中简单物体的结构. 2.通过对简单几何体的观察分析, 2.通过对简单几何体的观察分析,培养学生的观察能力 通过对简单几何体的观察分析 和抽象概括能力. 和抽象概括能力. 3.通过教学活动,逐步培养学生探索问题的精神. 3.通过教学活动,逐步培养学生探索问题的精神. 通过教学活动
一、球
1、球的定义:以半圆的直径所在直线为旋转轴,将半圆 球的定义:以半圆的直径所在直线为旋转轴, 旋转所形成的曲面叫作球面.球面所围成的几何体叫作 旋转所形成的曲面叫作球面.球面所围成的几何体叫作球 体,简称球.半圆的圆心叫作球心.连接球心和球面上任意 简称球.半圆的圆心叫作球心. 一点的线段叫作球的半径. 一点的线段叫作球的半径.连接球面上两点并且过球心的 线段叫作球的直径. 线段叫作球的直径. A 半径 O B
3、棱柱的表示方法(下图) 棱柱的表示方法(下图)
用平行的两底面多边形的字母表示棱柱, 用平行的两底面多边形的字母表示棱柱,如:棱柱 ABCDEABCDE- A1B1C1D1E1.

棱锥
1、定义:有一个面是多边形,其余各面是有一个公 定义:有一个面是多边形,
共顶点的三角形,由这些面所围成的几何体叫作棱锥. 共顶点的三角形,由这些面所围成的几何体叫作棱锥. 这个多边形面叫作棱锥的底面. 这个多边形面叫作棱锥的底面 有公共顶点的各个三角形叫作棱锥的侧面 有公共顶点的各个三角形叫作棱锥的侧面. 各侧面的公共顶点叫作棱锥的顶点. 各侧面的公共顶点叫作棱锥的顶点. 相邻侧面的公共边叫作棱锥的侧棱 相邻侧面的公共边叫作棱锥的侧棱.

1.1.1 棱柱、棱锥、棱台的结构特征

1.1.1   棱柱、棱锥、棱台的结构特征

2.下列结论正确的是 ( B )
A.有两个面平行,其余各面都是四边形的几何体是棱柱 B.一个棱柱至少有五个面,六个顶点、九条棱 C.一个棱锥至少有四个面、四个顶点、四条棱 D.棱锥截去一个小棱锥后剩余部分是棱台 【解析】由棱柱的定义知,A不正确;棱数最少的三棱锥 有四个面、四个顶点、六条棱,C不正确;对于棱锥,用不 平行于底面的平面截去一个小棱锥后,剩余部分不是棱 台,D不正确;B正确.
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编 故事时,让自己脑洞大开,尝试夸张怪诞些~
故事记忆法小妙招
费曼学习法
费曼学习法-简介 理查德·菲利普斯·费曼
(Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解,
【提升总结】
特殊的棱柱:
种类较多,
侧棱不垂直于底面的棱柱叫做斜棱柱; 可要记清.
侧棱垂直于底面的棱柱叫做直棱柱;
底面是正多边形的直棱柱叫做正棱柱;
底面是平行四边形的四棱柱叫做平行六面体;
侧棱垂直于底面的平行六面体叫做直平行六面体;
底面是矩形的直平行六面体叫做长方体;
棱长都相等的长方体叫做正方体.
探究点3 棱锥的结构特征 棱锥:一般地,有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面所围成的多面体叫 做棱锥.如图:
3. 下列命题中,正确的是 ( D ) A.有两个侧面是矩形的棱柱是直棱柱 B.侧面都是等腰三角形的棱锥是正棱锥 C.侧面都是矩形的四棱柱是长方体 D.底面为正多边形,且有相邻两个侧面与底面垂 直的棱柱是正棱柱

高中数学 第一章 立体几何初步 1.1.1 构成空间几何体的基本元素学案 新人教B版必修2-新人教B

高中数学 第一章 立体几何初步 1.1.1 构成空间几何体的基本元素学案 新人教B版必修2-新人教B

1.1.1 构成空间几何体的基本元素1.了解几何体的基本元素.2.理解平面的概念.3.掌握平面的画法及表示方法.1.几何体如果我们只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.2.构成空间几何体的基本元素(1)长方体由六个矩形(包括它的内部)围成,围成长方体的各个矩形,叫做长方体的面;相邻两个面的公共边,叫做长方体的棱;棱和棱的公共点,叫做长方体的顶点.(2)长方体有6个面,12条棱,8个顶点.(3)点、线、面是构成几何体的基本元素.3.空间点、线、面的特征(1)线有直线(段)和曲线(段)之分,面有平面(部分)和曲面(部分)之分.平面是处处平直的面,而曲面就不是处处平直的.(2)在立体几何中,平面是无限延展的,通常画一个平行四边形表示一个平面,并把它想象成无限延展的.平面一般用希腊字母α,β,γ,…来命名,还可以用表示它的平行四边形的对角顶点的字母来命名,如图中的平面α、平面β、平面ABCD或平面AC等.(3)在几何中,可以把线看成点运动的轨迹,如果点运动的方向始终不变,那么它的轨迹就是一条直线或线段;如果点运动的方向时刻在变化,则运动的轨迹是一条曲线或曲线的一段.(4)一条线运动的轨迹可以是一个面,面运动的轨迹(经过的空间部分)可以形成一个几何体.(5)直线平行移动,可以形成平面或曲面.固定射线的端点,让其绕着一个圆弧转动,可以形成锥面.4.几个定义的比较位置关系定义图形符号表示平行线面如果直线和平面没有公共点,则说直线和平面平行AB∥平面α面面如果两个平面没有公共点,则说这两个平面平行平面α∥平面β垂直线面如果一条直线和一个平面内的两条相交直线都垂直,则说直线与平面垂直l⊥平面α面面如果两个平面相交,并且其中一个平面通过另一个平面的一条垂线,则说这两个平面互相垂直平面α⊥平面β距离点面点到平面的垂线段的长度,称作点到平面的距离两平面夹在两平行平面间垂线段的长度称作两平面间的距离1.关于平面下列说法正确的是( )A.平行四边形是一个平面B.平面是有大小的C.平面是无限延展的D.长方体的一个面是平面答案:C2.下列说法中错误的是( )A.平面用一个希腊字母就可以表示B.平面可用表示平面的平行四边形对角顶点的两个英文字母表示C.三角形ABC所在的平面不可以写成平面ABCD.一条直线和一个平面可能没有公共点答案:C3.直线平行移动一定形成平面吗?解:不一定,还可能形成曲面.平面概念的理解判断下列说法是否正确?并说明理由.(1)平面的形状是平行四边形;(2)任何一个平面图形都是一个平面;(3)圆和平面多边形都可以表示平面;(4)若S▱ABCD>S▱A′B′C′D′,则平面ABCD大于平面A′B′C′D′;(5)用平行四边形表示平面时,平行四边形的四边是这一平面的边界.【解】(1)不正确.平行四边形只是平面的一种表示方式,它不能延展,而平面能无限延展,平面没有确定的形状;(2)不正确.任何一个平面图形,如点、线都不是平面;角、圆、多边形等都是平面的一部分,而不是平面;(3)正确.这样的图形可以表示平面,点、线这样的平面图形是平面的基本元素;(4)不正确.平面是不可度量的,不涉及大小;(5)不正确.平面是无限延展的,无边界.本题主要考查平面的特征等基础知识以及空间想象能力.给出下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 m,宽是20 m;④平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确的有( )A.1个B.2个C.3个D.4个解析:选A.平面无大小、无厚度、无边际,所以只有④是正确的.应选择A.构成空间几何体的基本元素下列元素属于构成几何体的基本元素的有( )①点;②线;③曲面;④平行四边形(不含内部的点);⑤长方体;⑥线段.A.3个B.4个C.5个D.6个【解析】①②③⑥均为构成几何体的基本元素,只有④⑤不属于构成几何体的基本元素,故选B.【答案】 B点、线、面是构成几何体的基本元素,任何一个几何体都是由这些基本元素组成的,而其他图形有时也能构成另外复杂的几何体,但是不能称之为基本元素.以下结论中正确的是( )A.“点动成线”中的线一定是直线B.直线运动的轨迹一定是平面或曲面C.曲面上一定没有直线D.平面上一定有曲线答案:D长方体中基本元素间的位置关系如图所示,在长方体ABCD­A1B1C1D1中,如果把它的12条棱延伸为直线,6个面延展为平面,那么在这12条直线与6个平面中,回答下列问题:(1)与直线B1C1平行的平面有哪几个?(2)与直线B1C1垂直的平面有哪几个?(3)与平面BC1平行的平面有哪几个?(4)与平面BC1垂直的平面有哪几个?【解】(1)与直线B1C1平行的平面有:平面AD1,平面AC.(2)与直线B1C1垂直的平面有平面AB1,平面CD1.(3)与平面BC1平行的平面有:平面AD1.(4)与平面BC1垂直的平面有:平面AC,平面A1C1,平面AB1,平面DC1.若本例中的题干不变,将问题(1)(2)中的“直线B1C1”改为“直线BC1”,再去解答前两个小题.解:(1)与直线BC1平行的平面有:平面AD1.(2)所给6个平面中,与直线BC1垂直的平面不存在.以长方体为载体研究几何体中的点、线、面的关系,有助于形成空间观念,也可以利用运动的观点来分析图形中的线面位置关系.1.点、线、面是构成几何体的基本元素.2.平面是无限延展的,通常画一个平行四边形表示一个平面.3.平面的记法(1)平面一般用希腊字母α、β、γ…来命名;(2)平面图形顶点法.4.认识空间中的点、直线和平面之间的位置关系,我们可以动手制作一些模型或画出图形,来帮助我们理解和提高空间想象能力.通常所说“点动成线,线动成面,面动成体”中的线可能是曲线或直线,面也可能是平面或曲面,到底是哪一种,取决于其运动的方向与方式.1.下列命题:①正方形是一个平面;②平面是有边界的;③20个平面重合在一起比一个平面厚20倍.其中正确的个数为( )A.0 B.1C.2 D.3答案:A2.飞机飞行表演在空中留下漂亮的“彩带”,用数学知识解释为________.答案:点动成线3.一个平面将空间分成________部分;两个平面将空间分成________部分.答案:2 3或4,[学生用书P77(单独成册)])[A 基础达标]1.下列不属于构成几何体的基本元素的是( )A.点B.线段C.曲面D.多边形(不含内部的点)解析:选D.点、线、面是构成几何体的基本元素.2.已知下列三个结论:①铺得很平的一张白纸是一个平面;②平面是矩形的形状;③一个平面的面积可以等于1 m2.其中正确结论的个数是( )A.0 B.1C.2 D.3解析:选A.在立体几何中,平面是无限延展的,所以①③错误;通常我们画一个矩形来表示一个平面,但并不是说平面就是矩形,故②错.3.在正方体ABCD­A1B1C1D1中,与对角线BD1既不相交又不平行的棱有( )A.3条B.4条C.6条D.8条解析:选C.在平面A1B1C1D1上的四条棱中有A1B1,B1C1,在平面ABCD上的四条棱中有AD,CD,上、下两底面之间的四条棱中,有AA1,CC1,故与BD1既不相交又不平行的棱共有6条.4.下面给出的四个平面图形能制作成正方体的个数为( )A.1 B.2C.3 D.4解析:选D.可制作成上述四个平面图形,然后折叠而得.5.下列命题正确的是( )A.直线的平移只能形成平面B.直线绕定直线旋转肯定形成柱面C.直线绕定点旋转可以形成锥面D.曲线的平移一定形成曲面解析:选C.直线的平移,可以形成平面或曲面,命题A不正确;只有当两直线平行时旋转形成柱面,命题B不正确;曲线平移的方向与曲线本身所在的平面平行时,不能形成曲面,D不正确,只有C正确.故选C.6.在以下几种几何体的图形中,正方体ABCD­A1B1C1D1不可以由四边形________(填序号)平移而得到.①ABCD;②A1B1C1D1;③A1B1BA;④A1BCD1.解析:①ABCD,②A1B1C1D1,③A1B1BA,按某一方向平移可以得到正方体ABCD­A1B1C1D1,④A1BCD1平移不能得到正方体ABCD­A1B1C1D1.答案:④7.把如图的平面沿虚线折叠可以折叠成的几何体是________.解析:图中由六个长方形组成,可以动手折叠试验,得到长方体.答案:长方体8.下列关于长方体的说法中,正确的是________.①长方体中有3组对面互相平行;②长方体ABCD­A1B1C1D1中,与AB垂直的只有棱AD,BC和AA1;③长方体可看成是由一个矩形平移形成的;④长方体ABCD­A1B1C1D1中,棱AA1,BB1,CC1,DD1平行且相等.解析:如图,在长方体ABCD­A1B1C1D1中,平面ABCD∥平面A1B1C1D1,平面ADD1A1∥平面BCC1B1,平面ABB1A1∥平面CDD1C1,故①正确;与AB垂直的棱除了AD,BC,AA1外,还有B1C1,A1D1,BB1,CC1和DD1,故②错误;这个长方体可看成由它的一个面ABCD上各点沿竖直方向向上移动相同距离AA1所形成的几何体,故③正确;棱AA1,BB1,CC1,DD1的长度是长方体中面ABCD 和面A1B1C1D1的距离,因此它们平行且相等,故答案是①③④.答案:①③④9.下列各题说法对吗?(1)点运动的轨迹是线;(2)线运动的轨迹一定是面;(3)面运动的轨迹一定是体.答案:(1)正确;(2)错误;(3)错误10.已知长方体ABCD­A1B1C1D1的长、宽、高分别为5、4、3,试分别求面ABCD与面A1B1C1D1,面ADD1A1与面BCC1B1,面ABB1A1与面DCC1D1间的距离.解:因为面ABCD∥面A1B1C1D1,AA1与该两平面垂直.且长方体的高为3.所以面ABCD与面A1B1C1D1之间的距离为3.同理:面ADD1A1与面BCC1B1之间的距离为5.面ABB1A1与面DCC1D1之间的距离为4.[B 能力提升]11.下列几何图形中,可能不是平面图形的是( )A.梯形B.菱形C.平行四边形D.四边形解析:选D.四边形可能是空间四边形,如将菱形沿一条对角线折叠成4个顶点不共面的四边形.12.下列说法:①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD(水平放置)上各点沿铅垂线方向向上移动相同的距离到矩形A′B′C′D′所形成的几何体;③长方体一个面上的任一点到对面的距离相等.其中正确命题的序号是________.解析:①是错误的,面与矩形是不同的.答案:②③13.在正方体ABCD­A1B1C1D1中,判断平面AB1D1和平面BC1D的位置关系.解:因为平面AB1D1和平面BC1D不论怎样延展都是没有交点的,所以它们互相平行.14.(选做题)要将一个正方体模型展开成平面图形,需要剪断多少条棱?你能从中得出什么规律来吗?解:需要剪断7条棱.因为正方体有6个面,12条棱,两个面有一条棱相连,展开后六个面就有5条棱相连,所以剪断7条棱.规律是正方体的平面展开图只能有5条棱相连,但是,有5条棱相连的6个正方形图形不一定是正方体的平面展开图.。

1.1简单几何体

1.1简单几何体
1.1 简单几何体
学习目标: 1.认识简单旋转体、简单多面体的 结构特征. 2.掌握简单几何体的分类.
自学指导: 请认真看课本P3-P5练习前的内容, 注意以下几个方面: 1.什么叫做旋转体,多面体?请举出 实例. 2.圆柱、圆锥、圆台的概念,以及相 同点与不同点有哪些? 3.棱柱、棱锥、棱台的概念及结构特 征分别是什么? 8分钟后检测,比谁能用本节知识 做对检测题。
3.下列多面体都是棱锥吗?如何在名称上区 分这些棱锥?写出棱锥结构特征。
( 1) ( 2)
( 3)
顶点
侧面
底面Biblioteka 侧棱棱锥的定义: 有一个面是多边形,其余各面都是 有一个公共顶点的三角形,由这些面围 成的多面体叫做棱锥.
思考5:用一个平行于棱锥底面的平面去 截棱锥,截面与底面的形状关系如何?
相似多边形
C1
D1 E1 A1 C A B
C
B1 B A
C1
B1 D1 A1
A1
C1
B1 C
D E
( 2)
D
A
( 1)
B
( 3)
棱柱定义: 有两个面互相平行,其余各面都是四边形, 每相邻两个四边形的公共边都互相平行,由 这些面围成的多面体叫做棱柱。
顶点 侧面
侧棱
两底面是平行的多边形, 各侧面都是平行四边形
底面
作业: 《 金版新学案》P3-P5
( 2) ( 1) ( 3)
简单几何体: 简单旋转体 (球、圆柱、圆锥、圆台) 简单多面体 轴 (棱柱、棱锥、棱台) 圆柱旋转轴: 矩形的一边所在的直线 圆锥的旋转轴: 直角三角形的一条直角边所在的直线 圆台的旋转轴: 直角梯形垂直与底边的腰所在直线
2.下列多面体哪些是棱柱?如何在名称上区 分这些棱柱?并写出棱柱的结构特征(从底 面、侧面、棱所具有的性质出发)

2020-2021学年高中数学 第一章 立体几何初步 1.1 简单几何体 1.1.1 简单旋转体课件 北师大版必修2

2020-2021学年高中数学 第一章 立体几何初步 1.1 简单几何体 1.1.1 简单旋转体课件 北师大版必修2

所围成的几何体 侧面:不垂直于旋转
叫作圆柱
轴的边旋转而成的 ____曲__面_____;
名 称
定义
相关概念
圆 锥
以直角三角形的 __一__条__直__角__边___ 所在的直线为旋 转轴,其余各边 旋转而形成的曲 面所围成的几何 体叫作圆锥
高:在旋转轴上这 条边的长度; 底面:垂直于旋转 轴的边旋转而成的 ____圆__面_____; 侧面:不垂直于旋 转轴的边旋转而成 的__曲__面_______;

§1 简单几何体
1.1 简单旋转体
1.问题导航 (1)连接圆柱(圆台)两底面的圆心的连线与其底面有怎样的位 置关系? (2)有同学说:“直角三角形绕其一边所在的直线旋转一周所 形成的几何体是圆锥.”这种说法对吗? (3)圆台中,上底面半径r、下底面半径R、高h与母线l之间有 怎样的关系?
图形表示

定义
相关概念

以_直__角__梯__形__垂_直___ _于__底__边__的__腰___所
母线:无 论转到什
在的直线为旋转

么位置,
轴,其余各边旋

这条边都
转而形成的曲面
叫作侧面
所围成的几何体
的母线
叫作圆台
图形表示
1.判断正误.(正确的打“√”,错误的打“×”) (1)矩形绕其一边所在直线旋转一周而形成的曲面所围成的几何 体是圆柱.( √ ) (2)直角三角形绕其一边所在直线旋转一周而形成的曲面所围成 的几何体是圆锥.( × ) (3)直角梯形绕其腰所在直线旋转一周而形成的曲面所围成的几 何体是圆台.( × ) (4)圆以一条直径所在的直线为轴,旋转180°围成的几何体是 球.( √ )

七级数学上册 1.1 生活 数学 简单的几何体的三视图是怎样的?素材 (新版)苏科版

七级数学上册 1.1 生活 数学 简单的几何体的三视图是怎样的?素材 (新版)苏科版

简单的几何体的三视图是怎样的?
难易度:★★★
关键词:让我们来做数学
答案:
简单几何体的三视图,画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等。

【举一反三】
典例:猜谜语:“横看是圆,侧看是圆,远看是圆,近看是圆,高看是圆,低看是圆,上看、下看、左看、右看都是圆.”谜底是_______________。

(不是圆!)
思路导引:三视图相同的几何体有正方体和球.根据球的概念和定义即可解.实际描写的是球的三视图.
标准答案:因为球不论从哪一面看得到的平面图形都是圆,所以谜底是球.故答案为球.。

1.1几何体结构特征

1.1几何体结构特征
A
S
顶点
侧面 D C 底面 B
表示方法:棱锥S-ABCD
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
以矩形的一边所 母 在直线为旋转轴,其 线 余边旋转形成的曲面 所围成的几何体叫做 圆柱。 表示方法:圆柱O’O
A’
O’ B’
轴 侧 面
A
O B
底面
棱柱 棱锥
结构特征
以直角三角形的 一条直角边所在直线 为旋转轴,其余两边旋 转形成的曲面所围成 的几何体叫做圆锥。 A
归纳小结
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
有两个面互相平行, 其余各面都是四边形, 并且每相邻两个面的公 共边都平行。
E’ F’ A’
D’ B’
C’
底 面
E A
D
侧棱 F
C
B
侧面
表示方法:棱柱ABCDEFA’B’C’D’E’F’
顶点
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
有一个面是多 边形,其余各面都 是有一个公共顶点 侧棱 的三角形。
母 线
顶点 S 轴 侧 面
棱台
圆柱 圆锥 圆台 球
O
B
底面
表示方法:圆锥SO
棱柱 棱锥
结构特征
用一个平行于圆 锥底面的平面去截圆 锥,底面与截面之间的 部分是圆台. 表示方法:圆台O’O
棱台
圆柱 圆锥 圆台 球
O’ O
棱柱 棱锥 棱台 圆柱 圆锥 圆台 球
结构特征
用一个平行于棱 锥底面的平面去截棱 锥,底面与截面之间的 部分是棱台.
定义:
如果我们只考虑这些 物体的形状和大小,而不考 虑其他因素,那么由这些物 体抽象出来的空间图形叫 空间几何体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简单几何体
一、教学目标
了解简单旋转体和简单多面体的有关概念.
二、设计思路
1.本节通过具体实物图形的展示引出简单旋转体和简单多面体的有关概念.
2.本节是立体几何的基础课,是为学习立体几何的初步知识作的铺垫.
三、教学建议:
本节有两个知识点:简单旋转体和简单多面体的有关概念.
本节的重点是简单几何体的有关概念.
本节的难点是球面距离的理解.
本节的有关几何体,学生在小学、初中都有初步的认识,只是没给它们严格定义,教学时应结合学生
已有的知识进行.
1.本节主要介绍简单旋转体和简单多面体的有关概念,对它们的有关性质不作要求.
2.对于简单旋转体,重点介绍了球、圆柱、圆锥、圆台.球是一种常见的几何体,它是一种旋转体,教材是由它引入旋转体的定义的.圆柱、圆锥、圆台都是特殊的旋转体.
3.在球的有关概念教学时,应注意球体和球面的联系和区别,对地球有关的概念,如经线、纬线等,最好结合地球仪讲解,其中球面距离不易理解,要注意.
4.关于球、圆柱、圆锥、圆台的有关概念,最好结合多媒体加以形象演示,主要让学生体会旋转体
的动态形成过程.
5.教材中没对简单多面体下严格的定义,教学时不宜展开,只要求学生知道棱柱、棱锥、棱台属于
简单多面体就可以了.
6.本节概念较多,教师教学时应尽量结合教具和多媒体,使学生对有关概念有形象生动的认识.。

相关文档
最新文档