2017_2018学年高中数学第一章集合与函数概念1.3.2奇偶性课时达标训练新人教A版必修1

合集下载

高中数学 第一章 集合与函数概念 1.3 函数的基本性质 1.3.2 奇偶性教学设计 新人教A版必修1

高中数学 第一章 集合与函数概念 1.3 函数的基本性质 1.3.2 奇偶性教学设计 新人教A版必修1

1.3.2 奇偶性整体设计教学分析本节讨论函数的奇偶性是描述函数整体性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然.值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x-1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明.三维目标1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力.2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想.重点难点教学重点:函数的奇偶性及其几何意义.教学难点:判断函数的奇偶性的方法与格式.课时安排1课时教学过程导入新课思路1.同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立平面直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究.思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x 3的图象各有怎样的对称性?引出课题:函数的奇偶性.推进新课新知探究 提出问题(1)如图1所示,观察下列函数的图象,总结各函数之间的共性.图1(2)如何利用函数的解析式描述函数的图象关于y 轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?表1(3)(4)偶函数的图象有什么特征?(5)函数f (x )=x 2,x ∈[-1,2]是偶函数吗? (6)偶函数的定义域有什么特征?(7)观察函数f (x )=x 和f (x )=1x的图象,类比偶函数的推导过程,给出奇函数的定义和性质?活动:教师从以下几点引导学生: (1)观察图象的对称性.(2)学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数.(3)利用函数的解析式来描述. (4)偶函数的性质:图象关于y 轴对称.(5)函数f(x)=x2,x∈[-1,2]的图象关于y轴不对称;对定义域[-1,2]内x=2,f(-2)不存在,即其函数的定义域中任意一个x的相反数-x不一定也在定义域内,即f(-x)=f(x)不恒成立.(6)偶函数的定义域中任意一个x的相反数-x一定也在定义域内,此时称函数的定义域关于原点对称.(7)先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质.给出偶函数和奇函数的定义后,要指明:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称);③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;④可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;⑤函数的奇偶性是函数在定义域上的性质,是“整体”性质,而函数的单调性是函数在定义域的子集上的性质,是“局部”性质.讨论结果:(1)这两个函数之间的图象都关于y轴对称.(2)表1f(-3)=f(3);f(-2)=f(2);f(-1)=f(1).可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任一个x,都有f(-x)=f(x).(3)一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.(4)偶函数的图象关于y轴对称.(5)不是偶函数.(6)偶函数的定义域关于原点对称.(7)一般地,如果对于函数f (x )的定义域内的任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数.奇函数的图象关于原点中心对称,其定义域关于原点对称.应用示例思路1例1 判断下列函数的奇偶性: (1)f (x )=x 4; (2)f (x )=x 5; (3)f (x )=x +1x;(4)f (x )=1x2.活动:学生思考奇偶函数的定义,利用定义来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f (-x )=f (x )或f (-x )=-f (x ).解:(1)函数的定义域是R ,对定义域内任意一个x ,都有f (-x )=(-x )4=x 4=f (x ), 所以函数f (x )=x 4是偶函数.(2)函数的定义域是R ,对定义域内任意一个x ,都有f (-x )=(-x )5=-x 5=-f (x ), 所以函数f (x )=x 5是奇函数.(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f (-x )=-x +1-x =-⎝ ⎛⎭⎪⎫x +1x =-f (x ), 所以函数f (x )=x +1x是奇函数.(4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f (-x )=1(-x )2=1x 2=f (x ),所以函数f (x )=1x2是偶函数.点评:本题主要考查函数的奇偶性.函数的定义域是使函数有意义的自变量的取值范围,对定义域内任意x ,其相反数-x 也在函数的定义域内,此时称为定义域关于原点对称.利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f (-x )与f (x )的关系; ③作出相应结论:若f (-x )=f (x )或f (-x )-f (x )=0,则f (x )是偶函数; 若f (-x )=-f (x )或f (-x )+f (x )=0,则f (x )是奇函数.x -x4,则当x∈(0,+∞)时,f(x)=__________.活动:学生思考偶函数的解析式的性质,考虑如何将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.利用偶函数的性质f(x)=f(-x),将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.解析:当x∈(0,+∞)时,则-x<0.又∵当x∈(-∞,0)时,f(x)=x-x4,∴f(x)=f(-x)=(-x)-(-x)4=-x-x4.答案:-x-x4点评:本题主要考查函数的解析式和奇偶性.已知函数的奇偶性,求函数的解析式时,要充分利用函数的奇偶性,将所求解析式的区间上自变量对应的函数值转化为已知解析式的区间上自变量对应的函数值.例1 判断下列函数的奇偶性. (1)f (x )=2x 4,x ∈[-1,2];(2)f (x )=x 3-x 2x -1;(3)f (x )=x 2-4+4-x 2; (4)f (x )=1+x 2+x -11+x 2+x +1. 活动:学生思考奇偶函数的定义和函数的定义域的求法.先判断函数的定义域是否关于原点对称,再判断f (-x )与f (x )的关系.在(4)中注意定义域的求法,对任意x ∈R ,有1+x 2>x 2=|x |≥-x ,则1+x 2+x >0.则函数的定义域是R .解:(1)∵它的定义域关于原点不对称,∴函数f (x )=2x 4,x ∈[-1,2]既不是奇函数也不是偶函数.(2)∵它的定义域为{x |x ∈R ,且x ≠1},并不关于原点对称,∴函数f (x )=x 3-x 2x -1既不是奇函数也不是偶函数.(3)∵x 2-4≥0且4-x 2≥0, ∴x =±2,即f (x )的定义域是{-2,2}. ∵f (2)=0,f (-2)=0, ∴f (2)=f (-2),f (2)=-f (2). ∴f (-x )=-f (x ),且f (-x )=f (x ). ∴f (x )既是奇函数也是偶函数. (4)函数的定义域是R . ∵f (-x )+f (x )=1+x 2-x -11+x 2-x +1+1+x 2+x -11+x 2+x +1 =1+x 2-(x +1)2+1+x 2-(x -1)2(1+x 2-x +1)(1+x 2+x +1)=1+x2-x2-2x-1+1+x2-x2+2x-1 (1+x2-x+1)(1+x2+x+1)=0,∴f(-x)=-f(x).∴f(x)是奇函数.点评:本题主要考查函数的奇偶性.定义法判断函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f(-x)与f(x)或-f(x)是否相等;(2)当f(-x)=f(x)时,此函数是偶函数;当f(-x)=-f(x)时,此函数是奇函数;(3)当f(-x)=f(x)且f(-x)=-f(x)时,此函数既是奇函数又是偶函数;(4)当f(-x)≠f(x)且f(-x)≠-f(x)时,此函数既不是奇函数也不是偶函数.判断解析式复杂的函数的奇偶性时,如果定义域关于原点对称时,通常化简f(-x)+f(x)来判断f(-x)=f(x)或f(-x)=-f(x)是否成立.1212)=f (x 1)+f (x 2),且当x >1时f (x )>0,f (2)=1,(1)求证:f (x )是偶函数;(2)求证:f (x )在(0,+∞)上是增函数;(3)试比较f ⎝ ⎛⎭⎪⎫-52与f ⎝ ⎛⎭⎪⎫74的大小.活动:(1)转化为证明f (-x )=f (x ),利用赋值法证明f (-x )=f (x );(2)利用定义法证明单调性,证明函数单调性的步骤是“去比赛”;(3)利用函数的单调性比较它们的大小,利用函数的奇偶性,将函数值f ⎝ ⎛⎭⎪⎫-52和f ⎝ ⎛⎭⎪⎫74转化为同一个单调区间上的函数值.(1)证明:令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.令x 1=x 2=-1,得f (1)=f [(-1)×(-1)]=f (-1)+f (-1),∴2f (-1)=0. ∴f (-1)=0.∴f (-x )=f (-1·x )=f (-1)+f (x )=f (x ).∴f (x )是偶函数. (2)证明:设x 2>x 1>0,则f (x 2)-f (x 1)=f ⎝ ⎛⎭⎪⎫x 1·x 2x 1-f (x 1)=f (x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1-f (x 1)=f ⎝ ⎛⎭⎪⎫x 2x 1. ∵x 2>x 1>0,∴x 2x 1>1.∴f ⎝ ⎛⎭⎪⎫x 2x 1>0,即f (x 2)-f (x 1)>0. ∴f (x 2)>f (x 1).∴f (x )在(0,+∞)上是增函数.(3)解:由(1)知f (x )是偶函数,则有f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫52. 由(2)知f (x )在(0,+∞)上是增函数,则f ⎝ ⎛⎭⎪⎫52>f ⎝ ⎛⎭⎪⎫74.∴f ⎝ ⎛⎭⎪⎫-52>f ⎝ ⎛⎭⎪⎫74. 点评:本题是抽象函数问题,主要考查函数的奇偶性和单调性及其综合应用.判断抽象函数的奇偶性和单调性通常应用定义法,比较抽象函数值的大小通常利用抽象函数的单调性来比较.其关键是将所给的关系式进行有效的变形和恰当的赋值.课本本节练习,1,2. 【补充练习】1.设函数y =f (x )是奇函数.若f (-2)+f (-1)-3=f (1)+f (2)+3,则f (1)+f (2)=__________.解析:∵函数y =f (x )是奇函数,∴f (-2)=-f (2),f (-1)=-f (1).∴-f (2)-f (1)-3=f (1)+f (2)+3.∴2[f (1)+f (2)]=-6.∴f (1)+f (2)=-3. 答案:-32.已知f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =__________,b =__________.解析:∵偶函数的定义域关于原点对称,∴a -1+2a =0.∴a =13.∴f (x )=13x 2+bx +1+b .又∵f (x )是偶函数,∴b =0.答案:133.已知定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),则f (6)的值为( ) A .-1 B .0 C .1 D .2解析:f (6)=f (4+2)=-f (4)=-f (2+2)=f (2)=f (2+0)=-f (0). 又f (x )是定义在R 上的奇函数,∴f (0)=0. ∴f (6)=0.故选B. 答案:B拓展提升问题:基本初等函数的奇偶性.探究:利用判断函数的奇偶性的方法:定义法和图象法,可得 正比例函数y =kx (k ≠0)是奇函数; 反比例函数y =k x(k ≠0)是奇函数;一次函数y =kx +b (k ≠0),当b =0时是奇函数,当b ≠0时既不是奇函数也不是偶函数;二次函数y =ax 2+bx +c (a ≠0),当b =0时是偶函数,当b ≠0时既不是奇函数也不是偶函数.课堂小结本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.作业课本习题1.3A 组 6,B 组 3.设计感想单调性与奇偶性的综合应用是本节的一个难点,而本节设计的题目不多,因此,在实际教学中,教师可以利用课余时间补充,让学生结合函数的图象充分理解好单调性和奇偶性这两个性质.在教学设计中,注意培养学生的综合应用能力,以便满足高考要求.备课资料 奇、偶函数的性质(1)奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立. (3)f (-x )=f (x )⇔f (x )是偶函数,f (-x )=-f (x )⇔f (x )是奇函数. (4)f (-x )=f (x )⇔f (x )-f (-x )=0,f (-x )=-f (x )⇔f (x )+f (-x )=0. (5)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数;如果函数y =f (x )和y =g (x )的奇偶性相同,那么复合函数y =f [g (x )]是偶函数,如果函数y =f (x )和y =g (x )的奇偶性相反,那么复合函数y =f [g (x )]是奇函数,简称为“同偶异奇”.(6)如果函数y =f (x )是奇函数,那么f (x )在区间(a ,b )和(-b ,-a )上具有相同的单调性;如果函数y =f (x )是偶函数,那么f (x )在区间(a ,b )和(-b ,-a )上具有相反的单调性.(7)定义域关于原点对称的任意函数f (x )可以表示成一个奇函数与一个偶函数的和,即f (x )=f (x )-f (-x )2+f (x )+f (-x )2. (8)若f (x )是(-a ,a )(a >0)上的奇函数,则f (0)=0;若函数f (x )是偶函数,则f (x )=f (-x )=f (|x |)=f (-|x |).若函数y =f (x )既是奇函数又是偶函数,则有f (x )=0.。

2017_2018版高中数学第一章集合与函数概念1_2子集全集补集学案苏教版必修1

2017_2018版高中数学第一章集合与函数概念1_2子集全集补集学案苏教版必修1

1.2 子集、全集、补集学习目标 1.明白得子集、真子集、全集、补集的概念.2.能用符号和Venn图,数轴表达集合间的关系.3.把握列举有限集的所有子集的方式,给定全集,会求补集.知识点一子集试探若是把“马”和“白马”视为两个集合,那么这两个集合中的元素有什么关系?梳理定义如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),那么集合A称为集合B的子集记法A⊆B或B⊇A读法集合A包含于集合B或集合B包含集合A 图示性质(1)任何一个集合是它本身的子集,即A⊆A;(2)对于集合A,B,C,若A⊆B且B⊆C,则A⊆C;(3)若A⊆B且B⊆A,则A=B;(4)规定∅⊆A知识点二真子集试探在知识点一中,咱们明白集合A是它本身的子集,那么如何刻画至少比A少一个元素的A的子集?梳理定义如果A⊆B,并且A≠B,那么集合A称为集合B的真子集记法A B或B A读法集合A真包含于集合B或集合B真包含集合A 图示性质(1)对于集合A,B,C,若A B且B C,则A C;(2)对于集合A,B,若A⊆B且A≠B,则A B;(3)若A≠∅,则∅A知识点三全集、补集试探自然数集N中,除正整数还有谁?整数集Z中呢?梳理(1)全集若是集合S包括咱们所要研究的各个集合,那么这时S能够看做一个全集,全集通常记作U.(2)补集定义文字语言设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集符号语言∁S A={x|x∈S,且x∉A}图形语言性质(1)A⊆S,∁S A⊆S;(2)∁S(∁S A)=A;(3)∁S S=∅,∁S∅=S;(4)A∪(∁S A)=S;(5)A∩(∁S A)=∅类型一判定集合间的关系命题角度1 概念间的包括关系例1 设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},那么这些集合之间的关系为________.反思与感悟一个概念通常确实是一个集合,要判定概念间的关系第一要准确明白得概念的概念.跟踪训练1 咱们明白自然数集、整数集、有理数集、实数集能够别离用N、Z、Q、R表示,用符号表示N、Z、Q、R的关系为________________.命题角度2 数集间的包括关系例2 设集合A={0,1},集合B={x|x<2或x>3},那么A与B的关系为________.反思与感悟判定集合关系的方式(1)观观点:一一列举观看.(2)元素特点法:第一确信集合的元素是什么,弄清集合元素的特点,再利用集合元素的特点判定关系.(3)数形结合法:利用数轴或Venn图.跟踪训练2 已知集合A={x|-1<x<4},B={x|x<5},那么A与B的关系为________.类型二求集合的子集例3 (1)写出集合{a,b,c,d}的所有子集;(2)假设一个集合有n(n∈N)个元素,那么它有多少个子集?多少个真子集?验证你的结论.反思与感悟为了罗列时不重不漏,要讲究列举顺序,那个顺序有点类似于从1到100数数:先是一名数,然后是两位数,在两位数中,先数首位是1的等等.跟踪训练3 适合条件{1}⊆A{1,2,3,4,5}的集合A的个数是________.类型三求补集例4 (1)假设全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},那么∁U A=________.(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图(有限集)、数轴(数集)、坐标系(点集)来求解.跟踪训练4 (1)设集合U={1,2,3,4,5},集合A={1,2},那么∁U A=________.(2)已知集合U=R,A={x|x2-x-2≥0},那么∁U A=________.(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},那么∁U A=________.1.集合P={x|x2-1=0},T={-1,0,1},那么P与T的关系为________.2.以下关系错误的选项是________.①∅⊆∅;②A⊆A;③∅⊆A;④∅∈A.3.集合{(1,2),(-3,4)}的所有非空真子集是________.4.假设A={x|x>a},B={x|x>6},且A⊆B,那么实数a的取值范围是________.5.设集合U={1,2,3,4,5,6},M={1,2,4},那么∁U M等于________.1.对子集、真子集有关概念的明白得(1)集合A中的任何一个元素都是集合B中的元素,即由x∈A,能推出x∈B,这是判定A⊆B的经常使用方式.(2)不能简单地把“A⊆B”明白得成“A是B中部份元素组成的集合”,因为假设A=∅时,那么A中不含任何元素;假设A=B,那么A中含有B中的所有元素.(3)在真子集的概念中,A B第一要知足A⊆B,第二至少有一个x∈B,但xD∈/A.2.集合子集的个数求集合的子集问题时,一样能够依照子集元素个数分类,再依次写出符合要求的子集.集合的子集、真子集个数的规律为:含n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.写集合的子集时,空集和集合本身易漏掉.3.补集是相关于全集而言的,有限集求补集一样借助Venn图,持续的数集求补集经常使用数轴,求时注意端点取舍.答案精析1.2 子集、全集、补集问题导学知识点一试探所有的白马都是马,马不必然是白马.知识点二试探用真子集.知识点三试探N中除正整数还有0,Z中除正整数还有负整数和0.题型探讨例1 Q M N P解析正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形.跟踪训练1 N Z Q R例2 A B解析∵0<2,∴0∈B.又∵1<2,∴1∈B.又A≠B,∴A B.跟踪训练2 A B解析由数轴易知A中元素都属于B,B中至少有一个元素如-2∉A,故有A B.例3 解(1)∅,{a},{b},{c},{d},{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},{a,b,c},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d}.(2)假设一个集合有n(n∈N)个元素,那么它有2n个子集,2n-1个真子集.如∅,有一个子集,0个真子集.跟踪训练3 15解析如此的集合A有{1},{1,2},{1,3},{1,4},{1,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5}共15个.例4 (1){x|0<x≤2}解析∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2}.(2)解依照题意可知,U={1,2,3,4,5,6,7,8},因此∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)解依照三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.跟踪训练4 (1){3,4,5}(2){x|x2-x-2<0}(3){(x,y)|xy≤0}当堂训练1.P T 2.④ 3.{(1,2)},{(-3,4)}4.[6,+∞) 5.{3,5,6}。

2018版高中数学第一章集合与函数概念1.3.2奇偶性学案新人教A版必修1

2018版高中数学第一章集合与函数概念1.3.2奇偶性学案新人教A版必修1

1.3.2 奇偶性学习目标 1.结合具体函数,了解函数奇偶性的含义(难点).2.掌握判断函数奇偶性的方法,了解奇偶性与函数图象对称性之间的关系(重点).3.会利用函数的奇偶性解决简单问题(重点).预习教材P33-P35,完成下面问题: 知识点 函数的奇偶性 函数的奇偶性(1)对于函数y =f (x ),若存在x ,使f (-x )=-f (x ),则函数y =f (x )一定是奇函数.( )(2)不存在既是奇函数,又是偶函数的函数.( )(3)若函数的定义域关于原点对称,则这个函数不是奇函数,就是偶函数.( ) 提示 (1)× 反例:f (x )=x 2,存在x =0,f (-0)=-f (0)=0,但函数f (x )=x 2不是奇函数;(2)× 存在f (x )=0,x ∈R 既是奇函数,又是偶函数;(3)× 函数f (x )=x 2-2x ,x ∈R 的定义域关于原点对称,但它既不是奇函数,又不是偶函数.题型一 函数奇偶性的判断 【例1】 判断下列函数的奇偶性: (1)f (x )=2-|x |;(2)f (x )=x 2-1+1-x 2; (3)f (x )=xx -1;(4)f (x )=⎩⎪⎨⎪⎧x +1,x >0,-x +1,x <0.解 (1)∵函数f (x )的定义域为R ,关于原点对称,又f (-x )=2-|-x |=2-|x |=f (x ),∴f (x )为偶函数.(2)∵函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0, 又∵f (-x )=-f (x ),f (-x )=f (x ), ∴f (x )既是奇函数又是偶函数.(3)∵函数f (x )的定义域为{x |x ≠1},不关于原点对称, ∴f (x )是非奇非偶函数.(4)f (x )的定义域是(-∞,0)∪(0,+∞),关于原点对称. 当x >0时,-x <0,f (-x )=1-(-x )=1+x =f (x );当x <0时,-x >0,f (-x )=1+(-x )=1-x =f (x ).综上可知,对于x ∈(-∞,0)∪(0,+∞),都有f (-x )=f (x ),f (x )为偶函数. 规律方法 判断函数奇偶性的两种方法: (1)定义法:(2)图象法:【训练1】 判断下列函数的奇偶性: (1)f (x )=x 3+x 5;(2)f (x )=|x +1|+|x -1|; (3)f (x )=2x 2+2xx +1.解 (1)函数的定义域为R .∵f (-x )=(-x )3+(-x )5=-(x 3+x 5)=-f (x ), ∴f (x )是奇函数.(2)f (x )的定义域是R .∵f (-x )=|-x +1|+|-x -1|=|x -1|+|x +1|=f (x ),∴f (x )是偶函数.(3)函数f (x )的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f (x )是非奇非偶函数.题型二奇、偶函数的图象问题【例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象.(2)写出使f(x)<0的x的取值集合.解(1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y =f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值f(x)<0的x的取值集合为(-2,0)∪(2,5).规律方法 1.巧用奇偶性作函数图象的步骤(1)确定函数的奇偶性.(2)作出函数在[0,+∞)(或(-∞,0])上对应的图象.(3)根据奇(偶)函数关于原点(y轴)对称得出在(-∞,0](或[0,+∞))上对应的函数图象.2.奇偶函数图象的应用类型及处理策略(1)类型:利用奇偶函数的图象可以解决求值、比较大小及解不等式问题.(2)策略:利用函数的奇偶性作出相应函数的图象,根据图象直接观察.【训练2】已知偶函数f(x)的一部分图象如图,试画出该函数在y轴另一侧的图象,并比较f(2),f(4)的大小.解f(x)为偶函数,其图象关于y轴对称,如图,由图象知,f(2)<f(4).方向1【例3-1】已知f(x)=x5+ax3+bx-8,若f(-3)=10,则f(3)=( )A.26 B.18 C.10 D.-26解析 法一 由f (x )=x 5+ax 3+bx -8, 得f (x )+8=x 5+ax 3+bx . 令G (x )=x 5+ax 3+bx =f (x )+8, ∵G (-x )=(-x )5+a (-x )3+b (-x ) =-(x 5+ax 3+bx )=-G (x ), ∴G (x )是奇函数,∴G (-3)=-G (3), 即f (-3)+8=-f (3)-8.又f (-3)=10, ∴f (3)=-f (-3)-16=-10-16=-26. 法二 由已知条件,得⎩⎪⎨⎪⎧f -=-5+a -3+b --8,①f =35+a ·33+b ·3-8,②①+②得f (3)+f (-3)=-16, 又f (-3)=10,∴f (3)=-26. 答案 D方向2 利用奇偶性求参数值 【例3-2】 若函数f (x )=x +x +ax为奇函数,则a =________.解析 ∵f (x )是奇函数,∴f (-x )=-f (x ),即-x +-x +a-x=-x +x +ax,显然x ≠0,整理得x 2-(a +1)x +a =x 2+(a +1)x +a ,故a +1=0,解得a =-1.答案 -1方向3 利用奇偶性求函数的解析式【例3-3】 已知函数f (x )(x ∈R )是奇函数,且当x >0时,f (x )=2x -1,求函数f (x )的解析式.解 当x <0,-x >0,∴f (-x )=2(-x )-1=-2x -1. 又∵f (x )是奇函数,∴f (-x )=-f (x ), ∴f (x )=2x +1.又f (x )(x ∈R )是奇函数, ∴f (-0)=-f (0),即f (0)=0.∴所求函数的解析式为f (x )=⎩⎪⎨⎪⎧2x -1,x >0,0,x =0,2x +1,x <0.规律方法 1.利用函数的奇偶性求函数值或参数值的方法:利用函数的奇偶性的定义f (-x )=f (x )或f (-x )=-f (x )可求函数值,比较f (-x )=f (x )或f (-x )=-f (x )的系数可求参数值.2.利用函数奇偶性求函数解析式的步骤(1)“求谁设谁”,即在哪个区间上求解析式,x 就应在哪个区间上设; (2)转化到已知区间上,代入已知的解析式;(3)利用f (x )的奇偶性写出-f (x )或f (-x ),从而解出f (x ).课堂达标1.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3C .y =xD .y =x 2,x ∈(-1,1]解析 对于A ,f (-x )=-x =-f (x ),是奇函数;对于B ,定义域为R ,满足f (x )=f (-x ),是偶函数;对于C 和D ,定义域不关于原点对称,则不是偶函数,故选B .答案 B2.若函数f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则m 的值是( ) A .1B .2C .3D .4解析 f (-x )=(m -1)x 2-(m -2)x +(m 2-7m +12),f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12),由f (-x )=f (x ),得m -2=0,即m =2.答案 B3.已知函数f (x )为奇函数,且当x >0时,f (x )=-x 2+1x-1,则f (-2)=________.解析 f (2)=-22+12-1=-92,又f (x )是奇函数,故f (-2)=-f (2)=92.答案 924.如图,已知偶函数f (x )的定义域为{x |x ≠0,x ∈R },且f (3)=0,则不等式f (x )<0的解集为________.解析 由条件利用偶函数的性质,画出函数f (x )在R 上的简图:数形结合可得不等式f (x )<0的解集为(-3,0)∪(0,3).答案 (-3,0)∪(0,3)5.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x +1,求f (x )的解析式. 解 当x <0时,-x >0,∴f (-x )=-x +1,又f (-x )=-f (x ),故f (x )=x -1,又f (0)=0,所以f (x )=⎩⎪⎨⎪⎧x +1,x >0,0,x =0,x -1,x <0.课堂小结1.定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的一个必要条件,f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )⇔f (-x )∓f (x )=0⇔f -xf x=±1(f (x )≠0).3.应用函数的奇偶性求值、参数或函数的解析式,要根据函数奇偶性的定义,f (-x )=f (x )或f (-x )=-f (x )对函数值及函数解析式进行转换.。

高中数学第一章集合与函数概念1.3.2奇偶性第2课时函数奇偶性的应用教案新人教A版必修1

高中数学第一章集合与函数概念1.3.2奇偶性第2课时函数奇偶性的应用教案新人教A版必修1

高中数学第一章集合与函数概念1.3.2奇偶性第2课时函数奇偶性的应用教案新人教A 版必修1第2课时 函数奇偶性的应用[目标] 1.掌握利用函数奇偶性求函数解析式的方法;2.理解并能运用函数的单调性和奇偶性解决比较大小、求最值、解不等式等综合问题.[重点] 利用函数奇偶性求函数解析式,求函数值.[难点] 运用函数的单调性和奇偶性解决综合问题.知识点一 函数奇偶性的性质[填一填]1.奇、偶函数代数特征的灵活变通 由f (-x )=-f (x ),可得f (-x )+f (x )=0或f (-x )f (x )=-1(f (x )≠0);由f (-x )=f (x ),可得f (-x )-f (x )=0或f (-x )f (x )=1(f (x )≠0).在判定函数的奇偶性方面,有时利用变通后的等式更为方便.2.函数奇偶性的重要结论(1)如果一个奇函数f (x )在原点处有定义,即f (0)有意义,那么一定有f (0)=0,有时可以用这个结论来否定一个函数为奇函数.(2)如果函数f (x )是偶函数,那么f (x )=f (|x |).[答一答]1.什么函数既是奇函数又是偶函数?提示:设f (x )既是奇函数又是偶函数,则f (-x )=-f (x ),且f (-x )=f (x ),故-f (x )=f (x ),所以f (x )=0,但定义域需关于原点对称.故既是奇函数又是偶函数的函数有无数多个,它们为f (x )=0且其定义域是关于原点对称的非空数集.2.利用奇、偶函数的图象特征,直接观察函数奇偶性与单调性、最值之间有怎样的关系?提示:(1)奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.(2)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.知识点二函数奇偶性与单调性的联系[填一填]由于奇函数的图象关于原点对称,因此奇函数在定义域内关于原点对称的区间上的单调性相同,而偶函数的图象关于y轴对称,因此偶函数在定义域内关于原点对称的区间上的单调性相反,求解函数单调性与奇偶性的综合问题,要注意应用函数单调性和奇偶性的定义.[答一答]3.设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(-π),f(3)的大小顺序是f(-π)>f(3)>f(-2).解析:∵f(x)是R上的偶函数,∴f(-2)=f(2),f(-π)=f(π),又f(x)在[0,+∞)上递增,而2<3<π,∴f(π)>f(3)>f(2),即f(-π)>f(3)>f(-2).类型一利用函数的奇偶性求函数的值或解析式[例1] (1)已知函数f(x)=ax3-bx+3(其中a、b为常数),若f(3)=2 015,则f(-3)=________.(2)已知f(x)是R上的奇函数,且当x>0时,f(x)=x3+x+1,求f(x)的解析式.[答案](1)-2 009 (2)见解析[解析](1)法1:设g(x)=f(x)-3,则g(x)=ax3-bx,显然g(x)为R上的奇函数.又g(3)=f(3)-3=2 015-3=2 012,所以g(-3)=-g(3),即f(-3)-3=-2 012,解得f(-3)=-2 009.法2:f(x)+f(-x)=6,f(-3)=6-f(3)=6-2 015=-2 009.(2)解:设x <0,则-x >0,∴f (-x )=(-x )3-x +1=-x 3-x +1. 又∵f (x )是奇函数,则f (-x )=-f (x ). ∴-f (x )=-x 3-x +1,即f (x )=x 3+x -1. ∴x <0时,f (x )=x 3+x -1.又f (x )是奇函数且在x =0处有意义,则f (0)=0.∴f (x )=⎩⎪⎨⎪⎧x 3+x +1,x >0,0,x =0,x 3+x -1,x <0.(1)利用奇偶性求函数解析式时,求哪个区间的解析式就设x 在哪个区间,然后转化代入已知区间的解析式,根据f (x )与f (-x )的关系求f (x ).(2)本题中是求x ∈R 时的函数解析式,不要忘记x =0的特殊情况.[变式训练1] (1)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( B )A .4B .3C .2D .1(2)已知f (x )是定义域为R 的偶函数,当x >0时,f (x )=x 2+x ,则x <0时,f (x )=x 2-x .解析:(1)∵f (x )是奇函数,g (x )是偶函数, ∴f (-1)+g (1)=2,即-f (1)+g (1)=2.①f (1)+g (-1)=4,即f (1)+g (1)=4.②由①+②得g (1)=3,故选B.(2)设x <0,则-x >0.∴f (-x )=(-x )2-x =x 2-x . 又∵f (x )是定义域为R 的偶函数,∴f (-x )=f (x )=x 2-x ,∴当x <0时,f (x )=x 2-x .类型二 函数的奇偶性与单调性的综合应用命题视角1:比较大小[例2] 若f (x )是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f ⎝ ⎛⎭⎪⎫-32与f ⎝⎛⎭⎪⎫a 2+2a +52的大小关系是( )A .f ⎝ ⎛⎭⎪⎫-32>f ⎝ ⎛⎭⎪⎫a 2+2a +52B .f ⎝ ⎛⎭⎪⎫-32<f ⎝ ⎛⎭⎪⎫a 2+2a +52C .f ⎝ ⎛⎭⎪⎫-32≥f ⎝ ⎛⎭⎪⎫a 2+2a +52D .f ⎝ ⎛⎭⎪⎫-32≤f ⎝ ⎛⎭⎪⎫a 2+2a +52[答案] C[解析] 因为a 2+2a +52=(a +1)2+32≥32,又f (x )为偶函数,且在[0,+∞)上是减函数,所以f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫32≥f ⎝⎛⎭⎪⎫a 2+2a +52.奇函数、偶函数的单调性的对称规律在不同区间内的自变量对应的函数值比较大小中作用很大.对于偶函数,如果两个自变量的取值在关于原点对称的两个不同的单调区间上,即正负不统一,应利用图象的对称性将两个值化归到同一个单调区间内,然后再根据单调性判断.[变式训练2] 已知定义域为R 的函数f (x )在区间(8,+∞)上为减函数,且函数y =f (x +8)为偶函数,则( D )A .f (6)>f (7)B .f (6)>f (9)C .f (7)>f (9)D .f (7)>f (10)解析:由题易知y =f (x +8)为偶函数,则f (-x +8)=f (x +8),则f (x )的图象的对称轴为x =8.不妨画出符合已知条件的一个函数的大致图象(如图),则有f (6)<f (7),f (6)=f (10)<f (9),f (7)=f (9)>f (10).故选D.命题视角2:解不等式[例3] 设定义在[-2,2]上的奇函数f (x )在区间[0,2]上是减函数,若f (1-m )<f (m ),求实数m 的取值范围.[分析] 由于f (x )是奇函数,可得f (x )在[-2,0]上递减,借助函数的奇偶性及其单调区间,可将抽象不等式f (1-m )<f (m )转化为具体的不等式组求解.[解] 因为f (x )是奇函数且f (x )在[0,2]上是减函数,所以f (x )在[-2,2]上是减函数. 所以不等式f (1-m )<f (m )等价于⎩⎪⎨⎪⎧1-m >m ,-2≤m ≤2,-2≤1-m ≤2,解得-1≤m <12.所以实数m 的取值范围是⎣⎢⎡⎭⎪⎫-1,12.解抽象不等式时一定要充分利用已知条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据奇函数在对称区间上单调性一致,偶函数在对称区间上单调性相反,列出不等式或不等式组,同时不能漏掉函数自身定义域对参数的影响.[变式训练3] 已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( A )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 解析:因为f (x )为偶函数且在[0,+∞)上是增函数,所以结合图象由f (2x -1)<f (13)得-13<2x -1<13.解得13<x <23.命题视角3:奇偶性与单调性的综合应用[例4] 函数f (x )的定义域为{x |x ≠0},且满足对于定义域内任意的x 1,x 2都有等式f (x 1·x 2)=f (x 1)+f (x 2)成立.(1)求f (1)的值.(2)判断f (x )的奇偶性并证明.(3)若f (4)=1,且f (x )在(0,+∞)上是增函数,解关于x 的不等式f (3x +1)+f (-6)≤3.[解] (1)令x 1=x 2=1得,f (1)=f (1)+f (1),∴f (1)=0.(2)令x 1=x 2=-1,则f (-1)=0, 令x 1=-1,x 2=x ,∴f (-x )=f (x ),又定义域为{x |x ≠0},关于原点对称,∴f (x )为偶函数. (3)∵f (4)=1,又f (x 1·x 2)=f (x 1)+f (x 2), ∴f (4)+f (4)=f (4×4)=f (16), ∴f (16)+f (4)=f (16×4)=f (64), ∴f (64)=f (4)+f (4)+f (4),∴f (64)=3. ∴f (3x +1)+f (-6)≤3等价于f (-6(3x +1))≤3,∴f (|-6(3x +1)|)≤f (64),∴⎩⎪⎨⎪⎧3x +1≠0,|-6(3x +1)|≤64,解得x ∈[-359,-13)∪(-13,299].对于抽象函数奇偶性、单调性的判断,定义法是一种常用手段.具体的解题策略是:首先通过赋值得到f (1),f (0),f (-1)之类的特殊自变量的函数值,然后通过赋值构造f (x )与f (-x )或f (x 2)与f (x 1)之间的关系式进行函数奇偶性或单调性的判断.[变式训练4] 已知定义在(-1,1)上的奇函数f (x )=ax +b x 2+1是增函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)求函数f (x )的解析式; (2)解不等式f (t -1)+f (2t )<0. 解:(1)因为f (x )=ax +bx 2+1是定义在(-1,1)上的奇函数,则f (0)=0,得b =0.又因为f ⎝ ⎛⎭⎪⎫12=25,则12a ⎝ ⎛⎭⎪⎫122+1=25⇒a =1.所以f (x )=x x 2+1.(2)因为定义在(-1,1)上的奇函数f (x )是增函数, 由f (t -1)+f (2t )<0, 得f (t -1)<-f (2t )=f (-2t ).所以有⎩⎪⎨⎪⎧-1<t -1<1,-1<-2t <1,t -1<-2t ,⎩⎪⎨⎪⎧0<t <2,-12<t <12,t <13.解得0<t <13.故不等式f (t -1)+f (2t )<0的解集为{t |0<t <13}.1.若偶函数f (x )在(0,+∞)上是增函数,则a =f (-2),b =f (π2),c =f (32)的大小关系是( C )A .b <a <cB .b <c <aC .a <c <bD .c <a <b解析:f (x )为偶函数,则a =f (-2)=f (2). 又∵2<32<π2,f (x )在(0,+∞)上是增函数,∴f (2)<f (32)<f (π2),即a <c <b .2.已知函数f (x )是偶函数,且x <0时,f (x )=3x -1,则x >0时,f (x )=( C ) A .3x -1 B .3x +1 C .-3x -1D .-3x +1解析:设x >0,则-x <0.∴f (-x )=-3x -1.又∵f (x )是偶函数,∴x >0时,f (x )=f (-x )=-3x -1.3.若f (x )是定义在[-6,6]上的偶函数,且f (4)>f (1),则下列各式一定成立的是( D )A .f (0)<f (6)B .f (4)>f (3)C .f (2)>f (0)D .f (-1)<f (4)解析:∵f (x )是定义在[-6,6]上的偶函数,∴f (-1)=f (1).又f (4)>f (1),f (4)>f (-1).4.已知函数f(x)是R上的奇函数,且在R上是减函数,若f(a-1)+f(1)>0,则实数a的取值范围是(-∞,0).解析:∵f(a-1)+f(1)>0,∴f(a-1)>-f(1).∵f(x)是奇函数,∴f(-1)=-f(1).∴f(a-1)>f(-1).又f(x)在R上是减函数,∴a-1<-1,即a<0.5.已知奇函数f(x)在R上是减函数,且f(3a-10)+f(4-2a)<0,求a的取值范围.解:∵f(3a-10)+f(4-2a)<0,∴f(3a-10)<-f(4-2a),∵f(x)为奇函数,∴-f(4-2a)=f(2a-4),∴f(3a-10)<f(2a-4).又f(x)在R上是减函数,∴3a-10>2a-4,∴a>6.故a的取值范围为(6,+∞).——本课须掌握的三大问题1.函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.2.(1)根据奇函数的定义,如果一个奇函数在原点处有定义,即f(0)有意义,那么一定有f(0)=0.有时可以用这个结论来否定一个函数为奇函数.(2)偶函数的一个重要性质:f(|x|)=f(x),它能使自变量化归到[0,+∞)上,避免分类讨论.3.具有奇偶性的函数的单调性的特点:(1)奇函数在[a,b]和[-b,-a]上具有相同的单调性.(2)偶函数在[a,b]和[-b,-a]上具有相反的单调性.学习至此,请完成课时作业13。

18版高中数学第一章集合与函数概念1.3.2奇偶性学案新人教A版必修1

18版高中数学第一章集合与函数概念1.3.2奇偶性学案新人教A版必修1

1.3.2 奇偶性1.结合具体函数了解函数奇偶性的含义.(难点)2.会判断函数奇偶性的方法.(重点、难点)3.能运用函数图象理解和研究函数的奇偶性,了解函数奇偶性与图象的对称性之间的关系.(易混点)[基础·初探]教材整理1 偶函数阅读教材P33~P34“观察”以上部分,完成下列问题.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图1­3­4所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间.图1­3­4【解】由题意做出函数图象如下:据图可知,单调增区间为(-1,0),(1,+∞).教材整理2 奇函数阅读教材P34“观察”至P35“例5”以上部分,完成下列问题.判断(正确的打“√”,错误的打“×”)(1)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( )(2)不存在既是奇函数,又是偶函数的函数.( )(3)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.( )【解析】(1)×.如f(x)=x2,满足f(-0)=-f(0)=0,但函数f(x)=x2不是奇函数.(2)×.存在f(x)=0,x∈R既是奇函数,又是偶函数.(3)×.函数f(x)=x2-2x,x∈R的定义域关于原点对称,但它既不是奇函数,也不是偶函数.【答案】(1)×(2)×(3)×[小组合作型]①f (x )=|x +1|-|x -1|是奇函数;②g(x )=1-x2|x +2|-2既不是奇函数也不是偶函数;③F (x )=f (x )f (-x )(x ∈R )是偶函数;④h (x )=x 2-1+1-x 2既是奇函数,又是偶函数.其中正确的序号是________. 【精彩点拨】 先求函数的定义域,若定义域不关于原点对称,则既不是奇函数也不是偶函数;若关于原点对称,利用函数的奇偶性判断.【自主解答】 对于①,∵f (-x )=|-x +1|-|-x -1|=-(|x +1|-|x -1|)=-f (x ),∴f (x )=|x +1|-|x -1|是奇函数,①正确;对于②,由1-x 2≥0,得-1≤x ≤1,∴g (x )=1-x 2|x +2|-2=1-x 2x +2-2=1-x2x,满足g (-x )=-g (x ),故y =g (x )是奇函数,②错误;对于③,∵F (x )=f (x )f (-x ),∴F (-x )=f (-x )f (x )=F (x )(x ∈R ),∴F (x )=f (x )f (-x )是偶函数,③正确;对于④,由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,解得x =±1,故函数h (x )的定义域为{-1,1},且h (x )=0,所以h (x )既是奇函数,又是偶函数,④正确.【答案】 ①③④定义法判断函数奇偶性的步骤[再练一题]1.下列函数中,是偶函数的有________.(填序号)【导学号:97030060】 (1)f (x )=x 3;(2)f (x )=|x |+1;(3)f (x )=1x2;(4)f (x )=x +1x;(5)f (x )=x 2,x ∈[-1,2].【解析】 对于(1),f (-x )=-x 3=-f (x ),则为奇函数; 对于(2),f (-x )=|-x |+1=|x |+1,则为偶函数; 对于(3),定义域为{x |x ≠0},关于原点对称,f (-x )=1-x2=1x2=f (x ),则为偶函数;对于(4),定义域为{x |x ≠0},关于原点对称,f (-x )=-x -1x=-f (x ),则为奇函数;对于(5),定义域为[-1,2],不关于原点对称,不具有奇偶性,则为非奇非偶函数. 故为偶函数的是(2)(3). 【答案】 (2)(3)(1)若函数f (x )=x +x -a为奇函数,则a =( )A.12 B.23 C.34D .1(2)已知f (x )=x 5+ax 3+bx -8且f (-2)=10,那么f (2)=________. 【精彩点拨】 (1)利用奇函数的定义得到f (-1)=-f (1),列出方程求出a ; (2)由已知中f (x )=x 5+ax 3+bx -8,我们构造出函数g(x )=f (x )+8,由函数奇偶性的性质,可得g(x )为奇函数,由f (-2)=10,我们逐次求出g(-2)、g(2),可求f (2).【自主解答】 (1)∵f (x )为奇函数, ∴f (-1)=-f (1), ∴11+a=1-,∴1+a =3(1-a ),解得a =12,故选A .(2)∵f (x )=x 5+ax 3+bx -8,令g(x )=f (x )+8=x 5+ax 3+bx ,则g(x )为奇函数, ∵f (-2)=10,∴g(-2)=10+8=18,∴g(2)=-18, ∴f (2)=g(2)-8=-18-8=-26. 【答案】 (1)A (2)-261.由函数的奇偶性求参数应关注两点(1)函数奇偶性的定义既是判断函数的奇偶性的一种方法,也是在已知函数奇偶性时可以运用的一个性质,要注意函数奇偶性定义的正用和逆用.(2)利用常见函数如一次函数、反比例函数、二次函数具有奇偶性的条件也可求得参数. 2.利用函数的奇偶性求函数值时,若所给的函数不具有奇偶性,一般需利用所给的函数来构造一个奇函数或偶函数,然后利用其奇偶性求值,如本例(2)即是如此.[再练一题]2.若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.【解析】 由于f (x )是偶函数,由题意可知⎩⎪⎨⎪⎧a -1+2a =0,b =0,∴a =13,b =0.【答案】 13)的解析式. 【精彩点拨】 设x <0,则-x >0,结合f (-x )=-f (x ),f (0)=0,可求f (x ). 【自主解答】 设x <0,则-x >0,∴f (-x )=-x +1.∵f (x )是奇函数,∴f (-x )=-f (x ),即-f (x )=-x +1,∴f (x )=--x -1. ∵f (x )是奇函数,∴f (0)=0,∴f (x )=⎩⎨⎧1+x ,x >0,0,x =0,--x -1,x <0.利用奇偶性求函数解析式的一般步骤1.在哪个区间上求解析式,x 就设在哪个区间.2.把x对称转化到已知区间上,利用已知区间的解析式进行代入.3.利用函数的奇偶性把f(-x)改写成-f(x)或f(x),从而求出f(x).[再练一题]3.已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x-2),则当x<0时,f(x)的表达式为( )A.f(x)=x(x-2) B.f(x)=x(x+2)C.f(x)=-x(x-2) D.f(x)=-x(x+2)【解析】∵函数y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x).∵当x≥0时,f(x)=x(x-2),∴当x<0时,即-x>0,f(x)=-f(-x)=-[-x(-x-2)]=-x(x+2).故选D.【答案】 D[探究共研型]探究1 a)上的单调性如何?如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上的单调性如何?【提示】如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上单调递增;如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上单调递增.探究2 你能否把探究1所得出的结论用一句话概括出来?【提示】奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.探究3 若偶函数f(x)在(-∞,0)上单调递增,那么f(3)和f(-2)的大小关系如何?若f(a)>f(b),你能得到什么结论?【提示】f(-2)>f(3),若f(a)>f(b),则|a|<|b|.(1)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有( )A.f(-n)<f(n-1)<f(n+1)B .f (n +1)<f (-n )<f (n -1)C .f (n -1)<f (-n )<f (n +1)D .f (n +1)<f (n -1)<f (-n )(2)已知y =f (x )在定义域(-1,1)上是减函数,其图象关于原点对称,且f (1-a )+f (1-2a )<0,则a 的取值范围是________.【精彩点拨】 (1)根据条件判断函数的单调性,利用函数奇偶性和单调性之间的关系进行判断即可.(2)由于y =f (x )在定义域(-1,1)上,其图象关于原点对称,可得函数f (x )是奇函数.再利用单调性即可得出.【自主解答】 (1)∵对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)[f (x 2)-f (x 1)]>0,∴若x 2-x 1>0,则f (x 2)-f (x 1)>0,即x 2>x 1,则f (x 2)>f (x 1),若x 2-x 1<0,则f (x 2)-f (x 1)<0,即x 2<x 1,则f (x 2)<f (x 1),则函数在(-∞,0]上为单调递增函数.又∵f (x )为定义在R 上的偶函数,∴函数f (x )在[0,+∞)上为单调递减函数,则f (n +1)<f (n )<f (n -1),即f (n +1)<f (-n )<f (n -1),故选B .(2)∵y =f (x )在定义域(-1,1)上,其图象关于原点对称,∴函数f (x )是奇函数.∵f (1-a )+f (1-2a )<0,∴f (1-a )<-f (1-2a )=f (2a -1),又y =f (x )在定义域(-1,1)上是减函数,∴1>1-a >2a -1>-1,解得0<a <23.∴a 的取值范围是0<a <23.【答案】 (1)B (2)⎝ ⎛⎭⎪⎫0,231.利用函数的奇偶性与单调性求参数的范围问题,要首先弄清函数在各区间上的单调性,然后利用单调性列出不等式并求解,同时不应忘记函数自身定义域对参数的影响.2.利用函数的奇偶性与单调性比较函数值的大小,关键是利用奇偶性把自变量转化到函数的一个单调区间内,然后利用单调性比较.[再练一题]4.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f(-3)的大小关系是( ) 【导学号:97030062】A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)【解析】由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增函数,则x∈(-∞,0)时,f(x)是减函数,故其图象的几何特征是自变量的绝对值越小,则其函数值越小,∵|-2|<|-3|<π,∴f(π)>f(-3)>f(-2),故选A.【答案】 A1.下列函数是偶函数的是( )A.f(x)=x B.f(x)=2x2-3C.f(x)=x D.f(x)=x2,x∈(-1,1]【解析】对于A,f(-x)=-x=-f(x),是奇函数;对于B,定义域为R,满足f(x)=f(-x),是偶函数;对于C和D,定义域不对称,则不是偶函数,故选B.【答案】B2.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调递增区间为( )A.(-∞,0] B.[0,+∞)C.(-∞,+∞) D.[1,+∞)【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数f(x)=-2x2+1,所以函数在(-∞,0]上单调递增.【答案】A3.若奇函数f(x)在[-6,-2]上是减函数,且最小值是1,则它在[2,6]上是( ) 【导学号:97030063】A.增函数且最小值是-1B.增函数且最大值是-1C.减函数且最大值是-1D.减函数且最小值是-1【解析】∵奇函数f(x)在[-6,-2]上是减函数,且最小值是1,∴函数f(x)在[2,6]上是减函数且最大值是-1.【答案】 C4.如图1­3­5,已知偶函数f (x )的定义域为{x |x ≠0},且f (3)=0,则不等式f (x )<0的解集为________.图1­3­5【解析】 画出函数f (x )在R 上的简图,如图所示.数形结合可得不等式f (x )<0的解集为(-3,0)∪(0,3). 【答案】 (-3,0)∪(0,3)5.设函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x 2-x . (1)求f (x )的表达式; (2)画出f (x )的图象.【解】 (1)当x =0时,f (-0)=-f (0),则f (0)=0;当x <0时,即-x >0,函数f (x )是奇函数,则f (x )=-f (-x )=-[2(-x )2-(-x )]=-(2x 2+x )=-2x 2-x . 综上所述,f (x )=⎩⎪⎨⎪⎧2x 2-x ,x >0,0,x =0,-2x 2-x ,x <0.(2)函数f (x )的图象如图所示.。

【中小学资料】2018版高中数学 第一章 集合与函数概念 1.3.2 奇偶性学业分层测评 新人教A版必修1

【中小学资料】2018版高中数学 第一章 集合与函数概念 1.3.2 奇偶性学业分层测评 新人教A版必修1

1.3.2 奇偶性(建议用时:45分钟)[学业达标]一、选择题1.函数f (x )=1x-x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称【解析】 ∵f (-x )=-1x +x =-f (x ),∴f (x )=1x-x 是奇函数,∴f (x )的图象关于原点对称,故选C.【答案】 C2.设函数f (x ),g(x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数【解析】 ∵f (x )是奇函数,g (x )是偶函数,∴|f (x )|为偶函数,|g (x )|为偶函数. 再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f (x )|g (x )|为奇函数,故选C.【答案】 C3.已知f (x )是偶函数,且在区间(0,+∞)上是增函数,则f (-0.5),f (-1),f (0)的大小关系是( )A .f (-0.5)<f (0)<f (1)B .f (-1)<f (-0.5)<f (0)C .f (0)<f (-0.5)<f (-1)D .f (-1)<f (0)<f (-0.5)【解析】 ∵函数f (x )为偶函数,∴f (-0.5)=f (0.5),f (-1)=f (1).又∵f (x )在区间(0,+∞)上是增函数,∴f (0)<f (0.5)<f (1),即f (0)<f (-0.5)<f (-1),故选C.【答案】 C4.一个偶函数定义在区间[-7,7]上,它在[0,7]上的图象如图1­3­6,下列说法正确的是( )图1­3­6A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7D.这个函数在其定义域内有最小值是-7【解析】根据偶函数在[0,7]上的图象及其对称性,作出在[-7,7]上的图象,如图所示,可知这个函数有三个单调增区间;有三个单调减区间;在其定义域内有最大值是7;在其定义域内最小值不是-7.故选C.【答案】 C5.设f(x)是(-∞,+∞)上的奇函数,且f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于( )A.0.5 B.-0.5C.1.5 D.-1.5【解析】由f(x+2)=-f(x),则f(7.5)=f(5.5+2)=-f(5.5)=-f(3.5+2)=f(3.5)=f(1.5+2)=-f(1.5)=-f(-0.5+2)=f(-0.5)=-f(0.5)=-0.5.【答案】 B二、填空题6.函数f(x)在R上为偶函数,且x>0时,f(x)=x+1,则当x<0时,f(x)=________.【解析】∵f(x)为偶函数,x>0时,f(x)=x+1,∴当x<0时,-x>0,f(x)=f(-x)=-x+1,即x<0时,f(x)=-x+1.【答案】-x +17.若函数f (x )是定义在R 上的偶函数,在(-∞,0)上是增函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.【解析】 ∵函数f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,又f (2)=0,∴f (x )在(0,+∞)上是减函数,且f (-2)=f (2)=0,∴当x >2或x <-2时,f (x )<0,如图,即f (x )<0的解为x >2或x <-2,即不等式的解集为{x |x >2,或x <-2}.【答案】 {x |x >2,或x <-2}8.已知函数y =f (x )是奇函数,若g(x )=f (x )+2,且g(1)=1,则g(-1)=________. 【解析】 由g (1)=1,且g (x )=f (x )+2, ∴f (1)=g (1)-2=-1,又y =f (x )是奇函数.∴f (-1)=-f (1)=1, 从而g (-1)=f (-1)+2=3. 【答案】 3 三、解答题9.已知函数f (x )=x +mx,且f (1)=3. (1)求m 的值;(2)判断函数f (x )的奇偶性.【解】 (1)由题意知,f (1)=1+m =3, ∴m=2.(2)由(1)知,f (x )=x +2x,x ≠0.∵f (-x )=(-x )+2-x =-⎝ ⎛⎭⎪⎫x +2x =-f (x ), ∴函数f (x )为奇函数.10.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m)<f (m),求实数m 的取值范围.【解】 ∵f (x )是偶函数,∴f (-x )=f (x )=f (|x |),∴不等式f (1-m )<f (m )等价于f (|1-m |)<f (|m |).又当x ∈[0,2]时,f (x )是减函数.∴⎩⎪⎨⎪⎧|1-m |>|m |,-2≤1-m ≤2,-2≤m ≤2,解得-1≤m <12.故实数m 的取值范围为⎣⎢⎡⎭⎪⎫-1,12. [能力提升]1.设f (x )是定义在R 上的奇函数,且当x ≤0时,f (x )=x 2-12x ,则f (1)=( )A .-32B .-12C.32D.12【解析】 因为f (x )是定义在R 上的奇函数,所以f (1)=-f (-1)=-32.【答案】 A2.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=x 2+3x +1,则f (x )=( )A .x 2B .2x 2C .2x 2+2D .x 2+1【解析】 因为f (x )+g (x )=x 2+3x +1,① 所以f (-x )+g (-x )=x 2-3x +1. 又f (x )为偶函数,f (-x )=f (x );g (x )为奇函数,g (-x )=-g (x ),所以f (x )-g (x )=x 2-3x +1.② 联立①②可得f (x )=x 2+1. 【答案】 D3.定义在R 上的奇函数f (x ),满足f ⎝ ⎛⎭⎪⎫12=0,且在(0,+∞)上单调递减,则xf (x )>0的解集为( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <12或-12<x <0C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <12或x <-12D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <0或x >12 【解析】 ∵函数f (x )是奇函数,在(0,+∞)上单调递减,且f ⎝ ⎛⎭⎪⎫12=0,∴f ⎝ ⎛⎭⎪⎫-12=0,且在区间(-∞,0)上单调递减.∵当-12<x <0时,f (x )<0,此时xf (x )>0,当0<x <12时,f (x )>0,此时xf (x )>0,综上,xf (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <12或-12<x <0. 【答案】 B4.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).当x >0时,f (x )>0. (1)求证:f (x )是奇函数;(2)若f (1)=12,试求f (x )在区间[-2,6]上的最值.【解】 (1)证明:令x =0,y =0,则f (0)=2f (0), ∴f (0)=0.令y =-x ,则f (0)=f (x )+f (-x ), ∴f (x )=-f (-x ),即f (x )为奇函数. (2)任取x 1,x 2∈R ,且x 1<x 2. ∵f (x +y )=f (x )+f (y ), ∴f (x 2)-f (x 1)=f (x 2-x 1). ∵当x >0时,f (x )>0,且x 1<x 2,∴f (x 2-x 1)>0,即f (x 2)>f (x 1),∴f (x )为增函数,∴当x =-2时,函数有最小值,f (x )min =f (-2)=-f (2)=-2f (1)=-1. 当x =6时,函数有最大值,f (x )m ax =f (6)=6f (1)=3.。

2017-2018学年高中数学 第一章 集合与函数 1.3.2 奇偶性 第1课时 奇偶性的概念教案 新人教A版必修1

2017-2018学年高中数学 第一章 集合与函数 1.3.2 奇偶性 第1课时 奇偶性的概念教案 新人教A版必修1

非偶函数.
证明
(2)证明f(x)=x|x|是奇函数. 证明 函数的定义域为R,因f(-x)=(-x)|-x|=-x|x|=-f(x), 所以函数为奇函数.
证明
命题角度2 证明分段函数的奇偶性 例2 判断函数f(x)= xx+ -5522- -44, ,xx∈ ∈[1-,66, -1],的奇偶性.
√C.非奇非偶函数
D.既是奇函数又是偶函数
12345
答案
3.已知函数y=f(x)+x是偶函数,且f(2)=1,则f(-2)等于
A.-1
B.1
C.-5
√D.5
解析 函数y=f(x)+x是偶函数,∴x=±2时函数值相等. ∴f(-2)-2=f(2)+2,∴f(-2)=5,故选D.
12345
解析 答案
4.若函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是
A.1
√B.2
C.3
D.4
12345
答案
5.下列说法错误的个数是
①图象关于原点对称的函数是奇函数;
②图象关于y轴对称的函数是偶函数;
③奇函数的图象一定过原点;
④偶函数的图象一定与y轴相交;
⑤既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R).
A.4
√B.3
C.2
D.0
12345
答案
规律与方法
解答
反思与感悟
利用基本的奇(偶)函数,通过加减乘除、复合,可以得到新的函数, 判断这些新函数的奇偶性,主要是代入-x,看总的结果.
跟踪训练3 设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶 函数,则下列结论中正确的是 A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数 C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数

高中数学第一章集合与函数概念1.3.2奇偶性备课资料素材新人教A版必修1

高中数学第一章集合与函数概念1.3.2奇偶性备课资料素材新人教A版必修1

1.3.2 奇偶性备课资料奇、偶函数的性质(1)奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立.(3)f(-x)=f(x)⇔f(x)是偶函数,f(-x)=-f(x)⇔f(x)是奇函数.(4)f(-x)=f(x)⇔f(x)-f(-x)=0,f(-x)=-f(x)⇔f(x)+f(-x)=0.(5)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数;如果函数y=f(x)和y=g(x)的奇偶性相同,那么复合函数y=f [g(x)]是偶函数,如果函数y=f(x)和y=g(x)的奇偶性相反,那么复合函数y=f [g(x)]是奇函数,简称为“同偶异奇”.(6)如果函数y=f(x)是奇函数,那么f(x)在区间(a,b)和(-b,-a)上具有相同的单调性;如果函数y=f(x)是偶函数,那么f(x)在区间(a,b)和(-b,-a)上具有相反的单调性.(7)定义域关于原点对称的任意函数f(x)可以表示成一个奇函数与一个偶函数的和,即 f(x)=2)()(2)()(x f x f x f x f -++--. (8)若f(x)是(-a,a)(a >0)上的奇函数,则f(0)=0;若函数f(x)是偶函数,则f(x)=f(-x)=f(|x|)=f(-|x|).若函数y=f(x)既是奇函数又是偶函数,则有f(x)=0.本章复习整体设计教学分析本节课是对第一章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生的基本知识系统化和网络化,基本方法条理化.本章三部分内容是独立的,但是又相互联系,集合是基础,用集合定义函数,将函数拓展为映射,层层深入,环环相扣,组成了一个完整的整体. 三维目标通过总结和归纳集合与函数的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力. 重点难点教学重点:①集合与函数的基本知识.②含有字母问题的研究.③抽象函数的理解.教学难点:①分类讨论的标准划分.②抽象函数的理解.课时安排1课时教学过程导入新课思路1.建设高楼大厦的过程中,每建一层,都有质量检查人员验收,合格后,再继续建上一层,否则返工重建.我们学习知识也是这样,每学完一个章节都要总结复习,引出课题. 思路2.为了系统掌握第一章的知识,教师直接点出课题.新知探究提出问题①第一节是集合,分为几部分?②第二节是函数,分为几部分?③第三节是函数的基本性质,分为几部分?④画出本章的知识结构图.活动:让学生自己回顾所学知识或结合课本,重新对知识整合,对没有思路的学生,教师可以提示按课本的章节标题来分类.对于画知识结构图,学生可能比较陌生,教师可以引导学生先画一个本班班委的结构图或学校各个处室的关系结构图,待学生了解了简单的画法后,再画本章的知识结构图.讨论结果:①分为:集合的含义、集合间的基本关系和集合的运算三部分.②分为:定义、定义域、解析式、值域四部分;其中又把函数的概念拓展为映射.③分为:单调性、最值和奇偶性三部分.④第一章的知识结构图如图1-1所示,图1-1应用示例思路1例1若P={x|y=x2},Q={(x,y)|y=x2,x∈R},则必有( )A.P∩Q=∅B.P QC.P=QD.P Q分析:从选项来看,本题是判断集合P,Q的关系,其关键是对集合P,Q的意义的理解.集合P是函数y=x2的定义域,则集合P是数集,集合Q是函数y=x2的图象上的点组成的集合,则集合Q是点集,∴P∩Q=∅.答案:A点评:判断用描述法表示的集合间关系时,一定要搞清两集合的含义,明确集合中的元素.形如集合{x|x∈P(x),x∈R}是数集,形如集合{(x,y)|x、y∈P(x,y),x、y∈R}是点集,数集和点集的交集是空集.变式训练1.设集合M={x| x>1},P={x| x2-6x+9=0},则下列关系中正确的是( )A.M=PB.P MC.M PD.M∩P=R分析:P={3},∵3>1,∴3∈M.∴P M.2.2007河南周口高三期末调研,理6定义集合A 与B 的运算A*B={x|x∈A 或x∈B,且x ∉A∩B},则(A*B)*A 等于( )A.A∩BB.A∪BC.AD.B分析:设A={1,2,3,4},B={1,2,5,6,7},则A*B={3,4,5,6,7},于是(A*B)*A={1,2,5,6,7}=B. 答案:D点评:解决新定义集合运算问题的关键是抓住新运算定义的本质,本题A*B 的本质就是集合A 与B 的并集中除去它们公共元素组成的集合.例2求函数y=x 2+1的最小值.分析:思路一:利用实数运算的性质x 2≥0,结合不等式的性质得函数的最小值;思路二:直接利用二次函数的最值公式,写出此函数的最小值.解:方法一(观察法)∵函数y=x 2+1的定义域是R ,∴观察到x 2≥0.∴x 2+1≥1.∴函数y=x 2+1的最小值是1.方法二:(公式法)函数y=x 2+1是二次函数,其定义域是x∈R ,则函数y=x 2+1的最小值是f(0)=1.点评:求函数最值的方法:观察法:当函数的解析式中仅含有x 2或|x|或x 时,通常利用常见的结论x 2≥0,|x|≥0,x ≥0等,直接观察写出函数的最值; 公式法:求基本初等函数(正、反比例函数,一次、二次函数)的最值时,应用基本初等函数的最值结论(看成最值公式),直接写出其最值.例3求函数y=432+x x 的最大值和最小值. 分析:把变量y 看成常数,则函数的解析式可以整理成必有实数根的关于x 的方程,利用判别式的符号得关于y 的不等式,解不等式得y 的取值范围,从而得函数的最值.解:(判别式法)由y=432+x x 得yx 2-3x+4y=0, ∵x∈R ,∴ 关于x 的方程yx 2-3x+4y=0必有实数根.当y=0时,则x=0.故y=0是一个函数值;当y≠0时,则关于x 的方程yx 2-3x+4y=0是一元二次方程,则有Δ=(-3)2-4×4y 2≥0.∴0<y 2≤169.∴43-≤y<0或0<y≤43. 综上所得,43-≤y≤43. ∴ 函数y=432+x x 的最小值是43-,最大值是43. 点评:形如函数y=fcx dx c bx ax ++++22(d≠0),当函数的定义域是R (此时e 2-4df<0)时,常用判别式法求最值,其步骤是①把y 看成常数,将函数解析式整理为关于x 的方程的形式mx 2+nx+k=0;②分类讨论m =0是否符合题意;③当m≠0时,关于x 的方程mx 2+nx+k=0中有x∈R ,则此一元二次方程必有实数根,得n 2-4mk≥0即关于y 的不等式,解不等式组⎩⎨⎧≠≥-.0,042m mk n 此不等式组的解集与②中y 的值取并集得函数的值域,从而得函数的最大值和最小值.例4函数f(x)=x 2-2ax+a 在区间(-∞,1)上有最小值,则函数g(x)=xx f )(在区间(1,+∞)上一定( )A.有最小值B.有最大值C.是减函数D.是增函数分析:函数f(x)=x 2-2ax+a 的对称轴是直线x=a ,由于函数f(x)在开区间(-∞,1)上有最小值,所以直线x=a 位于区间(-∞,1)内,即a<1.g(x)=x x f )(=2-+x a x ,下面用定义法判断函数g(x)在区间(1,+∞)上的单调性.设1<x 1<x 2,则g(x 1)-g(x 2)=(x 1+1x a -2)-(x 2+2x a -2) =(x 1-x 2)+(-1x a 2x a )=(x 1-x 2)(121x x a -)=(x 1-x 2)2121x x a x x -. ∵1<x 1<x 2,∴x 1-x 2<0,x 1x 2>1>0.又∵a<1,∴x 1x 2>a.∴x 1x 2-a>0.∴g(x 1)-g(x 2)<0.∴g(x 1)<g(x 2).∴函数g(x)在区间(1,+∞)上是增函数,函数g(x)在区间(1,+∞)上没有最值. 答案:D点评:定义法判断函数f(x)的单调性的步骤是①在所给区间上任取两个变量x 1、x 2;②比较f(x 1)与f(x 2)的大小,通常利用作差比较它们的大小,先作差,后将差变形,变形的手段是通分、分解因式,变形的结果常是完全平方加上一个常数或因式的积(商)等;③由②中差的符号确定函数的单调性.注意:函数f(x)在开区间D 上是单调函数,则f(x)在开区间D 上没有最大值,也没有最小值.变式训练求函数f(x)=1-x 2的单调区间.分析:函数f(x)是复合函数,利用口诀“同增异减”来求单调区间.解:函数的定义域是(-∞,-1]∪[1,+∞).设y=u ,u=x 2-1, 当x≥0时,u=x 2-1是增函数,y=u 也是增函数, 又∵函数的定义域是(-∞,-1]∪[1,+∞),∴函数f(x)=1-x 2在[1,+∞)上是增函数.当x≤0时,u=x 2-1是减函数,y=u 也是增函数, 又∵函数的定义域是(-∞,-1]∪[1,+∞),∴函数f(x)=1-x 2在(-∞,-1]上是减函数,即函数f(x)的单调递增区间是[1,+∞),单调递减区间是(-∞,-1].点评:复合函数是指由若干个函数复合而成的函数,它的单调性与构成它的函数的单调性有密切联系,其单调性的规律为:“同增异减”,即复合函数y=f [g(x)],如果y=f(u),u=g(x)有相同的单调性时,函数y=f [g(x)]为增函数,如果具有相异(即相反)的单调性,则函数y=f [g(x)]为减函数.讨论复合函数单调性的步骤是:①求复合函数的定义域;②把复合函数分解成若干个常见的基本初等函数并判断其单调性;③依据复合函数的单调性规律口诀:“同增异减”,判断或写出函数的单调性或单调区间.注意:本题如果忽视函数的定义域,会错误地得到单调递增区间是[0,+∞),单调递减区间是(-∞,0].其避免方法是讨论函数的性质要遵守定义域优先的原则.思路2例1集合A={x|x 2-3x-4=0},B={x|mx-1=0},若B ⊆A ,则实数m =________.分析:集合B 是关于x 的方程mx-1=0的解集,∵B ⊆A ,∴B=∅或B≠∅.当B=∅时,关于x 的方程mx-1=0无解,则m=0;当B≠∅时,x=m 1∈A,则有(m 1)2m 3--4=0,即4m 2+3m-1=0.解得m=-1,41. 答案:-1,0,41 黑色陷阱:本题任意忽视B=∅的情况,导致出现错误m=-1,41.避免此类错误的方法是考虑问题要全面,要注意空集是任何集合的子集.变式训练已知集合A={x|⎩⎨⎧≥-≥+0502x x },B={x|p+1≤x≤2p -1},若A∩B=B,求实数p 的取值范围.分析:理解集合A 是不等式组⎩⎨⎧≥-≥+05,02x x 的解集是关键,又A∩B=B 说明了B ⊆A ,包含=∅和B≠∅两种情况,故要分类讨论解决问题.解:A={x|-2≤x≤5},∵A∩B=B,∴B ⊆A.∴B=∅或B≠∅.当B=∅时,p+1>2p-1,解得p<2.当B≠∅时,则有⎪⎩⎪⎨⎧≤--≥+-<+.512,21,121p p p p 解得2≤p≤3.综上所得实数p 的取值范围是p<2或2≤p≤3,即(-∞,3].点评:本题是已知集合运算的结果,求参数的值,解决此类问题的关键是依据集合运算的含义,观察明确各集合中的元素,要注意集合元素的互异性在解决含参数集合问题中的作用;空集是一个特殊的集合,是任何集合的子集,求解有关集合间的关系问题时一定要首先考虑空集;要重视常见结论A∩B=B ⇔A∪B=A ⇔B ⊆A 的应用,此时通常要分类讨论解决集合问题,分类讨论时要考虑全面,做到不重不漏.例2求函数y=|x+2|-|x-2|的最小值.分析:思路一:画出函数的图象,利用函数最小值的几何意义,写出函数的最小值;思路二:利用绝对值的几何意义,转化为数轴上的几何问题:数轴上到±2两点的距离和的最小值.解:方法一(图象法):y=|x+2|-|x-2|=⎪⎩⎪⎨⎧≥<<--≤-.2,4,22,2,2,4x x x x -4,2x,4, x≤-2,-2<x<2,x≥2.其图象如图1-2所示:图1-2由图象,得函数的最小值是-4,最大值是4.方法二(数形结合):函数的解析式y=|x+2|-|x-2|的几何意义是:y 是数轴上任意一点P 到±2的对应点A 、B 的距离的差,即y=|PA|-|PB|,如图1-3所示,图1-3观察数轴,可得-|AB|≤|PA|-|PB|≤|AB|,即函数y=|x+2|-|x-2|有最小值-4,最大值4. 点评:求函数最值的方法:图象法:如果能够画出函数的图象,那么可以依据函数最值的几何意义,借助图象写出最值.其步骤是①画函数的图象;②观察函数的图象,找出图象的最高点和最低点,并确定它们的纵坐标;③由最高点和最低点的纵坐标写出函数的最值.数形结合:如果函数的解析式含有绝对值或根号,那么能将函数的解析式赋予几何意义,结合图形利用其几何意义求最值.其步骤是:①对函数的解析式赋予几何意义;②将函数的最值转化为几何问题;③应用几何知识求最值.例3求函数y=x+x4,x∈[1,3]的最大值和最小值. 分析:利用函数的单调性来求得函数的最值.转化为讨论函数的单调性. 解:可以证明当x∈[1,2]时,函数y=x+x 4是减函数, 此时函数的最大值是f(1)=5,最小值是f(2)=4.可以证明当x∈[2,3]时,函数y=x+x 4是增函数, 此时函数的最大值是f(3)=313,最小值是f(2)=4. 综上所得,函数y=x+x4,x∈[1,3]的最大值为5,最小值为4. 点评:如果能够确定函数的单调性,那么可以利用函数的单调性求函数最值,这种方法称为单调法,主要应用以下结论:函数y=f(x)在区间[a,b ]上是减函数,在区间[b,c ]上是增函数,那么函数y=f(x)在区间[a,c ]上的最大值是f(a)与f(c)的最大值,最小值是f(b);函数y=f(x)在区间[a,b ]上是增函数,在区间[b,c ]上是减函数,那么函数y=f(x)在区间[a,c ]上的最小值是f(a)与f(c)的最大值,最大值是f(b).单调法求函数最值的难点是确定函数的单调区间,借助于函数的图象,常用单调性的定义来判断,还要靠经验的积累.例4求函数y=x 4+2x 2-2的最小值.解:函数的定义域是R ,设x 2=t ,则t≥0.则y=t 2+2t-2=(t+1)2-3,t≥0,则当t=0时,y 取最小值-2,所以函数y=x 4+2x 2-2的最小值为-2.点评:求形如函数y=ax 2m +bx m +c(ab≠0)或y=ax+c bx +(ab≠0)的最值时,常用设x m =t 或c bx +=t ,利用换元法转化为求二次函数等常见函数的最值问题,这种求最值的方法称为换元法.此时要注意换元后函数的定义域.例5定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1),都有f(x)+f(y)=f(xyy x ++1). (1) 求证:函数f(x)是奇函数;(2) 若当x∈(-1,0)时,有f(x)>0,求证:f(x)在(-1,1)上是减函数.分析:(1)定义法证明,利用赋值法获得f(0)的值进而取x=-y 是解题关键;(2)定义法证明,其中判定21121x x x x --的范围是关键. 解: (1)函数f(x)的定义域是(-1,1),由f(x)+f(y)=f(xyy x ++1),令x=y=0,得f(0)+f(0)=f(0100++),∴f(0)=0. 令y=-x,得f(x)+f(-x)=f(21xx x --)=f(0)=0, ∴f(-x)=-f(x). ∴f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减,令0<x 1<x 2<1,则f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(21211x x x x --)=f(21121x x x x ---). ∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0. 又(x 2-x 1)-(1-x 1x 2)=(x 2-1)(x 1+1)<0,∴0<x 2-x 1<1-x 1x 2.∴-1<21121x x x x ---<0.由题意知f(21121x x x x ---)>0, ∴f(x 1)>f(x 2).∴f(x)在(0,1)上为减函数,又f(x)为奇函数,∴f(x)在(-1,1)上也是减函数.点评:对于抽象函数的单调性和奇偶性问题时,必用单调性和奇偶性的定义来解决,即定义法是解决抽象函数单调性和奇偶性问题的通法;判断抽象函数的奇偶性与单调性时,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性,知能训练1.已知集合P={x∈N |1≤x≤10},集合Q ={x∈R |x 2+x-6=0},则P∩Q 等于( )A.{1,2,3}B.{2,3}C.{1,2}D.{2}分析:明确集合P 、Q 的运算,依据交集的定义求P={1,2,3,4,5,6,7,8,9,10},Q ={-3,2},则P∩Q ={2}.答案:D点评:解决本题关键是集合P 是大于等于1且小于等于10的自然数组成的集合,集合Q 是方程x 2+x-6=0的解集,将这两个集合化简后再运算.2.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8} 分析:直接观察(或画出Venn 图)得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}. 答案:B点评:求解用列举法表示的数集运算时,首先看清集合元素的特征,理解并确定集合中的元素,最后通过观察或借助于数轴、Venn 图写出运算结果.3.已知二次函数f (x )满足条件f (0)=1和f (x +1)-f (x )=2x.(1)求f (x );(2)求f (x )在区间[-1,1]上的最大值和最小值.分析:(1)由于已知f (x )是二次函数,用待定系数法求f (x );(2)结合二次函数的图象,写出最值.解:(1)设f (x )=ax 2+bx +c ,由f (0)=1,可知c =1.而f (x +1)-f (x )=[a (x +1)2+b (x +1)+c ]-(ax 2+bx +c )=2ax +a +b.由f (x +1)-f (x )=2x ,可得2a =2,a +b =0.因而a =1,b =-1.故f (x )=x 2-x +1.(2)∵f(x)=x 2-x+1=(x-21)2+43, ∴当x∈[-1,1]时,f (x )的最小值是f(21)=43,f (x )的最大值是f (-1)=3. 拓展提升问题:某人定制了一批地砖.每块地砖 (如图14所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE、△ABE 和四边形AEFD 的三种材料的每平方米价格之比依次为3∶2∶1.若将此种地砖按图15所示的形式铺设,能使中间的深色阴影部分成四边形EFGH.(1) 求证:四边形EFGH 是正方形;(2) E 、F 在什么位置时,定制这批地砖所需的材料费用最省?图1-4图1-5思路分析:(1)由于四块地砖拼出了四边形EFGH ,只需证明△CFE、△CFG、△CGH、△CEH 为等腰直角三角形即可;(2)建立数学模型,转化为数学问题.设CE=x ,每块地砖的费用为W ,求出函数W=f(x)的解析式,转化为讨论求函数的最小值问题.解:(1)图1-5可以看成是由四块如图1-4所示地砖绕点C 按顺时针旋转90°后得到,则有CE=CF ,∠ECF=90°,∴△CFE 为等腰直角三角形,同理可得△CFG、△CGH、△CEH 为等腰直角三角形.∴ 四边形EFGH 是正方形.(2)设CE=x ,则BE=0.4-x ,每块地砖的费用为W ,设制成△CFE、△ABE 和四边形AEFD 三种材料的每平方米价格依次为3a 、2a 、a(元), W=21x 2·3a+21×0.4×(0.4-x)×2a+[0.16-21x 2-21×0.4×(0.4-x)]a =a(x 2-0.2x+0.24)=a [(x-0.1)2+0.23](0<x<0.4).由于a>0,则当x=0.1时,W 有最小值,即总费用为最省.即当CE=CF=0.1米时,总费用最省.课堂小结本节课学习了:总结了第一章的基本知识并形成知识网络,归纳了常见的解题方法. 作业复习参考题任选两题.设计感想本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是为了满足高考的要求,对课本内容适当拓展,例如关于函数值域的求法,课本中没有专题学习,本节课对此进行了归纳和总结.。

2018年秋高中数学 第一章 集合与函数概念 1.3 函数的基本性质 1.3.2 奇偶性 第1课时

2018年秋高中数学 第一章 集合与函数概念 1.3 函数的基本性质 1.3.2 奇偶性 第1课时

第1课时奇偶性的概念学习目标:1.理解奇函数、偶函数的定义.2.了解奇函数、偶函数图象的特征.3.掌握判断函数奇偶性的方法.[自主预习·探新知]函数的奇偶性思考:具有奇偶性的函数,其定义域有何特点?[提示]定义域关于原点对称.[基础自测]1.思考辨析(1)函数f(x)=x2,x∈[0,+∞)是偶函数.( )(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( )(3)不存在既是奇函数,又是偶函数的函数.( )(4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.( )[答案](1)×(2)×(3)×(4)×2.下列图象表示的函数具有奇偶性的是( )A B C DB[B选项的图象关于y轴对称,是偶函数,其余选项都不具有奇偶性.]3.函数y=f(x),x∈[-1,a](a>-1)是奇函数,则a等于( )A.-1 B.0C.1 D.无法确定C[∵奇函数的定义域关于原点对称,∴a-1=0,即a=1.]4.若f(x)为R上的偶函数,且f(2)=3,则f(-2)=________.3[∵f(x)为R上的偶函数,∴f(-2)=f(2)=3.][合作探究·攻重难]函数奇偶性的判断判断下列函数的奇偶性: (1)f (x )=x 3+x ;(2)f (x )=1-x 2+x 2-1; (2)f (x )=2x 2+2xx +1;(4)f (x )=⎩⎪⎨⎪⎧x -1,x <0,0,x =0,x +1,x >0.[解] (1)函数的定义域为R ,关于原点对称. 又f (-x )=(-x )3+(-x )=-(x 3+x )=-f (x ), 因此函数f (x )是奇函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0得x 2=1,即x =±1.因此函数的定义域为{-1,1},关于原点对称.又f (1)=f (-1)=-f (-1)=0,所以f (x )既是奇函数又是偶函数. (3)函数f (x )的定义域是(-∞,-1)∪(-1,+∞), 不关于原点对称,所以f (x )既不是奇函数也不是偶函数. (4)函数f (x )的定义域为R ,关于原点对称. f (-x )=⎩⎪⎨⎪⎧-x -1,-x <0,0,-x =0,-x +1,-x >0,即f (-x )=⎩⎪⎨⎪⎧-x +,x >0,0,x =0,-x -,x <0.于是有f (-x )=-f (x ).所以f (x )为奇函数.[跟踪训练]1.下列函数中,是偶函数的有________.(填序号) ①f (x )=x 3;②f (x )=|x |+1;③f (x )=1x2;④f (x )=x +1x;⑤f (x )=x 2,x ∈[-1,2].②③ [对于①,f (-x )=-x 3=-f (x ),则为奇函数; 对于②,f (-x )=|-x |+1=|x |+1,则为偶函数; 对于③,定义域为{x |x ≠0},关于原点对称,f (-x )=1-x2=1x2=f (x ),则为偶函数;对于④,定义域为{x |x ≠0},关于原点对称,f (-x )=-x -1x=-f (x ),则为奇函数;对于⑤,定义域为[-1,2],不关于原点对称,不具有奇偶性,则为非奇非偶函数.]奇偶函数的图象问题已知奇函数f (x )的定义域为[-5,5],且在区间[0,5]上的图象如图1­3­6所示.图1­3­6(1)画出在区间[-5,0]上的图象; (2)写出使f (x )<0的x 的取值集合.[解] (1)因为函数f (x )是奇函数,所以y =f (x )在[-5,5]上的图象关于原点对称. 由y =f (x )在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示. (2)由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).依据:奇函数求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题[跟踪训练]2.如图1­3­7是函数f (x )=1x 2+1在区间[0,+∞)上的图象,请据此在该坐标系中补全函数f (x )在定义域内的图象,请说明你的作图依据.图1­3­7[解] 因为f (x )=1x 2+1所以f (x )的定义域为R .又对任意x ∈R ,都有f (-x )=1-x 2+1=1x 2+1=f (x ),所以f (x )为偶函数.所以f (x )的图象关于y 轴对称,其图象如图所示.利用函数的奇偶性求值或求参数 [探究问题]1.若函数y =f (x )是奇函数,且点(a ,f (a ))是y =f (x )图象上一点,点(-a ,-f (a ))是否在函数图象上?提示:在.∵f (x )为奇函数,故-f (a )=f (-a ),故点(-a ,-f (a ))一点在函数y =f (x )的图象上.2.对于定义域内的任意x ,若f (-x )+f (x )=0,则函数f (x )是否具有奇偶性?若f (-x )-f (x )=0呢?提示:由f (-x )+f (x )=0得f (-x )=-f (x ), ∴f (x )为奇函数.由f (-x )-f (x )=0得f (-x )=f (x ),∴f (x )为偶函数.(1)已知函数f (x )=x 3+ax 2+bx +c 是定义在[2b -5,2b -3]上的奇函数,则f ⎝ ⎛⎭⎪⎫12的值为( )A.13 B .98 C .1D .无法确定(2)已知f (x )=x 7-ax 5+bx 3+cx +2,若f (-3)=-3,则f (3)=________. 思路探究:(1)fx 是奇函数―→定义域关于原点对称―→求a ,b ,c 的值―→计算f ⎝ ⎛⎭⎪⎫12(2)令g x =x 7-ax 5+bx 3+cx ―→判断g x 的奇偶性―→计算g -―→代入求得f(1)B (2)7 [(1)由题意可知2b -5+2b -3=0,即b =2.又f (x )是奇函数,故f (-x )+f (x )=0,所以2ax 2+2c =0对任意x 都成立,则a =c =0, ∴f ⎝ ⎛⎭⎪⎫12=18+2×12=18+1=98.(2)令g (x )=x 7-ax 5+bx 3+cx ,则g (x )是奇函数,∴f (-3)=g (-3)+2=-g (3)+2,又f (-3)=-3,∴g (3)=5. 又f (3)=g (3)+2,所以f (3)=5+2=7.]定义域含参数:奇、偶函数x 的定义域为+b =0求参数解析式含参数:根据-=-f x 或-x =f x 列式,比较系数即可求解[当 堂 达 标·固 双 基]1.函数f (x )=|x |+1是( )【导学号:37102157】A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数B [∵f (-x )=|-x |+1=|x |+1=f (x ),∴f (x )为偶函数.]2.如图1­3­8,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )图1­3­8A .-2B .2C .1D .0A [由图知f (1)=12,f (2)=32,又f (x )为奇函数,所以f (-2)+f (-1)=-f (2)-f (1)=-32-12=-2.故选A.]3.下列说法中错误的个数为( ) ①图象关于坐标原点对称的函数是奇函数; ②图象关于y 轴对称的函数是偶函数; ③奇函数的图象一定过坐标原点; ④偶函数的图象一定与y 轴相交. A .4 B .3 C .2D .1C [由奇函数、偶函数的性质,知①②说法正确;对于③,如f (x )=1x,x ∈(-∞,0)∪(0,+∞),它是奇函数,但它的图象不过原点,所以③说法错误;对于④,如f (x )=1x2,x ∈(-∞,0)∪(0,+∞),它是偶函数,但它的图象不与y 轴相交,所以④说法错误.故选C.] 4.已知函数f (x )=ax 2+2x 是奇函数,则实数a =______.0 [∵f (x )为奇函数,∴f (-x )+f (x )=0,∴2ax 2=0对任意x ∈R 恒成立,所以a =0.] 5.已知函数y =f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图1­3­9所示.图1­3­9(1)请补出完整函数y =f (x )的图象. (2)根据图象写出函数y =f (x )的增区间. (3)根据图象写出使f (x )<0的x 的取值集合. [解] (1)由题意作出函数图象如图:(3)据图可知,使f(x)<0的x的取值集合为(-2,0)∪(0,2).。

2017_2018版高中数学第一章集合与函数概念1_1第2课时集合的表示学案苏教版必修1

2017_2018版高中数学第一章集合与函数概念1_1第2课时集合的表示学案苏教版必修1

第2课时集合的表示学习目标 1.把握用列举法表示有限集.2.明白得描述法的格式及其适用情形.3.学会在不同的集合表示法中作出选择和转换.4.明白得集合相等、有限集、无穷集、空集等概念.知识点一列举法试探要研究集合,要在集合的基础上研究其他问题,第一要表示集合.而当集合中元素较少时,如何直观地表示集合?梳理列举法将集合的元素一一列举出来,并置于花括号“{}”内,这种表示集合的方法称为列举法一般形式{a1,a2,a3,…,a n}知识点二描述法试探能用列举法表示所有大于1的实数吗?若是不能,又该如何表示?梳理描述法将集合的所有元素都具有的性质(满足的条件)表示出来的方法称为描述法一般形式{x|p(x)}(其中x为集合的代表元素,p(x)是指元素x具有的性质) 知识点三Venn图图示法画一条封闭的曲线,用它的内部表示集合的方法称为图示法,或称为Venn 图法一般形式知识点四集合相等、有限集、无穷集、空集试探1 集合A={x|x=4k±1,k∈Z}与集合B={y|y=2n-1,n∈Z}元素是不是完全相同?试探2 集合A={x∈R|x2<1},B={x∈N|x2<1},C={x∈R|x2<-1}中的元素各有多少个?梳理(1)若是两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等,记作A=B.(2)含有有限个元素的集合称为有限集,含有无穷个元素的集合称为无穷集,不含任何元素的集合称为空集,记作∅.类型一用列举法表示集合例1 用列举法表示以下集合.(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合.反思与感悟(1)集合中的元素具有无序性、互异性,因此用列举法表示集合时没必要考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开.(2)列举法表示的集合的种类①元素个数少且有限时,全数列举,如{1,2,3,4};②元素个数多且有限时,能够列举部份,中间用省略号表示,如“从1到 1 000的所有自然数”能够表示为{1,2,3,…,1 000};③元素个数无穷但有规律时,也能够类似地用省略号列举,如:自然数集N能够表示为{0,1,2,3,…}.跟踪训练1 用列举法表示以下集合.(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由1~20之内的所有素数组成的集合.类型二用描述法表示集合例2 试用描述法表示以下集合.(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.引申探讨用描述法表示函数y=x2-2图象上所有的点组成的集合.反思与感悟用描述法表示集合时应注意的四点(1)写清楚该集合中元素的代号.(2)说明该集合中元素的性质.(3)所有描述的内容都可写在集合符号内.(4)在描述法的一样形式{x|p(x)}中,“x”是集合中元素的代表形式,“p(x)”是集合中元素x的一起特点,竖线不可省略.跟踪训练2 用描述法表示以下集合.(1)方程x2+y2-4x+6y+13=0的解集;(2)二次函数y=x2-10图象上的所有点组成的集合.类型三集合表示的综合应用命题角度1 选择适当的方式表示集合例3 用适当的方式表示以下集合.(1)由x=2n,0≤n≤2且n∈N组成的集合;(2)抛物线y=x2-2x与x轴的公共点的集合;(3)直线y=x上去掉原点的点的集合.反思与感悟用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素知足的条件;三要依照集合中元素的个数来选择适当的方式表示集合.跟踪训练 3 假设集合A={x|-2≤x≤2,x∈Z},B={y|y=x2+2 000,x∈A},那么用列举法表示集合B=________.命题角度2 新概念的集合例4 关于任意两个正整数m,n,概念某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,那么在此概念下,集合M={(a,b)|a※b=16}中的元素个数是________.反思与感悟命题者以考试说明中的某一知识点为依据,自行概念新概念、新公式、新运算和新法那么,做题者应准确明白得应用此概念,在新的情形下完成某种推理证明或指定要求.跟踪训练4 概念集合运算:A※B={t|t=xy,x∈A,y∈B},设A={1,2},B={0,2},那么集合A※B的所有元素之和为________.1.用列举法表示集合{x|x2-2x+1=0}为________.2.一次函数y=x-3与y=-2x的图象的交点组成的集合是________.(用列举法表示)3.设A={x|1≤x<6,x∈N},那么用列举法表示A为________.4.第一象限的点组成的集合能够表示为________.5.以下集合不等于由所有奇数组成的集合的是________.(填序号)①{x|x=4k-1,k∈Z};②{x|x=2k-1,k∈Z};③{x|x=2k+1,k∈Z};④{x|x=2k+3,k∈Z}.1.在用列举法表示集合时应注意:(1)元素间用分隔号“,”;(2)元素不重复;(3)元素无顺序;(4)列举法可表示有限集,也能够表示无穷集.假设元素个数比较少用列举法比较简单;假设集合中的元素较多或无穷,但显现必然的规律性,在不发生误解的情形下,也能够用列举法表示.2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、仍是有序实数对(点)、仍是集合或其他形式;(2)当题目顶用了其他字母来描述元素所具有的属性时,要去伪存真(元素具有如何的属性),而不能被表面的字母形式所迷惑.答案精析问题导学知识点一试探把它们一一列举出来.知识点二试探不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除一一列举,还可用元素的一起特点(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x>1}.知识点四试探1 用列举法表示两个集合,即A={…,-1,1,3,5,…};B={…,-1,1,3,5,…}.因此A与B尽管形式不一样,但它们所含的元素完全一样,故A=B.试探2 A={x∈R|-1<x<1},元素无穷多个;B={0},元素只有一个;C中没有元素.题型探讨例1 解(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.跟踪训练1 解(1)知足条件的数有3,5,7,因此所求集合为{3,5,7}.(2)设由1~20之内的所有素数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.例2 解(1)设方程x2-2=0的实数根为x,而且知足条件x2-2=0,因此,用描述法表示为A={x|x2-2=0}.(2)设大于10小于20的整数为x,它知足条件x∈Z,且10<x<20.因此,用描述法表示为B={x|10<x<20,x∈Z}.引申探讨解{(x,y)|y=x2-2}.跟踪训练2 解(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3.因此方程的解集为{(x,y)|x=2,y=-3}.(2)“二次函数y=x2-10图象上的所有点”用描述法表示为{(x,y)|y=x2-10}.例3 解(1)列举法:{0,2,4};描述法{x|x=2n,0≤n≤2且n∈N}.(2)列举法:{(0,0),(2,0)}.(3)描述法:{(x,y)|y=x,x≠0}.跟踪训练3 解析由A={x|-2≤x≤2,x∈Z}={-2,-1,0,1,2},因此x2∈{0,1,4},x2+2 000的值为2 000,2 001,2 004,因此B={2 000,2 001,2 004}.例4 17解析因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),因此集合M中的元素共有17个.跟踪训练4 6解析由题意得t=0,2,4,即A※B={0,2,4},又0+2+4=6,故集合A※B的所有元素之和为6.当堂训练1.{1} 2.{(1,-2)} 3.{1,2,3,4,5}4.{(x,y)|x>0且y>0} 5.①。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.2 奇偶性
课时达标训练
1.已知函数f(x)为定义在区间[3-a,5]上的奇函数,则a= ( )
A.-2
B.3
C.8
D.无法确定
【解析】选C.由f(x)为奇函数,得其定义域[3-a,5]关于原点对称,所以3-a+5=0,所以a=8.
2.f(x)=x3+的图象关于( )
A.原点对称
B.y轴对称
C.y=x对称
D.y=-x对称
【解析】选A.函数f(x)的定义域为{x|x≠0},
f(-x)=(-x)3+=-f(x),所以f(x)为奇函数,
所以f(x)的图象关于原点对称.
3.函数f(x)=x在定义域R上是________函数.(填“奇”或“偶”)
【解析】由于f(-x)=-x=-f(x),且定义域为实数集R,
故该函数是奇函数.
答案:奇
4.已知函数f(x)是定义域为R的偶函数,若f(2)=4,则f(-2)=________.
【解析】根据偶函数的定义,有f(-2)=f(2)=4.
答案:4
5.判断下列函数的奇偶性.
(1)f(x)=x2(x2+2).(2)f(x)=x|x|.
【解析】(1)f(x)=x2(x2+2)的定义域为R,
f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),
所以f(x)=x2(x2+2)为偶函数.
(2)f(x)=x|x|的定义域为R,
f(-x)=-x|-x|=-x|x|=-f(x),
所以f(x)=x|x|为奇函数.
1。

相关文档
最新文档