2000级概率论与数理统计试题B卷及答案
概率论与数理统计(B)卷参考答案
商学院课程考核试卷参考答案与评分标准 (B )卷课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部各本科专业 考核学期: 一、填空(每小题3分,共30分)1.0.2;2. 0.4(2/5);3. 916; 4.(0.5,2); 5.2;6. 13;7. 7;8. 16; 9. 45; 10.32。
二、单项选择(每小题3分,共15分)1. C .;2. A .;3. B .;4. A .;5. D .。
三、计算题(第1题10分,其余5小题每题9分,共55分)1. 设A A ,分别表示生产情况正常和不正常,B 表示产品为次品。
那么8.0)(=A P ,2.0)(=A P ;03.0)|(=A B P ,2.0)|(=A B P 2分(1)由全概率公式064.02.02.003.08.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P ; 6分(2)由Bayes 公式375.0064.003.08.0)()|)(()|(=⨯==B P A B A P B A P 10分2.(1)由于1)(,0)0(=+∞=F F ,可得1,1-==B A⎩⎨⎧≤>-=-01)(2x x e x F x3分 (2)21)1()1(}11{--=--=<<-e F F X P6分 (3)⎩⎨⎧≤>='=-02)()(2x x e x F x f x9分 3. (1)14),(==⎰⎰+∞∞-+∞∞-cdxdy y x f ,所以,4=c 3分(2)324)(112==⎰⎰ydy dx x X E ;324)(121==⎰⎰dy y xdx Y E944)(10212==⎰⎰dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov9分4.先求他等车超过10分钟的概率}10{1}10{≤-=>X P X P251100511--=-=⎰e dx e x 3分 所以Y 服从5=n ,2-=e p 的二项分布,),5(~2-e B Y 6分52)1(1}0{1}1{---==-=≥e Y P Y P9分5. 似然函数∑=--=--==∏ni i i x n n n ni x in ex x x e x x x x L 11211121)();,,,(ααλαλααλλαλ 3分 ∑∑==--++=ni i ni ix xn n L 11ln )1(ln ln ln αλαλλ5分 令:0ln 1=-=∑=ni i x nd L d αλλ7分得λ的极大似然估计为:∑==ni i x n1ˆαλ9分6. 这是正态总体方差未知的条件下,均值的区间估计问题 2分08.0,5.1,35===s x nμ的95%置信区间为:⎪⎪⎭⎫ ⎝⎛+-n s t x n s t x )34(,)34(025.0025.0 6分 )5275.1,4725.1(3508.00322.25.1,3508.00322.25.1=⎪⎪⎭⎫⎝⎛⨯+⨯-= 9分。
概率论与数理统计 B+参考答案
《概率论与数理统计》试题(B )+参考答案一、填空题:(每题4分,共20分)1、 设,A B 为两事件,()()12,(|)15P A P B P A B ===,求()P AB =2、 已知2(2,),(24)0.3XN P X σ<<=,则(0)P X <=3、 设K 在(2,4)-服从均匀分布,x 的方程22220x Kx K +++=有实根的概率= 4、 若随机变量X 的数学期望2EX =,方差4DX =,则(28)P X -≥≤ 5、若随机变量(1,3),(1,4)XU Y N -,且它们相互独立,则(32)E X Y ++=二、单选题:(在上表对应题号下填入正确选项。
每题3分,共21分)1、在随机事件C B A ,,中,A 和B 两事件至少有一个发生而C 事件不发生的随机事件可表示为( ) A 、C B C AB 、C AB C 、BC A C B A C ABD 、C B A2、设连续型随机变量X 的分布函数为2,0()00x B Ae x F x x -⎧+>=⎨≤⎩,则,A B 的值为( )A 、1,1AB ==- B 、1,1A B ==C 、1,1A B =-=-D 、1,1A B =-= 3、若(0,1)XN ,其密度函数为()f x ,则下列说法错误的是( )A 、()f x 关于y 轴对称B 、()f x 的最大值是C 、()()()P a X b b a <<=Φ-ΦD 、()0f x >4、已知随机变量X 的密度函数为()X f x ,令2Y X =,则Y 的密度函数()Y f y =( )A 、2()y X f x dx ∞⎰ B 、1()22X y f C 、()y X f x dx ∞⎰ D 、1()2X f y5、对任意随机变量X ,若DX 存在,则()E DX 等于( )A 、0B 、XC 、()E XD 、()D X 6、已知随机变量(,)XB n p ,且()E X =3.6,() 1.44D X =,则其参数,n p 的值为( )A 、6,0.6n p == ;B 、6,0.4n p == ;C 、8,0.3n p == ;D 、24,0.1n p == 7、(,)0Cov X Y =是随机变量,X Y 相互独立的( ) A 、充分非必要条件 B 、必要非充分条件C 、充要条件D 、既不充分也不必要三、计算题:(第1小题10分,第2-4每小题13分,第5小题10分,共59分)1、设某人按如下原则决定某日的活动:如该天下雨则以0.2的概率外出购物,以0.8的概率外出探访朋友;如该天不下雨则以0.9的概率外出购物,以0.1的概率外出探访朋友。
《概率论与数理统计》考试题(含答案)
《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。
(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。
(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。
5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。
其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。
7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。
则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。
2020-2021大学《概率论与数理统计》期末课程考试试卷B2(含答案)
2020-2021《概率统与数理统计》课程考试试卷B2适用专业 ,考试日期. 答题时间2小时,闭卷,总分100分附表:0.025 1.96z = 0.975 1.96z =- 0.05 1.65z = 0.95 1.65z =-一、 填空题(每空2分,共28分)1、设C B A ,,是三事件,用C B A ,,的运算关系表示下列各事件. (1)C B A ,,至少有两个发生 (2)A 发生且B 与C 至少有一个发生 (3)C B A ,,只有一个发生2、若()()41,31==B P A P .则(1)若B A ,相互独立,则()=⋃B A P (2)若B A ,互斥,则()=⋃B A P3、设X 在(0,6)服从均匀分布,则方程22540x Xx X ++-=有实根的概 率为4、将n 只球(n ~1号)随机地放进n 个盒子(n ~1号)中去,一个盒子装一 只球,若一只球放入与球同号的盒子中,称为一个配对.设为总的配对数为X , 则()=X E5、设总体()p B X ,1~,n X X X ,,,21 是来自总体X 的样本.则),,,(21n X X X 的 分布为 ,()=X E ,()=X D ,()=2S E 6、设n X X X ,,,21 是来自分布()2,σμN 的样本,μ已知,2σ未知.则()~122∑=-ni i X σμ7、从一批零件中,抽取9个零件,测得其直径(mm )为:19.7 20.1 19.8 19.9 20.2 20.0 19.9 20.2 20.3,设零件的直径服从正态分布()2,σμN ,且21.0=σ(mm ).则这批零件的均值μ的置信水平为0.95的置信区间为8、设n X X X ,,,21 是来自总体X 的样本,且()()2,σμ==X D X E ,若()22cSX -是2μ的无偏估计,则=c二、选择题(共4题,每题3分,共12分)9.设B A ,是任意两个概率不为0的互斥事件,则下列结论肯定正确的是( ) A )B A 与互斥 B )B A 与相容 C )()()()B P A P AB P = D )()()A P B A P =-10.设()2,1,412141101=⎪⎪⎭⎫⎝⎛-=i X i 且()1021==X X P ,则()==21X X P ( )A )0B )1C )21D )4111.设随机变量Y X 与的联合概率密度函数为()⎪⎩⎪⎨⎧≤+=,01,1,22其他y x y x f π,则( )A )Y X 与相关,但不独立B )Y X 与不相关,但不独立C )Y X 与不相关,但独立D )Y X 与既相关,又独立12.设()12,1,0~+=X Y U X ,则 ( ) A )()1,0~U Y B )()110=≤≤Y P C )()3,1~U Y D )()010=≤≤Y P 三、解答题(共5题,每题12分,共60分)13、试卷中有一道题,共有四个答案,其中只有一个答案正确.任一考生如果会解这道题,则一定能选出答案.如果他不会这道题,则不妨任选一答案.设考生会解这道题的概率为0.8,试求考生选出正确答案的概率.14.设随机变量ξ的概率密度函数为()()()0 ,010,>⎩⎨⎧<<=k x kx x f ,,其他αα且95.0=ξE ,试求α,k .15.设随机变量(,)X Y 的联合概率密度函数为212, 01(,)0, y y x f x y ⎧≤≤≤=⎨⎩其他试求边际密度函数()X f x 和()E XY .16.设总体X 具有分布律其中()10<<θθ为未知参数.已知取得了样本值1,2,1321===x x x ,试求θ的 矩估计值和最大似然估计值.17.假定考生成绩服从正态分布()2,σμN ,1.5分,在某地一次数学统考中,随机抽取了36位考生的成绩,算得平均成绩为66.5分,问在显著性水平0.05下,是否可以人为这次考试全体考生的平均成绩为70分.2020-2021《概率统与数理统计》课程考试试卷B2答案一、填空题(每空2分,共28分)1、BC AC AB ⋃⋃,()C B A ⋃,C B A C B A C B A ⋃⋃;2、127,125;3、21;4、1;5、())1(,)1(,,1)(11p p np p p p pni i ni ix n x --∑-∑==-; 6、2)(n χ; 7、20.111; 8、n1. 二、选择题(共4小题,每题3分,共12分).12 11 10 9C B A D 、,、,、,、三、解答题13、0.8⨯1+0.25⨯0.2=0.80514、解 由110160.95f x dx xf x dx分;得191218k分;15、解 ()()230124,015分xX f x y dy x x ==≤≤⎰;()130011(,)1212.2分xy x E XY xyf x y dxdy dx xy dy ≤≤≤===⎰⎰⎰⎰16、解 22122131322E X 分;所以()332分,E X θ-=又()^453分;E X X ==所以的矩估计为566=分θ.由521L,则ln 5ln ln 2ln 18L分;令ln 0d L d,得5106分θ=,所以的最大似然估计为5126=分θ17、解 本题是关于正态总体均值的假设检验问题,由于总体方差未知,故用t 检验法,欲检验的一对假设为:01:70 vs :70H H μμ=≠拒绝域{}1/2z z α->,当显著性水平为0.05时,0.975 1.96z =-.由已知条件,66.5, 1.5,x σ==故检验统计量的值为()666.570141.5z ⨯-==-因为14 1.96z =>,故拒绝原假设,可以认为这次考试全体考生的平均成绩不为70分.。
《概率论与数理统计》B卷(含答案)
期末考试《概率论与数理统计》B 卷适用专业:经济管理各专业 层 次:本科 年 级:一、判断题(每小题2分,共10分)(你认为正确的请在括号内打√,错误的打×)【 × 】1.设C B A ,,为随机事件,则A 与C B A ++是互不相容的. 【 √ 】2.设B A ,是随机事件,0)(=A P ,则A 与B 相互独立. 【 √ 】3.)(x F 是正态随机变量的分布函数,则)(1)(x F x F -≠-. 【 √ 】4.)()()(Y E X E XY E =是X 与Y 相互独立的必要而非充分的条件. 【 × 】5.设随机变量序列 ,,,,21n X X X 相互独立,且服从参数为λ的指数分布,则∑=ni X X 1依概率收敛于λ.二、填空题(每空2分,共20分)6.已知B A ,两个事件满足条件)()(B A P AB P =,且p A P =)(,则=)(B P 1-p. 7.设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为1/3.8.X 服从参数3=λ的泊松分布,令25-=X Y ,则=)(Y E 13,=)(Y D 75. 9.已知5.0)(=A P ,6.0)(=B P ,8.0)|(=A B P ,则=)(A B P 0.2.10.掷一颗骰子1620次,则“6”点出现的次数X 的数学期望=)(X E 270.11.设连续型随机变量)2,1(~2N X ,则~21-X N (0,1),若X Y 31-=,则=)(Y D 36.12.已知25.0)(,4)(==X D X E ,利用切贝谢夫不等式估计≥<<)5.55.2(X P 0.8889 .13.三人独立的破译一个密码,他们能独立译出的概率分别为r q p ,,,则密码能同时被三人译出的概率为 pqr .三、单选题(每小题3分,共15分)14.设B A ,相互独立,且0)(,0)(>>B P A P ,则下列等式成立的是(B )(A ) φ=AB (B ) )()()(B P A P B A P =- (C ) )(1)(A P B P -= (D ) 0)|(=A B P15.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为(D )(A ) 0.5 (B ) 0.125 (C ) 0.25 (D ) 0.37516.袋中有5个黑球,3个白球,大小相同,一次随机摸出4个球,其中恰好有3个白球的概率为(C )(A ) 83(B )⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛81835(C )485C (D )⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛8183317.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤<=.,021,2,10,)(其它x x x x x f ,则)2.12.0(<<X P 的值是(B )(A ) 0.7 (B ) 0.66 (C ) 0.6(D ) 0.518.设8413.0)1(),2,1(~02=ΦN X ,则事件{}31≤≤X 的概率为(A ) (A )0.3413 (B )0.2934 (C )0.2413 (D )0.1385四、计算题(共35分)19.一口袋中有三个球,它们依次标有数字1,2,2.从这袋中任取一球后,不放回袋中,再从袋中任取一球,设每次取球时,袋中各个球被取到可能性相同,以Y X ,分别记第一次、第二次取得的球上标有的数字,求X (、)Y 分布律。
概率论与数理统计B习题_百度文库
练习一、选择题:(每题2分,2×10=20) 1.设A,B为两个事件,且B⊂A,则下列各式中正确的是()。
(A)P(A B)=P(A) (B)P(AB)=P(A) (C)P(B|A)=P(B) (D)P(B-A)=P(B)-P(A) 2.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现2点的概率为()。
(A) 1/6 (B)2/3 (C)1/3 (D)1/2 3. 设随机变量X~e(2),则下列各项正确的是()。
(A) EX=0.5,DX=0.25 (B) EX=2,DX=4 (C) EX=0.5,DX=4 (D) EX=2,DX=0.25 Var(X-92274.如果X~N(3,16),则)等于()43(A)4 (B)25 (C) (D)1616y+565.设随机变量X的密度函数为fX(x),则Y=6X-5的密度函数.. fY(y)为(). (A)fX(5y-3) (B)5fX(y)-3 (C)6. 对任意随机变量X,则E(EX)等于()。
(A)0 (B)X (C) (EX)3 (D)EX 7.随机变量X~N(μ,σ2),则随σ增大,P{X-μ<σ}()。
(A)单调增大(B)保持不变 (C)单调减少(D)增减不定 8. 若ξ和η都服从正态分布, 且独立,则ξ+η服从().(A)正态分布;(B)t分布;(C)χ2分布(D)F分布 9. 设总体X~N(μ,σ是()(A)2X-X1;2fX(y)+5(D)fX()),X1,X2,…,Xn为来自总体的样本,用以下统计量作为μ的估计时,最有效的122316141214(B)X;(C)X1+X2-X3;(D)X1+X2+X310. 设X服从标准正态分布N(0,1),则X2服从().(A) 正态分布(B)指数分布(C)泊松分布 65 (D)卡方分布二.填空题:(每题2分,2×10=20)1.设A,B,C表示三个随机事件,用A,B,C分别表示事件“A,B,C三个事件不都发生”________。
概率论与数理统计试题(含答案)
概率论与数理统计试题(含答案)第一部分基本题一、选择题(共6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分)1. 事件表达式A B 的意思是 ( )(A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生(C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生答:选D ,根据A B 的定义可知。
2. 假设事件A 与事件B 互为对立,则事件A B ( )(A) 是不可能事件 (B) 是可能事件(C) 发生的概率为1 (D) 是必然事件答:选A ,这是因为对立事件的积事件是不可能事件。
3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( )(A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布(C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。
4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( )(A) X 1+X 2+X 3是μ的无偏估计 (B) 1233X X X ++是μ的无偏估计 (C) 22X 是σ2的无偏估计 (D) 21233X X X ++?? ???是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
《概率论与数理统计》期末考试(B)卷答案与评分标准
海南师范大学物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》 2009—2010学年度第一学期期末考试(B )卷答案与评分标准注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上3.考试形式:闭卷4. 本试卷共五大题,满分100分, 考试时间100分钟一、单项选择题(本题共六小题,每小题3分,共18分。
在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分)1、将3个不同的球随机地放入4个不同的杯中, 有一个杯子放入2个球的概率是( B ).. A :324234C C ⋅; B :324234P C ⋅ ; C :424233P C ⋅; D :424233C C ⋅.2、下列函数中,可看作某一随机变量X 的概率分布密度函数的是( C ) A :;,1)(2+∞<<-∞+=x x x f B :;,11)(2+∞<<-∞+=x xx fC :;,)1(1)(2+∞<<-∞+=x x x f π; D :.,)1(2)(2+∞<<-∞+=x x x f π3、己知随机变量Y X ,相互独立且都服从正态分布)4 ,2(N , 则( B ) . A :)4 ,4(~N Y X +; B :)8 ,4(~N Y X + ; C :)4 ,0(~N Y X -; D :Y X -不服从正态分布.4、己知随机变量X 服从二项分布)2.0 ,10(B , 则方差=)(X D ( D ). A :1; B :0.5; C :0.8; D :1.6.5、己知随机变量X 的期望5)(=X E , 方差4)(=X D , 则( A ). A :98}65-X {≥<P ; B :98}65-X {≤<P ; C :98}65-X {≥≥P ; D :98}65-X {≤≥P .6、设4321,,,X X X X 是来自正态总体) ,(2σμN 的简单随机样本,下列四个μ的无偏估计量中,最有效的是( D ). A :)(313211X X X ++=μ; B :)2(413214X X X ++=μ; C :)32(613213X X X ++=μ; D :)(4143212X X X X +++=μ.二、填空题(将答案直接填入栝号内,本题共六小题,每小题3分,共18分)1、设B A 与为随机事件,3.0)(,5.0)(==AB P A P ,则条件概率=)(A B P ( 0.6 )2、已知随机变量X 服从区间,10]2[内的均匀分布,X 的概率分布函数为),(x F 则=)4(F ( 0.25 )。
-概率论与数理统计B答案
2011至2012学年第1学期测验时刻:120分钟课程称号:概率论与数理统计〔B〕卷测验方式:〔闭卷〕年级:10专业:全校相干专业;档次:〔本〕一、填空题〔每题2分,共20分〕1、0.7;2、;3、10;4、;5、44;68、,9、,10、。
二、选择题〔每题2分,共20分〕11、〔B〕;12、〔D〕;13、〔D〕;14、〔B〕;15、〔C〕;16、〔B〕;17、〔A〕;18、〔B〕;19、〔A〕;20、〔B〕.三、盘算题〔共60分〕21、(8分)解:设={第i次获得新球},i=1,2.(1)设C={第二次才获得新球},有,………2分(2)设事情D={发觉此中之一是新球},E={此中之一是新球,另一个也是新球}………4分………6分.………8分22、(10分)解设随机变量与互相独破,且均听从上的平均散布,令,试求。
解:易知与的结合密度函数为此中〔2分〕,〔3分〕,〔3分〕。
〔2分〕23、(12分)解〔1〕由,--------------------------2分又,--------------------------4分因此------------------------------------5分〔2〕-------------------------7分〔3〕事先,;-----------------------------------------------------8分事先,;----------10分事先,;-----------------------------11分综上,---------------------------------12分24、(10分)解先求的散布函数-------------------------2分事先,;--------------------------------------------------------------4分事先,;--------------------------------6分事先,;--------------------------------------8分因此.----------------------------------------10分25、(10分)解的概率散布表为---------------------------4分因此的散布列为收拾得的散布列为---------------------------10分26、(10分)解:---------------------------2分---------------------------4分令解得的矩法估量为---------------------------6分似然函数双方取对数对求偏导,,知是的递增函数,取到其最年夜的能够值使到达最年夜,故的极年夜似然估量为。
3《概率论与数理统计》期末考试试题 B卷答案
华中农业大学本科课程考试 参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
) 1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π. 2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n)3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
概率论与数理统计试题B卷答案
概率论与数理统计答案及评分细则(B 卷)一、D 5分二、总体分布函数23023()()6(1)(32)32,01x x x F x p t dt t t dt t t x x x ==-=-=-<<⎰⎰ 5分因样本容量9n =,有样本中位数0.5(5)m x =,其密度函数为 3分4452342349!()[()][1()]()4!4!9!(32)(132)6(1)4!4!p x F x F x p x x x x x x x =-=--+- 7分三、(1)先求矩估计23()10xEX dx αμ-+∞==⎰2分222()()0xx xedx αα+∞--+∞=⎰=X α∴=4分再求极大似然估计22()11(,,;)ix nn i L X X αα-==32214()n nnn x x απ--=2211ni i x eα=-∑⋅ 3分2221211ln 3ln ln(4)ln()n nnn i i L n x x x απα-==-++-∑ 2分 231ln 320n i i L n x ααα=∂=-+=∂∑ 2分得α的极大似然估计α= 2分(2)对矩估计 E EX αα=== 5分所以矩估计X α=是α的无偏估计.四、参数θ的先验分布为10161()6I θπθ<<=2分 总体X 的条件分布为1()x p x I θθθ<<+= 2分 有样本123,,X X X 的联合条件分布为123123,,1(,,)x x x p x x x I θθθ<<+= 4分 则样本123,,X X X 和参数θ的联合分布为123123,,1,1016(3)1(1),101611(,,,)66x x x x x h x x x I I θθθθθθ<<+<<-<<<<== 4分 可得样本123,,X X X 的边际分布为11.7123(3)1(1),101611.111(,,)0.166x x m x x x I d d θθθθ∞-<<<<-∞===⎰⎰ 4分 故参数θ的后验分布为12312311.111.7123(,,,)5(,,)(,,)3h x x x x x x I m x x x θθπθ<<== 4分五、解:设考生的某次考试成绩作为总体X 且),(~2σμN X ,将从中任取36位考生的成绩作为取自总体X 的容量为36的样本,则15,5.66==S X ,在0.05的显著性水平下,检验全体考生这次考试的平均成绩μ是否为70分,检验过程如下: 设70:00=μH ,取检验统计量nSX T 0μ-=,则接受域为)}1(|{|21-<-n tT α,10分而观测值为4.13615|705.66|||=-=T <0301.2)35()1(975.021==--t n tα10分六、假设0:0,1,,5!ii H p e i i λλ-== 且66!ii p e i λλ∞-==∑4分需估计一个参数λ,1k =,选取统计量1220()(1)r i i i i n np r k np χχ-=-=--∑ 3分显著性水平2210.950.05,7,(1)(5)11.0705r r k ααχχ-==--==,右侧拒绝域2{11.0705}W χ=≥因100100,1,,100i i n x p n λ====及计算结果如下表: 4分5分 有2 3.7568W χ=∉,并且检验的p 值2{ 3.7568}0.58490.05p p χα=≥=>= 故接受0H ,拒绝1H ,即可以认为一页的印刷错误个数服从泊松分布。
第二学期期末考试概率论与数理统计试卷(B)及答案
| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | ||防灾科技学院2008~2009学年第二学期期末考试概率论与数理统计试卷(A)使用班级本科各班适用答题时间120分钟一填空题(每题3分,共30分)1、已知事件A,B有概率4.0)(=AP,5.0)(=BP,条件概率3.0)|(=ABP,则=⋃)(BAP0.78 ;2、已知某同学投篮球时的命中概率为)10(<<pp,设X表示他首次投中时累计已投篮的次数,则X的概率分布律为ppkXP k1)1(}{--==,.,2,1=k;3、尽管一再强调考试不要作弊,但每次考试往往总有一些人作弊。
假设某校以往每学期期末考试中作弊同学人数X服从参数为10的泊松分布,则本次期末考试中无同学作弊的概率为10-e;4、随机变量X的分布函数是⎪⎩⎪⎨⎧≥<≤<=.1,1,1,,0,0)(2xxxxxF,则随机变量X的概率密度函数为⎩⎨⎧<<=.,0,1,2)(其他xxxf;5、设随机变量X与Y相互独立且均服从区间),(30上的均匀分布,则)1},(max{≤YXP为____1/9____ ___;6、若)(~),1,0(~2nYNXχ且X与Y相互独立,则~/nYXt(n) ;7、随机变量K在)5,0(内服从均匀分布,则关于x的方程02442=+++KKxx有实根的概率为_____3/5(或0.6)__;8、已知)4,2(~NX,)2,1(~-NY,则~2YX+)12,0(N;9、设随机变量X的概率密度为⎪⎩⎪⎨⎧<≥=.1,0,1,1)(2xxxxf,令⎩⎨⎧≥<=.4,2,4,1XXY,则Y的分布律10、已知一批零件的长度X(单位cm)服从正态分布)1,(μN,今从中随机地抽取16零件,得到长度的平均值为40cm,则μ的置信度为95%的置信区间是(39.51,40.49) (96.1025.0=z)。
概率论与数理统计问题及答案AB卷
概率论与数理统计问题及答案AB卷一、选择题1. 事件A和事件B是互斥事件,它们的概率分别为P(A) = 0.3和P(B) = 0.4,求事件“A或B”的概率P(A∪B)。
答案:根据概率的加法公式,事件"A或B"的概率等于事件A的概率加上事件B的概率减去它们的交集的概率。
因为事件A和事件B是互斥事件,所以它们的交集概率为0。
因此,P(A∪B) =P(A) + P(B) - P(A∩B) = P(A) + P(B) = 0.3 + 0.4 = 0.7。
2. 一批产品中有10%的次品,现从中随机抽取3个进行检测,求恰好有1个次品的概率。
答案:这是一个二项分布问题。
设p为单个产品为次品的概率,则单个产品为良品的概率为1-p。
根据二项分布的公式,恰好有1个次品的概率为C(3, 1) * p * (1-p)^2。
代入p=0.1,可计算得出恰好有1个次品的概率。
3. 某城市一年的降水量服从正态分布,平均降水量为800毫米,标准差为50毫米。
则该城市一年降水量在700毫米到900毫米之间的概率是多少?答案:根据正态分布的性质,平均降水量加减1个标准差的范围内约有68%的概率,加减2个标准差的范围内约有95%的概率,加减3个标准差的范围内约有99.7%的概率。
所以,一年降水量在700毫米到900毫米之间的概率为95%。
二、计算题1. 设A、B、C为三个事件,已知P(A) = 0.3,P(B) = 0.5,P(C) = 0.4,且P(A∩B∩C) = 0.1,求以下概率:a) P(A∪B)b) P(A'∩B)c) P(A∪B∪C')答案:a) 根据概率的加法公式,P(A∪B) = P(A) + P(B) - P(A∩B)。
代入已知概率可计算得出P(A∪B)。
b) 求A的补集A',即事件A不发生的概率。
然后求A'∩B的概率,即事件A不发生且事件B发生的概率。
根据事件的互斥性,可推出P(A'∩B) = P(B) - P(A∩B)。
概率论与数理统计AB卷和答案
概率论与数理统计A 卷一、单项选择题(每小题2分,共20分)1.设A 、B 为两事件,已知P (B )=21,P (A ⋃B )=32,若事件A ,B 相互独立,则P (A )=( )A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则A ,B 也互不相容 B .如果A ⊂B ,则B A ⊂ C .如果A ⊃B ,则B A ⊃D .如果A ,B 对立,则A ,B 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X >-1)=1D .P (X <4)=15.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率P =⎭⎬⎫⎩⎨⎧+<32b a X ( )A .0B .31C .32 D .1A .(51,151)B .(151,51)C .(101,152) D .(152,101) 7.设(X ,Y )的联合概率密度为f (x ,y )=⎩⎨⎧≤≤≤≤+,,0,10,20),(其他y x y x k 则k =( )A .31B .21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X +10的方差为( ) A .1 B .2 C .4D .149.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( )A .91B .92C .31D .94 10.由来自正态总体X ~N (μ,22)、容量为400的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是(u 0.025=1.96,u 0.05=1.645)( ) A .(44,46)B .(44.804,45.196)C .(44.8355,45.1645)D .(44.9,45.1)二、填空题(每小题2分,共30分)11.对任意两事件A 和B ,P (A -B )=______.12.袋中有4个红球和4个蓝球,从中任取3个,则取出的3个中恰有2个红球的概率为______.13.10个考签中有4个难签,有甲、乙2人参加抽签(不放回),现甲先抽,乙次之,设A ={甲抽到难签},B={乙抽到难签}.则P (B )=______.14.某地一年内发生旱灾的概率为31,则在今后连续四年内至少有一年发生旱灾的概率为______.15.在时间[]T ,0内通过某交通路口的汽车数X 服从泊松分布,且已知P (X =4)=3P (X =3),则在时间[]T ,0内至少有一辆汽车通过的概率为______.16.设随机变量X ~N (10,σ2),已知P (10<X <20)=0.3,则P (0<X <10)=______.则P {X =Y }的概率为______.18.设随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,00,0),1)(1(43其他y x e e y x ,则(X ,Y )关于X 的边缘概率密度f X (x )=______.19.设随机变量X ~B (8,0.5),Y=2X -5,则E (Y )=______.20.设随机变量X ,Y 的期望方差为E (X )=0.5,E (Y )=-0.5,D (X )=D (Y )=0.75,E (XY )=0,则X ,Y 的相关系数ρXY =______.21.设X 1,X 2,…,X n 是独立同分布随机变量序列,具有相同的数学期望和方差E (X i )=0,D (X i )=1,则当n 充分大的时候,随机变量Z n =∑=ni iXn11的概率分布近似服从______(标明参数).22.设X 1,X 2,…X n 为独立同分布随机变量,X i ~N (0,1),则χ2=∑=ni iX12服从自由度为______的χ2分布.23.设X l ,X 2,X 3为总体X 的样本,3214141ˆCX X X ++=μ,则C =______时,μˆ是E (X )的无偏估计. 24.设总体X 服从指数分布E (λ),设样本为x 1,x 2,…,x n ,则λ的极大似然估计λˆ=______. 25.设某个假设检验的拒绝域为W ,当原假设H 0成立时,样本(x l ,x 2,…,x n )落入W 的概率是0.1,则犯第一类错误的概率为______.三、计算题(本大题共2小题,每小题8分,共16分)26.100张彩票中有7张有奖,现有甲先乙后各买了一张彩票,试用计算说明甲、乙两人中奖的概率是否相同. 27.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤-<≤-+=.,0,10,1,01,1)(其他x x x x x f 试求E (X )及D (X ).四、综合题(每小题12分,共24分)28.已知某种类型的电子元件的寿命X(单位:小时)服从指数分布,它的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,6001)(600x x ex f x某仪器装有3只此种类型的电子元件,假设3只电子元件损坏与否相互独立,试求在仪器使用的最初200小时内,至少有一只电子元件损坏的概率.29.设随机变量X ,Y 相互独立,X ~N (0,1),Y ~N (0,4),U=X +Y ,V=X -Y , 求(1)E (XY );(2)D (U ),D (V );(3)Cov(U ,V ). 五、应用题(10分)30.某食品厂对产品重量进行检测。
概率论与数理统计期末试卷及答案B
A.0.3B.0.2C.0.1D.0.4
2.已知P(A) =0.5, P(B) =0.4, P(A- B) =0.6,则P(A| B)=()
A.0.75B.0.6C.0.45D.0.2
3.连续型随机变量X的分布函数F(x)—定是()
得分
评卷人
三、填空题(本大题共5小题,每小题2分, 共10分)
请在每小题的空格中填上正确答案,错填、不填均无分。…
21.设P(A)=0.4, P(B)=0.5,且A, B互不相容,则P(A^ B)=线
22.设随机变量X服从区间[0, 3]上的均匀分布,「
贝y p(1:::x::: 2)=「
2x0兰x兰1
题号
——一
二
三
四
总分
合分人
得分
(满分:100分 时间:120分钟)
C.
6.设随机变量事件X的分布函数为F(x),则丫 =仝-1的分布函数为
3
( )
A.F(3y1)
B.F(3y3)C.3F(y) 1
得分
评卷人
一Байду номын сангаас单项选择题(本大题共
2分,共30分)
15小题,每小题
在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相 应的位置,错涂、多涂或未涂均无分。
A.连续函数B.周期函数C.奇函数D.偶函数
4.设F(x)二P(X ^x)是连续型随机变量X的分布函数,则下列结论中
7.设当事件A和B同时发生时,事件C必发生,则下列选项正确的是
A.P(C)=P(AB)
B. P(C)=P(A B)
概率论与数理统计试题试卷及答案AB卷
概率论与数理统计(A )姓名:学年学期: 学号: 考试时间: 班级:u 0.975=1.96,u 0.95=1.645t 0.995(18)=2.88, t 0.975(5)=2.57,t 0.975(4)=2.776, t 0.975(12)=2.1788F 0.95(2,37)=3.28,F 0.995(9,9)=6.54, F 0.95(1,4)=7.71, F 0.95(2,12)=3.89, F 0.99(2,12)=6.93一、选择题(从下列各题四个备选答案中选出正确答案,并将其代号写在答题纸相应位置处。
答案错选或未选者,该题不得分。
每小题3分,共15分。
) 1.设â是未知参数a 的无偏估计量,且D(â)>0,则[ ](A) â2不是a 2的无偏估计量;(B) â2是a 2的无偏估计量;(B) â2不一定是a 2的无偏估计量;(D) â2不是a 2的估计量.2. 设X~N(μ,σ2), μ,σ2为未知参数,X 1, X 2,…, X n 是来自X 的样本,则作μ的估计时,下列统计量中( )是最有效的.(A)3X -2X 1;(B)X ; (C)X 1;(D) n X X X )6/1()3/2()2/1(21-+3. 设X~N(μ,σ2), X 1, X 2,…, X n 是来自X 的样本,则σ2的极大似然估计量是( )4.. 设X~N(μ,σ2), X 1, X 2,…, X n 是来自X 的样本,X 为样本均值,记则下列统计量中( )服从t(n-1)分布.5.假设检验中,显著性水平α表示 ( )(A)P(接受H 0|H 0为假);(B) P(拒绝H 0|H 0为真);(C)P(拒绝H 0|H 0为假);(D) 无具体含义.二、填空题(将下列各题的一个或多个正确答案写在答题纸相应位置处。
答案写错的,该题不得分。
每小题3分,共15分。
概率论与数理统计B卷及答案
概率论与数理统计 B 卷 考试时间:120分钟 试卷总分:100分一、填空题(本大题共6小题,每小题3分,总计18分)1. 设,A B 为随机事件,()0.8P A B = ,()0.4P B =,则()|P A B =2.10个球队平均分成两组进行比赛,则最强的两个队分到同一组的概率为 3.设随机变量X 在区间[0,1]上服从均匀分布,则XY e =的数学期望为4.设X ~(,)b n p 为二项分布,且() 1.6E X =,() 1.28D X =,则n =______p =5. 设随机变量X 在区间[0,2]上服从均匀分布,用切比雪夫不等式估计得{}12P X -≥≤ .6. 设123,,X X X 是来自正态总体X ~(),1N μ的样本,则当a = 时, 12311ˆ32X X aX μ=++是总体均值μ的无偏估计.二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共6个小题,每小题3分,总计18分)1.设,A B 为事件,且A B ⊂,则下列式子一定正确的是( )(A) ()()P A B P A = ; (B) ()()P BA P A =; (C) ()()P AB P B =; (D) ()()()P A B P A P B -=-2. 设随机变量X 的分布率为{}1!kP X k a k λ==⋅, ()1,2,k = ,则a = ( )(A) e λ-; (B) e λ; (C) 1e λ--; (D) 1e λ- 3. 设(1,1)X N ,概率密度为()f x ,分布函数为()F x ,则有( )(A) {1}{1}P X P X ≤=≥; (B) {0}{0}P X P X ≤=≥; (C) ()()f x f x =-, x R ∈; (D) ()()1F x F x =--, x R ∈4. 设2{1,1}5P X Y ≤≤=,3{1}{1}5P X P Y ≤=≤=,则{min{,}1}P X Y ≤=( ) (A) 45; (B) 925; (C) 35; (D) 255. 设随机变量(),X Y 满足方差()()D X Y D X Y +=-,则必有( )(A) X 与Y 独立; (B) X 与Y 不相关;(C) X 与Y 不独立; (D) ()0D X =或()0D Y = 6. 12,,n X X X 是来自正态总体X ~()2,N μσ的样本,其中μ已知,σ未知,则下列不是统计量的是( )(A) 1max k k nX ≤≤; (B) X μ-; (C)1nkk X σ=∑; (D) 1min k k nX ≤≤三、计算题(本大题共6小题,每小题10分,共计60分)1.有三个盒子,第一个盒子中有2个黑球,4个白球,第二个盒子中有4个黑球,2个白球,第三个盒子中有3个黑球,3个白球,今从3个盒子中任取一个盒子,再从中任取1球. (1) 求此球是白球的概率;(2) 若已知取得的为白球,求此球是从第一个盒子中取出的概率.2.已知连续型随机变量X 的分布函数为0,()arcsin ,1,x a x F x A B a x a a x a ≤-⎧⎪⎪=+-<≤⎨⎪>⎪⎩,其中0a >为常数。
概率论与数理统计B+答案
第 1 页 共 4 页2013 - 2014学年度第一学期试卷 B (闭卷)课程 概率论与数理统计 院系 专业 年级、班级 学号 姓名题号 一 二 三 四 总分 阅卷人 得分一、填空题:(每空3分,共18分)1.设A , B 为随机事件, P (A )=0.6, P (B |A )=0.3, 则P (AB )=__________.2.设随机事件A 与B 互不相容, P (A )=0.6, P (A ∪B )=0.8, 则P (B )=__________. 3.设A , B 互为对立事件, 且P (A )=0.4, 则P (A B )=__________.4.设随机变量X 服从参数为3的泊松分布, 则P {X =2}=__________.5.设随机变量X ~N (0,42), 且P {X >1}=0.4013, Φ (x )为标准正态分布函数, 则Φ(0.25)=__________.6.设X 为随机变量, E (X +3)=5, D (2X )=4, 则E (X 2)=__________二、选择题:(每题3分,共18分)1.设A, B, C, 为随机事件, 则事件“A, B, C 都不发生”可表示为(A )C B A (B )C B A(C )C B A (D )C B A ( ) 2.设随机事件A 与B 相互独立, 且P (A )=51, P (B )=53, 则P (A ∪B )(A )253 (B )2517(C )54 (D )2523( ) 3.设随机变量X ~B (3, 0.4), 则P {X ≥1} (A )0.352 (B )0.432(C )0.784 (D )0.936 ( )4.设随机变量X 的概率密度为,4)2(2e 2π21)(+-=x x f 则E (X ), D (X )分别为(A )2,2- (B )-2, 2(C )2,2(D )2, 2 ( )5.设二维随机变量 (X , Y )的概率密度为⎩⎨⎧≤≤≤≤=,,0,20,10,),(其他y x c y x f 则常数c =(A )41(B )21 (C )2 (D )4 ( )6.设X , Y 为随机变量, D (X )=4, D (Y )=16, Cov (X ,Y )=2, 则XY ρ= (A )321 (B )161 (C )81(D )41( )三、问答题(5小题,共50分)1.(本题10分)在1500个产品中有400个次品,1100个正品,任意取200个。
概率论与数理统计试题AB两卷及答案
概率论与数理统计试题 考试时间:120分钟 试卷总分100分一、填空题(满分15分)1.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则=)(A P 。
2.设随机变量X 服从参数为λ的泊松分布,且31}0{==X P ,则=λ 。
3.设),2(~2σN X ,且2.0}42{=<<X P ,则=<}0{X P4.已知DX=2,DY=1,且X 和Y 相互独立,则D(X-2Y)=5.设2S 是从)1,0(N 中抽取容量为16的样本方差,则=)(2S D 二、选择题(满分15分)1.已知事件A ,B 满足)()(B A P AB P =,且4.0)(=A P ,则=)(B P 。
(A )0.4, (B )0.5, (C )0.6, (D )0.7 2.有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。
(A )γγn!(B )γγnC rn!(C )nn γ!(D) nnn C γγ!3.设随机变量X 的概率密度为||)(x ce x f -=,则c = 。
(A )-21 (B )0 (C )21(D )14.掷一颗骰子600次,求“一点” 出现次数的均值为 。
(A )50 (B )100 (C )120 (D )1505.设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为 。
(A )x1 (B )∑=-n i i X n 111 (C )∑=-ni i X n 1211 (D )x 三、计算题(满分60分)1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。
2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。
(8413.0)1(=Φ,9772.0)2(=Φ)3.在区间(0,1)中随机地取两个数,求事件“两数之和小于56”的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000级概率论与数理统计试题 考试时间:120分钟 试卷总分100分
一、填空题(满分15分)
1.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则
=)(A P 。
2.设随机变量X 服从参数为二项分布,且2
1}0{=
=X P ,则
=p 。
3.设),3(~2
σ
N X ,且1.0}0{=<X P ,则=<<}63{X P
4.已知DX=1,DY=2,且X 和Y 相互独立,则D(2X-Y)=
5.已知随机变量X 服从自由度为n 的t 分布,则随机变量2X 服从的分布是 。
二、选择题(满分15分)
1.抛掷3枚均匀对称的硬币,恰好有两枚正面向上的概率是 。
(A )0.125, (B )0.25, (C )0.375, (D )0.5 2.有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。
(A )
γ
γn
!
(B )γ
γn
C r
n !
(C )
n
n γ
!
(D) n
n
n C γ
γ!
3.设随机变量X 的概率密度为||)(x ce x f -=,则c = 。
(A )-
2
1 (B )0 (C )
2
1 (D )1
4.掷一颗骰子600
次,求“一点” 出现次数的均值为 。
(A )50 (B )100 (C )120 (D )150
5.设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为 。
(A )
x
1 (B )
∑=-n
i i
X n 1
11
(C )∑=-n
i i
X n 1
2
1
1
(D )x
三、计算题(满分60分)
1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。
2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。
(841
3.0)1(=Φ,9772.0)2(=Φ)
3.在区间(0,1)中随机地取两个数,求事件“两数之和小于
5
6”的概率。
4.一台设备由三个部件构成,在设备运转中各部件需要调整的概率分别为0.2,0.3,0.4,各部件的状态相互独立,求需要调整的部件数X 的期望EX 和方差DX 。
5.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差。
()99.0)325.2(,98.0)055.2(=Φ=Φ
6.设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可认为这次考试全体考生的平均成绩为70分?并给出检验过程。
(0301.2)35(025.0=t ,
0281
.2)36(025.0=t )
四、证明题
1.设A ,B 是两个随机事件,0<P(A)<1,⎪⎭
⎫
⎝⎛=⎪⎭⎫
⎝⎛A B P A B P ,证明:A 与B 相互
独立。
2.设总体X 服从参数为λ的泊松分布,n X X ,1是X 的简单随机样本,试证:
()2
2
1S
X
+是λ的无偏估计。
2000级概率论与数理统计试题B 卷答案
一、填空题(满分15分)
1、 0.5
2、31
21-- 3、0.4 4、6 5、),1(n F 二、填空题(满分15分)
1、C
2、D
3、C
4、B
5、D 三、计算题
1、应用贝叶斯公式,P =0.9523
2、当原方程有实根时,解得2>k 或1-<k ,因此所求概率为
5
35
15
2
=
⎰
dx .
3、⎩⎨
⎧<<=其它
101)(x x f X ,⎩⎨
⎧<<=其它
101)(y y f Y
由于X 与Y 相互独立,因此⎩⎨⎧<<<<==其它
1
0,101)()(),(y x y f x f y x f Y X ,
所以
⎰⎰
=
=
⎭⎬⎫⎩
⎨⎧
<+-54
0540
25
8),(54y
dxdy y x f Y X P .
4、5
412)(10
2
=
=
⎰⎰
dydx xy X E x
,
2
112)(1
3
=
=
⎰⎰
dydx xy XY E x
.
5、{}
⇒≥⎪⎪⎭
⎪
⎪⎬⎫
⎪⎪⎩
⎪⎪⎨⎧
>
-⇔≥>9.0511072
9.070n n X P X P
6
.4129.15
19.051
≥⇒
≥⇒≥⎪⎭
⎫
⎝⎛Φn n n ,
因此至少应取42=n .
6、设2
2
06
.1:=σ
H ,2
2
16
.1:≠σ
H ,
由于83.52=X ,所以 18.21925.111
2
1
2
2
<=⎪⎭
⎫
⎝⎛--=∑=X n X n S
n i i ,
故拒绝0H ,即认为零件强度的方差较以往发生了变化。
四、证明题
1、证明:
由于
[]
)
|()()()|()()()
|()()()()
|()()(A B P A P A P A B P A P A P A B P A P A P A P A B P A P AB P +=+==,
[]
)
|()()()|()()()|()()|()()()()(A B P A P A P A B P A P A P A B P A P A B P A P A P B P A P +=+=,
及)()()(B P A P AB P =,
因此
)
|()
()()
|()()()()()
()()
|()()()()|(A B P A P A P A B P A P A P B P A P A P A P A B P A P A P AB P A B P =-=
-=.
2、()λ=X E ,()λ=2S E ,
[
]
,
)1()()1()()1(2
2
λλλ=-+=-+=-+∴a a s E a x aE s
a x a E
命题得证。