HBasePigHive简介

合集下载

大数据平台简介

大数据平台简介
适用于讲座演讲授课培训等场景
大数据平台简介
大数据平台简介
目录
Hadoop生态系统 Hadoop主流厂商 HDFS MapReduce Hive Spark
Hadoop生态系统
Hadoop 1.0 V 2.0
Hadoop生态系统
Ambari (安装部署工具)
Zookeeper (分布式协调服务)
HDFS的基本结构之 NameNode
Namenode是一个中心服务器负责管理文件系统的命名空间 协调客户端对文件的访问 Namenode执行文件系统的命名空间操作例如打开、关闭、重命名文件和目录 记录每个文件数据块在各个Datanode上的位置和副本信息
HDFS元数据持久化
NameNode存有HDFS的元数据:主要由FSImage和EditLog组成 FSImage是元数据镜像文件 保存整个文件系统的目录树 数据块映射关系:文件与数据块映射关系DataNode与数据块映射关系 EditLog是元数据操作日志记录每次保存fsimage之后到下次保存之间的所有hdfs操作
HBase (分布式协数据库)
Oozie (作业流调度系统)
HDFS (分布式存储系统)
YARN (分布式计算框架)
MapReduce (离线计算)
Tez (DAG计算)
Spark (内存计算)
Hive
Pig
Mahout
Sqoop (数据库TEL工具)
Flume (日志收集)
……
……
HDFS-Hadoop Distributed
无法高效存储大量小文件
HDFS现在遇到的主要问题
分布后的文件系统有个无法回避的问题因为文件不在一个磁盘导致读取访问操作的延时这个是HDFS现在遇到的主要问题

《Hadoop大数据技术》课程理论教学大纲

《Hadoop大数据技术》课程理论教学大纲

《Hadoop大数据技术》课程教学大纲一、课程基本情况课程代码:1041139083课程名称(中/英文):Hadoop大数据技术/Hadoop Big Data Technology课程类别:专业必修课学分:3.5总学时:56理论学时:32实验/实践学时:24适用专业:数据科学与大数据技术适用对象:本科先修课程:JA V A程序设计、Linux基础教学环境:课堂、多媒体、实验机房二、课程简介《Hadoop大数据技术》课程是数据科学与大数据技术专业的专业必修课程。

《Hadoop大数据技术》主要学习当前广泛使用的大数据Hadoop平台及其主要组件的作用及使用。

通过学习Hadoop 平台框架,学会手动搭建Hadoop环境,掌握Hadoop平台上存储及计算的原理、结构、工作流程,掌握基础的MapReduce编程,掌握Hadoop生态圈常用组件的作用、结构、配置和工作流程,并具备大数据的动手及问题分析能力,使用掌握的知识应用到实际的项目实践中。

课程由理论及实践两部分组成,课程理论部分的内容以介绍Hadoop平台主要组件的作用、结构、工作流程为主,对Hadoop 平台组件的作用及其工作原理有比较深入的了解;课程同时为各组件设计有若干实验,使学生在学习理论知识的同时,提高实践动手能力,做到在Hadoop的大数据平台上进行大数据项目开发。

三、课程教学目标2.课程教学目标及其与毕业要求指标点、主要教学内容的对应关系四、教学内容(一)初识Hadoop大数据技术1.主要内容:掌握大数据的基本概念、大数据简史、大数据的类型和特征、大数据对于企业带来的挑战。

了解对于大数据问题,传统方法、Google的解决方案、Hadoop框架下的解决方案,重点了解Google的三篇论文。

掌握Hadoop核心构成、Hadoop生态系统的主要组件、Hadoop发行版本的差异及如何选择;了解Hadoop典型应用场景;了解本课程内容涉及到的Java语言基础;了解本课程实验涉及到的Linux基础。

01_尚硅谷大数据之HBase简介

01_尚硅谷大数据之HBase简介

第1章HBase简介1.1 什么是HBaseHBASE是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBASE 技术可在廉价PC Server上搭建起大规模结构化存储集群。

HBASE的目标是存储并处理大型的数据,更具体来说是仅需使用普通的硬件配置,就能够处理由成千上万的行和列所组成的大型数据。

HBASE是Google Bigtable的开源实现,但是也有很多不同之处。

比如:Google Bigtable 利用GFS作为其文件存储系统,HBASE利用Hadoop HDFS作为其文件存储系统;Google 运行MAPREDUCE来处理Bigtable中的海量数据,HBASE同样利用Hadoop MapReduce来处理HBASE中的海量数据;Google Bigtable利用Chubby作为协同服务,HBASE利用Zookeeper作为对应。

1.2 HBase中的角色1.2.1 HMaster功能:1) 监控RegionServer2) 处理RegionServer故障转移3) 处理元数据的变更4) 处理region的分配或移除5) 在空闲时间进行数据的负载均衡6) 通过Zookeeper发布自己的位置给客户端1.2.2 RegionServer功能:1) 负责存储HBase的实际数据2) 处理分配给它的Region3) 刷新缓存到HDFS4) 维护HLog5) 执行压缩6) 负责处理Region分片1.2.3 其他组件:1) Write-Ahead logsHBase的修改记录,当对HBase读写数据的时候,数据不是直接写进磁盘,它会在内存中保留一段时间(时间以及数据量阈值可以设定)。

但把数据保存在内存中可能有更高的概率引起数据丢失,为了解决这个问题,数据会先写在一个叫做Write-Ahead logfile的文件中,然后再写入内存中。

所以在系统出现故障的时候,数据可以通过这个日志文件重建。

Hadoop 生态系统介绍

Hadoop 生态系统介绍

Hadoop 生态系统介绍Hadoop生态系统是一个开源的大数据处理平台,它由Apache基金会支持和维护,可以在大规模的数据集上实现分布式存储和处理。

Hadoop生态系统是由多个组件和工具构成的,包括Hadoop 核心,Hive、HBase、Pig、Spark等。

接下来,我们将对每个组件及其作用进行介绍。

一、Hadoop核心Hadoop核心是整个Hadoop生态系统的核心组件,它主要由两部分组成,一个是Hadoop分布式文件系统(HDFS),另一个是MapReduce编程模型。

HDFS是一个高可扩展性的分布式文件系统,可以将海量数据存储在数千台计算机上,实现数据的分散储存和高效访问。

MapReduce编程模型是基于Hadoop的针对大数据处理的一种模型,它能够对海量数据进行分布式处理,使大规模数据分析变得容易和快速。

二、HiveHive是一个开源的数据仓库系统,它使用Hadoop作为其计算和存储平台,提供了类似于SQL的查询语法,可以通过HiveQL 来查询和分析大规模的结构化数据。

Hive支持多种数据源,如文本、序列化文件等,同时也可以将结果导出到HDFS或本地文件系统。

三、HBaseHBase是一个开源的基于Hadoop的列式分布式数据库系统,它可以处理海量的非结构化数据,同时也具有高可用性和高性能的特性。

HBase的特点是可以支持快速的数据存储和检索,同时也支持分布式计算模型,提供了易于使用的API。

四、PigPig是一个基于Hadoop的大数据分析平台,提供了一种简单易用的数据分析语言(Pig Latin语言),通过Pig可以进行数据的清洗、管理和处理。

Pig将数据处理分为两个阶段:第一阶段使用Pig Latin语言将数据转换成中间数据,第二阶段使用集合行处理中间数据。

五、SparkSpark是一个快速、通用的大数据处理引擎,可以处理大规模的数据,支持SQL查询、流式数据处理、机器学习等多种数据处理方式。

(完整word版)HIVE说明文档

(完整word版)HIVE说明文档

HIVE说明文档一、HIVE简介:1、HIVE介绍Hive是一个基于Hadoop的开源数据仓库工具,用于存储和处理海量结构化数据。

它是Facebook 2008年8月开源的一个数据仓库框架,提供了类似于SQL语法的HQL语句作为数据访问接口。

Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据.2、HIVE适用性:它与关系型数据库的SQL 略有不同,但支持了绝大多数的语句如DDL、DML 以及常见的聚合函数、连接查询、条件查询。

HIVE不适合用于联机(online)事务处理,也不提供实时查询功能。

它最适合应用在基于大量不可变数据的批处理作业。

HIVE的特点:可伸缩(在Hadoop的集群上动态的添加设备),可扩展,容错,输入格式的松散耦合.hive不支持用insert语句一条一条的进行插入操作,也不支持update操作。

数据是以load的方式加载到建立好的表中。

数据一旦导入就不可以修改。

DML包括:INSERT插入、UPDATE更新、DELETE删除。

3、HIVE结构Hive 是建立在Hadoop上的数据基础架构,它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制,Hive定义了简单的累SQL 查询语言,称为HQL,它允许熟悉SQL的用户查询数据,同时,这个语言也允许熟悉MapReduce开发者的开发自定义的mapper和reducer来处理內建的mapper和reducer无法完成的复杂的分析工作。

大数据平台的软件有哪些

大数据平台的软件有哪些

大数据平台的软件有哪些查询引擎一、Phoenix简介:这是一个Java中间层,可以让开发者在Apache HBase上执行SQL查询。

Phoenix完全使用Java编写,代码位于GitHub上,并且提供了一个客户端可嵌入的JDBC驱动。

Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排执行以生成标准的JDBC 结果集。

直接使用HBase API、协同处理器与自定义过滤器,对于简单查询来说,其性能量级是毫秒,对于百万级别的行数来说,其性能量级是秒。

Phoenix最值得关注的一些特性有:嵌入式的JDBC驱动,实现了大部分的接口,包括元数据API可以通过多部行键或是键/值单元对列进行建模完善的查询支持,可以使用多个谓词以及优化的扫描键DDL支持:通过CREATE TABLE、DROP TABLE及ALTER TABLE来添加/删除列版本化的模式仓库:当写入数据时,快照查询会使用恰当的模式DML支持:用于逐行插入的UPSERT VALUES、用于相同或不同表之间大量数据传输的UPSERT SELECT、用于删除行的DELETE通过客户端的批处理实现的有限的事务支持单表——还没有连接,同时二级索引也在开发当中紧跟ANSI SQL标准二、Stinger简介:原叫Tez,下一代Hive,Hortonworks主导开发,运行在YARN上的DAG计算框架。

某些测试下,Stinger能提升10倍左右的性能,同时会让Hive支持更多的SQL,其主要优点包括:让用户在Hadoop 获得更多的查询匹配。

其中包括类似OVER的字句分析功能,支持WHERE查询,让Hive的样式系统更符合SQL模型。

优化了Hive请求执行计划,优化后请求时间减少90%。

改动了Hive执行引擎,增加单Hive任务的被秒处理记录数。

在Hive 社区中引入了新的列式文件格式(如ORC文件),提供一种更现代、高效和高性能的方式来储存Hive数据。

hadoop概述

hadoop概述

hadoop概述
Hadoop是一个开源的分布式计算框架,它由Apache基金会开发和
维护。

Hadoop可以存储和处理大规模数据集,它的核心组件包括Hadoop Distributed File System(HDFS)和MapReduce。

HDFS是一个分布式文件系统,它可以将大型数据集分成多个块,并
将这些块存储在不同的计算机上。

这种方式可以提高数据的可靠性和
可扩展性。

同时,HDFS还有自动备份和恢复机制,确保数据的安全性。

MapReduce是一种编程模型,用于处理大规模数据集。

MapReduce 将任务分成两个阶段:map阶段和reduce阶段。

在map阶段中,输入数据被划分为多个小块,并由不同的计算机并行处理。

在reduce阶段中,结果被合并为最终输出。

除了核心组件之外,Hadoop还有许多其他组件来增强其功能。

例如:
1. YARN:资源管理器,用于管理计算资源并调度任务。

2. Hive:基于SQL语言的数据仓库工具。

3. Pig:高级脚本语言,用于执行复杂的数据流转换。

4. HBase:非关系型数据库,用于存储半结构化或非结构化数据。

5. ZooKeeper:分布式应用程序协调服务。

总之,Hadoop是一个强大的分布式计算框架,它可以存储和处理大规模数据集,并提供了许多组件来增强其功能。

Hadoop已经成为许多企业和组织的首选解决方案,用于处理大规模数据集。

Hive入门基础知识

Hive入门基础知识

HDFS下对 应存储目 录:
第21页,共55页。
Hive开发使用-Hive的数据模型
外部表
外部表指向已经在HDFS中存在的数据,可以创建Partition。它和内部表在元 数据的组织上是相同的,而实际数据的存储则有较大的差异。内部表的创建过程 和数据加载过程这两个过程可以分别独立完成,也可以在同一个语句中完成,在 加载数据的过程中,实际数据会被移动到数据仓库目录中;之后对数据访问将会 直接在数据仓库目录中完成。删除表时,表中的数据和元数据将会被同时删除。 而外部表只有一个过程,加载数据和创建表同时完成(CREATE EXTERNAL TABLE ……LOCATION),实际数据是存储在LOCATION后面指定的 HDFS 路径 中,并不会移动到数据仓库目录中。当删除一个External Table时,仅删除该链 接。
第22页,共55页。
Hive开发使用-Hive的数据模型
如何选择使用内部表或外部表?
如果所有处理都由hive来完成,则使用内部表
如果需要用hive和外部其他工具处理同一组数据集,则使用外部表。
第23页,共55页。
Hive开发使用-Hive的数据模型
分区
Partition对应于关系数据库中的Partition列的密集索引,但是Hive中 Partition的组织方式和数据库中的很不相同。在Hive中,表中的一个 Partition对应于表下的一个目录,所有的Partition的数据都存储在对应的目 录中。例如pvs表中包含ds和city两个Partition,则
序,可以通过指定的主机和端口连接 到在另一个进程中运行的hive服务 器
ODBC客户端:ODBC驱动允许支持
ODBC协议的应用程序连接到Hive

四种重要的非关系型数据库

四种重要的非关系型数据库

四种重要的⾮关系型数据库Hbase列式存储以流的⽅式在列中存储所有的数据。

对于任何记录,索引都可以快速地获取列上的数据;列式存储⽀持⾏检索,但这需要从每个列获取匹配的列值,并重新组成⾏。

HBase(Hadoop Database)是⼀个⾼可靠性、⾼性能、⾯向列、可伸缩的分布式存储系统,利⽤HBase技术可在廉价PC Server上搭建起⼤规模结构化存储集群。

HBase是Google BigTable的开源实现,模仿并提供了基于Google⽂件系统的BigTable数据库的所有功能。

HBase可以直接使⽤本地⽂件系统或者Hadoop作为数据存储⽅式,不过为了提⾼数据可靠性和系统的健壮性,发挥HBase处理⼤数据量等功能,需要使⽤Hadoop作为⽂件系统。

HBase仅能通过主键(row key)和主键的range来检索数据,仅⽀持单⾏事务,主要⽤来存储⾮结构化和半结构化的松散数据。

Hbase中表的特点:⼤,稀疏,⾯向列Hadoop⽣态系统中的各层系统HBase位于结构化存储层;HDFS为HBase提供了⾼可靠性的底层存储⽀持;MapReduce为HBase提供了⾼性能的计算能⼒;Zookeeper为HBase提供了稳定服务和失败恢复机制;Pig和Hive还为HBase提供了⾼层语⾔⽀持,使得在HBase上进⾏数据统计处理变的⾮常简单;Sqoop则为HBase提供了⽅便的RDBMS数据导⼊功能,⽅便数据迁移;Hbase在互联⽹存储的⼏个应⽤场景:1.抓取增量数据使⽤HBase 作为数据存储,抓取来⾃各种数据源的增量数据,如抓取⽤户交互数据,以备之后进⾏分析、处理2.内容服务传统数据库最主要的使⽤场合之⼀是为⽤户提供内容服务,如URL短链接服务,可以HBase为基础,存储⼤量的短链接以及和原始长链接的映射关系3.信息交换Facebook的短信平台每天交换数⼗亿条短信,HBase可以很好的满⾜该平台的需求:⾼的写吞吐量,极⼤的表,数据中⼼的强⼀致性Hbase与传统关系型数据库区别:数据类型HBase只有简单的字符串类型,所有类型都由⽤户⾃⼰处理,它只保存字符串;关系数据库有丰富的类型选择和存储⽅式。

Hadoop生态圈各个组件简介

Hadoop生态圈各个组件简介

Hadoop⽣态圈各个组件简介Hadoop是⼀个能够对⼤量数据进⾏分布式处理的软件框架。

具有可靠、⾼效、可伸缩的特点。

Hadoop的核⼼是HDFS和MapReduce,HDFS还包括YARN。

1.HDFS(hadoop分布式⽂件系统)是hadoop体系中数据存储管理的他是⼀个基础。

它是⼀个⾼度容错的的系统,能检测和应对硬件故障。

client:切分⽂件,访问HDFS,与之交互,获取⽂件位置信息,与DataNode交互,读取和写⼊数据。

namenode:master节点,在hadoop1.x中只有⼀个,管理HDFS的名称空间和数据块映射信息,配置副本策略,处理客户端请求。

DataNode:slave节点,存储实际的数据,汇报存储信息给namenode.secondary namenode:辅助namenode,分担其⼯作量:定期合并fsimage和fsedits,推送给namenode;紧急情况下和辅助恢复namenode,但其并⾮namenode的热备。

2.mapreduce(分布式计算框架)mapreduce是⼀种计算模型,⽤于处理⼤数据量的计算。

其中map对应数据集上的独⽴元素进⾏指定的操作,⽣成键-值对形式中间,reduce则对中间结果中相同的键的所有的值进⾏规约,以得到最终结果。

jobtracker:master节点,只有⼀个管理所有作业,任务/作业的监控,错误处理等,将任务分解成⼀系列任务,并分派给tasktracker. tacktracker:slave节点,运⾏map task和reducetask;并与jobtracker交互,汇报任务状态。

map task:解析每条数据记录,传递给⽤户编写的map()执⾏,将输出结果写⼊到本地磁盘(如果为map-only作业,则直接写⼊HDFS)。

reduce task:从map的执⾏结果中,远程读取输⼊数据,对数据进⾏排序,将数据分组传递给⽤户编写的reduce函数执⾏。

一张图看懂HBase

一张图看懂HBase

行键,相当于关系 表的主键,每一行 数据的唯一标识。 字符串、整数、二 进制串都可以作为 RowKey。所有记 录按照RowKey排 序后存储。
每次数据操作 对应的时间戳, 数据按时间戳 区分版本,每 个Cell的多个 版本的数据按 时间倒序存储。
Column Family,列簇,一个表在水平方向上由一个 或多个CF组成。一个CF可以由任意多个Column组成。 Column是CF下的一个标签,可以在写入数据时任意 添加,因此CF支持动态扩展,无需预先定义Column 的数量和类型。HBase中表的列非常稀疏,不同行的 列的个数和类型都可以不同。此外,每个CF都有独立 的TTL(生存周期)。可以只对行上锁,对行的操作 始终是原始的。
HRegionServer HRegion Store
HLog StoreFile HFile MemStore
HRegionServer HRegion Store
HLog MemStore StoreFile
StoreFile
… …

StoreFile HFile
… …


HFile
HFile
DFS Client …
5
HBase的物理存储结构
ColumnFamily01 Col 01 Col 02 Row--01 Row--02 Row--03 Row--04 Row--05 Row--06 Row--07 Row--08 Row--09 Row--10 Row--11 Row--12 Row--13 Row--14 Row--15 ColumnFamily02 Col 03 Col 04
4
HBase数据模型
存储在HBase表每一行数据都有可排序的关键字(Row Key)和任意列项(Column & Column Family)。在HBase中,仅能通过主键(Row Key)和主键版本号来检索数据, 仅支持单行事务。下面以HBase存储搜索引擎的网页为例:

《Hadoop权威指南:大数据的存储与分析》笔记

《Hadoop权威指南:大数据的存储与分析》笔记

《Hadoop权威指南:大数据的存储与分析》阅读随笔目录一、Hadoop简介 (3)1.1 Hadoop的发展历程 (4)1.2 Hadoop的核心组件 (6)1.2.1 Hadoop分布式文件系统 (6)1.2.2 MapReduce编程模型 (8)1.2.3 YARN资源管理器 (9)二、Hadoop的安装与配置 (11)2.1 安装前的准备 (13)2.2 安装步骤 (14)2.3 验证安装 (16)三、Hadoop的数据存储 (17)3.1 HDFS的工作原理 (17)3.2 HDFS的高级特性 (19)3.2.1 数据副本机制 (21)3.2.2 数据块大小调整 (22)3.3 HDFS的使用和管理 (23)3.3.1 文件的上传和下载 (24)3.3.2 集群管理和维护 (25)四、Hadoop的数据分析 (27)4.1 MapReduce的工作流程 (29)4.2 MapReduce的应用案例 (30)4.3 Hive和Pig的使用 (31)4.3.1 Hive的使用 (32)4.3.2 Pig的使用 (33)五、Hadoop的性能优化 (34)5.1 网络优化 (36)5.2 内存优化 (37)5.3 磁盘优化 (39)六、Hadoop的安全管理 (39)6.1 用户和权限管理 (41)6.2 数据加密 (42)6.3 安全审计 (44)七、Hadoop的实践与应用 (45)7.1 电商网站数据存储与分析 (47)7.2 金融数据分析 (49)7.3 医疗健康数据存储与分析 (51)八、总结与展望 (52)8.1 Hadoop的优势与挑战 (54)8.2 未来发展趋势 (56)一、Hadoop简介Hadoop是一个开源的分布式存储和计算框架,它的核心思想是将大规模数据分散到多个计算节点上进行处理,从而实现对大数据的有效管理和分析。

Hadoop的出现极大地推动了大数据处理技术的发展,使得企业能够更有效地利用存储在海量数据中的有价值的信息。

hbase存储计算公式

hbase存储计算公式

hbase存储计算公式摘要:1.HBase 简介2.HBase 的特点3.HBase 存储计算公式的方法4.HBase 存储计算公式的优点5.总结正文:1.HBase 简介HBase 是一个分布式、可扩展、高性能的列式存储系统,它基于Google 的Bigtable 设计,适用于海量数据的存储和处理。

HBase 是Apache Hadoop 项目的子项目,与Hadoop 生态圈的其他组件如Hive、Pig 等相辅相成,共同构建了大数据处理平台。

2.HBase 的特点HBase 具有以下几个显著特点:(1)可扩展性:HBase 采用分布式架构,支持数据的水平扩展,可以轻松应对海量数据的存储和查询;(2)高性能:HBase 采用一种称为“memstore”的内存结构来存储新数据,以提高查询速度;(3)灵活性:HBase 采用列式存储结构,允许用户根据需要选择特定的列族进行存储和查询;(4)支持数据压缩:HBase 支持多种数据压缩算法,可以降低存储空间和提高查询性能。

3.HBase 存储计算公式的方法在HBase 中存储计算公式,可以将公式分解为多个列族,然后分别存储这些列族的数据。

例如,可以将公式表示为一个二维矩阵,其中行表示不同的时间戳,列表示不同的计算指标。

然后,可以将这个矩阵分解为多个列族,如“time_stamp”、“value_1”、“value_2”等,并将这些列族的数据存储到HBase 中。

4.HBase 存储计算公式的优点(1)可扩展性:HBase 的分布式架构可以轻松应对海量数据的存储和查询;(2)高性能:HBase 的内存结构“memstore”可以提高查询速度;(3)灵活性:HBase 的列式存储结构允许用户根据需要选择特定的列族进行存储和查询;(4)数据压缩:HBase 支持多种数据压缩算法,可以降低存储空间和提高查询性能。

5.总结HBase 作为一个高性能、可扩展、灵活的分布式列式存储系统,非常适合存储和处理海量数据。

Hadoop大数据开发基础教案Hadoop基础操作教案

Hadoop大数据开发基础教案Hadoop基础操作教案

一、Hadoop简介1. 教学目标(1) 了解Hadoop的定义和发展历程(2) 掌握Hadoop的核心组件及其作用(3) 理解Hadoop在大数据领域的应用场景2. 教学内容(1) Hadoop的定义和发展历程(2) Hadoop的核心组件:HDFS、MapReduce、YARN(3) Hadoop的应用场景3. 教学方法(1) 讲授(2) 案例分析(3) 互动讨论4. 教学步骤(1) 引入话题:大数据与Hadoop(2) 讲解Hadoop的定义和发展历程(3) 介绍Hadoop的核心组件及其作用(4) 分析Hadoop的应用场景(5) 总结本节课的重点内容二、HDFS操作1. 教学目标(1) 掌握HDFS的基本概念和架构(2) 学会使用HDFS客户端进行文件操作(3) 了解HDFS的配置和优化方法2. 教学内容(1) HDFS的基本概念和架构(2) HDFS客户端的使用方法(3) HDFS的配置和优化方法3. 教学方法(1) 讲授(2) 实操演示(3) 互动讨论4. 教学步骤(1) 讲解HDFS的基本概念和架构(2) 演示HDFS客户端的使用方法(3) 介绍HDFS的配置和优化方法(4) 进行实操练习(5) 总结本节课的重点内容三、MapReduce编程模型1. 教学目标(1) 理解MapReduce的编程模型和原理(2) 掌握MapReduce的基本操作和编程步骤(3) 了解MapReduce的优缺点和适用场景2. 教学内容(1) MapReduce的编程模型和原理(2) MapReduce的基本操作和编程步骤(3) MapReduce的优缺点和适用场景3. 教学方法(1) 讲授(2) 案例分析(3) 互动讨论4. 教学步骤(1) 讲解MapReduce的编程模型和原理(2) 介绍MapReduce的基本操作和编程步骤(3) 分析MapReduce的优缺点和适用场景(4) 进行案例实操(5) 总结本节课的重点内容四、YARN架构与资源管理1. 教学目标(1) 理解YARN的架构和功能(2) 掌握YARN的资源管理和调度机制(3) 了解YARN的应用场景和优势2. 教学内容(1) YARN的架构和功能(2) YARN的资源管理和调度机制(3) YARN的应用场景和优势3. 教学方法(1) 讲授(2) 案例分析(3) 互动讨论4. 教学步骤(1) 讲解YARN的架构和功能(2) 介绍YARN的资源管理和调度机制(3) 分析YARN的应用场景和优势(4) 进行案例实操(5) 总结本节课的重点内容五、Hadoop生态系统简介1. 教学目标(1) 了解Hadoop生态系统的概念和组成(2) 掌握Hadoop生态系统中常用组件的功能和应用场景(3) 理解Hadoop生态系统的发展趋势2. 教学内容(1) Hadoop生态系统的概念和组成(2) Hadoop生态系统中常用组件:Hive、HBase、Pig、Sqoop、Flume(3) Hadoop生态系统的发展趋势3. 教学方法(1) 讲授(2) 案例分析(3) 互动讨论4. 教学步骤(1) 讲解Hadoop生态系统的概念和组成(2) 介绍Hadoop生态系统中常用组件的功能和应用场景(3) 分析Hadoop生态系统的发展趋势(六、Hive大数据处理平台1. 教学目标(1) 理解Hive的概念和架构(2) 掌握Hive的基本操作和数据处理能力(3) 了解Hive的应用场景和优缺点2. 教学内容(1) Hive的概念和架构(2) Hive的基本操作:表的创建、数据的导入和导出(3) Hive的数据处理能力:查询、统计、分析(4) Hive的应用场景和优缺点3. 教学方法(1) 讲授(2) 实操演示(3) 互动讨论4. 教学步骤(1) 讲解Hive的概念和架构(2) 演示Hive的基本操作(3) 介绍Hive的数据处理能力(4) 分析Hive的应用场景和优缺点(5) 进行实操练习(6) 总结本节课的重点内容七、HBase分布式数据库1. 教学目标(1) 理解HBase的概念和架构(2) 掌握HBase的基本操作和数据管理能力(3) 了解HBase的应用场景和优缺点2. 教学内容(1) HBase的概念和架构(2) HBase的基本操作:表的创建、数据的增删改查(3) HBase的数据管理能力:数据一致性、并发控制、灾难恢复(4) HBase的应用场景和优缺点3. 教学方法(1) 讲授(2) 实操演示(3) 互动讨论4. 教学步骤(1) 讲解HBase的概念和架构(2) 演示HBase的基本操作(3) 介绍HBase的数据管理能力(4) 分析HBase的应用场景和优缺点(5) 进行实操练习(6) 总结本节课的重点内容八、Pig大数据脚本语言1. 教学目标(1) 理解Pig的概念和架构(2) 掌握Pig的基本操作和数据处理能力(3) 了解Pig的应用场景和优缺点2. 教学内容(1) Pig的概念和架构(2) Pig的基本操作:LOAD、STORE、FILTER(3) Pig的数据处理能力:数据转换、数据清洗、数据分析(4) Pig的应用场景和优缺点3. 教学方法(1) 讲授(2) 实操演示(3) 互动讨论4. 教学步骤(1) 讲解Pig的概念和架构(2) 演示Pig的基本操作(3) 介绍Pig的数据处理能力(4) 分析Pig的应用场景和优缺点(5) 进行实操练习(6) 总结本节课的重点内容九、Sqoop数据迁移工具1. 教学目标(1) 理解Sqoop的概念和架构(2) 掌握Sqoop的基本操作和数据迁移能力(3) 了解Sqoop的应用场景和优缺点2. 教学内容(1) Sqoop的概念和架构(2) Sqoop的基本操作:导入、导出数据(3) Sqoop的数据迁移能力:关系数据库与Hadoop之间的数据迁移(4) Sqoop的应用场景和优缺点3. 教学方法(1) 讲授(2) 实操演示(3) 互动讨论4. 教学步骤(1) 讲解Sqoop的概念和架构(2) 演示Sqoop的基本操作(3) 介绍Sqoop的数据迁移能力(4) 分析Sqoop的应用场景和优缺点(5) 进行实操练习(6) 总结本节课的重点内容十、Flume数据采集系统1. 教学目标(1) 理解Flume的概念和架构(2) 掌握Flume的基本操作和数据采集能力(3) 了解Flume的应用场景和优缺点2. 教学内容(1) Flume的概念和架构(2) Flume的基本操作:配置文件编写、组件部署(3) Flume的数据采集能力:日志数据十一、日志数据处理实战1. 教学目标(1) 理解日志数据处理的重要性(2) 掌握使用Hadoop生态系统工具处理日志数据的方法(3) 能够设计日志数据处理流程2. 教学内容(1) 日志数据的特点和处理需求(2) 使用Hadoop生态系统中的工具(如LogParser, Flume, Hive, Pig)处理日志数据(3) 案例分析:构建一个简单的日志数据分析流程3. 教学方法(1) 讲授(2) 实操演示(3) 案例分析(4) 互动讨论4. 教学步骤(1) 讲解日志数据的特点和处理需求(2) 演示如何使用Hadoop生态系统工具处理日志数据(3) 通过案例分析,让学生设计一个简单的日志数据分析流程(4) 学生实操练习,应用所学知识处理实际日志数据(5) 总结本节课的重点内容,强调日志数据处理的最佳实践十二、大数据可视化分析1. 教学目标(1) 理解大数据可视化的重要性(2) 掌握使用可视化工具进行大数据分析的方法(3) 能够设计有效的大数据可视化方案2. 教学内容(1) 大数据可视化的概念和作用(2) 常用的大数据可视化工具:Tableau, QlikView, D3.js等(3) 如何选择合适的可视化工具和设计原则3. 教学方法(1) 讲授(2) 实操演示(3) 案例分析(4) 互动讨论4. 教学步骤(1) 讲解大数据可视化的概念和作用(2) 演示常用的大数据可视化工具的使用方法(3) 分析如何选择合适的可视化工具和设计原则(4) 通过案例分析,让学生设计一个大数据可视化方案(5) 学生实操练习,应用所学知识创建可视化分析(6) 总结本节课的重点内容,强调大数据可视化的最佳实践十三、大数据安全与隐私保护1. 教学目标(1) 理解大数据安全的重要性(2) 掌握大数据安全和隐私保护的基本概念(3) 了解大数据安全与隐私保护的技术和策略2. 教学内容(1) 大数据安全与隐私保护的基本概念(2) 大数据安全威胁和风险分析(3) 大数据安全和隐私保护技术和策略:加密、访问控制、匿名化等3. 教学方法(1) 讲授(2) 案例分析(3) 互动讨论4. 教学步骤(1) 讲解大数据安全与隐私保护的基本概念(2) 分析大数据安全威胁和风险(3) 介绍大数据安全和隐私保护技术和策略(4) 通过案例分析,让学生了解如何实施大数据安全与隐私保护(5) 总结本节课的重点内容,强调大数据安全和隐私保护的最佳实践十四、大数据应用案例分析1. 教学目标(1) 理解大数据在不同行业的应用(2) 掌握大数据解决方案的设计思路(3) 能够分析大数据应用案例,提取经验教训2. 教学内容(1) 大数据在各行业的应用案例:金融、医疗、零售、物流等(2) 大数据解决方案的设计思路和步骤(3) 分析大数据应用案例,提取经验教训3. 教学方法(1) 讲授(2) 案例分析(3) 互动讨论4. 教学步骤(1) 讲解大数据在各行业的应用案例(2) 分析大数据解决方案的设计思路和步骤(3) 通过案例分析,让学生提取大数据应用的经验教训(4) 学生实操练习,分析特定行业的大数据应用案例(5) 总结本节课的重点内容,强调大数据应用的最佳实践十五、大数据的未来趋势与职业规划1. 教学目标(1) 理解大数据发展的未来趋势(2) 掌握大数据行业职业规划的方向(3) 能够根据个人兴趣和能力规划大数据相关职业发展路径2. 教学内容(1) 大数据发展的未来趋势:技术、应用、产业等(2) 大数据行业职业规划的方向重点和难点解析本文主要介绍了Hadoop大数据开发基础教案,包括Hadoop基础操作、HDFS 操作、MapReduce编程模型、YARN架构与资源管理、Hadoop生态系统简介、Hive大数据处理平台、HBase分布式数据库、Pig大数据脚本语言、Sqoop数据迁移工具、Flume数据采集系统、日志数据处理实战、大数据可视化分析、大数据安全与隐私保护、大数据应用案例分析以及大数据的未来趋势与职业规划等十五个章节。

大数据系列-Hive入门与实战(ppt 69张)

大数据系列-Hive入门与实战(ppt 69张)
13
将查询字符串转换成解析树表达式。
语义解析器
将解析树转换成基于语句块的内部查询表达式。
语法解析器
逻辑计划 生成器 查询计划 生成器
将内部查询表达式转换为逻辑计划,这些计划由逻辑操作树组 成,操作符是Hive的最小处理单元,每个操作符处理代表一道 HDFS操作或者是MR作业。 将逻辑计划转化成物理计划(MR Job)。
Hive (SQL)
程序语言
计算 表存储 对象存储
HCatalog (元数据)
Hbase (列存储)
HDFS (Hadoop分布式文件系统)
Hive体系结构-Hive设计特征
8
Hive 做为Hadoop 的数据仓库处理工具,它所有的数据都存储在Hadoop 兼容的文件系统中。Hive 在加载数据过程中不会对数据进行任何的修改,只 是将数据移动到HDFS 中Hive 设定的目录下,因此,Hive 不支持对数据的改 写和添加,所有的数据都是在加载的时候确定的。Hive 的设计特点如下。 支持索引,加快数据查询。
CLI接口
用户接口 JDBC/ODBC客户端 WEB接口
Thrift服务器 解析器 编译器 优化器 元apReduce
数据仓库 HDFS


Hadoop
Hive 的数据文件存储在 HDFS 中,大部 分的查询由 MapReduce 完成。(对于包 含 * 的查询,比如 select * from tbl 不会 生成 MapRedcue 作业)
CLI接口
用户接口 JDBC/ODBC客户端 WEB接口
Thrift服务器 解析器 编译器 优化器 元数据库
• • •
• Thrift服务器
执行器
Hive

HBase简介

HBase简介

HBase简介什么是HBase?HBase,是Hadoop Database,是⼀个⾼可靠性、⾼性能、⾯向列、可伸缩的分布式存储系统。

使⽤HBase技术可以在廉价的PC服务器上搭建起⼤规模结构化的存储集群。

它底层的⽂件系统使⽤HDFS,使⽤Zookeeper来管理集群的HMaster和各Region server 之间的通信,监控各Region server的状态,存储各Region的⼊⼝地址等。

何时⽤HBase?⾸先想想传统的关系型数据库都有哪些特点,⼤概的特点有:⽀持事务,ACID(原⼦性、⼀致性、隔离性和持久性)特性;⾏式存储;SQL语句使⽤起来⽐较⽅便;⽀持索引、视图等;接下来我们考虑⼀个场景:我们想要构建⼀个社交⽹站,我们可能会选择易于操作的LAMP(Linux、Apache、Mysql、PHP)模型来快速的搭建⼀个原型。

随着⽤户数的不断增加,每天有越来越多的⼈开始访问,这时候,共享的数据库服务器压⼒会越来越⼤,可以选择增加应⽤服务器,但因为这些应⽤服务器共享中央数据库,所以,随着数据库的CPU 和I/O负载升⾼,这种⽅案势必不可长久。

这时候,我们可能会增加从服务器,以便并⾏读取,将读写分离。

这样做是因为考虑到⽤户访问产⽣的读次数⽐写⼊次数更多,但是如果⽤户数⽬增加很快,产⽣的内容越来越多,导致读写数⽬相差没那么⼤,这种⽅案也就不能长久。

接下来的常见做法就是增加缓存,⽐如使⽤Memcached。

这样,读操作存⼊到内存中的数据库系统中,但⼜没办法保证数据⼀致性,因为⽤户更新数据到数据库,⽽数据库不会主动更新缓存中的数据,⽽且,这种⽅案只能解决读请求的压⼒,对于写请求,还是没有解决。

所以需要更多的服务器,更快的磁盘,会导致硬件成本快速升⾼。

⽽且,随着⽤户的增多,⽹站功能势必增加,业务功能都会使⽤sql语句进⾏查询,⽽表数据过多会导致join操作变慢,所以会不得不采⽤⼀些逆范式的⽅式来设计数据库,这样导致⽆法使⽤存储过程。

hive是什么意思

hive是什么意思

hive是什么意思
一、常见释义
美/haɪv/
英/haɪv/
二、词典释义
n.蜂巢,蜂箱;蜂群;(喻)充满繁忙人群的场所
v.使(蜜蜂)进入蜂箱;存贮,积累;群居,生活在蜂房中
三、Hive简介
数据仓库工具
hive是基于Hadoop的一个数据仓库工具,用来进行数据提取、转化、加载,这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。

hive数据仓库工具能将结构化的数据文件映射为一张数据库表,并提供SQL查询功能,能将SQL语句转变成MapReduce任务来执行。

Hive的优点是学习成本低,可以通过类似SQL语句实现快速MapReduce统计,使MapReduce变得更加简单,而不必开发专门的MapReduce应用程序。

hive十分适合对数据仓库进行统计分析,使用类SQL 的HiveQL 语言实现数据查询,所有Hive数据都存储在Hadoop 兼容的文件系统中。

1、什么是Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件
映射为一张数据库表,并提供类SQL查询功能。

2、为什么使用Hive
直接使用hadoop所面临的问题
人员学习成本太高
项目周期要求太短
MapReduce实现复杂查询逻辑开发难度太大
3、为什么要使用Hive
操作接口采用类SQL语法,提供快速开发的能力。

避免了去写MapReduce,减少开发人员的学习成本。

扩展功能很方便。

大数据一体化教学实训平台简介

大数据一体化教学实训平台简介

大数据一体化教学实训平台简介大数据一体化教学实训平台是由泰迪科技自主研发,旨在为高校大数据相关专业提供一体化教学实训环境及课程资源。

本平台共包含9大模块:云资源管理平台、教学管理平台、大数据分析平台、Python 数据挖掘建模平台、R语言数据挖掘建模平台、大数据开发实训平台、Python编程实训平台、R语言编程实训平台、大数据整合平台。

以教学管理平台、云资源管理平台为支撑,以优质的课程、项目案例资源为核心,并以自主研发的数据挖掘建模平台为实训工具,把课程、软件、硬件内容统一结合,满足高校大数据教学与实训的一体化平台。

大数据一体化教学实训平台架构(总)大数据一体化教学实训平台架构(理学方向)大数据一体化教学实训平台架构(工学方向)大数据一体化教学实训平台特点•B/S架构:可直接通过客户机的浏览器对服务器端的一体化教学实训平台进行访问。

•模块丰富:提供软硬件管理、教学管理、实验实训等系列模块,满足不同的教学与实训场景使用。

•拓展性强:教师自主开设新课程、添加各种课程资源与活动,满足用户的个性化需求。

•单点登录:用户只需一次登录即可访问所有的教学与实训平台,解决了登录繁琐、操作不便等问题。

•资源一体:提供教学大纲、教学视频、教学PPT、课后习题、实验指导书、实验数据、实验代码、实验环境等一系列的教学实训资源,全方位解决实际教学与实训过程中所遇到的问题。

•教学一体:分别提供“教”与“学”的软件环境,教学与实训模块深度融合,真正实现一体化。

•软硬件一体:硬件环境采用云柜的方式进行搭建,内部集成机柜、服务器(部署一体化教学实训平台)、供配电、UPS、变频空调、应急通风等,整个云柜架构和谐统一、方便安装与维护。

云资源管理平台简介云资源管理平台主要对实验室云虚拟化资源进行管理及维护,负责对实验室所有软件系统进行管理与监控,将云存储资源、服务器资源和网络资源整合,然后通过虚拟化搭建私有云平台,在私有云平台上搭建教学管理平台与一系列的大数据实训平台。

hive的架构组成

hive的架构组成

hive的架构组成
Hive是一个建立在Hadoop上的数据仓库工具,它提供了类似SQL的查询语言HiveQL,用于分析大规模数据集。

Hive的架构组成包括元数据存储、驱动器、编译器、优化器、执行器和存储引擎。

1. 元数据存储,Hive的元数据存储在关系型数据库中,它包含了表的结构、分区信息、表的属性和表的位置等元数据信息。

常用的元数据存储包括MySQL和Derby等。

2. 驱动器,Hive的驱动器负责接收用户提交的HiveQL查询,编译查询语句,生成执行计划,并协调执行器执行查询。

驱动器还负责与元数据存储进行交互,获取表的元数据信息。

3. 编译器,Hive的编译器将HiveQL查询语句编译成MapReduce任务或Tez任务。

编译器会将HiveQL查询转换成逻辑执行计划,然后优化执行计划,并生成物理执行计划。

4. 优化器,Hive的优化器负责对生成的物理执行计划进行优化,以提高查询性能。

优化器会进行诸如条件下推、列裁剪、连接重排等优化操作。

5. 执行器,Hive的执行器负责执行经过编译和优化的任务。

它会与Hadoop集群进行交互,提交MapReduce任务或Tez任务,并
监控任务的执行情况。

6. 存储引擎,Hive支持不同的存储引擎,包括默认的HDFS存
储引擎、Apache HBase存储引擎和Apache Cassandra存储引擎等。

存储引擎负责实际存储数据,并提供数据访问接口。

综上所述,Hive的架构组成包括元数据存储、驱动器、编译器、优化器、执行器和存储引擎,这些组件共同协作,实现了Hive对大
规模数据集的查询和分析功能。

《hbase基础知识》课件

《hbase基础知识》课件
《HBase基础知识》PPT 课件
HBase是一个分布式、开源的NoSQL数据库,以Hadoop分布式文件系统 (HDFS)为底层存储,适用于大规模数据存储和处理。
介绍HBase
HBase是一个可扩展的、高可用的分布式数据库,基于Google的Bigtable论 文而设计。 它提供了强大的列式存储、实时读写、横向扩展和高容量存储能力。
2
HMaster
HMaster是HBase集群中的主节点,负责管理RegionServer和分配Region。
3
ZooKeeper
ZooKeeper是HBase集群的协调服务,用于选举HMaster并维护元数据。
HBase的读写操作
1 数据写入
将数据写入表格,指定行键、列族和列,可以实现快速的数据插入。
数据预分区
通过合理的预分区策略,可以均 匀分布数据并提高查询性能。
缓存机制
HBase支持缓存机制,减少数据 的读取次数,提升读取性能。
数据压缩
使用数据压缩技术,可以减小存 储空间,提高写入和读取性能。
2 数据读取
通过指定行键、列族和列,可以快速检索和获取存储在表格中的数据。
3 原子性操作
HBase支持原子性操作,保证数据的一致性和可靠性。
HBase的数据一致性
CAP定理
HBase采用CP模型,保证了数据 的一致性和分区容错性。
数据复制
HBase支持数据的复制,提高了 数据的可用性和容错性。
写前确认
HBase的写操作采用写前确认, 确保数据的一致性。
HBase的容错机制
1
数据复制
HBase使用数据复制来提高系统的容错性和可用性。
2
自动故障转移
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
让精通SQL的分析师能够分析大数据
数据仓库工具。可以把Hadoop下的原始 结构化数据变成Hive中的表 支持一种与SQL几乎完全相同的语言 HiveQL。除了不支持更新,索引和事务, 几乎SQL的其它特征都能支持 可以看成是从SQL到Map-Reduce的映射 器 提供shell,JDBC/ODBC,Thrift,Web等 接口
13
Pig—Latin
功能语句 关系操作: 加载和存储 过滤 分组与连接 排序 合并与分割 诊断操作: DESCRIBE EXPLAIN ILLUSTRATE UDF语句: REGISTER DEFINE 命令类型语句 Pig与HDFS和MR进行交互的命令或工具
14
Hive—一个简单的数据仓库框架
2
HBase—BigTable的想法
学生表的例子S(s#,sn,sd,sa)
存放为关系的学生表 以bigtable方式存放学生表 Bigtable: 无所不包的大表
3
HBase—逻辑结构
4
HBase—行键
5
HBase—列族与列
6
HBase—时间戳
7
HBase—物理模型Fra bibliotek8HBase——Region和Region服务器
HBase,Pig,Hive简介
Newland Enterprise Solutions Copyright @Newland corporation 2011 All Right Reserved
HBase—分布式数据库
简介: HBase是一个分布式的、面向列的开源数据库,该技术来源于Chang et al 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”。 就像Bigtable利用了Google文件系统(File System)所提供的分布式数据 存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力。 HBase是Apache的Hadoop 项目的子项目。 HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据 库.另一个不同的是HBase基于列的而不是基于行的模式。
27
Pig,Hive,HBase对比
28
Thanks!
29
17
关系型数据库和HBase,Pig,Hive的对比
HBase vs Oracle
18
传统数据库的行式存储
19
行式存储的问题
20
Oracle行式存储的访问路径
21
行标识访问:B树索引
22
B树索引原理:结点
23
B树索引原理:树形
24
B树索引的弱点
25
BigTable的LSM索引
26
Pig,Hive,HBase特点
9
HBase—HLog,-ROOT-,.META.
10
HBase—Memstore与storefile
11
HBase—图解
12
Pig—一种简单的脚本语言
Hadoop客户端 使用类似SQL的面向数据流语言Pig Latin
Pig Latin可完成排序,过滤,求和,聚
组,关联等操作,可以支持自定义函数 Pig自动把Pig Latin映射为Map-Reduce 作业上传到集群运行,减少用户编写 java程序的苦恼 三种运行方式:Grunt shell,脚本方式, 嵌入式
15
Hive—客户端
Thrift客户端
简化了在多种编程语言中运
行Hive命令 JDBC客户端 驱动使用java的Thrift绑定来 调用由Hive Thrift客户端实现的 接口 ODBC客户端
16
Hive—HiveQL
SQL和HiveQL的概要比较: 读时模式VS写时模式 更新、事务和索引
相关文档
最新文档