六年级数学抽屉原理优
六年级下册《抽屉原理》
抽屉原理在各个领域,包 括计算机科学和生物学等 方面发挥着重要作用。
抽屉原理的核心概念
1 抽屉数量
无论有多少物品,如果抽屉的数量少于物品的数量,至少有一个抽屉将会至少装有两个 物品。
2 物品分布
当物品被分配到抽屉时,有些抽屉可能会装满而有些抽屉则相对空闲。
3 原理推广
抽屉原理可以推广至更复杂的问题,帮助我们理解事物的规律和关联。
抽屉原理的例子和应用
袜子抽屉
当我们有多双袜子时,必然会有 一些袜子在同一个抽屉中。
图书馆书架
在一个大的书架上,总会有一些 书架上的书比其他的书多。
购物中心停车场
不管有多少停车位,总会有一些 停车位比其他的停车位更拥挤。
抽屉原理在屉原理,将不同种类的 衣服分别放在不同的抽屉中, 方便整理和寻找。
六年级下册《抽屉原理》
《抽屉原理》是六年级下册的一本数学教材。本书将为你介绍抽屉原理的起 源和背景,核心概念,以及它在日常生活和数学中的应用。让我们一起探索 这个有趣的原理吧!
抽屉原理的起源和背景
1 古老的智慧
抽屉原理最早可以追溯到 数千年前的古代文明。
2 数学发现
3 应用领域
抽屉原理是由数学家在研 究中发现的一种普遍现象。
抽屉原理的总结和应用建议
普遍存在的原理
抽屉原理是自然界和人类社会中普遍存在的一种现象。
启发思考
学习抽屉原理可以帮助我们发现问题中隐藏的规律和关联。
创新思维
将抽屉原理应用于实际问题中,可以帮助我们找到新的解决办法和创意。
食材存放
将各类食材按照类别放在不同 的抽屉中,避免食材混杂和浪 费。
文件归档
将文件按照主题或类别归档到 不同的抽屉或文件夹中,提高 整理和查找效率。
小学数学:抽屉原理综合素质训练(六年级)
小升初数学综合素质训练(9)第九讲:抽屉原理个抽屉原理的一般含义:假如每个抽屉代表一个会合,每个苹果就能够代表一个元素,若是有n+1 或多于n+1 元素放到n 个会合中去,此中必然起码有一个会合里起码有两个元素。
抽屉原理的内容简洁朴实,易于接受,它在数学识题中有重要的作用。
很多相关存在性的证明都可用它来解决。
1、有12 个小朋友,阿姨起码要拿多少只苹果分给小朋友,方能保证起码有一个小朋友能获得两只或两只以上的苹果?2、一个班里有59 名同学,那么此中起码有两名同学在同一个礼拜里过诞辰。
3、在 1M长的线段上任意点上 5 个点,那么起码有两个点的距离小于25 厘 M。
4、有 5 个小朋友,每人都从装有很多黑白围棋子的布袋里任意摸出 3 枚棋子。
证明这 5 个人中起码有两个小朋友摸出棋子的颜色的配组是同样的。
5、从 1 到 20 这 20 个自然数中,任意取11 个数,必有两个数,此中一个数是另一个数的倍数。
6、学校体育用品库房里有很多足球,排球和篮球。
现有66 名同学来库房拿球,要求每人起码拿一个球,至多拿 2 个球。
问 : 起码有多少同学所拿的球种类是完整同样的?7、从 1,3,5,7,...47,49这25个奇数之中任取14 个数此中必定有两个数之和是52.8、从自然数1,2,3,4,.....199,200中任选101个数,在这101 个数中,起码有两个数,此中一个数是另一个数的倍数。
9、证明在380 人中起码有两个人的诞辰同样。
10、泊车场上有60 辆客车,各样客车座位数不一样,最罕有26 个座,最多的有44 座,这些客车中起码有多少辆车的座位是同样的?11、篮子里有苹果、梨、桃和橘子四种水果,假如起码每个小朋友都从中任意拿 2 个水果,那么起码有多少个小朋友,能保证起码有 2 个小朋友拿的水果完整同样?12、体育组有足球、篮球和排球,上体育课前,老师让11 名同学往操场拿球,每人最多拿 2 个。
六年级奥数抽屉原理含答案
抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
抽屉原理教学设计(优秀4篇)
抽屉原理教学设计(优秀4篇)《抽屉原理》教学设计篇一【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第68页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
下面我们开始上课,可以吗?【点评】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
抽屉原理教学反思优秀5篇
抽屉原理教学反思优秀5篇抽屉原理教学反思篇一《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。
当我第一次接触到《抽屉原理》时,我很困惑:什么是抽屉原理?这么难的内容学生能理解吗?我的印象里《抽屉原理》是非常坚深难懂的(好像在上师范的时候学过,当时我都没学懂)。
时隔两年,再次教学《抽屉原理》心里还是觉得没底,不知能否讲清楚、讲明白。
为了上好这一内容,我搜集学习了很多资料,查阅了多篇教案,在“前辈”们的经验上,与本组成员相互探讨、研究,终于使我对“抽屉原理”有了新的认识,也终于理出了头绪。
抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。
通过本部分内容的教学,我有以下几点体会:一、重视集体研讨,集体的智慧是无穷的。
以前上这节课时,总是按照自己的理解来给学生讲,有时会拿一些名师的优秀教案生搬硬套,结果却总是讲着讲着不知道该怎么讲了,有时连自己也都被搅迷糊了,教学效果可想而知。
而今年上课之前,我们几位老师提前就开始讨论这节课,红晓老师还拿出了以前做的课件,讲了讲自己对这节课的理解,以及难点的突破方法,通过我们集体的研讨,原本觉得很难理解的内容也变得简单了,上课之前能够做到胸有成竹,就不愁讲不好这节课了。
二、要根(转载于:抽屉原理教学反思)据学生的实际进行教学设计。
以前上这节课时,我总以“学生的生日”为话题引入新课,学生们兴趣也比较高,这次上课,我依旧以此为话题引入新课,却没有出现以前那种效果。
课后反思一下,以前的班级最多42人,当老师猜测“我们班42人中,至少有4个人的生日在同一个月”之后,学生们都不相信,于是就很有兴趣地要进行验证。
由于人数少,比较好验证,而且基本上会出现1月生日的只有一、两个人,2月同样如此,这样学生就会面露得意之色,说老师猜的不对,直到3、4月或5、6月才发现真的有4个或4个以上的人在同一个月生日,这时还会有些学生不甘心,说有5个人在某一月生日,你说的是4人。
六年级下册数学试题小升初专题培优抽屉原理的综合运含答案全国通用
抽屉原理的综合运最不利原则:所谓“最不利原则”是指完成某一项工作先从最不利的情况下考虑,然后研究任意情况下可能的结果。
由此得到充分可靠的结论。
抽屉原理,又称鸽巢原理:抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则。
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决许多有趣的问题,并且常常能够起到令人惊奇的作用。
许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原理后,能很快使问题得到解决。
第一抽屉原理:一、将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件;二、将多于mn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于m+1件。
第二抽屉原理:一、将少于n件的物品任意放到n个抽屉中,其中必有一个抽屉中没有物体。
二、把mn-1个物体放入n个抽屉,其中必有一个抽屉中至多有m-1个物体。
平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。
运用抽屉原理求解的较为复杂的组合计算与证明问题。
这里不仅“抽屉”与“苹果”需要恰当地设计与选取,而且有时还应构造出达到最佳状态的例子。
抽屉原理的解题方案一、利用公式进行解题苹果÷抽屉=商……余数余数:⑴余数=1结论:至少有(商+1)个苹果在同一个抽屉里⑵余数=x(1<x<(n-1))结论:至少有(商+1)个苹果在同一个抽屉里⑶余数=0结论:至少有“商”个苹果在同一个抽屉里二、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法。
妈妈给小明买了4个苹果,要求小明每天都要吃苹果,已知小明至少有一天吃了不止一个苹果,问小明最多能吃多少天?有个小朋友特别勤奋,在暑假里每天都会做奥数题,已知他一共做了47道,妈妈说假期中他过生日那天不止做了一道数学题。
人教版六年级数学《抽屉原理》优秀教学设计
人教版六年级数学《抽屉原理》优秀教学设计人教版六年级数学《抽屉原理》优秀教学设计广西河池天峨县实验小学易凤英莫耐春陈晓妮教学内容:《义务教育课程标准实验教科书数学》人教版六年级下册第70-71页。
教学目标:1、知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3、情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,并会简单应用。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学准备:多媒体课件、相应数量的铅笔、文具盒、扑克牌。
教学过程一、游戏导入,激发兴趣师:同学们,虽然我不知道你们的生日,可是我敢肯定地说:第一第二组同学中肯定至少有2人的生日在同一个月,你们相信吗?(请同学报出自己出生的月份,进行验证)师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
【设计意图:根据学生的认知特点,从学生熟悉的“生日”游戏开始,让学生初步体验不管怎么报,至少有2人的生日在同一个月,一是引起探究的愿望;二是为探究埋下伏笔。
激发了学生的学习兴趣,收到了寓教于趣、寓学于乐的效果。
】二、动手操作,探究新知(一)教学例11、观察猜测课件出示例1:把4支铅笔放进3个文具盒中,不管怎么放总有一个文具盒至少放进()支铅笔。
猜一猜:不管怎么放,总有一个文具盒至少放进()支铅笔2、独立思考:怎样解释这一现象?3、小组合作:拿铅笔和文具盒实际摆一摆、放一放,看一共有几种情况?【设计意图:先让学生观察、猜想,然后自己想办法“证明”自己的猜想。
这样设计,给学生自主思考的时间和空间。
在独立思考的基础上,再小组合作。
把动脑思考与动手操作有机结合,把独立思考与小组合作有机结合,有利于提高探索活动的实效性。
六年级数学下册抽屉原理
总结和思考
抽屉原理是数学中一项重要的基本原理,能够帮助我们解决现实生活中的各 种问题。通过理解和应用抽屉原理,我们可以更好地思考和解决问题。
密码破解
抽屉原理可以帮助我们理解 密码破解的原理。当密码的 可能性大于容器数量时,就 有可能找到正确的密码。
生日相同
抽屉原理可以解释为什么在 一个较小的群体中,出现两 个人生日相同的概率比我们 通常预期的要高。
手机存储
抽屉原理可用于解释手机存 储问题。当手机内存小于应 用程序数量时,必然有一些 应用程序无法安装。
什么是鸽笼原理
鸽笼原理是抽屉原理的另一种称呼。它用来描述鸽子进入鸽笼的情况,表明至少有一只鸽子会进入一个已经有 鸽子的鸽笼。
抽屉原理的证明方法
1
数学归纳法
2
另一种证明抽屉原理的方法是使用数学归
纳法。我们先证明抽屉原理在n=1时成立,
然后假设n=k时成立,再证明n=k+1时成立。
3
反证法
我们可以运用反证法证明抽屉原理。假设 所有容器中物品数量都不超过一个,然后 通过逻辑推理,推导出矛盾。
鸽笼原理证明
抽屉原理可以通过鸽笼原理进行证明。我 们可以将容器与物品类比为鸽笼与鸽子, 从而得出结论。
一些实际问题的抽屉原理应用
• 购物网站的推荐系统 • 选课时的时间冲突 • 检测作弊 • 寻找重复的元素
抽屉原理和逻辑思维的关系Байду номын сангаас
抽屉原理是逻辑思维的重要基础,帮助我们理解如何运用逻辑推理和归纳法解决实际问题。它培养了我们的思 维能力和逻辑思考能力。
六年级数学下册抽屉原理
欢迎大家来到我们今天的讲座!今天我们将介绍六年级数学下册的一个重要 概念——抽屉原理。让我们开始探索抽屉原理的奥秘吧!
《抽屉原理》教学设计优秀7篇
《抽屉原理》教学设计优秀7篇《抽屉原理》教学设计篇一一、教学设计1.教材分析《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。
这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。
2.学情分析“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。
教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。
3.教学理念激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。
特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
4.教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
5.教学重难点重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
6.教学过程一、课前游戏引入。
上课前,我们先来热身一下,一起来玩抢椅子的游戏。
这有4把椅子,请5位同学上来参加游戏,游戏规则是:在老师说开始时,5位同学绕着椅子走,当老师说停的,5位同学都要坐在椅子上。
为什么总有一张椅子至少坐两个同学?在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。
六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案
六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限第五单元数学广角――鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
第 1 页共 14 页六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
六年级抽屉原理知识点
六年级抽屉原理知识点抽屉原理是一种数学原理,也是我们日常生活中常常涉及到的一种现象。
它解释了一个重要的问题,即当物体放入抽屉中时,是否一定会有某些抽屉为空或者某些抽屉中有多个物体。
下面我们将详细介绍六年级学生需要了解的抽屉原理知识点。
1. 抽屉原理的概念抽屉原理,又称为鸽巢原理或鸽笼原理,是由数学家克劳德·贝尔纳德·博利亚(Claude Bernard Bolay),于1769年提出的。
抽屉原理的核心思想是,如果有N个物体放入少于N个的抽屉中,那么至少有一个抽屉是空的。
2. 抽屉原理的应用抽屉原理在许多领域都有广泛的应用,包括概率论、计算机科学、密码学等。
在生活中,我们也会经常遇到抽屉原理的应用。
2.1 衣柜中的抽屉想象一下,当我们的衣物放入衣柜中时,如果衣柜抽屉数量有限,而衣物的数量超过了抽屉的数量,那么就会出现至少一个抽屉里装有多件衣物的情况。
这就是抽屉原理在我们日常生活中的应用之一。
2.2 宿舍中的同班学生假设一间宿舍里住了N个同班的学生,而每个学生的抽屉数量有限。
如果N个学生将自己的物品放入抽屉中,抽屉的数量不够多,那么至少有一个抽屉里会有两个或更多的学生的物品。
这也是抽屉原理的应用之一。
3. 抽屉原理的证明抽屉原理通常可以通过反证法来证明。
假设每个抽屉中都至少有一个物体,并且所有抽屉加起来的物体数量小于或等于总物体数量。
然而,我们可以通过计数来证明这个假设是错误的,因为总物体数量明显大于实际抽屉的数量。
因此,我们得出结论,至少有一个抽屉是空的或者有多个物体。
4. 抽屉原理的启示抽屉原理的应用不仅仅局限于数学或日常生活,它还可以引发我们的思考。
它告诉我们,在某些情况下,无论如何都无法避免某些特定的结果。
这给了我们一种认识事物的新思维方式,帮助我们在解决问题时更加灵活和创造性。
总结:抽屉原理是一个数学原理,它解释了当物体放入抽屉中时,某些抽屉可能为空或者某些抽屉中有多个物体。
小升初必考专题抽屉原理-数学六年级下册-全国通用(含答案)
最不利原则所谓“最不利原则”是指完成某一项工作先从最不利的情况下考虑,然后研究任意情况下可能的结果。
由此得到充分可靠的结论。
抽屉原理(又称鸽巢原理)如果把n +1个苹果任意放入n 个抽屉,那么必定有一个抽屉里至少有两个苹果。
这个现象就是我们所说的抽屉原理。
抽屉原理在国外又称为鸽巢原理。
(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。
抽屉原理1:如果把多于n 件物品任意放到n 个抽屉中,那么必有1个抽屉至少有2件物品。
抽屉原理2:如果把多于m ×n 件物品任意放到n 个抽屉中,那么必有1个抽屉至少有m +1件物品。
例2口袋里有70只球,其中20只是红球,20只是绿球,20只是黄球,其余的是白球和黑球。
任意从中取出( )只球,可确保取出的球中至少有10只同色的球。
例1一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张。
那么:⑴至少从中摸出多少张牌,才能保证在摸出的牌中有黑桃?⑵至少从中摸出多少张牌,才能保证至少有3张牌是红桃?⑶至少从中摸出多少张牌,才能保证有5张牌是同一花色的?知识要点例3能否在10行10列的方格表的每个空格中分别填上1,2,3这三个数之一,使得大正方形的每行、每列及对角线上的10个数字之和互不相同?对你的结论加以说明。
例4有一个大口袋,里面装着许多球,每个球上都写着一个数字,其中写0的有10个,写1的有11个,写2的有12个…写9的有19个。
如果闭着眼睛从袋中取球,那么至少要取出( )球,才能保证取出的球中必有4个球,这4个球上面所写的数字恰好组成2007。
例5自制的一幅玩具牌共计52张(含4种牌:红桃、红方、黑桃、黑梅。
每种牌都有1点、2点、……、13点牌各一张)。
洗好后背面朝上放好。
一次至少抽取____张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色)。
六年级数学抽屉原理
抽屉原理是数学中的一种基本原理,也被称为鸽巢原理。
它是由德国数学家德尔塔尔提出的,用来解决判断物品和盒子、袜子和鞋子等是否有空置的问题。
抽屉原理的内容可以用以下几个步骤来描述:1.抽屉原理的第一层含义是:当$n+1$个物品放入$n$个盒子时,至少有一个盒子里会有两个或两个以上的物品。
举例来说,假设有6个物品和5个盒子,按抽屉原理,必定有2个物品放在同一个盒子里。
2.抽屉原理的第二层含义是:如果将$n$+个物体放入$n$个抽屉中,而至少有一个抽屉中的物体大于$n$个,那么一定会有至少两个物体放置在同一个抽屉中。
举例来说,如果有7匹马放入6个马槽,那么至少有一个马槽里会有2匹马。
抽屉原理的应用十分广泛,可以用于解决许多实际问题。
下面,我们将分别用两个例子来展示抽屉原理的应用。
例子1:班级选学化学课在一个班级里,有20个学生,他们需要选择是否学习化学课。
为了方便安排课程,学校准备了15个班级,每个班级安排一个化学课。
按照学生和班级的数量,若每个班级至少有2个学生选择学习化学,那么至少需要多少个班级?解:根据抽屉原理的第一层含义,当20个学生放入15个班级时,至少有一个班级里会有2个或2个以上的学生选择学习化学。
所以,最少需要15个班级。
例子2:袜子和鞋子假设有8只袜子和8只鞋子,它们被放到8个抽屉里,每个抽屉只能放一只袜子或一只鞋子。
那么至少有多少个抽屉里既有袜子又有鞋子?解:根据抽屉原理的第二层含义,如果8只袜子和8只鞋子放入8个抽屉中,至少有一个抽屉里会有2只或2只以上的物体。
因此,至少有一个抽屉里既有袜子又有鞋子。
通过以上两个例子的讲解,我们可以看出抽屉原理在解决数学问题中的重要性和实用性。
它不仅能帮助我们判断物体和容器之间的关系,还可以引导我们对问题进行合理的分析和推理,从而得出准确的结论。
需要注意的是,虽然抽屉原理在许多情况下都是有效的,但在一些特殊情况下,可能会存在一些例外。
因此,在应用抽屉原理解决问题时,我们要注意问题的具体条件和要求,灵活运用抽屉原理来分析问题,以得出准确的结论。
小学六年级奥数-抽屉原理(含答案)
抽屉原理学问要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必定有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必定有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后反面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数与颜色都一样。
假如要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的状况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都一样。
点拨对于第二问,最不利的状况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相一样;(2)要保证有5人属相一样,但不保证有6人属相一样,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,依据第一抽屉原理即可解决。
解(1)因为37÷12=3……1,所以,依据第一抽屉原理,至少有3+1=4(人)属相一样。
(2)要保证有5人的属相一样的最少人数为4×12+1=49(人)不保证有6人属相一样的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色一样?(2)四种花色都有?点拨首先我们要弄清晰一副扑克牌有2张王牌,四种花色,每种有13张。
小学六年级抽屉原理
抽屉原理,即鸽笼原理,是一种常见的组合数学原理。它有广泛的应用范围, 在日常生活中也能找到很多实例来说明。
什么是抽屉原理?
定义
抽屉原理,也称鸽笼原理,指将多个物体放入较少的位置时,必然会出现至少一个位置有多 个物体。
来历
抽屉原理的名称源于一种著名的推理谬误,即"一个房间里至少有两个人的生日相同"。
应用范围
抽屉原理在数学、计算机科学、密码学等领域有广子时,至少有一种 颜色的袜子会出现多个。
信箱
当有多个人要放信时,必然会有 一个信箱收到多封信。
彩色抽屉
当你有多个物体要放入有限的彩 色抽屉时,必然会有至少一个抽 屉颜色重复。
抽屉原理的意义和作用
1 组合数学的基础
2
个班级选修了相同的课程。
在一个较大的人群中,至少会有两人生
日相同的概率非常高。
3
专业分配
在一个大学里,选择了相同专业的学生 必定分配到同一学院。
结论和总结
抽屉原理是一种重要的数学原理,具有广泛的应用范围。通过抽屉原理,我 们能更好地理解和解决许多实际问题。
抽屉原理是组合数学中的 基本原理,为解决组合问 题提供了有力的工具。
2 问题求解灵感
抽屉原理常常启发人们从 不同角度思考和解决实际 问题。
3 实用性
抽屉原理的应用在我们的 日常生活中随处可见,帮 助我们更好地理解和处理 事物。
抽屉原理的实际问题解决
1
选课班级
在一个学校的多个班级中,至少会有一
生日相同
六年级数学小升初培优易错专题(下)——抽屉原理
第四讲抽屉原理【考点解析】1、题型:填空题、选择题2、分值分布:3 分3、考查范围: 理解抽屉、苹果的区别与关系; 利用公式、最值原理解题。
4、考查重点:考虑最差的情况下最多的情况。
5、命题趋势:抽屉原理一般与计数组合相结合一起考,通常是选择或者填空题的最后一题。
【知识要点】1、抽屉原理一般有三种表现形式:①将多余n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件;公式:物体数÷抽屉=商…余数至少数=商+1②将多于mn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于m+1件。
③把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
2、应用抽屉原理解题的步骤:①分析题意,分清什么是“苹果”,什么是“抽屉”,也就是什么可做“苹果”,什么可做“抽屉”。
②制造抽屉,这个关键的一步,这一步就是如何设计抽屉,根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的苹果其个数。
为使用抽屉做好铺垫。
③运用抽屉原理,观察题设条件,结合第二步,恰当应用各个原则来解决问题。
【典型例题】【例1】把13支笔放入4个文具盒中,至少有一个文具盒内有多少支笔?【试一试】1、15个小朋友中,至少有几个小朋友在同一个月出生?2、某校有370名学生是1992年出生的。
其中至少有两个学生的生日是在同一天,为什么?【例2】十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?1、把125本书分给五(2)班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?2、某次选拔考试共有1123名同学参加,小明说:“至少有10名同学来自同一个学校。
”如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试?【例3】班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?【试一试】1、班上有28名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?2、有10只鸽笼,为保证至少有1只鸽笼中住有2只或2只以上的鸽子。
(小升初培优讲义)专题38 优化问题与抽屉原理-六年级一轮复习(知识点精讲+达标检测)(学生版)
专题38优化问题与抽屉原理1.优化问题(1)找次品问题:在一些外观看似相同的物品中,有一个质量不同(轻一点或重一点)的物品,需要我们想办法把它找出来。
(2)统筹时间问题:研究如何合理安排时间,合理利用等待时间,使得完成工作所用时间最少的问题。
(3)打电话问题:通过生活中的素材设计方案,并从中寻找最优方案的问题。
画图法、列表法、推理法。
2.抽屉原理抽屉原理(一):把多于n个的物体放进n个抽屉里,则一定有一个抽屉里至少放进了2个物体。
(n是非0自然数)抽屉原理(二):把多于mn个的物体放进n个抽屉里,则一定有一个抽屉里至少放进了(m+1)个物体。
(m是整数,n是非0自然数)物体数÷抽屉数=商…余数商÷1=至少数【例1】红星学校举行乒乓球比赛,共有5名选手参加,每两名选手比赛一场,一共要举行多少场比赛?1.五年级举行中国象棋比赛,共10名选手,每人都要与其他选手比赛一场,一共要比赛多少场?2.8位同学约定假期中每两人通一次电话,共要通多少次电话?3.4年一届的世界杯足球赛共有32支队伍参加,先分成8组进行小组单循环赛,那么小组赛一共要进行多少场?【例2】从1,3,6,8中选出三个数字组成一个三位数,共能组成多少个没有重复数字的三位数?1.从0,1,3,5中选3个数字组成三位数,共可组成多少个没有重复数字的三位数?2.从0,2,4,5,7中选3个数字组成三位数,可以组成多少个没有重复数字的三位数?3.一个篮球队有五名队员A,B,C,D,E,由于某种原因,C不能做中锋,而其余4名队员可以分配到五个位置中的任何一个上,不同的站法共有()种。
【例3】甲口袋内有10个小球,乙口袋内有5个小球,这些球除颜色外其余均完全相同。
(1)从两个口袋内任取1个小球,有多少种不同的取法?(2)从两个口袋内各取1个小球,有多少种不同的取法?1.有16支球队参加比赛,问:(1)如果每2支球队都要赛1场,需要进行多少场比赛?(2)如果进行淘汰赛最后决出冠军,一共要进行多少场比赛?2.把4封信投到了3个邮箱里邮寄出去,共有多少种不同的投法?3.我国古代的战船上用红、黄、蓝三面旗从上到下挂在旗杆上表示不同的信号,每次可以任挂一面、两面、三面,不同的顺序表示不同的信号。
举一反三:小六年级下册数学抽屉原理复习教案帮你拓展数学思维
举一反三:小六年级下册数学抽屉原理复习教案帮你拓展数学思维。
一、小六年级下册数学抽屉原理复习教案小学数学抽屉原理不是新的概念,可以追溯到上世纪。
简单来说,抽屉原理就是指如果有m个物品放进n个箱子,其中m>n,则至少有一个箱子里面必然有两个或两个以上的物品。
在小六年级下册数学教学中,老师通常会采用例题让学生理解抽屉原理。
例如:一根长度为6的木棒,可以分割成若干小段,这些小段的长度都是整数,并且这些小段的长度加起来恰好等于6。
问:可以把这根长度为6的木棒分割成几段?引导学生先设想最多的可能情况,6个小段(每个小段长度为1),计算一下发现这不可能成立。
接着让学生思考下面几种情况:1、如果这根长度为6的木棒可以只分割成5小段,最多有几种情况?2、如果这根长度为6的木棒可以只分割成4小段,最多有几种情况?3、如果这根长度为6的木棒可以只分割成3小段,最多有几种情况?通过这样一个例题,学生可以了解到,当物品不能均分到所有的箱子里时,必然会有至少一个箱子里放了两个或两个以上的物品。
这就是抽屉原理。
在小六年级下册数学教学中,通过学习这样的例题,学生可以较为深入地理解抽屉原理,并学会应用抽屉原理解决问题。
二、举一反三:抽屉原理在数学中的应用抽屉原理虽然看起来简单,但其应用范围很广,下面举几个例子,来看看抽屉原理在数学中的应用。
1、约数例如,在100到199之间选取11个数,必然有两个数的差是10的倍数。
我们把100到199之间的每个数对10取余数,得到0到9这10个余数,而我们要选取的11个数不可能出现两个数对10取余相同的情况,所以必然存在一对数,它们之间的差是10的倍数。
2、鸽笼原理如果一个房间里有16个人,那么其中至少有3个人的生日在同一个月。
这样的结论有点出乎想象,但如果我们把12个月看成12个抽屉,每个人的生日看成一个球,这个问题就可以很自然地解决了。
3、进制如果将一个n位数分别在十进制和二进制下列成数字,并相互比较后发现二进制中的1的个数大于等于n/2,则可以推断这个数是一种超过十进制的进制数。
六年级抽屉问题知识点总结
六年级抽屉问题知识点总结抽屉问题是数学中的经典问题之一,它涉及到概率、排列组合等内容。
在六年级的学习中,我们也接触到了一些与抽屉问题相关的知识点。
下面,我将对这些知识点进行总结,希望能够帮助大家更好地理解和应用抽屉问题。
一、抽屉原理抽屉原理是指:如果有n+1个物品要放到n个抽屉里,那么至少有一个抽屉里会放有两个或者两个以上的物品。
也就是说,当物品的数量比抽屉的数量多时,必然存在至少一个抽屉中放有多个物品。
二、鸽笼原理鸽笼原理和抽屉原理非常类似,它是说:如果有m个鸽子要放到n个笼子里,且m>n,那么至少有一个笼子里将会放有两个或两个以上的鸽子。
这个原理可以用来解决一些与抽屉问题相似的计数问题。
三、排列组合在解决抽屉问题时,排列组合是一个非常重要的数学工具。
排列是指对一组元素进行顺序排列,组合是指从一组元素中取出一部分元素的集合。
在抽屉问题中,我们常常需要计算不同的情况下的排列或组合个数。
四、概率抽屉问题与概率密切相关。
概率是用来描述事件发生的可能性的数值。
在解决抽屉问题时,我们常常需要计算某个事件发生的概率。
在计算概率时,我们可以使用等可能原理和频率公式等方法。
五、应用举例下面通过几个例子来展示抽屉问题的应用:例1:班级里有10个男生和15个女生,我们从班级中随机抽取3个人,求至少有2个男生的概率。
解:首先,我们需要求出男生和女生分别被选中的组合数。
男生被选中的组合数为C(10,2),女生被选中的组合数为C(15,1)。
然后,我们需要求出总的抽取组合数C(25,3)。
最后,通过计算得出概率为(P1+P2)/P,其中P1为2个男生被选中的概率,P2为3个男生被选中的概率,P为总的抽取概率。
例2:面试时,一个公司有10个职位和15个应聘者,每个应聘者只能申请一个职位,求至少有一个职位没有人申请的概率。
解:如果所有的职位都被申请了,那么必然会有至少一个职位没有人申请。
因此,我们需要计算所有职位都被申请的概率,然后用1减去这个概率即可得到答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8÷3=2……2 因为把8只鸽子平均放到3个鸽舍里,每个鸽舍2只鸽子, 还剩下两只鸽子,无论怎么放总有一个鸽舍里至少放进3要飞进同一个鸽舍。为什么?
3)只鸽子
某学校有31名学生是6月份出生的, 那么,其中至少有 ( ) 2 名学生 的生日是在同一天。 为什么?
从扑克牌中取出两张王牌,在剩下的 52张中任意抽出5张,至少有2张是同 花色的?试一试,并说明理由。
在我们班的任意32人中,至少有 几个人的属相相同?想一想,为 什么?
• 把4本书分给3个小朋友,那么和肯定有一 个小朋友分到了( )本书。 • 把7个苹果3个盘子里,肯定有一个盘子 里至少有( )个苹果。 • 六一班有45人至少有( )人属相 相同。 • 把9个蘑菇放在2个篮子里,
愿你收获多多