Spatially-Balanced Complete Block designs for field experiments
02第二章单因素实验设计方法08
r(k 1) /(t 1)
随机分配步骤
设计方案表 处理数=5,区组容量=3
区组
A
B
C
D 将E设计方案中
1
√
√
√
各配伍组随机
2
√
√
√ 分配给各试验
3
√
√ 单√位组;
4
√
√ 将√设计方案中
5
√
√
各√配伍组内的
6
√
√
√ 处理组随机分
Outline
完全随机设计(completely randomized design)
配对设计(paired design) 配伍组设计(randomized block design)
平衡不完全配伍组设计(balanced incomplete blocks design)
拉丁方设计(latin square design)
分析方法:随机区组的方差分析
(一)举例
例4、将16头动物按体重配成区组,随机分入4 个处理组。
(1)将16头动物称重后,按体重大小依次编号 为1,2,……,16,将体重相近的4头动物作 为一个区组。
(2)再从随机数字表中随机指定某行,例如第6 行第10列向下读取4个随机数39、74、00、99, 排列后的序号R为2、3、4、1,则第一个区组 处理为B、C、A、D,余类推。
抽取的 1 33 39 68 81 113 122 137 167 179 病例号
随机抽样的SAS程序
Data a; %Let n=10; /*sample sizes*/ Do i =1 to &n; x=ranuni(20090306); Y=int(x*190); Output; End; Proc print; Run;
浅述六西格玛试验设计DOE的不同分类及作用
浅述六西格玛试验设计DOE的不同分类及作用一、根据不同的研究内容,对试验设计进行多种方法的分类:•根据试验的因子个数,可以分为单因子和多因子。
•根据试验目的不同,试验设计可分为两大类:因子设计和回归设计。
在不考虑区组的设计中,常用的有完全随机化设计(completely randomized design);在考虑区组的设计中,常用的有配对比较设计(paired comparison design)、随机区组设计(randomized block design)、平衡不完全区组设计(balanced incomplete block design)、部分平衡不完全区组设计(par tial balanced incomplete block design)等。
因子效应可以分为固定效应和随机效应两大类。
在固定效应中,又可以分为单向分类(one-way layout)、双向分类(two-way layout)、多向分类(multi-way layout)。
在随机效应中,主要是应用嵌套设计(nested design)或称方差分量模型(variance component modeling)。
这些试验设计用到的理论和方法都比较复杂,在实际工程中用得较少。
二、进行试验的两个基本目的:一是明确哪些自变量X显著地影响Y;这种试验的目的是为了确定在相当多的自变量中,哪些自变量X并不显著地影响Y,应予以删除,哪些自变量X显著地影响Y,应予以保留;我们称其为“因子筛选设计”(screening design)。
由于这种试验的目的是针对因子的,因此这种试验设计属于“因子设计”( factorial design)或称“析因设计”。
二是找出Y与X间的关系式,从而进一步找出自变量X取什么值时会使y达到最佳值:这种种试验目的是为了确定Y与X间的关系式,找出Y对于X的回归方程。
由于这种试验的目的是针对回归关系的,因此这种试验设计被称为“回归设计”(regression design)。
中药复方治疗急性胰腺炎作用机制的研究进展
中药复方治疗急性胰腺炎作用机制的研究进展牛小龙1,2,姚广涛1,31 上海中医药大学研究生院,上海201203;2 上海中医健康服务协同创新中心;3 上海中医药大学创新中药研究院摘要:急性胰腺炎(AP)是临床常见的一种急腹症。
大多数AP患者为轻症,病程具有自限性,通常1~2周即可恢复。
但约20% AP患者会发展为重症急性胰腺炎(SAP),病死率为20%~40%。
西医治疗AP易引起继发性感染、腹膜炎、休克等并发症,整体治疗效果并不理想。
中医认为,AP起因于诸多病邪,包括热、湿、水、气、瘀等壅阻于胰、肝、胆、胃、脾、肠等脏腑,在治疗上应以“攻下通腑”“疏肝退热”“清热解毒”为突破点。
常用的中药复方包括大承气汤、大柴胡汤、大黄牡丹汤、柴芩承气汤、清胰汤等,其作用机制包括改善胃肠功能,修复肠黏膜屏障;抑制炎症反应,提高免疫功能;促进胰腺微循环;诱导胰腺腺泡细胞凋亡等。
这些中药复方以其多组分、多途径、多靶点相互作用,协同发挥治疗作用。
关键词:急性胰腺炎;中药复方;作用机制doi:10.3969/j.issn.1002-266X.2024.01.023中图分类号:R657.5+1 文献标志码:A 文章编号:1002-266X(2024)01-0093-05急性胰腺炎(AP)是临床常见的消化系统急症之一。
大多数AP患者为轻症,病程具有自限性,通常1~2周即可恢复。
但仍有约20% AP患者会发展为重症急性胰腺炎(SAP),病死率为20%~40%[1]。
西医治疗AP的主要方法包括立即禁食水、持续胃肠减压、静脉输液支持、抑制胃酸和胰液分泌等[2]。
但西医治疗易引起继发性感染、腹膜炎、休克等并发症,整体治疗效果并不理想。
中医药以其多组分、多途径、多靶点相互作用,协同发挥治疗作用,在治疗AP方面具有独特优势。
经典中药复方大承气汤、清胰汤能够减轻胰腺炎症,抑制病情加重[3]。
此外,大柴胡汤、大黄牡丹汤、柴芩承气汤等中药复方亦能通过改善胃肠功能、修复肠黏膜屏障、诱导细胞凋亡等基金项目:上海市科技计划项目资助(22S21901300)。
PS-The nutrient building block中文资料
磷脂酰丝氨酸The nutrient building block that accelerates all brain functions and counters Alzheimei’s disease 全面改善各项大脑功能并有效抵抗阿尔茨海默症的结构性营养物质——由始终热爱着营养健康事业的张小姐翻译及推荐。
不妥之处,请联系:QQ: 1940341572; Emily_zh@1磷脂酰丝氨酸全面改善各项大脑功能并有效抵抗阿尔茨海默症的结构性营养物质——Translated by Mrs. Zhang Hong大脑的福音控制良好的临床研究表明:与其它营养品或药品相比,磷脂酰丝氨酸(PS)营养大脑的效果更全面、更普遍。
PS可以以保健品形式服用,它是构筑神经细胞单元的关键物质,并激活脑细胞,建立神经连接和回路。
17项双盲研究结果显示PS能够改善电节律、延缓年龄相关性记忆减退(尤其对于阿尔茨海默症患者和痴呆者);缓解焦躁、减轻抑郁;恢复帕金森患者的动作功能;提高学习、注意力和语言整体的能力。
PS不仅能增强各年龄层次人士的大脑功能,并且安全性好、耐受性高,让衰老的时钟倒转。
作者简介Parris M. Kidd博士曾受教于西印度群岛大学以及位于Berkeley的加利福尼亚大学及其在旧金山的医学中心,从事于生命科学。
自1983年以来,他运用其丰富的研究和教学经验致力于营养科学研究,同年他还出版了一本有关自由基和抗氧剂营养品方面的书。
1987后,他潜心研究磷脂营养品以及其作为细胞膜的矫正分子的功效。
Kidd博士著作及讲座范围广泛,国际上公认为人类健康和营养品的科学权威元老。
磷脂酰丝氨酸(PS)“头号”大脑营养剂全面改善各项大脑功能并有效抵抗阿尔茨海默症的营养结构性物质目录大脑营养的突破 (3)对抗记忆衰退的最佳促进剂—PS (5)不同的感觉——阿尔茨海默症患者的福音 (5)PS对阿尔茨海默症的双盲临床研究 (6)终结痴呆者丧失记忆的进程 (9)PS针对痴呆者进行的临床双盲试验 (9)PS针对老年痴呆进行的其它研究 (10)改善因年龄引起的记忆衰退 (11)年龄相关性认知减退:背景材料 (11)关于年龄相关性认知减退的测试 (12)美国临床研究显示:PS帮助老年人记忆力恢复到12年前的水平 (14)帮助大脑正确应对压力 (16)当代人面对压力的反应:好事变坏事 (16)为什么越来越多的人出现溃疡?而斑马却不会得溃疡? (17)持续的压力扼杀人的脑细胞 (18)PS帮助人体恢复对抗压力的机制 (18)最佳运动表现的承诺 (20)调节心情,远离抑郁 (20)改善癫痫 (22)促进各层次的大脑功能 (22)PS——构筑大脑功能的关键物质 (23)PS的安全性,如何服用才能从中受益? (24)耐受性非常好的PS (24)如何服用才能获得最大收益? (25)预防阿尔茨海默症的有效武器 (27)全面保护大脑功能的策略 (28)结束语:PS——头号大脑促进剂 (30)大脑营养的突破随着年龄的增长,大脑的容量逐渐下降,这是人类健康面临的新挑战。
多肽合成的书 -回复
多肽合成的书-回复
以下是一些关于多肽合成的书籍推荐:
1. "Peptide Synthesis: A Practical Guide" by Peter R. Schreiber and Alberto Vasquez –这本书详细介绍了多肽合成的基本原理和技术,包括固相和液相合成方法,以及各种修饰和纯化策略。
2. "The Art and Science of Peptide Synthesis" edited by Paul Couvreur –这本论文集汇集了多位专家在多肽合成领域的研究成果和经验分享,涵盖了从基础理论到实际应用的各个方面。
3. "Solid Phase Peptide Synthesis: A Practical Approach" by Barry L. Karger and J. Michael Bassick –这本书专门讨论了固相多肽合成的方法和技术,包括合成策略、试剂选择、纯化和分析等关键步骤。
4. "Peptide Chemistry: A Practical Textbook" by Hiroaki Suga –这本书全面介绍了肽化学的基础知识和实验技术,包括多肽合成、结构测定、功能研究等内容,适合初学者和研究人员参考。
5. "Advanced Techniques in Protein Chemistry" edited by John M. Walker –这本论文集包含了许多关于蛋白质和多肽合成、表征和功能研究的高级技术,对于深入研究该领域的研究人员非常有帮助。
以上这些书籍都是多肽合成领域的重要参考资料,可以根据自己的需求和水平选择合适的读物。
开启片剂完整性的窗户(中英文对照)
开启片剂完整性的窗户日本东芝公司,剑桥大学摘要:由日本东芝公司和剑桥大学合作成立的公司向《医药技术》解释了FDA支持的技术如何在不损坏片剂的情况下测定其完整性。
太赫脉冲成像的一个应用是检查肠溶制剂的完整性,以确保它们在到达肠溶之前不会溶解。
关键词:片剂完整性,太赫脉冲成像。
能够检测片剂的结构完整性和化学成分而无需将它们打碎的一种技术,已经通过了概念验证阶段,正在进行法规申请。
由英国私募Teraview公司研发并且以太赫光(介于无线电波和光波之间)为基础。
该成像技术为配方研发和质量控制中的湿溶出试验提供了一个更好的选择。
该技术还可以缩短新产品的研发时间,并且根据厂商的情况,随时间推移甚至可能发展成为一个用于制药生产线的实时片剂检测系统。
TPI技术通过发射太赫射线绘制出片剂和涂层厚度的三维差异图谱,在有结构或化学变化时太赫射线被反射回。
反射脉冲的时间延迟累加成该片剂的三维图像。
该系统使用太赫发射极,采用一个机器臂捡起片剂并且使其通过太赫光束,用一个扫描仪收集反射光并且建成三维图像(见图)。
技术研发太赫技术发源于二十世纪九十年代中期13本东芝公司位于英国的东芝欧洲研究中心,该中心与剑桥大学的物理学系有着密切的联系。
日本东芝公司当时正在研究新一代的半导体,研究的副产品是发现了这些半导体实际上是太赫光非常好的发射源和检测器。
二十世纪九十年代后期,日本东芝公司授权研究小组寻求该技术可能的应用,包括成像和化学传感光谱学,并与葛兰素史克和辉瑞以及其它公司建立了关系,以探讨其在制药业的应用。
虽然早期的结果表明该技术有前景,但日本东芝公司却不愿深入研究下去,原因是此应用与日本东芝公司在消费电子行业的任何业务兴趣都没有交叉。
这一决定的结果是研究中心的首席执行官DonArnone和剑桥桥大学物理学系的教授Michael Pepper先生于2001年成立了Teraview公司一作为研究中心的子公司。
TPI imaga 2000是第一个商品化太赫成像系统,该系统经优化用于成品片剂及其核心完整性和性能的无破坏检测。
XPE-S精密平衡精确结果,甚至在困难条件下说明书
XPE-S Precision Balancesfectly levelled.Easy LevelingThe new LevelGuide ™ provides you with a warning when the balance is not level. Full instructions and a X P E -S P r e c i s i o n B a l a n c e span minimizes the effects of air currents onX P E -S P r e c i s i o n B a l a n c e sBalance ModelXPE204S XPE404SLimit ValuesMaximum Capacity 210 g 410 g Readability 0.1 mg 0.1 mg Repeatability0.2 mg 0.1 mg Linearity deviation 0.2 mg 0.2 mgTypical Values Repeatability0.12 mg 0.06 mg Linearity deviation0.07 mg 0.07 mg Sensitivity offset (test weight)0.4 mg (200g)0.48 mg (400g)USP MinWeight(k=2, U=0.10%, 5% load)240 mg120 mgMinWeight (k=2, U=1%, 5% load)24 mg 12 mg Settling time2 s2 sDimensionsWeighing Pan Size (mm)Ø 90 Ø 90SmartPan includedNoNoBalance Model XPE1203S XPE3003S XPE5003SLimit ValuesMaximum Capacity1210 g 3100 g 5100 g Readability 1 mg 1 mg 1 mg Repeatability0.8 mg 1 mg 1.5 mg Linearity deviation 2 mg6 mg6 mgTypical Values Repeatability0.4 mg 0.6 mg 1 mg Linearity deviation0.6 mg 2 mg2 mgSensitivity offset (test weight) 1.5 mg (1200 g) 1.2 mg (3000 g) 3 mg (5000 g)USP MinWeight(k=2, U=0.10%, 5% load)820 mg 1200 mg2 gMinWeight (k=2, U=1%, 5% load)82 mg 120 mg200 mgSettling time1.5 s2 s 2 sDimensionsWeighing Pan Size (mm)127 x 127127 x 127127 x 127SmartPan included Yes Yes Yes Draft shieldIncluded Included IncludedBalance Model XPE303S XPE303SN XPE603SDR XPE603SDRN XPE603S XPE603SNLimit ValuesMaximum Capacity 310 g 310 g 610 g 610 g 610 g610 gMaximum Capacity, fine range --120 g 120 g --Readability 1 mg 1 mg 10 mg 10 mg 1 mg1 mgReadability, fine range -- 1 mg 1 mg --Repeatability 0.9 mg 0.9 mg 6 mg 6 mg 0.9 mg 0.9 mg Repeatability, fine range -- 1 mg 1 mg --Linearity deviation 2 mg 2 mg 6 mg 6 mg 2 mg 2 mgTypical Values Repeatability 0.5 mg 0.5 mg 4 mg 4 mg 0.5 mg 0.5 mg Repeatability, fine range --0.8 mg 0.8 mg --Linearity deviation 0.6 mg 0.6 mg 0.7 mg 0.7 mg 0.7 mg 0.7 mgSensitivity offset (test weight) 1.2 mg (300 g) 1.2 mg (300 g) 6 mg (600 g)6 mg (600 g) 1.2 mg (600 g)1.2 mg (600 g)USP MinWeight (k=2, U=0.10%, 5% load)1 g 1 g 1.6 g1.6 g 1 g1 gMinWeight (k=2, U=1%, 5% load)100 mg 100 mg 160 mg 160 mg 100 mg 100 mg Settling time 1.5 s 1.5 s 1.5 s1.5 s1.5 s 1.5 s DimensionsWeighing Pan Size (mm)127 x 127127 x 127127 x 127127 x 127127 x 127127 x 127SmartPan included Yes Yes Yes Yes Yes Yes Draft shieldIncluded Optional Included Optional Included OptionalX P E -S P r e c i s i o n B a l a n c e sBalance ModelXPE6002SDR XPE6002S XPE8002S XPE10002SLimit ValuesMaximum Capacity6.1 kg 6.1 kg8.1 kg10.1 kgMaximum Capacity, fine range 1.2 kg ---Readability100 mg 10 mg10 mg10 mgReadability, fine range 10 mg ---Repeatability60 mg 8 mg 8 mg8 mgRepeatability, fine range 8 mg ---Linearity deviation 60 mg 20 mg 20 mg 20 mg Typical Values Repeatability40 mg 4 mg 4 mg4 mgRepeatability, fine range 5 mg ---Linearity deviation6 mg6 mg6 mg6 mgSensitivity offset (test weight)30 mg (6 kg)12 mg (6 kg)12 mg (8 kg)12 mg (10 kg)USP MinWeight(k=2, U=0.10%, 5% load)10 g8.2 g8.2 g8.2 gMinWeight (k=2, U=1%, 5% load) 1 g 820 mg 820 mg 820 mg Settling time1.2 s1.2 s1.5 s1.5 sDimensionsWeighing Pan Size (mm)172 x 205172 x 205172 x 205172 x 205SmartPan includedYes Yes Yes YesBalance ModelXPE4001S XPE6001S XPE8001S XPE10001SLimit ValuesMaximum Capacity 4.1 kg 6.1 kg 8.1 kg 10.1 kg Readability 100 mg 100 mg 100 mg 100 mg Repeatability80 mg 80 mg 80 mg 80 mg Linearity deviation 60 mg 60 mg 100 mg 100 mgTypical Values Repeatability40 mg 40 mg 40 mg 40 mg Linearity deviation20 mg 20 mg 30 mg30 mgSensitivity offset (test weight)50 mg (4 kg)50 mg (6 kg)120 mg (8 kg) 120 mg (10 kg)USP MinWeight(k=2, U=0.10%, 5% load)82 g82 g82 g82 gMinWeight (k=2, U=1%, 5% load)8.2 g 8.2 g 8.2 g 8.2 g Settling time0.8 s0.8 s1 s 1 sDimensionsWeighing Pan Size (mm)190 x 223190 x 223190 x 223190 x 223SmartPan includedNo No NoNoBalance ModelXPE3003SD5XPE6003SD5XPE1202S XPE2002S XPE4002SLimit ValuesMaximum Capacity 3100 g 6100 g 1210 g 2.1 kg 4.1 kg Readability 5 mg 5 mg 10 mg 10 mg 10 mg Repeatability 6 mg 6 mg 8 mg 8 mg 8 mg Linearity deviation 6 mg 7 mg 20 mg20 mg 20 mg Typical Values Repeatability3 mg 3 mg4 mg 4 mg 4 mg Linearity deviation2 mg 2 mg 6 mg6 mg6 mgSensitivity offset (test weight) 4 mg (3 kg)5 mg (6 kg)15 mg (1200 g)25 mg (2 kg)25 mg (4 kg)USP MinWeight(k=2, U=0.10%, 5% load)6 g 6 g 8.2 g8.2 g8.2 gMinWeight (k=2, U=1%, 5% load)600 mg600 mg820 mg 820 mg 820 mg Settling time2 s2 s1.2 s 1.2 s1.2 s DimensionsWeighing Pan Size (mm)172 x 205172 x 205172 x 205172 x 205172 x 205SmartPan includedYes Yes Yes YesYesFeaturesApplicationsSelected AccessoriesEmbeddedApplications RFID data exchangeThe EasyScan-Flex RFID reader/writer enab-les exchange of sample data with titrators and assists you to keep track of dispensed/available substances.CarePacs ®CarePac certified weight sets fully support routine testing to limit the risk of workingoutside process tolerances.Density kitsQuickly and easily convert your balance for density determination of solid, liquid, porous and pasty substances (1 mgmodels only).PrintersThe robust P-50 series lab printers produce archival-quality printouts on paper as well as continuous and peel-off labels.ConnectivityIn addition to the built in RS232, a second interface provides options for Ethernet,Bluetooth, PS2 or RS232 connections.ErgoStandPlace your display on a stand and adjust the tilt to suit your height; it’s easier to read and good posture is maintained.Seamless Process User management LabX ready Calibry readyRFID exchange with titrators RFID SampleTrackBuilt in RS232, 7 options for the second slot e.g. Ethernet, BluetoothStandard weighing, piece counting, percent weighing, statistics, formulation, dynamic weighing, density, differential weighing, factor calculation, RFID Exchange for titrators, RFID SampleTrackAccurate ResultsHigh resolution technologyproFACT Advanced internal adjustment Lowest minimum weightEfficient Operation Large color touchscreen SmartPanSmartTrac dosing guide Big numbers on display Easy cleaningSmartSens for touch-less operationQuality Assurance StatusLightGraphical leveling guideTestManager embedded software MinWeigh function FACT and GWP historyproFACT Advanced documentation Password protection Admin historyLabX Laboratory Software – Power the BenchLabX brings power to your laboratory bench by providing full user guidance on theinstrument touchscreen, handling all data automatically, and ensuring process security onmultiple instruments – all with one software and no manual transcriptions.For more information/xpe-precisionMettler-Toledo AGLaboratory WeighingCH-8606 Greifensee, Switzerland Phone +41 44 944 22 11Fax +41 44 944 30 60Subject to technical changes © 07/2015 Mettler-Toledo AG 30208937 AGlobal MarCom Switzerland / MCGWP ®Good Weighing PracticeTMThe internationally recognized GWP ® guideline reduces weighing risks and helps to:• identify the correct balance for the weighing task • reduce costs by optimizing testing procedures • ensure compliance with regulations/GWP。
SPATIALLY SPARSE CONVOLUTIONAL NEURAL NETWORKS FOR
申请人:Microsoft Technology Licensing, LLC 地址:One Microsoft Way Redmond, WA 98052-6399 US 国籍:US 代理机构:CMS Cameron McKenna Nabarro Olswang LLP 更多信息请下载全文后查看
专利内容由知识产权出版社提供
专利名称:SPATIALLY SPARSE CONVOLUTIONAL NEURAL NETWORKS FOR INKING AP P LICAT IONS
发明人:CHEN, Tianyi,SHI, Yixin,YI, Sheng 申请号:EP 2071314 2.6 申请日:20200226 公开号:EP3938950A1 公开日:20220119
摘要:A spatially sparse convolutional neural network (CNN) framework is introduced to that leverages high sparsity of input data to significantly reduce the computational cost of applications that employ CNNs (e.g., inking applications and others) by avoiding unnecessary floating point mathematical operations. The framework, which is compatible with parallelized operations, includes (1) a data structure for sparse tensors that both (a) reduces storage burden and (b) speeds computations; (2) a set of sparse tensor operations that accelerate convolution computations; and (3) the merging of pooling and convolutional layers. Practical applications involving handwriting recognition and/or stroke analysis demonstrate a notable reduction in storage and computational burdens.
多肽固相合成步骤英文描述
多肽固相合成步骤英文描述多肽固相合成是一种合成肽链的方法,它涉及到多个步骤。
以下是多肽固相合成的步骤和英文描述:1. 准备载体:选择适当的树脂,如弱碱性丙烯酰胺树脂(Acrylamide resin)。
Prepare resin: select an appropriate resin, such as weakly basic acrylamide resin.2. 载体预处理:将树脂进行预处理,如使用二氯甲烷和二甲基甲酰胺进行交替洗涤,实现树脂表面的清洁和活化。
Pre-treatment of the resin: pre-treat the resin, such as alternating washing with dichloromethane and dimethylformamide to achieve a clean and activated resin surface.3. 防止侧反应:在肽链合成过程中,需要采取措施防止侧反应的发生,例如使用保护基。
Prevent side reactions: measures need to be taken to prevent side reactions during peptide synthesis, such as using protective groups.4. 合成肽链:通过加入氨基酸单元和活化剂,将肽链逐步合成。
Synthesize the peptide chain: synthesize the peptide chain step by step by adding amino acid units and activators.5. 洗脱肽链:用酸性溶液或氢氟酸将肽链从树脂上洗脱。
Elute the peptide chain: elute the peptide chain from the resin using an acidic solution or hydrogen fluoride.6. 去保护基:使用适当的溶液去除保护基。
油脂微胶囊壁材乳清蛋白与阿拉伯胶相互作用研究
光
谱
学
与
光
谱
分
析
S p e c t r o s c o p y a n d S p e c t r a l An a l y s i s
Vo 1 . 3 5 , No . 3 , p p 6 1 7 — 6 2 1 Ma r c h,2 0 1 5
收 稿 日期 : 2 0 1 4 — 0 2 - 2 0。 修 订 日期 :2 0 1 4 — 0 5 — 2 5
Ni c o l e t Ne x u s F T I R傅 里叶变换 红外 光谱仪 ( 美国T h e r —
mo Ni c o l e t 公司) , X L - 3 0 一 E环境 扫描 显微镜 ( 荷兰 P h i l i p s 公 司) ,G YB 6 0 — 6 S高压 均 质 机 ( 上 海 东 华 均质 机 有 限公 司) ,
MD R . P - 5型喷雾干燥 机 ( 无 锡 市现 代 喷雾 干燥设 备有 限公
基金项目 :国家 自然科学基金项 目( 3 1 3 6 0 3 9 0 ) 资助 作者 简介 : 石 燕 ,女 ,1 9 6 4年生 ,南昌大学食 品科学与工程系教授 e - ma i l :s h i y a n @n c u . e d u . c r l
蓝 R - 2 5 O ( 上 述均 为 分 析 纯 ,阿 拉 丁 公 司 ) ;二 次 蒸 馏 水 ,油 相乳化剂 。
1 . 2 仪器
械强度 , 防止贮存过程 中芯材油脂 的渗透 和氧化。
在微胶囊 亲水 性 胶类 壁材 中,使 用最 广 泛 的是 阿拉 伯 胶 。阿 拉 伯 胶 具 有 良好 的 乳 化 性 和 成 膜 性 ,易 溶 于 水 ,水 溶 液黏度低 , 但其 性 能很 难标 准化 。S u ma n a等Ⅲ 用喷 雾 干燥
茶叶邻近叶片SPAD差值混沌行为研究
茶叶品质的好坏将直接决定其在茶叶销售市场上的经济价值,因此对茶叶品质相关的研究得到了过国内外相关研究人员广泛的重视与关注[1]。
对于茶叶品质的研究目前主要通过集中在内部化学成分测量,例如:吴云影等人运用原子吸收分光光度计法测量茶叶中所含的锰、锌等微量元素指标,实验结果显示锰、锌等微量元素会呈现一定程度上的损失[2]。
王安俊等人对贵州省湄潭县茶园茶叶以及土壤中所含有的水溶性氟指标进行测量 [3]。
但是,目前国内外很少研究将内部化学成分构成动力学系统进行研究分析。
文章提出利用分形和混沌理论中的Grassberger-Procaccia (G-P)算法[4-5]提取龙井茶和径山茶和邻近叶片SPAD差值队列的分形维数,来证明龙井茶和径山茶茶叶在受自然环境因子的制约下叶片SPAD差值存在混沌行为,根据茶叶茶叶片SPAD关联维饱和度的混沌特性来定量复杂和多变叶绿素演化度和自然环境因子管理行为,进而确定茶叶的品质。
1 材料与方法1.1 仪器与材料使用KONICA MINOLTA 公司生产的便携手持式叶绿素计SPAD-502 定量龙井茶和径山茶邻近叶片SPAD指标,该仪器对于叶片测量测量精度为 SPAD单位偏差。
检测方式采用红光外吸收及近红外各一只光电二极管作为发射源,利用植物叶片双波长吸收强度差度量方式来获得植物叶片SPAD值。
径山茶叶采集自杭州西北部约浙江杭州市余杭区径山茶种植园,龙井茶叶采集自浙江杭州市西湖区西湖龙井茶园,其中随机选择了100对叶片用SPAD仪器进行测量,每对叶片共测量3次差值,最后计算3次测量的取平均值作为后续分析使用。
1.2 GP 算法关联积分定义为[4]:2,11()()Nm i j i j N(1)其中, i j 表示 i 与 j 的欧式距离, (·)阶跃函数,因此可以计算出关联维数:()lim ln ln m r m (2)当 m 足够大到不再随 ()m 发生变化时,即吸引子最小嵌入维数 2 :2lim ()m m(3)2 试验结果与分析根据(1)~(2)式分别对径山茶叶与龙井茶叶叶邻近叶片SPAD 差值队列进行饱和关联维 2 计算。
珀金埃尔默-完美SYBR
PerfeC T a® SYBR® Green SuperMix, Low ROX™Cat. No 95056-500Size: 500 x 50-µL reactions (10 x 1.25 mL) Store at -25ºC to -15°C 95056-02K2000 x 50-µL reactions (1 x 50 mL)protected from lightDescriptionPerfeC T a SYBR Green SuperMix, Low ROX is a 2X concentrated, ready-to-use reaction cocktail that contains all components, except primers and template for real-time quantitative PCR on Applied Biosystems 7500, 7500 Fast, ViiA™ 7 or Stratagene MX series of real-time PCR systems. The proprietary buffer and stabilizers have been optimized exclusively for SYBR Green I qPCR to deliver maximum PCR efficiency, sensitivity, and robust fluorescent signal. This supermix provides the highest level of specificity to reduce the occurrence or delay the detection of primer-dimer and other non-specific artifacts. Highly specific amplification is crucial to successful qPCR with SYBR Green I technology because this dye binds to and detects any dsDNA generated during amplification. A key component of this supermix is AccuStart Taq DNA polymerase, which contains monoclonal antibodies that bind to the polymerase and keep it inactive prior to the initial PCR denaturation step. Upon heat activation (2 minutes at 95°C), the antibodies denature irreversibly, releasing fully active, unmodified Taq DNA polymerase. This enables specific and efficient primer extension with the convenience of room temperature reaction assembly. Instrument CompatibilityDifferent real-time PCR systems employ different strategies for the normalization of fluorescent signals and correction of well-to-well optical variations. It is critical to match the appropriate qPCR reagent to your specific instrument. PerfeC T a SYBR Green SuperMix, Low ROX provides seamless integration on the Applied Biosystems 7500, 7500 Fast, ViiA 7, or Stratagene MX series of real-time PCR systems. Please consult the following table, or visit our web site at to find the optimal kit for your instrument platform.Reagent Cat Nos Compatible Real-Time PCR SystemsPerfeC T a SYBR Green SuperMix, ROX 95055-500, 95055-02K Applied Biosystems 7000, 7300, 7700, 7900, 7900HT,7900HT Fast, StepOne™, StepOnePlus™ PerfeC T a SYBR Green SuperMix, Low ROX 95056-500, 95056-02K Applied Biosystems 7500, 7500 Fast, ViiA™ 7Stratagene MX4000™, MX3005P™, MX3000P™ PerfeC T a SYBR Green SuperMix for iQ 95053-500, 95053-02K Bio-Rad iCycler iQ®, iQ™5, MyiQ™PerfeC T a SYBR Green SuperMix 95054-500, 95054-02K Bio-Rad CFX96™, CFX384™, Opticon™, MiniOpticon™,Chromo4™Cepheid Smart Cycler®;Qiagen/Corbett Rotor-Gene®Eppendorf Mastercycler® ep realplexRoche Applied Science LightCycler® 480ComponentsPerfeC T a SYBR Green SuperMix, Low ROX (2X): 2X reaction buffer containing optimized concentrations of MgCl2, dNTPs (dATP, dCTP,dGTP, dTTP), AccuStart Taq DNA Polymerase, SYBR Green I dye, ROX ReferenceDye (for 580-585 nm excitation), and stabilizers.Storage and StabilityStore components in a constant temperature freezer at -25°C to -15°C protected from light upon receipt.For lot specific expiry date, refer to package label, Certificate of Analysis or Product Specification Form.Guidelines for SYBR Green qPCR:▪The design of highly specific primers is the single most important parameter for successful real-time PCR with SYBR Green I dye. The use of computer aided primer design programs is encouraged in order to minimize the potential for internal secondary structure and complementation at 3’-ends within each primer and the primer pair. PerfeC T a SYBR Green SuperMix, Low ROX can readily amplify fragments between 400 and 500 bp; however, for best results, amplicon size should be limited to 80 - 200 bp. Optimal results may require titration of primer concentration between 100 and 500 nM. A final concentration of 300 nM for each primer is effective for most reactions.▪Preparation of a reaction cocktail is recommended to reduce pipetting errors and maximize assay precision. Assemble the reaction cocktail with all required components except sample template (genomic DNA or cDNA) and dispense equal aliquots into each reaction tube. Add the DNA template to each reaction as the final step. Addition of samples as 5 to 10-µL volumes will improve assay precision.▪Suggested input quantities of template are: cDNA corresponding to 1 pg to 100 ng of total RNA; 100 pg to 100 ng genomic DNA▪After sealing each reaction, vortex gently to mix contents. Centrifuge briefly to collect components at the bottom of the reaction tube.Reaction AssemblyComponent Volume for 50-μL rxn. Final ConcentrationPerfeC T a SYBR Green SuperMix, Low ROX (2X) 25 µL 1xForward primer variable 100 – 500 nMReverse primer variable 100 – 500 nMNuclease-free water variableTemplate 5 – 10 µL variableFinal Volume (μL) 50 µLNote: For smaller reaction volumes (i.e. 25-μL reactions), scale all components proportionally.Reaction ProtocolIncubate complete reaction mix in a real-time thermal detection system as follows:Initial denaturation: 95°C, 2 to 3 minPCR cycling (30-45 cycles:) 95°C, 10 to 15 s55 – 65°C, 30 to 45 s (collect and analyze data)Melt Curve (dissociation stage) Refer to instrument instructions (optional)Full activation of AccuStart Taq DNA polymerase occurs within 30 seconds at 95°C. Initial denaturation times greater than 3 minutes are usually not required when amplifying cDNA template. However, amplification of genomic DNA or supercoiled plasmid DNA targets may benefit from a prolonged initial denaturation step (5-10 min) to fully denature and fragment the template. This minimizes the potential for renaturation of long fragments and/or repetitive sequence regions that can impair replication of the target sequence by the PCR process.Some primer sets may require a 3-step cycling protocol for optimal performance. Optimal annealing temperature and time may need to be empirically determined for any given primer set. A 68 to 72°C extension step of 30 seconds is suitable for most applications. However, amplicons greater than 200 bp may require longer extension times. The use of an elevated temperature (80°C) for data collection is not recommended. While this technique can be used to mask the detection of primer-dimer and/or other non-specific products, it does little to improve assay specificity or sensitivity and is not a substitute for effective primer design.Quality ControlKit components are free of contaminating DNase and RNase. PerfeC T a SYBR Green SuperMix, Low ROX is functionally tested in qPCR. Kinetic analysis must demonstrate linear resolution over six orders of dynamic range (r2 > 0.995) and a PCR efficiency > 90%.Limited Label LicensesUse of this product signifies the agreement of any purchaser or user of the product to the following terms:1.The product may be used solely in accordance with the protocols provided with the product and this manual and for use with components contained in the kitonly. Quantabio, LLC. grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this manual, and additional protocols available at . Some of these additional protocols have been provided by Quantabio product users. These protocols have not been thoroughly tested or optimized by Quantabio, LLC. Quantabio, LLC. neither guarantees them nor warrants that they do not infringe the rights of third-parties.2.Other than expressly stated licenses, Quantabio, LLC. makes no warranty that this kit and/or its use(s) do not infringe the rights of third-parties.3.This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.4.Quantabio, LLC. specifically disclaims any other licenses, expressed or implied other than those expressly stated.5.The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. Quantabio, LLC.may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.©2021 Quantabio, LLC. 100 Cummings Center Suite 407J Beverly, MA 01915; Telephone number: 1-888-959-5165.Quantabio products are manufactured in Beverly, Massachusetts, Frederick, Maryland and Hilden, Germany.Intended for molecular biology applications. This product is not intended for the diagnosis, prevention or treatment of a disease.PerfeC T a is a registered trademark of Quantabio, LLC.TaqMan is a registered trademark of Roche Molecular Systems, Inc. LightCycler is a registered Trademark of Roche. Applied Biosystems, StepOne, StepOnePlus, ViiA, and ROX are trademarks Life Technologies Corporation. Stratagene, MX3000P, MX3005P and MX4000 are trademarks of Agilent Technologies, Inc. Mastercycler is a trademark of Eppendorf. Rotor-Gene is a registered trademark of Qiagen GmbH. SmartCycler is a trademark of Cepheid. CFX96, CFX384, iCycler iQ, iQ5, MyiQ, Opticon, MiniOpticon and Chromo4 are trademarks of Bio-Rad Laboratories. SYBR is a registered Trademark of Molecular Probes, Inc.。
rocev2协议 格式
ROCEv2(Remote Direct Memory Access over Converged Ethernet version 2)是一种用于远程直接内存访问(RDMA)的协议,通常在以太网网络上使用。
ROCEv2协议的数据包格式通常采用基于以太网的封装,以下是ROCEv2协议数据包的基本格式:1. 以太网头部(Ethernet Header):- 目标MAC地址(Destination MAC Address)- 源MAC地址(Source MAC Address)- 以太网类型/长度字段,通常为0x8915,指示ROCEv2协议2. RoCE头部(RoCE Header):- RoCE版本(Version)- 基本传输头部(Base Transport Header):包括QPN(Queue Pair Number)、ACK请求(ACK Request)、PSN(Packet Sequence Number)等字段,用于维护连接状态和传输顺序。
- 具体操作相关的头部:根据具体的RoCE操作类型,可能包括不同的字段,如RDMA 读写操作等。
3. IB头部(InfiniBand Header):RoCEv2协议基于InfiniBand协议,因此通常还包括InfiniBand头部,包括LID(Local Identifier)、QP号码等。
4. RDMA数据:实际的RDMA数据部分,包括要传输的数据和数据长度。
5. CRC校验(Cyclic Redundancy Check):以太网数据帧的CRC校验,用于检测数据传输中的错误。
需要注意的是,具体的ROCEv2协议数据包格式可能会根据实现和使用场景而有所不同。
此外,ROCEv2通常基于UDP/IP协议栈运行,因此可能还包括UDP和IP头部,以及源IP地址和目标IP地址字段,用于数据包的路由和传输。
如果您需要更详细的ROCEv2协议数据包格式信息,最好查阅相关的RoCEv2协议规范或文档,以了解特定实现的详细细节。
LTE预编码技术要点
LTE预编码技术目录1 引言 (5)1.1 编写目的.......................................................................................... 错误!未定义书签。
1.2 预期读者和阅读建议...................................................................... 错误!未定义书签。
1.3 文档约定 (5)1.4 参考资料 (5)1.5 缩写术语 (8)2 技术特征 (9)2.1 预编码技术概述 (9)2.2预编码基本原理 (9)3 基于码本的预先编码方案 (13)3.1 码本设计应该考虑的因素 (13)3.2 码本设计算法 (14)3.2.1 基于天线选择的码本算法 (15)3.2.1.1 2Tx (15)3.2.1.2 4Tx (15)3.2.2 基于TxAA的码本算法 (16)3.2.2.1 2Tx (16)3.2.2.2 4Tx (17)3.2.3 基于DFT的码本算法 (18)3.2.4 Householder码本算法 (19)3.2.5 算法的性能分析 (21)3.3 LTE预编码码本设计 (22)3.3.1 2Tx 码本 (22)3.3.1.1 2Tx码书的设计 (22)3.3.1.2 2Tx码书的修正 (24)3.3.2 4Tx码本 (26)3.3.2.1 4Tx码书的设计方法 (26)3.3.2.2 4Tx码书的特性分析 (29)3.3.2.3 4Tx码书最终定稿 (40)3.4 Codebook and Rank subset restriction (42)3.4.1 为什么支持“码书和秩子集限制” (42)3.4.2 码书和秩的子集限制算法 (43)4 基于CDD的预编码 (45)4.1 CDD的预编码原理 (45)4.2基于小(零)时延CDD的预编码 (46)4.2.1 小(零)时延CDD预编码的结构 (46)4.2.2 小(零)时延CDD预编码的性能增益 (47)4.2.3 时延参数设计 (49)4.2.3.1 2Tx (49)4.2.3.2 4Tx (51)4.2.4 小(零)时延预编码总结 (53)4.2.5小(零)时延预编码的修正 (54)4.3 基于大时延CDD的预编码 (56)4.3.1 基于大时延CDD的预编码结构 (56)4.3.1.1 Y=DUX (56)4.3.1.2 Y=WDUX (57)4.3.2参数设计 (63)4.3.2.1 U R⨯R和时延值δ的设计 (63)4.3.2.2 U R⨯R的设计 (64)4.3.2.3 时延值δ的详细设计 (64)4.3.3 基于大时延CDD预编码总结 (69)4.3.4 基于大时延CDD预编码的扩充 (69)5 非码本的预先编码方案 (73)5.1 非码本预先编码专用参考信号 (73)5.1.1与非码本预先编码有关的信道 (73)5.1.1.1 Uplink Channels (73)5.1.1.2 Downlink Channels (73)5.1.2 专用参考信号设计 (74)5.2 预编码权值设计算法 (77)5.2.1 SVD分解方法 (77)5.2.2 UCD (78)5.3 非码本的预先编码总结 (80)6 反馈 (82)6.1 CQI (82)6.1.1 CQI的定义 (83)6.1.2 CQI测量与上报 (87)6.1.2.1 Aperiodic CQI Reporting (87)6.1.2.2 Periodic CQI Reporting (89)6.2 PMI (90)7 LTE中多天线技术的解读 (93)7.1 单天线传输 (94)7.2 空间复用 (94)7.3 传输分集 (98)7.4 波束赋形 (100)附录 (102)附录1 Householder 矩阵及其特性 (102)附录2 4Tx有争议的码书 (102)Codebooks of Alcatel-Lucent (102)Codebooks of Samsung[R1-073181、R1-072235] (104)Codebook 1: DFT+HH codebook with 8PSK alphabet (104)Codebook 2: DFT codebook with QPSK Alphabet & block diagonal structure (105)Codebooks of Ericsson[R1-073045、R1-072462] (108)Codebook for Two Pairs of Cross Polarized Antennas (small pair-separation) (108)Codebook for Two Pairs of Cross Polarized Antennas (large pair-separation) (109)Codebooks of ZTE[R1-072913] (110)附录3 Chordal Distance (112)附录4 专用参考信号结构 (113)Motorola 公司关于DRS 的符号结构 (113)CATT公司关于DRS 的符号结构 (116)附录5 矩阵的奇异值分解特性 (117)1 引言1.1文档约定H 信道系数矩阵C 系统容量P 功率)(∙Tr 矩阵的迹运算)(∙E 数学期望H )(∙ 向量共轭转置,矩阵共轭转置n I n n ⨯维单位矩阵xy R x 和y 的协方差||∙ 行列式值∙ 向量内积*)(∙ 复数共轭1.2 参考资料[2] 沈嘉,索士强,全海洋,赵训威,胡海静,姜怡华等.3GPP 长期演进技术原理与系统设计.北京:人民邮电出版社,2008年11月.[3] 3GPP TSG RAN WG1 Meeting #48, R1-070944.Samsung. “MIMO Precoding for E -UTRA Downlink”. St Louis, Missouri, USA, 12-16 February, 2007[4] 3GPP TSG RAN WG1 Meeting #48bis, R1-071749.CATT, ZTE . “Pre-coding for EUTRA TDD ”. St. Julians, Malta, March 26 – 30, 2007[5] 3GPP TSG RAN WG1 Meeting #48, R1-070838.CA TT, Simulation results for pre-coding (codebook vs. non-codebook), St. Louis, USA, February 12 – 16, 2007[6] 3GPP TSG RAN WG1 Meeting #47bis, R1-070295.CA TT, Link level simulation results for non-codebook based pre-coding in EUTRA TDD (SVD).Sorrento, Italy, January 15-19, 2007.[7]3GPP TSG RAN WG1 Meeting #47bis, R1-070293.CATT.Single user throughput simulation results for non-codebook based pre-coding in EUTRA TDD. Sorrento, Italy, January 15 -19, 2007.[8] Jiang Y, Li J, Hager W. “Joint transceiver design for MIMO communications using geometric mean decomposition [J ]” .IEEE Trans. Signal Process ,2005 ,53(10) :3791 - 3803.[9]Yi Jiang, Jian Li, William W. Hagerz, “Uniform Channel Decomposition for MIMO Commu nications[J ]”.IEEE Trans. on Signal Processing, Vol. 53, No. 11, Nov. 2005, pp. 4283-4294.[10]Jiang Y, Hager W, Li J. The geometric mean decomposition [J]. Linear Algebra and Its Applications, 2005, 396:373-384.[11]3GPP TSG RAN WG1 #46bis, R1-062493. Intel Corporation. Performance Benchmark for a New Unitary Precoding Scheme with Uniform MCS Allocation. October 9-October 13, 2006. [12]3GPP TSG RAN WG1 Meeting#46, R1-062291.CATT.Non-codebook based pre-coding for E-UTRA TDD Downlink. Tallinn, Estonia, August 28 – September 1, 2006[13]3GPP TSG RAN WG1 LTE Ad Hoc, R1-061836, CATT. Further clarifications of the uplink reference signal requirement for downlink pre-coding in TDD mode. Cannes, France, 27 – 30 June, 2006[14]3GPP TSG RAN WG1 Meeting#42, R1-051238.Motorola.Summary of MIMO schemes for E-UTRA. San Diego, USA, Oct 10~Oct 14, 2005.[15]3GPP TSG RAN WG1 LTE Ad Hoc,R1-061833.CATT.Further consideration on the downlink reference symbols of beam-forming for EUTRA TDD. Cannes, France, 27 – 30 June, 2006 [16]3GPP TSG RAN WG1 Meeting #46, R1-062292. CATT. Downlink reference signal aspects for non-codebook based pre-coding in TDD mode.Tallinn, Estonia, August 28 –September 1, 2006[17]3GPP TSG RAN WG1 Meeting #45, R1-061274.CATT, RITT. Clarifications of the dynamic beam-forming/pre-coding method in TDD mode and text proposal. Shanghai, China, 8-12 May, 2006[18]3GPP TSG RAN WG1 meeting #51bis, R1-080168.CATT.UE specific reference signals design. Seville, Spain, January 14 – 18, 2008.[19]3GPP TSG RAN WG1 meeting #51bis, R1-080064.Motorola. Dedicated Reference Symbol Patterns. Seville, Spain, January 14 – 18, 2008.[20] 3GPP TSG-RAN 1 Meeting #52, R1-081108.Motorola, CATT, Huawei, ZTE and so on. Way Forward on Dedicated Reference Signal Design for LTE downlink with Normal CP. Shenzhen,China, 31 March – 4 April, 2008[21] 3GPP TSG RAN WG1 meeting #52 bis, R1-081641.Nortel, ZTE, CA TT, Ericsson, Nokia, Nokia and Siemens Networks, RITT.Way Forward on Dedicated RS Design for Extended CP.Shenzhen, China, 31 March – 4 April, 2008[22] 3GPP TSG RAN WG1 Meeting #48bis, R1-071746. CATT, CMCC, RITT, Huawei, ZTE. “Downlink reference signal aspects for non-codebook based pre-coding in TDD mode”. St Julians, Malta, 26 - 30, Mar, 2007[23] 3GPP TSG-RAN WG1 #47bis, R1-070201.ZTE, CATT.Non-codebook based Precoding in E-UTRA TDD.Sorrento, Italy, January 15th-19th, 2007[24] 3GPP TSG RAN WG1 Meeting #46, R1-061819.Huawei. “Overhead reduction of UL CQI signalling for E-UTRA DL”.[25]3GPP TSG RAN WG1 Meeting #47, R1-063372.Nokia. Linear Precoding for 2TX antennas.Riga, Latvia, 6 -10 Nov, 2006[26] R1-060912.Samsung. “PU2RC Performance Evaluation”,[27] R1-060891.Texas Instruments. “Evaluation of downlink MIMO pre-coding for E-UTRA with 2-antenna N odeB”.[28]R1-061441.Texas In struments. “Feedback reduction for rank-1 pre-coding for E-UTRA downlink”.[29] R1-060495.Huawei. “Precoded MIMO concept with system simulation results in macro cells”.[30]3GPP TSG RAN WG1 #45, R1-061439.Texas Instruments. Evaluation of Codebook-based Precoding for LTE MIMO Systems. Shanghai, China, 8 – 12 May, 2006[31]3GPP TSG RAN WG1 Meeting #47, R1-063373.Nokia. Linear Precoding for 4TX antennas. Riga, Latvia, 6 -10 Nov, 2006[32]3GPP TSG-RAN WG1 #48, R1-070654.QUALCOMM Europe. Choice of Precoding Matrices for DL SU-MIMO – Link Analysis. February 12th-16th, 2007[33]3GPP TSG RAN WG1#42, R1-060672.Intel Corporation. Codebook Design for Precoded MIMO.Feb 13 – Feb 17, 2006.[34]3GPP TSG-RAN WG1 #49bis, R1-072913.ZTE.4Tx Antenna Codebook for SU-MIMO. Orlando, USA, June 25th-29th, 2007[35] 3GPP, R1-070466, Ericsson, “Precoding Considerations in LTE MIMO Downlink”[36]3GPP TSG RAN WG1 48,R1-070728.Texas Instruments .Proposed Way Forward on Codebook Design for E-UTRA.St. Louis, USA, 12 – 16 February, 20071.3 缩写术语MIMO Multiple Input Multiple OutputV A Virtual AntennaCSI Channel State InformationSVD Singular Value DecompositionGMD Geometric Mean DecompositionUCD Uniform Channel DecompositionDRS Dedicated Reference SignalCRS Common Reference SignalTxAA Transmit Adaptive ArrayDFT Discrete Fourier Transform2 技术特征2.1 预编码技术概述为了满足LTE 通信系统高数据速率和高系统容量方面的需求,LTE 系统支持多天线MIMO 技术,包括传输分集、空间复用、波束赋形。
乳液模板法制备自修复缓蚀双功能微胶囊
乳液模板法制备自修复缓蚀双功能微胶囊
张立畅;吴凯云;董佳豪;罗静;刘仁
【期刊名称】《功能高分子学报》
【年(卷),期】2022(35)3
【摘要】首先以木质素磺酸钙作为乳化剂稳定含有桐油(Tung oil)、甲基丙烯酸缩水甘油酯(GMA)和1,6-己二醇二丙烯酸酯(HDDA)的油相,通过紫外辐照引发油相中GMA和HDDA的聚合形成交联聚丙烯酸酯微胶囊壳层;然后向水相中加入苯胺单体,通过木质素磺酸钙和苯胺之间的静电作用将苯胺吸附于微胶囊外表面,以过硫酸铵引发氧化聚合反应形成聚苯胺(PANI)壳层,成功制备得到负载桐油的聚苯胺(Tung oil-PGMA@PANI)微胶囊。
该微胶囊为复合壳层结构,其中交联聚丙烯酸酯壳层可以稳定乳液滴形貌并提高微胶囊韧性,PANI壳层赋予微胶囊防腐性能,并且微胶囊内部负载的桐油可以赋予微胶囊自修复性能。
添加Tung oil-
PGMA@PANI微胶囊的水性环氧涂层表现出优异的自修复性能和防腐蚀性能。
【总页数】9页(P270-278)
【作者】张立畅;吴凯云;董佳豪;罗静;刘仁
【作者单位】江南大学化学与材料工程学院
【正文语种】中文
【中图分类】O63
【相关文献】
1.以Pickering乳液为模板制备中空微胶囊
2.以Pickering乳液为模板制备中空微胶囊
3.以高岭石稳定的Pickering乳液为模板制备高岭石聚脲微胶囊及相变性能研究
4.Pickering乳液模板法制备pH响应型双重防腐蚀功能微胶囊
5.纤维素纳米晶稳定的Pickering乳液法模板制备微胶囊的研究现状
因版权原因,仅展示原文概要,查看原文内容请购买。
橙皮素胶束溶液的制备及透明质酸对其稳定性和经皮渗透作用的影响
橙皮素胶束溶液的制备及透明质酸对其稳定性和经皮渗透作用的影响张晓宇;侯彩平;赵丽萍;谢茵;刘丽清;何亚丽;田青平【摘要】制备橙皮素胶束溶液,并以Zeta电位和经皮渗透速率为指标,考察透明质酸对胶束溶液稳定性和经皮渗透活性的影响。
结果表明,透明质酸可显著提高橙皮素胶束溶液的稳定性和经皮渗透活性,当其质量分数为0.5%时,胶束溶液透明稳定、无不良气味,室温下pH平均值为5.4±0.1,Zeta电位平均值为-32.62 mV,橙皮素经豚鼠皮肤的稳态渗透速率常数J s 达7.4758μg/(cm2·h),为对照组的1.5倍。
橙皮素胶束溶液耐寒和耐热实验均表现出良好的稳定性。
%Pseudo solution of hesperetin micelle was prepared,and influence of hyaluronic acid on its stability and percutaneous osmosis activity was investigated using Zeta potential and percutaneous osmosis rate as the respective indices. Experimental results showed that hyaluronic acid can significantly enhance the stability and percutaneous osmosis activity of hesperetin micelle pseudo solution. When the mass fraction of hyaluronic acid achieves 0. 5%,the micelle pseudo solution becomes transparent,stable and without unpleasant odor. Under room temperature condition,its average pH value is 5. 4 ± 0. 1 and average Zeta potential is - 32. 62 mV. The steady osmosis rate constant Js of hesperetin through cavy skin a chieves 7. 475 8 μg /(cm2 ·h),which is 1. 5 multiples as compared with that of the control group. The micelle pseudo solution shows good stability in cold resistance test and heat resistance test.【期刊名称】《日用化学工业》【年(卷),期】2016(000)002【总页数】5页(P92-96)【关键词】护肤化妆品添加剂;橙皮素;胶束;透明质酸;稳定性;经皮渗透活性【作者】张晓宇;侯彩平;赵丽萍;谢茵;刘丽清;何亚丽;田青平【作者单位】山西医科大学药学院,山西太原030001;山西医科大学药学院,山西太原030001;太原市第二人民医院药剂科,山西太原030001;山西医科大学药学院,山西太原030001;太原市第二人民医院药剂科,山西太原030001;太原市第二人民医院药剂科,山西太原030001;山西医科大学药学院,山西太原030001【正文语种】中文橙皮素是一种天然黄酮类化合物,存在于芸香科植物枸橘的果实中,来源丰富,成本低廉,具有抗炎[1-3]、抗氧化[4,5]、减少黑色素沉着[6,7]等功效,被冠以“迄今为止最有效的植物美白成分之一”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Spatially-Balanced Complete Block designs for field experimentsH.M.van Es a,⁎,C.P.Gomes b,c ,M.Sellmann b ,C.L.van Es caDepartment of Crop and Soil Sciences,Cornell University,Ithaca,NY 14882,United Statesb Department of Computing and Information Sciences,Cornell University,Ithaca,NY 14882,United States cDepartment of Applied Economics and Management,Cornell University,Ithaca,NY 14882,United StatesAvailable online 9May 2007AbstractSpatial heterogeneity in fields may affect the outcome of experiments.The conventional randomized allocation of treatments to plots may cause bias and variable precision in the presence of trends (including periodicity)and spatial autocorrelation.Agricultural scientists appear to mostly use conventional experimental designs that are susceptible to adverse affects from field variability.The objectives of this research were to (i)quantify the use of different experimental designs in agronomic field experiments,and (ii)develop spatially-balanced designs that are insensitive to the effects of both trends and spatial autocorrelation.A review was performed of all research efforts reported in V olumes 93–95of the Agronomy Journal and the frequency of various experimental designs was determined.It showed that the vast majority (96.7%)of agronomic field experiments are implemented through Randomized Complete Block (RCB)designs.The method of simulated annealing was used to develop Spatially-Balanced Complete Block (SBCB)designs based on two objective functions:promoting spatial balance among treatment contrasts,and disallowing treatments to occur in the same position in different blocks,when possible.SBCB designs were successfully developed for designs up to 15treatments and 15replications.Square SBCB designs were realized as Latin Squares,and perfect spatial balance was obtained when feasible.SBCB designs are simple to implement,are analyzed through conventional ANOV As,and provide protection against the adverse effects of spatial heterogeneity,while randomized allocation of treatments still ensures against user bias.©2007Elsevier B.V .All rights reserved.Keywords:Experimental design;Geostatistics;Autocorrelation;Trend;Periodicity;AgronomyField experiments in agronomy and related disciplines have traditionally been affected by soil heterogeneity.This is especially of concern when treatment effects are small and soil variability is high,as this inflates the error term.Intrinsic soil variability is the result of the geological,hydrological,and biological factors that affect pedogenesis.The fact that soils are routinely mapped suggests that areas can be identified that are relatively uniform,but more recent research suggests that soils generally constitute a continuum with variability at different scales (van Es,2002).The structure of soil variability has important implications for the design of experiments.Most agronomic field experi-ments are based on the concepts of replication,local control (blocking)and randomization (Atkinson and Bailey,2001).Replication allows for estimation of the experimental error by applying treatments to different plots under the same experi-mental conditions.Sufficient replication is needed to distin-guish treatment effects from background variability.Blocking is used in field experiments to control the adverse effects of soil heterogeneity.Yates (1936)extended this concept by proposing incomplete blocks where the smaller units are assumed to adhere better to the assumption of uniformity.The use of randomization has been justified in many ways.Its basic purpose is to remove bias from the estimation of treatment effects (Atkinson and Bailey,2001),and to equalize the error over all treatment differences (Yates,1939;Fagroud and van Meirvenne,2002).Randomization is often considered the best protection and assurance against malicious manipulation of plot layout.Randomization is also believed to better justify the assumption of normal errors.A concern with randomization is the possibility of undesirable outcomes such as treatments being repeatedly located in the same location in different blocks,and treatment pairs being repeatedly located in adjacent positions.This poses no concern when variability is truly random and stationary,but agricultural scientists often admit to minor ad-justments to randomized designs when treatment allocations appearundesirable.Geoderma 140(2007)346–352/locate/geoderma⁎Corresponding author.E-mail address:hmv1@ (H.M.van Es).0016-7061/$-see front matter ©2007Elsevier B.V .All rights reserved.doi:10.1016/j.geoderma.2007.04.0171.Accounting for nonstationarityThe common assumption in experimental design is that observations y i are realizations of a random variable Y i which is independently distributed with the expectation of Y i being con-stant (stationary)in the experimental domain:E Y i ðÞ¼l for all i ;ð1Þand the variance,σ2,being constant and estimable:E Y i −l ðÞ½ 2¼r 2for all ið2Þμ(mean)and σare often assumed to be parameters of a normal (Gaussian)probability distribution function,thereby allowing for a series of powerful statistical testing procedures.Past research demonstrated that these assumptions are generally erroneous for agricultural fields,and common deviations from the above model are:•Nonuniformity of the mean (first-order nonstationarity):Within the experimental domain,the land property cannot be assumed to have the same expected value (i.e.,Eq.(1)is invalid),but shows structural variation through a trend or discontinuity:The presence and significance of a simple field trend can be identified (David,1977;Davidoff et al.,1986).A special case of first-order stationarity is the presence of periodicity or cyclical trends,which tend to be associated with cultural practices such as ridge and furrow patterns,wheel traffic,etc.,and may be detected by spectral analysis (McBratney and Webster,1981).•Spatial autocorrelation :This implies that the assumption of independence among observations is incorrect (Nielsen et al.,1973;Vieira et al.,1981;Russo and Bresler,1981).In such cases,Y i is considered to be a regionalized variable and the variance is expressed in terms of the relative spatial location (h ):E Y i −Y i þh ðÞ2¼2g i h ðÞfor all i ð3ÞorE Y i −l i ðÞY i þh −l i ðÞ½ ¼C i h ðÞfor all ið4Þwhere γι(h )and C i (h )are the semivariogram and autocovar-iance function,respectively,which can be estimated to verifythe presence of autocorrelation.The use of blocking is an implicit recognition of the common presence of spatial auto-correlation and the fact that variance generally increases with scale,i.e.,smaller experimental areas have lower variability than larger ones.Student (1938),as also cited by Atkinson and Bailey,2001)recognized that field trends can affect the outcome of ex-periments and argued that plot allocations are “balanced ”rather than randomized to reduce bias and the variance of the esti-mators of treatment differences.Jeffreys (1939)concluded that ‘one should balance or eliminate the larger systematic effectsfirst,and then randomize the rest ’,as is done in random-ized block designs.Standard analyses (ANOV A)generally are considered to yield valid estimates of treatment effects in the presence of trends and spatial autocorrelation (Brownie and Gumperts,1997),but detrending methods (Kirk et al.,1980;Tamura et al.,1988)and nearest neighbor analysis and related techniques (e.g.,Papadakis,1937;Wilkinson et al.,1983;Gill and Sukla,1985)have been successfully employed to improve the precision of estimators of treatment effects.2.Spatial autocorrelation and designvan Es and van Es (1993)evaluated the spatial nature of randomized arrangement of plots in RCB designs,and deter-mined its effect on the outcome of experiments.Under the common condition of spatial autocorrelation,the distance be-tween plots affects the error variance,efficiency and the out-come of tests (Martin,1986).If the distance between plots (h p )equals unity when they are adjacent,the mean distance (μh p )associated with any two treatment contrasts increases with the number of treatments (t )in an experiment (van Es and van Es,1993):l h p ¼t þ1ðÞ=3ð5ÞThis implies that experiments with larger numbers of treatments in (complete)blocks have higher experimental errors,assuming spatial autocorrelation,than those involving lower number of treatments.Also,the spatial nature of randomization is such that the mean distance for any two treatment contrasts has higher variance (σh p 2)with increasing number of treatments,but decreases with the number of replications,r (van Es and van Es,1993):r 2h p ¼t −2ðÞt þ1ðÞ=18rð6ÞThis implies that,when randomized plot allocation is used within blocks,high discrepancy will exist in the spatial distance associated with treatment contrasts when the blocks are large and the number of replications low.It was concluded from probability distributions and a simulation study involving wheat yield uniformity trial data that commonly-used randomization and replication in RCB designs may result in unequal precision in treatment comparisons and erroneous assumptions about test confidence levels in the presence of spatial autocorrelation.Similarly,it can be argued that the presence of field trends or periodicity may generate false treatment effects under certain randomization realizations if some treatments are dispropor-tionally represented in areas of high or low fertility.Incomplete block designs provide some protection against spatial imbal-ance and improve efficiency (van Es et al.,1989;Lopez and Arrue,1995;Watson,2000).Others (e.g.,Cheng and Steinberg,1991;Watson,2000;Fagroud and van Meirvenne,2002;Martin et al.,2004)have addressed this concern by considering spatial autocorrelation or trend structures,in some cases from prior soil or crop information,to optimize field designs.Concerns with such approaches are that the design process becomes more costly and cumbersome,and that the autocorrelation structure is347H.M.van Es et al./Geoderma 140(2007)346–352difficult to define as variability patterns often change among response variables and may not be temporally stable(Katsvairo et al.,2003;Magri et al.,2005).Problems associated with trends and spatial autocorrelation can be addressed through improved design and analysis.It was hypothesized that few of these methods are applied by agricultural scientists,because they require considerable additional effort and cost.We set out to quantify the fact that most field scientists prefer simple designs that can be easily implemented and analyzed.Yet,many are also concerned about undesirable realizations of conventional randomized designs that may result in artificial treatment effects due to trends.This research therefore also addressed a need for experimental designs that are robust to both spatial autocorrelation and trends, as suggested by van Es and van Es(1993),and that can be readily implemented by a wide range of agricultural scientists and professionals.The objectives of this research were to:1.Through a journal review,quantify the adoption rate of ad-vanced design and analysis methods for dealing with spatial heterogeneity in agronomic field experiments,and2.Develop a set of spatially-balanced designs that are in-sensitive to the negative effects of both trends and spatial autocorrelation using the method of simulated annealing, and can be readily adopted by agricultural scientists and professionals.3.Journal review3.1.MethodsV olumes93,94and95(2001through2003)of the Agronomy Journal were reviewed to assess the distribution of experimental design types used by current agricultural scientists.This journal is considered to be a leading scientific publication in the dis-cipline of agronomy with six issues per year.The ISI Journal Citation Report®listed5753total citations to the journal in 2003,an impact factor of1.243,and an immediacy index of 0.148.The number of articles published in V olumes93,94,and 95were183,163,and183,respectively.For each paper,the research environment(field,laboratory, greenhouse,or other),experimental design,and number of treatments and replications were determined.In cases where multiple experiments were reported in the same article,each was considered separately.In cases where the number of treatments and replicates in the experiment changed over multiple years, average values were used.When experiments involved splits, the main-plot arrangement was used to classify the design type, if known.3.2.Results and discussionV olumes93through95of the Agronomy Journal reported 537research efforts,some papers including more than one experiment(Table1).Of those,414(77%)were reported to be field experiments,37(7%)were greenhouse trials,and22(4%) laboratory efforts.The remainder of the papers involved reviews or symposium reports,or others(methodology,notes, survey,etc.).The applied nature of the journal is therefore reflected in the large fraction of field experiments that are discussed in these volumes.Since the concerns with trends and autocorrelation are mainly associated with field experiments, we analyzed the types of designs used for those(Table2).Of the 414field experiments,the majority(300,72%)were imple-mented as RCB pletely Randomized,Randomized Incomplete Block,Split Block and Latin Square designs were rarely used(4,3,2,and1occurrences,respectively;Table2).In addition,9experiments involved non-randomized field strips, typically involving on-farm research efforts,and53involved other field sampling efforts(surveys,etc.).The journal volumes discussed42field experiments that were conducted as split plot without any indication of the main-plot design,which is a notable omission by both authors and editors.Some other experiments were also conducted as split plot,but were classified under the main-plot arrangement.The review of these three volumes of the Agronomy Journal shows that96.7%(300/310)of the field experiments with known main-plot design were implemented using randomized complete blocks.Clearly,agronomists favor this design and rarely see compelling reasons to use more advanced designs that more explicitly address spatial variability concerns(i.e.,incomplete blocks,Latin Squares,etc.).Also,no experiment was analyzed using trend or nearest neighbor analysis.It is presumed that most agronomists prefer RCB designs for their simplicity and intuitive layout.Table1Types and frequency of experiments discussed in Agronomy Journal volumes93through95Type of research FrequencyField-based experiment414Greenhouse experiment37Laboratory experiment22Modeling/simulations20Review/symposium27Other17Total537Table2Characterization of designs used in field-based experiments reported in AgronomyJournal volumes93through95Design type Frequency Mean#of treatments#of replicatesRandomized Complete Block3008.0 3.8Completely Randomized417.314.7Randomized Incomplete Block343.6 3.7Split Block2 4.0 4.5Latin Square144Field strips—unknown design9 4.6 3.2Split plot—with unknownmain-plot arrangement42NA NAOther53NA NATotal414348H.M.van Es et al./Geoderma140(2007)346–352It is notable that Completely Randomized designs had higher mean number of treatments and replications(Table2),and were often associated with studies involving many species or varieties (e.g.,trees).The three incomplete block experiments included a variety trial with120entries,and two studies with only5or6 treatments,of which one explicitly mentioned the potential gains from incomplete blocks,even in smaller experiments.An analysis of the greenhouse experiments revealed that out of a total of37,16(43%)were implemented as Completely Randomized designs,17(46%)as RCB designs,and4did not involve an experimental design.This suggests that agronomists are less concerned about spatial variability in greenhouse ex-periments and more frequently use unblocked designs,despite the fact that greenhouses are known to have spatial trends in environmental indicators such as air temperature,humidity,and solar radiation.4.Development of spatially-balanced designs4.1.MethodsThe previous section documented the strong preference by field agronomists for complete block designs and their presumed reluctance to deal with more complex plot layouts and analysisTable3Spatially-Balanced Complete Block designs for experiments with up to ten treatments(a–j)and eight blocks#of treatments#of blocks23456782ba ab ab ba ba ba ab ab ba ab ba ab ba ab ba ab ab ba ba ab ab ba ab ab ba ab ba ba ab ab ba ba ab ba ab3bca cab cba bacacb bac acbabc cabbac acb cbabca cbaacb cba bacacb cba bacbac abc bca cabacb cba cabcab abc acb cabcba bac bca abc4dcab cbda cdab dbcadabc abcd cdabdabc bcdacbda dcabacbd badcbdcadcba bcda bdacabcd cadb dabccdba dabc bacd adcbdbac bcad acdbcadb dbca bacd adbcdcab adbc bcad cbda5debacbdcea cebadeadcbdcebaedacb dbceaacdbe baedccdebf dabceaecdb ebdacbcaedcaedb dbaec bcdaebecad aebcd edcbacdeba dabce aecdbbeacd bcade adbecebdacbaecd ecadb dbceacbdae adebc becdacabed edbac6cabfedbecdaf facedbcbadefefbacdbcedfacafedbefbacdfdcbaebeacdf afbdecfceabd cbdfaedacefbfeadbc baecdf edcbfacfbead acdfeb dbfacefbecda cfdabe bdaefcdecbaf eafdcb acbfedecbafddeabcf cbefdabdfcea cabdfeafcebd fdcaebecdfab febadc7gbcdeafdagfbec bcgadefgedcbfacaefgbdfdcbagebgfceadafbecdgcagfdebcdgfeabfbdagcegabcdefdeagfbcacfebdgeafdbcg fcgaebdgbaecdf cebfdgadgecfab adcbgfefbdgcae afcegdbcdefbga dagbecfgcbafed egfdabcbeacdfgfgdceba cabfdgebgcdfae fbegacdafgcedb gceabfdecfdabg dagebfc8cfehgdbahdfacbge cefdbhaghfgcdaebfacbgehddbfhegacbcheadfghdgcbaefegbdcfhafhegcabdcfdegbhaebchafdgaefdbhgchdecagfbgbfceahd efdbhgachgefacdb aebgdhcfgdafcebh fabhgdechcdabefg debafhcgbfcheagd fehdcgbacaefgdhb ahfgdbecehgbacdfbeachgdf gahdcefbdbcgafhe afdeghbchdebfcga chfabdegfgbheacd ecgfdbah9fbicagdehcdbghfeai caefdhibgehicgfdabdicbeaghfdgeafhibcaighcefdbehabdigcfiecdafbghbacghfdeiahdceibgfebhfagidcgeadfbcihfceaihgbdfedigbcahdabgecfhihdcebgifaibehafdcgbcfdiahgegfhbdiaecifachdgeb fbcgdaeihgahfebicd hcbeaidgfedfhcgabi dhgbifcaecgeifhbdaicedabhgf aifhdgcbedfhebigac fbgcidaehgeafchdib hgibeafcdbadghcefi chbafeidg10ciadbgfhjegdhiecjafb dgbhfjceiabcfadhiegjfidjbagechgcbejdfaihedacighbfjbieagfjchdagjdbheicfgcfijdhbaedfaghibjecbgjdefcaihidbcagefhjfbchdegijachbigdfejadiabhegjfcijhedfcagbegicahdfbjgdjhcaebifhafgijbcdefecgaibjdhahfbegidcjgihfjedbacbgdcfhjeiaedgahjcfbihciedbfajgjbehgcaifdadjheifgcbeghfjbacdijcgiahedbfbaechjifgdhibdgecafjchfadgbjieifaecdgbjhdecjbfhiag349H.M.van Es et al./Geoderma140(2007)346–352methods.Designs were therefore developed that are inherently insensitive to non-random field variability within the frame-work of the generally-favored complete block layout.Spatially-Balanced Complete Block(SBCB)designs are based on standard, spatially optimized experimental layouts to which treatments can be randomly assigned.Such random assignment of treatments ensures against user bias and allows for a large number of possible design outcomes.SBCB designs are a subset of all possible design realizations for RCB designs,with those designs excluded that may cause bias and imprecision when implemented on trended or autocorrelated experimental domains.SBCB designs were developed using the computational method of simulated annealing,based on the successful ap-proach for the Traveling Tournament Problem(Anagnostopou-los et al.,2003).Two simultaneous objectives were applied (Gomes et al.,2004):(i)promoting spatial balance among treatment contrasts,and(ii)disallowing treatments to occur in the same position in different blocks(unless the number of replications are greater than the number of treatments).Spatial balance among treatment contrasts was evaluated based on the average distance between plots for each of the(2t)possible treatment comparisons,for whichσh p2(Eq.(6))was minimized. Designs were therefore balanced based on distances of all treatment contrasts,not based on first-order autoregressive assumption as done by Cheng and Steinberg(1991)and Martin et al.(2004).Our designs therefore are optimized based on aTable4Spatially-Balanced Complete Block designs for experiments with11to15treatments(a–o)and up to eight blocks#of treatments#of blocks234567811bcijakgehdfkjhcgfbdiea acjgiehkbfdbghafjdicekifgkcbadehjeikfacdgjbhfdihjabkgecjkfcdbehiagdakhejgfcibjfkdagcheibabckfhejigdgahjbefdckiekgbjcdaihfcjeaifgbkdhfibacekdhjgahikdjbcgfedbeighajfkcijcehdfbagkeajdfkigbchdcagifhekbjbfgcjhadkiegaejdfbkihcfkjaicgehbdecjbkadhfgidjigcbkaefhkgcdfehjiabjhkgbeifdcafhebkjagdicejcdbgfkihaiekgjachfbdgbaehidcjfkacbkefidhjgkdhjaebicgfbijhckgfadejafidbkegch12fjcahlgibkedliakjdfecbhg cjeglhikabfdgkfhecdbijlahblcfgajdkeicjeglhikabfdgkfhecdbijlahblcfgajdkeidfgichebakjlailfhedjkgcbfkhgabldecijhcadjfblgikebdihklcfjaegiadkhgfcbjelbkijgcaehldfgfkejadilbhchjafbkldgcieaglbifehkdcjdbghejifcalkeijfgcblhkdabafiklecdhgjflhjaedikcbghbedfgkajilcdfcbjihklgaekjbledfgcahildigbajhfeckkdilfagcebjhdjlcgbeikhafacjikhlbdfgegabkdjhflceiehdaclbkgifjcfkbedajighlblafjeidhkcglkejagfhcdib13fkihgabcdmjeladhjklbfeimgc fgdbjcmklhaiekdacbeglhfijmchgmadifekjblkjfbaglmidchehamjifckdblegbcijlhkeagmdfikmgbhfejcdalmfdcgkejibhalhgeimcajfldbkjidglmakehfbckichdaflgebjmagfibkmhjdclekmedhblafigjcajdeifckbhgmlkigdlabcemjhfleihjkcbamgdfcdhimalfkjgebbimjdlfkceghajdfgkbeilahcmhjkblagmdcfieflhedkmgaibjcgilkcdhjemafblejmgcbkfhidamkifjladcbehgkaecfgjhilmbdjgdkcmelabfihbjmekihdfgacldebchgijlfmakhmldgbakeijfceaghmfjcbdlkimcigbakfdheljgbflekcmhjidakhcbajlgiedmf14afegjhlmdikncbldjkecabfngihm dnbjhcagfkelimcengljmbkdfiahkjalcdinehmfbgmdfeagcknjilhbjgdhicmelnfbkaeingbmahkdjflcnchadbejfilmgklmnbjhgkafedcijcfmhabdgelinkalecbmkihgfnjdgbcnafiljkdmehfkbhldcnejiamgenkldamjficbhgkjfhndgimlbecadmhcfelkgbjanijclngmhakeifbdgkmiejcdbnhlafmbnfkcagdjehiljdbhaeilkcfmngbncdlfhaikgjemifebgdcmahknjldkinhmeblfjgaceanfdlkgbjmhcilmdaigbnjeckhfkbamfjnicdelghdnhgmljacebkfilkedjbainhcgmfmabkdngceflihjkhclagdfbinjemfdjacehnkmilgbgjkniaflmcdebhegaihdkmfljbcnalnfehbgjkmdic15nbamcdefgkjlohiekclahnifbomjdg becdfhjialnkgomihgelncodmbjakfndaimefgbkhocjlikobhlafndjcmgeminfljekbocghadfhjgkmodiealncbldkcfgibmhneajojgoebhnmcflkdiaimekhcjlagbdfnoclbmgiokndjaehfhdmoljifbekgacnlegdinhcoamfjbkielngfmbchkajdobgkldjimfahnocedfncjghikebolamgachlidobfeknmjflhjaebdngomcikhmdgeofklcjianbaiodcjblhkgenmflbfogamiknjhdecgnaclkjofdeimhbjfighclmdabneokdgbjkmafceiohnlikcbfndhogmaljehakfdlegibnjocmmfokailjcbnhegdcidmnbjfahogkeljgmlcnhafeikbdokhcfjdelmobnaigijhoemnkdgfaclbnkjadlocgiemhbflnfihodgkcmbjaeocnefjgbikldmha350H.M.van Es et al./Geoderma140(2007)346–352linear variogram model with a range greater than the width of a complete block.Simulations were performed for up to15 treatments and15replications,which covers the majority of experiments conducted by agronomists.Simulated annealing is a heuristic computational optimiza-tion method where in this case designs were generated and progressively improved through a local search approach with a pre-selected search neighborhood.Simple neighborhoods appeared to result in better performance than more complicated neighborhoods.In this study,one simple move was used for each subsequent design improvement,i.e.,swapping a random pair of treatment indicators in a random block(Gomes et al., 2004).Five variations were used on the strength of the two objective functions.One design was selected from the five obtained for each treatment–replication combination based on the degree to which objectives were met,and whether treatment allocations in blocks were unique within a given design,as much as possible.The simulated annealing approach was implemented in C++compiled with the GNU G++compiler version3.2.2,and executed on the Cornell University Depart-ment of Computing and Information Science computer cluster.4.2.Results and discussionThe computational requirements for the simulated annealing effort went up exponentially with the increasing size of the design,as discussed by Gomes et al.(2004).For example,the optimum solution for square designs was found with0.01,0.36, 153,and883CPU seconds(mean values for ten runs)for designs of order3,6,9,and12.Obtaining225optimum SBCB designs(up to15treatments and15replicates)therefore required several weeks of simulations on a25-unit computer rger SBCB designs were not derived using simulated annealing because the computational method was not capable of converging on perfectly balanced designs due to the complexity of the multiple treatment arrangements.Slight variations in the relative strength of the two objective functions(balance of spatial distance vs.different locations of treatments in blocks)resulted in different SBCB designs,of which one was chosen that best provided unique treatment allocation in blocks.Designs are listed in Table3for up to10 treatments and8blocks,and in Table4for12to15treatments and up to8blocks.Perfect spatial balance(σh p2=0)was generally achieved when theoretically possible for up to15×15designs.This resulted in spatially-balanced Latin Square designs when the number of treatments and replications were equal.Such perfectly balanced square designs(i.e.,all(2t)treatment contrasts have equal average distance of comparison)can be obtained when(Gomes et al.,2004):t mod3p1i:e:;2Â2;3Â3;5Â5;6Â6;8Â8;9Â9;etc:ðÞð7ÞThis fact allowed for an independent evaluation of the sim-ulated annealing effort,and provided indication of its limits for large designs(greater than15).It is noted that a perfectly balanced square design implies a Latin Square arrangement,but that the reverse does not hold and most Latin Square designs are in fact spatially unbalanced.Perfect spatial balance for non-square designs was generally achieved when theoretically fea-sible.Spatial balance in all other designs was optimized.These standard layouts can be used in experimental design by randomly allocating treatments to the letter indicators(Tables3 and4).Blocks in the layout may also be interchanged as this does not affect spatial balance.The random assignment of treatments eliminates user bias and provides a large number of possible design outcomes,although not as numerous as in traditional RCB designs.Split-plot designs can also be based on SBCB designs through a multi-stage procedure where spatially-balanced main plots are first identified and spatially-balanced split plots are subsequently defined within the main plots using Tables3or4.Although spatial balance in the designs was developed for treatments that are laid out adjacently,the results also generally provide good designs when the treatments are implemented in other arrangements(e.g.,blocks of8treatments laid out as2×4).Most SBCB designs can be analyzed using ANOV A meth-ods that account for block effects,similar to conventional RCB designs.Square SBCB designs are a special case of Latin Square designs and may be analyzed as such.The random initialization and search methods in the simulated annealing method,combined with the random allocation of treatments to indicators provide assurance that basic assumptions underlying ANOVA are adhered to.5.ConclusionsA review of experimental procedures reported in recent volumes of the Agronomy Journal indicates that the vast majority(96.7%)of field experiments conducted by agronomists are implemented through RCB designs.The use of blocking addresses the concerns about spatial autocorrelation in fields,but such designs do not explicitly deal with other issues related to spatial balance or trends.Most agronomists do not make efforts to address such concerns and apparently consider the conven-tional RCB designs useful,convenient,tried and proven.This research focused on developing designs that are inherently robust to concerns with both field trends and spatial autocorrelation,but in the context of the popular complete block designs.The designs provide spatial balance among treatment contrasts and distribute the treatments among locations in blocks in different replications.They are based on common assump-tions of spatial variability structure and do not require detailed quantification of the variability structure.The SBCB designs therefore provide a simple way to ensure that the experiment is not adversely affected by spatial variability,without requiring additional field data,complex experimental design procedures, or alternative data analysis.The random nature of the simulated annealing method that was used to develop the designs,as well as the randomized allocation of treatments ensures the validity of analysis assumptions and protects against user bias.Moreover, SBCB designs can readily be implemented by field professionals for use in experimentation.351H.M.van Es et al./Geoderma140(2007)346–352。