新人教版 广东省珠海市香洲区2017-2018学年七年级(下)期末数学试卷(含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年广东省珠海市香洲区七年级(下)期末数学试卷
一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,
请把答题卡上对应题目所选的选项涂黑
1.下列四个实数中,无理数的是()
A.0 B.3 C.D.
2.以下调查中,适宜全面调查的是()
A.企业招聘,对应聘人员进行面试
B.调查某批次灯泡的使用寿命
C.了解全国中小学生的视力和用眼卫生情况
D.了解一批袋装食品是否含有防腐剂
3.在平面直角坐标系中,点(﹣2,1)在()
A.第一象限B.第二象限C.第三象限D.第四象限
4.已知a<b,则下列不等式中不正确的是()
A.4a<4b B.a+4<b+4 C.a﹣4<b﹣4 D.﹣4a<﹣4b
5.已知x=1,y=﹣3是方程kx+y=2的解,则k的值是()
A.3 B.4 C.5 D.6
6.如图,已知表示棋子“馬”和“車”的点的坐标分别为(4,3)、(﹣2,1),则表示棋子“炮”的点的坐标为()
A.(1,3)B.(﹣3,3)C.(0,3)D.(3,2)
7.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()
A.∠3=∠A B.∠1=∠2
C.∠D=∠DCE D.∠D+∠ACD=180°
8.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小芳得分不低于80分.设她答对了x道题,则根据题意可列出不等式为()
A.10x﹣2(20﹣x)≥80B.10x﹣(20﹣x)>80
C.10x﹣5(20﹣x)≥80D.10x﹣5(20﹣x)>80
9.若方程组的解x与y满足方程x+2y=3,则m的值为()
A.1 B.2 C.3 D.4
10.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;按此规律继续翻转下去,则数轴上数2018所对应的点是()
A.点A B.点B C.点C D.点D
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的
位置上
11.在实数0,﹣,5,﹣4中,最小的数是.
12.某校为了了解本届初三学生体质健康情况,从全校600名初三学生中随机抽取46名学生进行调查,上述抽取的样本容量为.
13.把方程3x﹣y﹣5=0改写成用含x的式子表示y的形式是.
14.不等式3x﹣1<7的最大整数解是.
15.若一正数的两个平方根分别是a﹣3和3a﹣1,则这个正数是.
16.如图,已知OA=3,OC=6,点P从原点O出发,以每秒1个单位长度的速度沿着长方形OABC 移动一周(即:沿着O→A→B→C→O的路线移动),在移动过程中,当点P到OA的距离为5个单位长度时,点P移动的时间为秒.
三、解答题(一)(本大题3小题,每小题6分,共l8分)
17.计算:32﹣++|﹣5|.
18.解不等式组.
19.如图,已知CD⊥AB于点D,CF∥AB,连接AC,点E在AC的延长线上,∠ACD=32°,求∠ECF 的度数.
四、解答题(二)(本大题3小题,每小题7分,共21分
20.如图,每个小正方形的边长为1个单位长度.
(l)画出△ABC先向右平移4个单位长度,再向下平移1个单位长度后得到的△A1B1C1;
(2)求△ABC的面积.
21.珠海市某中学开展主题为“我爱阅读”的专题调查活动,为了解学校1200名学生一年内阅读书籍量,随机抽取部分学生进行统计,绘制成如下尚未完成的频数分布表和频数分布直方图.请根据
图表,解答下面的问题:
(1)a=,b=c=.
(2)补全频数分布直方图;
(3)根据该样本,估计该校学生阅读书籍数量在15本或15本以上的人数.
22.对于a、b定义两种新运算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a*b,a⊕b)与之相对应,则称点P为点P 的“k衍生点”
例如:P(1,4)的“2衍生点”为P′(l+2×4,2×1+4),即P′(9,6).
(1)点P(﹣1,6)的“2衍生点”P′的坐标为.
(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.
五、解答题(三)(本大题3小题,每小题9分,共27分)
23.某班计划购买篮球和排球若干个,买4个篮球和3个排球需要410元;买2个篮球和5个排球需要310元.
(1)篮球和排球单价各是多少元?
(2)若两种球共买30个,费用不超过1700元,篮球最多可以买多少个?
(3)如果购买这两种球刚好用去520元,问有哪几种购买方案?
24.如图1,线段AB⊥BC于点B,CD⊥BC于点C,点E在线段BC上,且AE⊥DE.
(1)求证:∠EAB=∠CED;
(2)如图2,AF、DF分别平分∠BAE和∠CDE,EH平分∠DEC交CD于点H,EH的反向延长线交AF于点G.
①求证EG⊥AF;
②求∠F的度数.【提示:三角形内角和等于180度】
25.如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b 满足|a﹣20|+(﹣2b+a﹣8)2=0,将点B向左平移16个单位长度得到点C.
(1)求点A、B、C的坐标;
(2)如图,点M为线段BC上的一个动点,点F在x轴的正半轴上,点E、D在直线BC上,∠FOE=
∠MOF,∠MOD=∠BOM.请问当点M运动时,∠DOE的大小是否发生变化?如果变化请说明理由;如果不变,求出其大小;
(3)如图2,当点M从点B以1个单位长度/秒的速度向左运动时,线段OA上的动点N同时从点A以2个单位长度/秒的速度向右运动,设运动时间为t秒(0<t≤10).是否存在某个时间,使得
S四边形NACM<S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.