人教版八年级数学上册第14章整式乘除与因式分解知识点复习总结及同步练习(PDF,无答案)
八年级上册第十四章-整式的乘除与因式分解知识梳理
八年级数学第十四章--整式的乘法与因式分解知识梳理知识点一、整式的乘法1、同底数幂相乘,底数不变,指数相加;即 (m,n 都是正整数)2、幂的乘方,底数不变,指数相乘;即 (m,n 都是正整数)3、积的乘方,等于把积的每一个因式分别乘方,再把所得幂相乘;即: (n 是正整数)4、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;例如: (2)单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加; 例如: (3)多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;例如:知识点二、整式的除法5、同底数幂相除,底数不变,指数相减;即 6、规定:任何不等于0的数的0次幂都等于1。
即 7、单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有在被除式里含有的字母,则连同它的指数作为商的一个因式。
例如: 8、多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
例如:知识点三、乘法公式9、平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差;即10、完全平方公式:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍;(记()n m mn a a =m n m n a a a ++=()n n n ab a b =7252525)()(abc abc c c b a bc ac ==⋅⋅⋅=⋅+pcpb pa c b a p ++=++)(bqbp aq ap q p b q p a q p b a +++=+++=++)()()()()0(10≠=a a ),,0(n m n m a a a a n m n m >≠=÷-都是正整数,并且32322323234))()(312(312c a c b b a a ab c b a =÷÷÷=÷ba m bm m am m bm am +=÷+÷=÷+)(()()22ab a b a b +-=-忆口诀“首平方,尾平方,收尾二倍中间放”)即: 11、添括号规则: (1)如果括号前面是正号,括到括号里的各项都不变符号; 即: a+b+c=a+(b+c)(2)如果括号前面是负号,括到括号里的各项都改变符号;即: a-b-c=a-(b+c)知识点四、因式分解12、把一个多项式化成几个整式的积的形式的变形叫做因式分解;(也叫做把这个多项式分解因式)。
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)(带答案)
八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、若(2020×2020×…×2020⏟ 共2020个)×(2020+2020+⋯+2020⏟ 共2020个)=2020n ,则n =( )A .2022B .2021C .2020D .2019 答案:A分析:2020个2020相乘,可以写成20202020,2020个2020相加,可以写成2020×2020=20202,计算即可得到答案.∵2020×2020×⋯×2020=20202020⏟ 2020,2020+2020+⋯+2020⏟ 2020=2020×2020=20202,∴原式左边=20202020×20202=20202022, 即2020n =20202022, ∴n =2022. 故选:A .小提示:本题考查了乘方的意义,以及同底数幂的乘法运算.注意:求n 个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂.2、如图,阶梯型平面图形的面积可以表示为( )A .ad +bcB .ad +c (b −d )C .ab −cdD .c (b −d )+d (a −c ) 答案:B分析:把阶梯型的图形看成是两个长方形的面积之和或面积之差即可求解.解:S 阶梯型=bc +(a ﹣c )d 或S 阶梯型=ab ﹣(a ﹣c )(b ﹣d ) 或S 阶梯型=ad +c (b ﹣d ), 故选:B .小提示:本题主要考查列代数式,整式的混合运算,解答的关键是把所求的面积看作是两个长方形的面积之和或面积之差.3、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案. x ﹣x 3=x (1﹣x 2) =x (1﹣x )(1+x ). 故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键. 4、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( ) A .12B .−12C .2D .﹣2答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0,∴a =12,b =2, 即ab =1,则原式=(ab)2015•b故选:C.小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.5、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()A.bc−ab+ac+c2B.ab−bc−ac+c2C.a2+ab+bc−ac D.b2+bc+a2−ab答案:B分析:矩形面积减去阴影部分面积,求出空白部分面积即可.空白部分的面积为(a−c)(b−c)=ab−ac−bc+c2.故选B.小提示:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、小阳同学在学习了“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序,若开始输入m的值为2,则最后输出的结果y是()A.2B.3C.4D.8答案:D分析:把m=2代入运算程序中计算,如小于或等于7则把其结果再代入运算程序中计算,如大于7则直接输出结果.解:当m=2时,=22-1=3<7,当m=3时,m2-1=32-1=8>7,则y=8.故选:D.小提示:此题考查了代数式求值,以及有理数的混合运算,弄清题中的运算程序是解本题的关键.7、2×(3+1)(32+1)(34+1)(38+1)(316+1)的计算结果的个位数字是()A.8B.6C.2D.0答案:D分析:先将2变形为(3−1),再根据平方差公式求出结果,根据规律得出答案即可.解:(3−1)(3+1)(32+1)(34+1)…(316+1)=(32−1)(32+1)(34+1)…(316+1)=(34−1)(34+1)…(316+1)=332−1∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…∴3n的个位是以指数1到4为一个周期,幂的个位数字重复出现,∵32÷4=8,故332与34的个位数字相同即为1,∴332−1的个位数字为0,∴2×(3+1)(32+1)(34+1)(38+1)(316+1)的个位数字是0.故选:D.小提示:本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键.8、若x2+ax=(x+1)2+b,则a,b的值为()2A .a =1,b =14B .a =1,b =﹣14C .a =2,b =12D .a =0,b =﹣12 答案:B分析:根据完全平方公式把等式右边部分展开,再比较各项系数,即可求解. 解:∵x 2+ax =(x +12)2+b =x 2+x +14+b ,∴a =1,14+b =0,∴a =1,b =﹣14,故选B .小提示:本题主要考查完全平方公式,熟练掌握完全平方公式是解题的关键.9、如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b 答案:A分析:4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .设拼成后大正方形的边长为x , ∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b. 故选A.小提示:本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长. 10、下列计算正确的是( )A .m +m =m 2B .2(m −n )=2m −nC .(m +2n)2=m 2+4n 2D .(m +3)(m −3)=m 2−9 答案:D分析:根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定. 解:A.m +m =2m ,故该选项错误,不符合题意; B.2(m −n )=2m −2n ,故该选项错误,不符合题意; C.(m +2n)2=m 2+4mn +4n 2,故该选项错误,不符合题意; D.(m +3)(m −3)=m 2−9,故该选项正确,符合题意; 故选:D .小提示:本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键. 填空题11、阅读下面材料:一个含有多个字母的式子中,如果任意交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式.例如:a+b+c ,abc ,a 2+b 2,…含有两个字母a ,b 的对称式的基本对称式是a+b 和ab ,像a 2+b 2,(a+2)(b+2)等对称式都可以用a+b ,ab 表示,例如:a 2+b 2=(a+b )2﹣2ab .请根据以上材料解决下列问题: (1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是_______(填序号);(2)已知(x+a )(x+b )=x 2+mx+n . ①若m =−2,n =12,求对称式ba +ab 的值; ②若n =﹣4,直接写出对称式a 4+1a 2+b 4+1b 2的最小值.答案:(1)①③;(2)①b a +ab =6;②a 4+1a 2+b 4+1b 2的最小值为172.分析:(1)根据对称式的定义进行判断;(2)①先得到a+b =﹣2,ab =12,再变形得到b a +ab =a 2+b 2ab =(a+b)2−2abab,然后利用整体代入的方法计算;②根据分式的性质变形得到a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2,再利用完全平方公式变形得到(a+b )2﹣2ab+(a+b)2−2aba 2b 2,所以原式=1716m 2+172,然后根据非负数的性质可确定a 4+1a 2+b 4+1b 2的最小值.解:(1)式子①a 2b 2②a 2﹣b 2③1a+1b中,属于对称式的是 ①③.故答案为①③;(2)∵x 2+(a+b )x+ab =x 2+mx+n ∴a+b =m ,ab =n . ①a+b =﹣2,ab =12,b a+ab =a 2+b 2ab=(a+b)2−2abab=(−2)2−2×1212=6;②a 4+1a 2+b 4+1b 2=a 2+1a 2+b 2+1b 2=(a+b )2﹣2ab+(a+b)2−2aba 2b 2=m 2+8+m 2+816=1716m 2+172, ∵1716m 2≥0, ∴a 4+1a 2+b 4+1b 2的最小值为172.小提示:本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可.12、平面直角坐标系中,已知点A 的坐标为(m ,3).若将点A 先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m +n =_______. 答案:3分析:先写出点A 向下平移2个单位后的坐标,再写出向左平移1个单位后的坐标.即可求出m 、n ,最后代入m +n 即可.点A 向下平移2个单位后的坐标为(m ,3−2),即(m ,1).再向左平移1个单位后的坐标为(m −1,1).∴{m−1=11=n ,即{m=2n=1.∴m+n=2+1=3.所以答案是:3.小提示:本题考查坐标的平移变换以及代数式求值.根据坐标的平移变换求出m、n的值是解答本题的关键.13、若a+b=1,则a2−b2+2b−2=________.答案:-1分析:将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.解:a2−b2+2b−2=(a+b)(a−b)+2b−2将a+b=1代入,原式=a−b+2b−2=a+b−2=1-2=-1所以答案是:-1.小提示:本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为(a+b)(a−b)+2b−2.14、已知a+b=4,a−b=2,则a2−b2的值为__________.答案:8分析:根据平方差公式直接计算即可求解.解:∵a+b=4,a−b=2,∴a2−b2=(a+b)(a−b)=4×2=8所以答案是:8小提示:本题考查了因式分解的应用,掌握平方差公式是解题的关键.15、若a2−b2=−116,a+b=−14,则a−b的值为______.答案:14分析:由平方差公式进行因式分解,再代入计算,即可得到答案.解:∵a2−b2=(a+b)(a−b)=−116,∵a+b=−14,∴a−b=−116÷(−14)=14.故答案是:14.小提示:本题考查了公式法因式分解,解题的关键是熟练掌握因式分解的方法.解答题16、分解因式:2x3−2x2y+8y−8x答案:2(x−y)(x−2)(x+2)分析:先分组,然后利用提公因式法和平方差公式因式分解即可.解:2x3−2x2y+8y−8x=2x2(x−y)+8(y−x)=2x2(x−y)−8(x−y)=2(x−y)(x2−4)=2(x−y)(x−2)(x+2).小提示:此题考查的是因式分解,掌握利用分组分解法、提公因式法和公式法因式分解是解题关键.17、小邢同学在计算(x+a)(x+b)中的“b”看成了“6”,算的结果为x2+3x−18,而且小颖同学在计算(x+a)(x+b)时将“+a”看成了“−a”,算的结果为x2−x−12.(1)求出a、b的值;(2)计算出(x+a)(x+b)的正确结果,答案:(1)a=-3,b=-4(2)x2-7x+12分析:(1)根据题意得出(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2-x﹣12,得出6+a=3,﹣a+b=-1,求出a、b即可;(2)把a、b的值代入,再根据多项式乘以多项式法则求出即可.(1)根据题意得:(x+a)(x+6)=x2+(6+a)x+6a=x2+3x-18,(x﹣a)(x+b)=x2+(﹣a+b)x﹣ab=x2−x−12,所以6+a=3,﹣a+b=-1,解得:a=-3,b=-4;(2)当a=-3,b=-4时,(x+a)(x+b)=(x-3)(x-4)=x2-7x+12.小提示:本题考查了多项式乘以多项式法则和解方程,能正确运用多项式乘以多项式法则进行计算是解此题的关键.18、我们知道形如x2+(a+b)x+ab的二次三项式可以分解因式为(x+a)(x+b),所以x2+6x−7=x2+ [7+(−1)]x+7×(−1)=(x+7)[x+(−1)]=(x+7)(x−1).但小白在学习中发现,对于x2+6x−7还可以使用以下方法分解因式.x2+6x−7=x2+6x+9−7−9=(x+3)2−16=(x+3)2−42=(x+3+4)(x+3−4)=(x+7)(x−1).这种在二次三项式x2+6x−7中先加上9,使它与x2+6x的和成为一个完全平方式,再减去9,整个式子的值不变,从而可以进一步使用平方差公式继续分解因式了.(1)请使用小白发现的方法把x2−8x+7分解因式;(2)填空:x2−10xy+9y2=x2−10xy+________+9y2−________=(x−5y)2−16y2=(x−5y)2−(________)2=[(x−5y)+________][(x−5y)−________]=(x−y)(x−________);(3)请用两种不同方法分解因式x2+12mx−13m2.答案:(1)(x−1)(x−7);(2)25y2;25y2;4y;4y;4y;9y;(3)(x+13m)(x−m)分析:(1)在x2−8x+7上加16减去16,仿照小白的解法解答;(2)在原多项式上加25y2再减去25y2,仿照小白的解法解答;(3)将−13m2分解为13m与(-m)的乘积,仿照例题解答;在原多项式上加36m2再减去36m2仿照小白的解法解答.(1)解:x2−8x+7=x2−8x+16+7−16=(x−4)2−9=(x−4)2−32=(x−4+3)(x−4−3)=(x−1)(x−7);(2)解:x2−10xy+9y2=x2−10xy+25y2+9y2−25y2=(x−5y)2−16y2=(x−5y)2−(4y)2=[(x−5y)+4y][(x−5y)−4y]=(x-y)(x-9y)所以答案是:25y2;25y2;4y;4y;4y;9y;(3)解法1:原式=x2+[13m+(−m)]x+13m⋅(−m)=(x+13m)(x−m).解法2:原式=x2+12mx+36m2−13m2−36m2=(x+6m)2−49m2=[(x+6m)+7m][(x+6m)−7m]=(x+13m)(x−m).小提示:此题考查多项式的因式分解,读懂例题及小白的解法,掌握完全平方公式、平方差公式的结构特征是解题的关键.。
八年级上册第十四章整式的乘法与因式分解复习(知识点、典型例题)
练习:分解下列各式:
(1)x2-16 (2)9m2-4n2 解:(1) x2-16 x x 44 2= ( =x2 - 4 42 + ) ( - ) ……① a2 - b2 = (a+ b) (a - b)
4 (6)a 3a 4 a(a 3 ) a
2
两者都不是
1) ma+mb+mc=m( a+b+c )
像(1)这种因式分解的方法叫提公因式法
2) a2-b2=(a+b)(a-b ) 3)a2+2ab+b2=(a+b)2
像(2),(3)利用乘法公式对多项式进行 因式分解的这种因式分解的方法就称为 公式法.
? 被除式里单独有的幂,写在商里面作 因式。
观察 & 归纳
议一议
• 如何进行单项式除以单项式的运算? 单项式相除, 把系数、同底数的幂分别相除后,作为 商的因式;对于只在被除式里含有的字母,则连它的 指数一起作为商的一个因式。
理解 商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数 除式的系数
2 2
如果4
(3)如果
(A) 7 (B) 9 (C) 10
a+ a =3,则a + a2 =( A)
1
2
1
(D) 11
解:
因为 所以
所以
a+ a =3 1 2 (a+ a) =9
a + 2 + a 2 =9 1 2 a + a 2 =7
2
1
1
故
(4)计算
2 2
(a-2b+3)(a+2b-3)的结果是( D)
人教版八年级数学上册 第14章 整式的乘除与因式分解专训:考点整合应用训练(含答案)
(- ab) 10.解:5ab -{2a b-[3a b-ab(b-2a)]÷ 2 } 1 - ab) ( =5ab -{2a b-[3a b-(ab -2a b)]÷ 2 }
2 2 2 2 2 2 2 2
1
(- ab) =5ab -[2a b-(5a b-ab )÷ 2 ]
2 2 2 2
1
=5ab2-[2a2b-(-10a+2b)] =5ab2-(2a2b+10a-2b) =5ab2-2a2b-10a+2b. 点拨:去括号时要确定各项的符号,对于较复杂的运算一般先确定运算顺序,再按顺 序进行运算. 11.C
1
1
1
1
公式2:完全平方公式 16.计算: (1)(3a+b-2)(3a-b+2);
(2)【2015·重庆】2(a+1)2+(a+1)(1-2a).
17.(1)已知 x=5-y,求 2x2+4xy+2y2-7 的值;
(2)已知 a2+2ab+b2=0,求 a(a+4b)-(a+2b)·(a-2b)的值.
24.(1)已知 2m-1=2,求 3+4m 的值; (2)已知 x-y=7,xy=10,求 x2+y2 的值.
思想2:转化思想 25.计算: (1)(2x-1)(4x2+2x+1); (2)(x+y+z)2.
思想3:方程思想 26.若 2×8m×16m=229,则 m 的值是( ) A.3 B.4 C.5 D.6
4.若 x2+3x+c 分解因式的结果为(x+1)(x+2),则 c 的值为( ) A.2 两个运算 运算1:幂的运算法则及其逆用 5.计算:(1)【中考·资阳】(-a2b)2=________;(2)52 016×(-0.2)2 017=________; (3)(2π-6)0=________;(4)(-3)2 016+(-3)2 017=________. 6.计算:(-0.125)2 017×82 018; B.3 C.-2 D.-3
人教版八年级数学上册第十四章《整式的乘法和因式分解》知识清单,易错点,典型考点和训练点剖析
人教版八年级数学上《整式的乘法与因式分解》知识清单,易错点,典型考点和训练点剖析一.知识快递拿到第一把山门的钥匙后,图图直奔二道山门而去.为了保证把二道山门的钥匙成功拿到手,图图决定走进易错点辩析厅,磨练自己的火眼金睛.二.易错点辨析2.1 忽视符号致错例1 分解因式:-a+3a错解:-a+3a =-a (1+2a )分析:这里公因式有两部分组成,一部分是系数,提出的是-1,一部分是字母,提出的是字母a ,但是在提取的过程中,因为忽视3a 的系数符号,导致解答的错误.正解:-a+3a =-a (1-2a )易错点2:对公示理解不准致错例2 下列计算正确的是( )A.222)(y x y x +=+ B .2222)(y xy x y x --=-C .(x+2y )(x-2y )=222y x -)D .2222)(y xy x y x +-=+- 错解:选A 或选B 或选C .分析:A 所反映的公式是和的完全平方公式,展开后应该有三项,而给出的A 项只有两项,所以A 是错误的;B 所反映的公式是差的完全平方公式,展开后应该有三项,项数合理,但是y 的平方项系数确定错误,应该是加上2y ,所以选项B 是错误的;选项C 所反映的公式是平方差公式,结果应该是两数的平方差,2)2(y 应该是42y ,而不是22y ,所以选项C 是错误的.正解:选D .易错点3:整体提出公因式时不能准确确定余数致错例3 分解因式:2a-4b+2错解:2a-4b+2=2(a-2b ).分析:因式分解的实质是一种恒等变形,所以不论在形式上发生何种变化,有一点是不会改变的,这就是变形前后多项式的项数必须相同.其次,你可以利用乘法将右边回乘看看能否得到左边的多项式,如果能就说明分解是正确的,如果不能,就说明这样的分解是错误的. 最后要说明的是,当这一项被整体提取后,这个位置上余数是1,而不是0,一定要谨记. 正解:2a-4b+2=2(a-2b+1).经过自己艰辛努力,图图顺利闯过了第二道山门.走出易错厅的图图,满怀信心,直奔考点直播室而去.三.考点直播室考点1 单项式乘单项式例1如果□×3ab=32a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a分析:单项式乘单项式,要注意系数的变化,相同字母的指数的变化,单独出现的字母和指数的处理,这是解题的关键.解:选C .考点2 探求完全平方公式展开式中某项的系数例2计算2)2(+x 的结果为2x +□x+4,则“□”中的数为( )A .-2B .2C .-4D .4分析:熟记完全平方公式的展开式是解题的关键.其次就是要灵活运用对应项相同的法则. 解:因为2)2(+x =2x +4x+4,所以2x +□x+4=2x +4x+4,比较对应项,得“□”中的数为4. 所以选择D .考点3 先提取公因式后套用平方差公式分解因式例3分解因式:9a -a 2b = .分析:这里有公因式a ,所以先提出来,其次就是要将数字9写成23,从而在提后的多项式 中,生成用平方差公式的条件.解:9a -a 2b =a (9-2b )==a (23-2b )= a (3+b (3-b ).考点4 先提取公因式后套用完全平方公式分解因式例4.把代数式33x -62x y+3x 2y 分解因式,结果正确的是( )A .x (3x+y )(x-3yB .3x (2x -2xy+2y )C .x 2)3(y x - D .3x 2)(y x - 分析:先确定公因式:3x ;第二步提取公因式3x ,得到3x (2x -2xy+2y ),第三步将结果彻底化,就得到了3x 2)(y x -.解:选D .考点5 先化简后求值例5.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5分析:解答时,同学们一定要按照题目的要求来作答,否则就很难得到高分的. 解:(a +2)(a -2)+a (1-a )=a 2-4+a -a 2=a -4,当a =5时,原式=5-4=1.成功闯过第三道山门的图图,心里非常的高兴,满怀胜利的喜悦直奔庄园的正殿而去,突然图图放慢了脚步,他担心自己一旦不成功,就会前功尽弃了,为了确保最终的胜利,于是图图悄悄钻进了训练大本营,让自己变得更坚强.四.训练大本营1. 分解因式2x 2 − 4x + 2的最终结果是( )A .2x(x − 2)B .2(x 2 − 2x + 1)C .2(x − 1)2D .(2x − 2)2 2. 当x=10,y=9时,代数式2x -2y 的值是 .3. 化简:2)3(+a +a (2-a )4. 先化简,再求值.()()212x x x ++-,其中12x =-.5.化简:22)()(y x y x --+参考答案:1. C2. 193.解:原式22692a a a a =+++-89a =+4. 解:原式=22212x x x x +++-=221x +, 当12x =-时,原式=21212⎛⎫⨯-+ ⎪⎝⎭=12+1=32. 5.解:原式=222222y xy x y xy x -+-++ =xy 4.图图凭借自己扎实的数学功底,将山庄仔仔细细探了清清楚楚,同学们要学习图图这种不怕困难的学习精神,努力学好数学.欲知图图意欲何往,请听赵老师下次安排.。
初二数学上册(人教版)第十四章整式的乘法与因式分解14.4知识点总结含同步练习及答案
3. 已知关于 x 的三次四项式 x 3 − ax 2 − 1003x + b 能被 x2 − 999x + 1994 整除,则 b − 6a = .
答案:
解析: 由于
6
x2 − 999x + 1994 = (x − 2) (x − 997) ,因此当 x = 2 和 x = 997 时,由题设若 x3 − ax2 − 1003x + b 能被 x2 − 999x + 1994 整除,则有
初二数学上册(人教版)知识点总结含同步练习题及答案
第十四章 整式的乘法与因式分解 14.4 因式定理(补充)
一、学习任务 1. 了解因式定理,通过因式定理运用试根法(结合因式定理)找到因式,再用待定系数法(结 合赋值法)求出待定系数,或综合除法直接求出剩下的因式,达到因式分解的目的. 2. 用因式定理来判断一个多项式能否进行因式分解.
答案: D
)
D.−3
B.−6
C.3
2. 已知多项式 x 3 + ax 2 + bx + c 含有因式 x + 1 和 x − 1 ,且被 x − 2 除余数为 3 ,那么 a = ; b=
答案: 解析:
; c=
.
a = −1, b = −1, c = 1 3 2 ⎧ ⎪ 1 + a × 1 + b × 1 + c = 0, 依题意得 ⎨ (−1)3 + a × (−1)2 + b × (−1) + c = 0, 解得 a = −1, b = −1, c = 1. ⎩ 3 ⎪ 2 + a × 2 2 + b × 2 + c = 3.
二、知识清单
人教版数学八年级上册 第十四章 整式乘除与因式分解 知识点归纳
第十四章 整式乘除与因式分解知识点归纳:一、幂的运算:1、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+2、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(== 如:23326)4()4(4==3、积的乘方法则:n n n b a ab =)((n 是正整数)。
积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-4、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷5、零指数;10=a ,即任何不等于零的数的零次方等于1。
二、单项式、多项式的乘法运算:6、单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
如:=•-xy z y x 3232 。
7、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。
如:)(3)32(2y x y y x x +--=。
8、多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。
9、平方差公式:22))((b a b a b a -=-+注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。
右边是相同项的平方减去相反项的平方。
人教版八年级上第十四章《整式的乘法与因式分解》知识点总结
人教版八年级上第十四章《整式的乘法与因式分解》知识点总结一、整式的乘法1、同底数塞相乘,底数不变,指数相加。
a m a n=a m+n(rn,八都是正整数)2、当基的指数是和的形式时,可以逆运用同底数零乘法法则,将塞指数和转化为同底数累相乘,然后把塞作为一个整体带入变形后的累的运算式中求解。
都是正整数)0m+n=0m.α,m,n3、塞的乘方,底数不变,指数相乘。
(Qmyl—aτnn(m,n都是正整数)4、与幕的乘方有关的混合运算中,一般先算累的乘方,再算同底数事的乘法,最后算加减,然后合并同类项。
5、比较底数大于1的事的方法有两种:(1)底数相同,指数越大,塞就越大。
(2)指数相同,底数越大,塞就越大。
6、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的塞相乘。
(而广=QRnm为正整数)7、运用积的乘方法则时要注意:公式中a,b代表任何代数式,每一个因式都要"乘方",注意结果的符号、幕指数及其逆向运用。
8、单项式与单项式的乘法法则:单项式与单项式相乘,把它们的系数、同底数事分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
9、单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加。
10、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。
11、同底数塞的除法:同底数累相除,底数不变,指数相减。
a rn÷a n=a m n(m,m都是正整数,并且m>n)12、单项式除以单项式的法则:单项式相除,把系数与同底数基分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
13、多项式除以单项式的法则:多项式除以单项式,就是用多项式的每一项除以这个单项式,再把所得的商相加。
二、乘法公式1.平方差公式:两数和与这两数差的积,等于这两个数的平方差。
人教版八年级上册数学 第十四章 整式的乘除与因式分解 小结和复习训练
人教版八年级上册数学第十四章 整式的乘除与因式分解 小结和复习训练一、知识点梳理:1.合并同类项法则:把同类项中的系数 , 不变。
(1)8b +2a -5b +3a= ;(2)2x 3-10xy +2x 3+4x 2y -xy 2+2xy -3x 2y= ___2.幂的乘方法则:幂的乘方, 即(a m )n = (m ,n 是正整数)。
(1)(a 4)3= ;(2)(-y 4)3=________; (3)(-103)4×102=________;(4) (-22)·(-2)2=______;3.积的乘方的法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 即(ab)m = (m 是正整数).(1)(ab)3= (2)(-a 2b)3=_________; (3)(0.3a 2b 3)2=4.同底数幂的乘法法则:同底数幂相乘, 即 a m ·a n = (m ,n 是正整数)。
(1)a 3⋅a 2= (2)-24·23=_________(3)x 5·2m x -=___________(4) (-a)5·(-a)4=________. 5.同底数幂的除法法则:同底数幂相除, 。
a m ÷a n = (a ≠0,m ,n 都是正整数,并且m >n)。
规定:a 0= (1)m 9÷m 7= (2)(-a )6÷(-a )2=(3)a m+2÷a m -1=_______ (4)(-3.14)0=_____ (5)2)0=_______. 6.单项式除法法则:单项式相除, 分别相除作为商的因式,对于只在被除式里含有的 ,则连同它的指数作为商的一个因式。
(1)-2x 3y 2z ÷12xy = (2)(27a 8÷9a 2)÷13a 3 = 7.单项式乘法法则:把系数与同底数幂分别相 ,对于只在 含有的字母,则连同它的指数作为 的一个因式。
最新人教版八年级上册第十四章整式的乘法与因式分解复习(知识点、典型例题)
注意事项
• 1) 首选提公因式法(若各项间有公因式,要先将公因式提出来),另一 个因式再考虑其他方法。x3-4x • 2)一般情况下,两项考虑平方差公式,三项考虑完全平方公式。 • x4-2x2y2+y4 • 3)因式分解要彻底。 • 4)(可用整式的乘法检验)但不走回头路。 • m4-1=(m2+1)(m2-1)=(m2+1)(m+1)(m-1)=(m2+1)(m2-1)
填空 (1).(a+ )2=a2+6a+ 。 。 (2).(2x(4).(x-y)2+ )2=4x2=(x+y)2 +25
(3).a2+b2=(a-b)2+
想一想 下列计算是否正确?如不正确,应
如何改正?
(1)
(2)
(-x+6)(-x-6) = -x - 6
2
(-x-1)(x+1) = -x- 1
(2)an+2.an+1.an.a2 (5)-p.(-p)4
(4)(xy3n)2+(xy6)n
(6)(b+2)2(b+2)5(b+2)
(7)(a-2b)3(b-2a)4
(8)(-a2.(-a4b3)2)3
(9)(x-2y)2(y-2x)3
注意:通过以上练习可知,公式中的 a既可以是一个数也可以是一个字母, 也可以是一个代数式。
+
) (
-
)……②
a2 - b2 =(a + b ) ( a - b )
平方差公式的应用题: 1、利用分解因式简便计算
(1) 652-642
解:652-642 =(65+64)(65-64) =129×1 =129
人教版初中八年级数学上册第十四章《整式的乘法与因式分解》知识点总结(含答案解析)(1)
一、选择题1.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .122.下列运算正确的是( )A .()23636a =B .()()22356a a a a --=-+ C .842x x x ÷=D .326326x x x ⋅= 3.计算()201920180.52-⨯的值( ) A .2 B .2- C .12 D .12- 4.已知A 为多项式,且2221241A x y x y =--+++,则A 有( )A .最大值23B .最小值23C .最大值23-D .最小值23- 5.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 6.下列运算中,正确的个数是( ) ①2352x x x +=;②()326x x =;③03215⨯-=;④538--+=A .1个B .2个C .3个D .4个7.如图,从边长为21a +的正方形纸片中剪去一个边长为2a +的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .233a -B .233a +C .221a a -+D .2189a a ++ 8.下列运算正确的是( ) A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-19.下列计算正确的是( ) A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 4 10.下列计算正确的是( ) A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=-11.下列计算正确的是( )A .(ab 3)2=a 2b 6B .a 2·a 3=a 6C .(a +b )(a -b )=a 2-2b 2D .5a -2a =3 12.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= 13.下列各式中,正确的是( )A .2222x y yx x y -+=B .22445a a a +=C .()2424m m --=-+D .33a b ab +=14.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x 15.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6 二、填空题16.如果210x x m -+是一个完全平方式,那么m 的值是__________.17.若2330x x --=,则()()()123x x x x ---的值为______.18.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a b x cd cd +-+的值为_______. 19.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 20.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式42()5f x mx nx x =+++,当2x =时,多项式的值为(2)1647f m n =++,若(2)10f =,则()2f -的值为_________.21.已知x-3y=-1,那么代数式3-2x+6y 的值是________ 22.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)23.已知4222112x x +-⋅=,则x =________24.若6x y +=,3xy =-,则2222x y xy +=_____.25.分解因式:2221218ax axy ay -+=_________.26.已知a +b =5,且ab =3,则a 3+b 3=_____.三、解答题27.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?28.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()2320x y ++-=.29.若x 满足()()944x x --=,求()()2249x x -+-的值.解:设9,4x a x b -=-=,则()()944x x ab --==,()()945a b x x +=-+-=, 222222(9)(4)()252417x x a b a b ab ∴-+-=+=+-=-⨯=请仿照上面的方法求解下面问题:(1)若x 满足()()522x x --=,求()()2252x x -+-的值; (2)若x 满足()()632x x --=,求()()2263x x -+-的值; (3)已知正方形ABCD 的边长为x ,E ,F 分别是AD DC 、上的点,且1AE =,3CF =,长方形EMFD 的面积是48,分别以MF DF 、为边作正方形,求阴影部分的面积.30.计算:(1)化简:()()()222a a b a b a b +-+-(2)因式分解:244x y xy y ++。
人教版八年级数学上册第14章 整式的乘法与因式分解 小结与复习
四、乘法公式 1. 平方差公式
两数___和___与这两数__差____的积,等于这两数的
_平__方__差___. (a + b)(a - b) = _a_2_-__b__2 .
2. 完全平方公式
两个数的和(或差)的平方,等于它们的_平__方__和__,
加上(或减去)它们的__积____的 2 倍.
针对训练
7.下列计算中,正确的是 ( C )
A.(a+b)2=a2-2ab+b2
B.(a-b)2=a2-b2
C.(a+b)(-a+b)=b2-a2
D.(a+b)(-a-b)=a2-b2
8.已知 (x+m)2=x2+nx+36,则 n 的值为 ( B )
A.±6 B.±12
C.±18 D.±72
9.若 a+b=5,ab=3,则 2a2+2b2=___3_8__.
(a + b)2 = _a_2_+__2_a_b__+__b_2.
五、因式分解 1. 因式分解的定义
把一个多项式化为几个__整__式__的__积____的形式,像
这样的式子变形叫做这个多项式的因式分解,也叫做
把这个多项式分解因式.
步骤:
2. 因式分解的方法
1. 提公因式;
(1) 提公因式法
2. 套用公式;
=a2-(b-3)2=a2-b2+6b-9. (3) 原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4.
11. 用简便方法计算 (1) 2002-400×199+1992; (2) 999×1001.
解:(1) 原式 = (200-199)2 = 1. (2) 原式 = (1000-1)(1000+1) = 10002-1 = 999999.
人教版八年级数学上册-整式的乘除与分解因式知识点总结及同步测试
人教版八年级数学上册《第十四章 整式的乘除与分解因式》知识点总结1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a =⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法⑸添项法单元测试二一、选择题:1.下列多项式中能用平方差公式分解因式的是( )A .22)(b a -+B .mn m 2052-C .92+-xD .22y x --2.如果2592++kx x 是一个完全平方式,那么k 的值是( )A . 15B .±5C . 30D . ±303.△ABC 的三边满足2))((a b c b c -=-+,则△ABC 是( )A .等腰三角形B .直角三角形C .等边三角形D .锐角三角形4.下列因式分解错误的是 ( )A .)64(21282223+-=+-a a a a a aB .)3)(2(652--=+-x x x xC .))(()(22c b a c b a c b a --+-=--D .22)1(2242+=-+-a a a5.计算2()a b --等于 ( )A .22a b +B .22a b -C .222a ab b ++D .222a ab b -+6.若E p q p q q p ⋅-=---232)()()(,则E 是( )A .p q --1B .p q -C .q p -+1D .p q -+17.若0)5()3(22=+-+-+y x y x ,则)(22=-y xA .8B .8-C .15D .15-8.13+m a 可写成 ( )A . a a m ⋅3B .13)(+m aC .13)(+m aD . 12)(+m m a9.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为 ( )A .32B .3210C .1210D .101210.n 个底边长为a ,腰长为b 的等腰三角形ABC 拼成图1,则图1中的线段之和是()A .nb na 2+B .b nb na ++C .b na 2+D .b na 22+二、填空题:11.已知2(4)(9)x x x mx n -+=++,则m n +=________。
人教八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)
(名师选题)人教八年级数学上册第十四章整式的乘法与因式分解知识点归纳总结(精华版)单选题1、下列运算正确的是()A.(−m2n)3=−m6n3B.m5−m3=m2C.(m+2)2=m2+4D.(12m4−3m)÷3m=4m3答案:A分析:根据积的乘方、幂的乘方、同类项定义、完全平方公式、整式的除法的运算法则计算即可.解:A、(−m2n)3=−m6n3,故此选项正确;B、m5和m3不属于同类项,不能相加,故此选项错误;C、(m+2)2=m2+4m+4,故此选项错误;D、(12m4−3m)÷3m=4m3−1,故此选项错误;故选:A.小提示:本题主要考查积的乘方、幂的乘方、同类项定义、完全平方公式、整式的除法的运算法则等知识点,运用以上知识点正确计算每个选项的值是解题关键.2、在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a−b)2=a2−2ab+b2C.a2−b2=(a+b)(a−b)D.(a+2b)(a−b)=a2+ab−2b2答案:C分析:图甲中根据阴影部分面积等于大正方形减去小正方的面积,图乙中直接求长方形的面积即可,根据两个图形中阴影部分的面积相等,即可求解.解:图甲阴影部分的面积为a2−b2,图乙中阴影部分的面积等于(a+b)(a−b)∵两个图形中阴影部分的面积相等,∴a2−b2=(a+b)(a−b)故选C.小提示:本题考查了平方差公式与图形面积,正确的求出阴影部分面积是解题的关键.3、计算:(−a)2⋅a4的结果是()A.a8B.a6C.−a8D.−a6答案:B分析:根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.解:原式=a2⋅a4=a2+4=a6.故选B.小提示:此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.4、已知(x-2021)2+(x-2023)2=50,则(x-2022)2的值为()A.24B.23C.22D.无法确定答案:A分析:先变形为[(x-2022)+1]2+[(x-2022)-1]2=50,然后利用完全平方公式展开即可得到(x-2022)2的值.解:∵(x-2021)2+(x-2023)2=50,∴[(x-2022)+1]2+[(x-2022)-1]2=50,∴(x-2022)2+2(x-2022)+1+(x-2022)2-2(x-2022)+1=50,∴(x-2022)2=24.故选:A.小提示:此题考查了完全平方公式的运用,解题的关键是能根据完全平方公式灵活变形.5、若2x+4y−5=0,则4x⋅16y的值是()A.16B.32C.10D.64答案:B分析:先根据2x+4y−5=0,得出2x+4y=5,再将4x⋅16y变形为22x+4y,最后将2x+4y=5整体代入,求值即可.解:∵2x+4y−5=0,∴2x+4y=5,∴4x⋅16y=(22)x⋅(24)y=22x⋅24y=22x+4y=25=32故选:B.小提示:本题主要考查了同底数幂的乘法和幂的乘方运算,熟练的逆用同底数幂的乘法运算公式和幂的乘方运算公式进行变形,将4x⋅16y变形为22x+4y,是解题的关键.6、若(8×106)×(5×102)×(2×10)=M×10a,则M、a的值为()A.M=2,a=10B.M=8,a=8C.M=2,a=9D.M=8,a=10答案:D分析:根据单项式的乘法法则,乘号前面的数相乘,乘号后面的数相乘,再转化成科学记数法表示数,即可求出M,a的值.解:(8×106)×(5×102)×(2×10)=(8×5×2)×(106×102×10)=80×109=8×1010.∴M=8,a=10故选D.小提示:本题考查了单项式的乘法,同底数幂的乘法,科学记数法.熟练掌握各个运算法则和科学记数法表示数的计算方法是解题的关键.7、将多项式x ﹣x3因式分解正确的是( )A .x (x2﹣1)B .x (1﹣x2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x )答案:D分析:直接提取公因式x ,然后再利用平方差公式分解因式即可得出答案.x ﹣x 3=x (1﹣x 2)=x (1﹣x )(1+x ).故选D .小提示:本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.8、已知、为实数,且√a −12+ b 2+4=4b ,则a 2015•b 2016的值是( )A .12B .−12C .2D .﹣2 答案:C分析:已知等式整理后,利用非负数的性质求出与的值,利用同底数幂的乘法及积的乘方运算法则变形后,代入计算即可求出值.已知等式整理得:√a −12+ (b −2)2=0, ∴a =12,b =2, 即ab =1,则原式=(ab)2015•b=2,故选:C .小提示:本题考查了实数的非负性,同底数幂的乘法,积的乘方,活用实数的非负性,确定字母的值,逆用同底数幂的乘法,积的乘方,进行巧妙的算式变形,是解题的关键.9、已知a +b =4,则代数式1+a 2+b 2的值为( )A .3B .1C .0D .-1答案:A分析:通过将所求代数式进行变形,然后将已知代数式代入即可得解.由题意,得1+a 2+b 2=1+a +b 2=1+42=3 故选:A.小提示:此题主要考查已知代数式求代数式的值,熟练掌握,即可解题.10、已知5x=3,5y=2,则52x ﹣3y=( )A .34B .1C .23D .98答案:D分析:首先根据幂的乘方的运算方法,求出52x 、53y 的值;然后根据同底数幂的除法的运算方法,求出52x ﹣3y 的值为多少即可.∵5x =3,5y =2, ∴52x =32=9,53y =23=8, ∴52x ﹣3y =52x 53y =98. 故选D .小提示:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.填空题11、因式分解:(x +2)x ﹣x ﹣2=_____.答案:(x +2)(x ﹣1)分析:通过提取公因式(x +2)进行因式分解即可.解:(x +2)x ﹣x ﹣2=(x+2)x-(x+2)=(x+2)(x﹣1),故答案为(x+2)(x﹣1).小提示:考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.12、若x2−4x+a=(x−2)2−1成立,则a的值为________.答案:3分析:根据完全平方公式展开,然后根据对应位置的系数相同即可解题.∵(x−2)2−1=x2−4x+4−1=x2−4x+3∴a=3所以答案是:3.小提示:本题考查完全平方公式,解题的关键是根据完全平方公式展开化简.13、计算:(3x5y3−x6y2+x4y3z)÷(−2x2y)2=__________________;答案:34xy−14x2+14yz分析:先计算积的乘方,然后根据多项式除以单项式进行计算即可求解.解:原式=(3x5y3−x6y2+x4y3z)÷(4x4y2)=34xy−14x2+14yz.所以答案是:34xy−14x2+14yz.小提示:本题考查了积的乘方,多项式除以单项式,正确的计算是解题的关键.解答题14、因式分解:1﹣a2﹣4b2+4ab.答案:(1+a−2b)(1−a+2b)分析:先分组,再逆用完全平方公式、平方差公式进行因式分解.解:1﹣a2﹣4b2+4ab=1﹣(a2+4b2﹣4ab)=1﹣(a﹣2b)2=(1+a﹣2b)[1﹣(a﹣2b)]=(1+a﹣2b)(1﹣a+2b).小提示:本题考查因式分解,涉及分组分解法、逆用完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题关键.15、先化简,再求值:[(a−2b)2−(a−2b)(a+2b)+4b2]÷(−2b),其中a=1,b=−2.答案:2a-6b,14.分析:先根据平方差公式和完全平方公式进行计算,再合并同类项,算除法,最后代入求出答案即可.解:[(a-2b)2-(a-2b)(a+2b)+4b2]÷(-2b)=(a2-4ab+4b2-a2+4b2+4b2)÷(-2b)=(-4ab+12b2)÷(-2b)=2a-6b,当a=1,b=-2时,原式=2×1-6×(-2)=2+12=14.小提示:本题考查了整式的化简求值,能正确根据整式的运算法则进行化简是解此题的关键,注意运算顺序.。
人教版初中八年级数学上册第十四章《整式的乘法与因式分解》知识点复习(含答案解析)(1)
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.若2()(2)3x a x x x b +-=-+,则实数b 等于( )A .2-B .2C .12-D .12B 解析:B【分析】等式左边去括号后两边经过比对可以得解 .【详解】解:原等式可变为: ()22223x a x a x x b +--=-+,∴可得:232a b a -=-⎧⎨=-⎩, 解之得:a=-1,b=2,故选B .【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.3.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .12A解析:A【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ ,解得m=±12.故选:A .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.4.已知代数式2366x x -+的值为9,则代数式226x x -+的值为( )A .18B .12C .9D .7D 解析:D【分析】将x 2﹣2x 当成一个整体,在第一个代数式中可求得x 2﹣2x =1,将其代入后面的代数式即能求得结果.【详解】解:∵3x 2﹣6x +6=9,即3(x 2﹣2x )=3,∴x 2﹣2x =1,∴x 2﹣2x +6=1+6=7.故选:D .【点睛】本题考查了代数式求值,解题的关键是将x 2﹣2x 当成一个整体来对待.5.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ C 解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 6.下列等式中从左到右边的变形是分解因式的是( )A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++ D .1212x x x ⎛⎫+=+ ⎪⎝⎭C 解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断.【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意; B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意; C 、()()22492323a b a b a b -+=-++,故该项符合题意; D 、1212x x x ⎛⎫+=+⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C .【点睛】 此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.7.已知3x y +=,1xy=,则23x xy y -+的值是( ) A .7B .8C .9D .12A 解析:A【分析】先把3x y +=代入原式,可得23x xy y -+=22x y +,结合完全平方公式,即可求解.【详解】∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22xy +, ∵1xy =,∴23x xy y -+=22xy +=22()23217x y xy +-=-⨯=,故选A .【点睛】 本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键. 8.若3a b +=,1ab =,则()2a b -的值为( )A .4B .5C .6D .7B 解析:B【分析】由3a b +=结合完全平方式即可求出22a b +的值,再由222()2a b a b ab -=+-,即可求出结果.【详解】∵3a b +=,∴22()3a b +=,即2229a ab b ++=,将1ab =代入上式得:229217a b +=-⨯=.∵222()2a b a b ab -=+-,∴2()725a b -=-=.故选:B .【点睛】本题考查代数式求值以及因式分解.熟练利用完全平方式求解是解答本题的关键. 9.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+ C 解析:C【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算.【详解】解:A. 2222a a a +=,故选项A 计算错误;B. 235a a a ⋅=,故选项B 计算错误;C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误;故选:C【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题. 10.下列运算正确的是( )A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+ B 解析:B【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断.【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误;故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题11.2007200820092()(1.5)(1)3⨯÷-=_____.-15【分析】首先把分解成再根据积的乘方的性质的逆用解答即可【详解】解:原式===﹣15故答案为-15【点睛】本题考查有理数的乘方运算逆用积的乘方法则是解题关键解析:-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可.【详解】 解:原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5, 故答案为-1.5 .【点睛】本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.14.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故 解析:﹣25【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25,故答案为:﹣25.【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键. 15.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)-1-2-2m2+5m-2【分析】根据题目中的新定义运算规则可分别计算出数对和放入其中后最后得到的数再由数对放入其中得到数计算出m 与n 的关系再计算数对即可得到结果【详解】解:由题意得:数对放入其中时解析:-1 -2 -2m 2+5m-2【分析】根据题目中的新定义运算规则,可分别计算出数对(2,1)和(23,2)+放入其中后,最后得到的数,再由数对(,0)m 放入其中,得到数n ,计算出m 与n 的关系,再计算数对(,)n m ,即可得到结果.【详解】解:由题意得:数对(2,1)放入其中时,最后得到的数是:(2-1)×(1-2)=-1; 故答案为:-1;(1)将数对(23,2)+放入其中,最后得到的数是:(23+-1)(2-2)=-2; 故答案为:-2;(2)根据数对(,0)m 放入其中得到数n ,可得:(m−1)×(0−2)=n , 则-2m+2=n , ∴将数对(n ,m )放入其中后,最后得到的数是:(n−1)(m−2)=(-2m+2−1)(m−2)=(-2m+1)(m−2)=-2m 2+5m-2.故答案为:-2m 2+5m-2.【点睛】此题主要考查了新定义下的实数运算,弄清题中的新定义运算规则、实数及多项式乘多项式的运算法则是解本题的关键.16.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.17.分解因式3225a ab -=____.a (a+5b )(a-5b )【分析】首先提取公因式a 进而利用平方差公式分解因式得出答案【详解】解:a3-25ab2=a (a2-25b2)=a (a+5b )(a-5b )故答案为:a (a+5b )(a-5b )解析:a (a+5b )(a-5b )【分析】首先提取公因式a ,进而利用平方差公式分解因式得出答案.【详解】解:a 3-25ab 2=a (a 2-25b 2)=a (a+5b )(a-5b ).故答案为:a (a+5b )(a-5b ).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 18.下列说法:①用两个钉子就可以把木条固定在墙上依据的是“两点之间,线段最短”;②若2210m m +-=,则2425m m ++的值为7;③若a b >,则a 的倒数小于b 的倒数;④在直线上取A 、B 、C 三点,若5cm AB =,2cm BC =,则7cm AC =.其中正确的说法有________(填号即可).②【分析】①用两个钉子可以把木条固定的依据是两点确定一条直线;②利用整体代换的思想可以求出代数式的值;③根据倒数的定义举出反例即可;④直线上ABC 三点的位置关系要画图分情况讨论【详解】①用两个钉子可解析:②【分析】①用两个钉子可以把木条固定的依据是“两点确定一条直线”;②利用“整体代换”的思想,可以求出代数式的值;③根据倒数的定义,举出反例即可;④直线上A 、B 、C 三点的位置关系,要画图,分情况讨论.【详解】①用两个钉子可以把木条固定的依据是“两点确定一条直线”,故①错误;②∵2210m m +-=,∴()2242522172077m m m m ++=+-+=⨯+=,故②正确;③∵a >b ,取a=1,b=-1, ∴11a =,11b=-,11a b >,故③错误; ④当点C 位于线段AB 上时,AC=AB -BC=5-2=3cm ;当点C 位于线段AB 的延长线上时,AC=AB+BC=5+2=7cm ,则AC 的长为3cm 或7cm ,故④错误;综上可知,答案为:②.【点睛】本题考查了两点确定一条直线、整体代换思想、求代数式的值、倒数的有关计算及数形结合法求线段的长度,综合性较强,需要学生熟练掌握相关的知识点.19.若210a a +-=,则43222016a a a a +--+的值为______.【分析】原式变形为由已知得到整体代入即可求解【详解】已知得:故答案为:【点睛】本题考查了代数式求值熟练掌握整体代入法是解题的关键解析:2015【分析】原式变形为()22222016aa a a a +--+,由已知得到21a a +=,整体代入即可求解. 【详解】已知得:21a a +=, 43222016a a a a +--+()22222016a a a a a =+--+2222016a a a =--+ ()22016a a =-++ 12016=-+2015=.故答案为:2015.【点睛】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.20.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________24ab 【分析】由完全平方公式(a±b )2=a2±2ab+b2得到(a+b )2=(a ﹣b )2+4ab 据此可以作出判断【详解】解:∵(2a+3b )2=(2a ﹣3b )2+4×2a×3b =(2a ﹣3b )2解析:24ab【分析】由完全平方公式(a ±b )2=a 2±2ab +b 2,得到(a +b )2=(a ﹣b )2+4ab ,据此可以作出判断.【详解】解:∵(2a +3b )2=(2a ﹣3b )2+4×2a ×3b =(2a ﹣3b )2+24ab ,(2a +3b )2=(2a ﹣3b )2+A ,∴A =24ab .故答案为:24ab .【点睛】本题考查了完全平方公式.关键是要了解(a ﹣b )2与(a +b )2展开式中区别就在于2ab 项的符号上,通过加上或者减去4ab 可相互变形得到.三、解答题21.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+ 解析:(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+ 10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系;(2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值; (3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.解析:(1)()()224a b a b ab +--=;(2)6x y +=±;(3)-15.【分析】(1)由长方形的面积公式解得图1的面积,图2中白色部分面积为大正方形面积与小正方形面积的差,又由图1与图2中的空白面积相等,据此列式解题; (2)由(1)中结论可得()()224x y x y xy +--=,将5x y -=,114xy =整体代入,结合平方根性质解题;(3)将()2019m -与()2021m -视为一个整体,结合(1)中公式,及平方的性质解题即可. 【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为()()()()2222a b b a a b a b +--=+--∵图1的面积和图2中白色部分的面积相等 ∴()()224a b a b ab +--=(2)根据(1)中的结论,可知()()224x y x y xy +--= ∵5x y -=,114xy =∴()2211544x y +-=⨯ ∴()236x y +=∴6x y +=±(3)∵()()201920212m m -+-=- ∴()()2201920214m m -+-=⎡⎤⎣⎦∴()()()()22201922019202120214m m m m -+--+-=∵()()222019202134m m -+-=∴()()22019202143430m m --=-=- ∴()()2019202115m m --=-. 【点睛】本题考查完全平方公式在几何图形中的应用,是重要考点,难度较易,掌握相关知识是解题关键.23.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法. 利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.解析:(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析 【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形. 【详解】解:(1)原式()()22222x xy yx y =-+--()()22x y x y =---()()2x y x y =---.(2)结论:ABC 为等腰三角形 理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+--- ()()a b a b c =-+-0=又∵0a b c +-> ∴0a b -= ∴a b =∴ABC 为等腰三角形. 【点睛】此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.24.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 解析:(1)()66a b +;(2)8 【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论. 【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )], =6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=, 0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.25.把一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1).(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m ,n 的代数式表示). 方法1:______________________________. 方法2:______________________________.(2)根据(1)中结论,请你写出下列三个代数式()2m n +,()2m n -,mn 间的等量关系:________(3)根据(2)中的等量关系,解决如下问题:已知实数x ,y 满足6xy =,5x y -=,请求出x y +的值.解析:(1)方法1:()24m n mn +-,方法2:()2m n -;(2)()()224m n m n mn -=+-;(3)7x y +=【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m ﹣n .根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积. (3)(x +y )2正好表示大正方形的面积,(x ﹣y )2正好表示阴影部分小正方形的面积,xy 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可. 【详解】解:(1)()24m n mn +-;()2m n -. (2)()()224m n m n mn -=+-.(3)∵()()224x y x x y y +=-+,5x y -=,6xy =, ∴()2254649x y +=+⨯=,∴7x y +=. 【点睛】本题考查了完全平方式和整式的混合运算,主要考查学生的理解能力和计算能力. 26.在通常的日历牌上,可以看到一些数所满足的规律,表①是2020年12月份的日历牌.28 29 30 31(表①)(1)在表①中,我们选择用如表②那样22⨯的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.如:用正方形框圈出3,4,10,11四个数,然后将它们交叉相乘,再相减,即3114107⨯-⨯=-或4103117⨯-⨯=.请你用表②的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.列出算式并算出结果(选择其中一个算式即可). (2)在用表②的正方形框任意圈出的22⨯个数中,将它们先交叉相乘,再相减.若设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字,列出算式并算出结果(选择其中一个算式即可).(3)若选择用表③那样33⨯的正方形方框任意圈出33⨯个数,将正方形方框四角....位置上的4个数先交叉相乘,再相减,你发现了什么.选择一种情况说明理由. 解析:(1)91710167⨯-⨯=-或10169177⨯-⨯=,(2)+1n ,n+7,n+8,()()()+178n n n n +-+,7,或()()()8+17n n n n +-+,-7;(3)1×17-3×15=-28或3×15-1×17=28,发现:它们最后得结果是28或-28,n ,+2n ,n+14,n+16,()()()+21416n n n n +-+,28,()()()16+214n n n n +-+,-28,它们的结果与n 的值无关,最终结果保持不变,值是28或-28. 【分析】(1)先画出选出的各数,再计算即可;(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+1n+7n+8n ,,,列出算式()()()+178n n n n +-+或()()()8+17n n n n +-+,求出即可;(3)先圈出各个数,列出算式,设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,列出算式,求出即可. 【详解】(1)圈出的数如图,9,10;16,17,91710161531607⨯-⨯=-=-或10169171601537⨯-⨯=-=,(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为,+1n+7n+8n ,,,()()()+178n n n n +-+,=22878n n n n ++--, =7,或()()()8+17n n n n +-+, =22887n n n n +---, =-7;(3)圈出的数为1,2,3;8,9,10;15,16,17四角数位1,3,15,17 1×17-3×15=17-45=-28或3×15-1×17=35-17=28, 发现:它们最后得结果是28或-28,理由是:设设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,()()()+21416n n n n +-+,=22162816n n n n ++--, =28,()()()16+214n n n n +-+,=22161628n n n n +---, =-28.结论:它们的结果与n 的值无关,最终结果保持不变,值是28或-28. 【点睛】本题考查整式的混合运算的应用,掌握整式的混合运算法则,能理解题意,会按要求列式是解题关键,培养阅读能力和计算能力. 27.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题:①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________; ③请应用上述性质计算:201920182017(0.125)24-⨯⨯ 解析:①1,1; ②n n a b ,n n n a b c ; ③-132. 【分析】①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1;∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1,∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭,由此可得:()na b ⋅=n n a b ;()na b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2, ∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174 =20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键. 28.因式分解: (1)4x 2y ﹣4xy +y ; (2)9a 2﹣4(a +b )2.解析:(1)y (2x ﹣1)2;(2)(5a +2b )(a ﹣2b ) 【分析】(1)先提公因式,再利用完全平方公式; (2)先利用平方差公式分解,再化简即可. 【详解】解:(1)4x 2y ﹣4xy +y =y (4x 2﹣4x +1) =y (2x ﹣1)2;(2)9a2﹣4(a+b)2=[3a+2(a+b)][3a﹣2(a+b)]=(5a+2b)(a﹣2b).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。
人教版初中八年级数学上册第十四章《整式的乘法与因式分解》知识点复习(含答案解析)
一、选择题1.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 2.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 3.如下列试题,嘉淇的得分是( )姓名:嘉淇 得分:将下列各式分解因式(每题20分,共计100分)①242(12)xy xyz xy z -=-;②2363(12)x x x x --=--;③221(2)a +a a a +=+;④2224(2)m n m n -=-;⑤22222()()x y x y x y -+=-+-A .40分B .60分C .80分D .100分 4.已知3x y +=,1xy =,则23x xy y -+的值是( )A .7B .8C .9D .125.若3a b +=-,10ab =-,则-a b 的值是( ) A .0或7 B .0或13- C .7-或7D .13-或13 6.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2- C .0或2- D .以上答案都不对 7.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++ 8.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 9.下列计算中能用平方差公式的是( ).A .()()a b a b -+-B .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+10.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b -=-;④()**a b c a b a c +=+*.其中所有正确推断的序号是( )A .①②③④B .①③④C .①②D .①③ 11.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.7512.下列运算中,正确的是( )A .()23294x y x y = B .3362x x x += C .34x x x ⋅= D .22(3)(3)3x y x y x y +-=-13.若y 2+4y +4+1x y +-=0,则xy 的值为( )A .﹣6B .﹣2C .2D .614.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6 15.已知x =7+1,y =7﹣1,则xy 的值为( )A .8B .48C .27D .6二、填空题16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.17.若2330x x --=,则()()()123x x x x ---的值为______.18.已知210x x +-=,则代数式3222020x x ++的值为________.19.分解因式:32m n m -=________.20.我们知道,同底数幂的乘法法则为m n m n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.21.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.22.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-; ()324(1)11x xx x x -+++=-; …… (1)()432(1)1x x x x x -++++=___;(2)根据规律可得:()1(1)1n x x x --+++=_____(其中n 为正整数);(3)计算:()5049482(31)333331-++++++; 23.若2211392781n n ++⨯÷=,则n =____.24.关于x 的一次二项式mx +n 的值随x 的变化而变化,分析下表列举的数据若mx +n =17,线段AB 的长为x ,点C 在直线AB 上,且BC =12AB ,则直线AB 上所有线段的和是_____________.25.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________ 26.已知22m mn -=,25mn n -=,则22325m mn n +-=________.三、解答题27.计算(1)()()()7332233532x x x x x -++⋅(2)()()()()22223x y x y x x y x y ++--++28.在日历上,我们可以发现其中某些数满足一定规律,如图是2020年12月份的日历,我们选择其中被框起的部分,将每个框中三个位置上的数作如下计算:7===2241731576527497-⨯=-==不难发现,结果都是7.(1)请你再在图中框出一个类似的部分并加以验证; (2)请你利用代数式的运算对以上规律加以证明.29.因式分解:(1)322242a a b ab -+(2)4481x y -30.化简:(1)()34322223x y x y z x y -÷;(2)2(4)3(1)(3)x x x x -+-+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.计算:
(1) 4 x
5
yx
4
y
6y
3
x
x
y2;
(2) 16 a b 6 a b 5
a
b3 a
2
b.
4. 若 (ax3 my12) ÷(3x3y2n)=4x6y8 , 则 a = , m = ,=
;
易错点:在幂的运算中,由于法则掌握不准出现错误; 有关多项式的乘法计算出现错误; 误用同底数幂的除法法则; 用单项式除以单项式法则或多项式除以单项式法则出错; 乘除混合运算顺序出错。
4.如果 (a nb· ab m) 3=a 9b 15,那么 mn 的值是
5.- [-a 2(2a 3-a)]=
6.(-4x 2+6x-8)·(- 1 x 2 )= 2
7.2n(-1+3mn 2)=
8.若 k(2k- 5)+2k(1- k)=32,则 k= 9.(-3x 2)+(2x-3y)(2x- 5y)- 3y(4x-5y)=
6
b
4a
b 2.
(2) 2x2 y 3 (4) 4x3 y2n 2
3 x2y2 ; 2 2xyn 3
(5) 4 109
2 10 3
2.计算:
(1)16 x3 y3 1 x2 y3 2
3
1 xy ;
2
3
2
(2) 2 x2 y
1 x2 y
5
2
3
1 xy
5
(3)
5 an 1b2 2
2
1 a nb2 4
2
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单
项式里含有的字母,则连同它的指数作为积的一个因式.
例:(1) 3a2b 2abc 1 abc 2 3
( 2) ( 1 m3n)3 ( 2m 2 n) 4 2
8.单项式与多项式的乘法法则:
单项式与多项式相乘, 用单项式和多项式的每一项分别相乘, 再把所得的积
相加.
例:(1) 2ab(5ab2 3a 2b) ( 3) (- 5m2 n) (2n 3m n 2 )
( 2) ( 2 ab2
1 2ab) ab
3
2
( 4) 2( x y 2 z xy 2 z3 ) xyz
9.多项式与多项式的乘法法则:
多项式与多项式相乘, 先用一个多项式的每一项与另一个多项式的每一项相
6、多项式 x3 x 2 , x 2 2x 1, x2 x 2 的公因式是 _____________________ 。
x3
7、因式分解: 8
__________________________ 。
27
8、因式分解: 4m2 2 mn 1 n 2 ____________________________ 。 4
整式乘除与因式分解知识点复习总结及同步练习
一.知识点 (重点)
1.幂的运算性质:
am·an=am+n
(m、n 为正整数)
同底数幂相乘,底数不变,指数相加.
例: (-2a)2(-3a2)3
mn
2. a = amn ( m、 n 为正整数) 幂的乘方,底数不变,指数相乘. 例: (- a5 )5
n
3. ab
9、计算: 0.131 8 0.004 8 0.002 8 _____________________ 。 10、 x2 y 2 x y ( x y) A ,则 A =_____________________
易错点:错误的运用平方差公式和完全平方公式。
13.因式分解(难点)
因式分解的定义.
把一个多项式化成几个整式的乘积的形式, 这种变形叫做把这个多项式因式
11.多项式除以单项式的法则:
多项式除以单项式, 先把这个多项式的每一项除以这个单项式, 再把所得的
商相加.
例:(1) (3x 2 y 6xy) 6 xy
(2) (5a3b 10a2b2 15ab3) ( 5ab)
练习: 1.计算:
(1) 3 x 4 y2 z3 1 x2 y2 ;
7
7
(3)16 a
(2) 9( a b) 2 6(b a) 1
( 3) a4 x 2 4a 2x 2 y 4x 2 y2
(4) ( x y)2 12( x y) z 36 z2
练习: 1、若 x 2 2(m 3) x 16 是完全平方式,则 m 的值等于 _____。 2、 x2 x m ( x n) 2 则 m =____n =____ 3、 2x 3 y 2 与 12 x6 y 的公因式是_ 4、若 x m yn = ( x y 2 )( x y2 )( x 2 y4 ) ,则 m=_______,n=_________。
例 2: (1) (x+6) 2 (2) (y-5)
2
(3) (-2x+5)
2
练习:
1、 a5 4
a2
3
=_______ 。
x(x3 y 2) 2
2( x2 y)3
( xy 2) 3= ______________ 。
2、 6a 4b 3 12a 3b 4 8a 3b 2 2a 3b 2 ( _____________________ )
形的长和都扩大了 2cm,则面积增大了
。
10.单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式 里含有的字母,则连同它的指数作为商的一个因式. 例:( 1) 28x4y2÷7x3y( 2) -5a5b3c÷15a4b(3)(2x2y)3 ·(-7xy2)÷ 14x4y3
乘,再把所得的积相加. 例:(1)(1 x)(0.6 x)
( 2) ( 2 x y )( x y ) (3)( 2m n) 2
练习:
1.计算 2x 3· (-2xy)( - 1 xy) 3 的结果是 2
2.(3× 10 8)×(-4×10 4)=
3.若 n 为正整数,且 x 2n=3,则 (3x 3n) 2 的值为
8、已知 1 x x2
x 2004 x 2005 0, 则 x 2006 ________ .
9、若 16(a b) 2 M 25 是完全平方式 M=________。
10、 x 2 6x
__
(x
3) 2 ,
2
x
___
2
9 (x 3)
11、若 9x 2 k y2 是完全平方式,则 k=_______。
是把积化为和差的形式.
二、熟练掌握因式分解的常用方法.
1、提公因式法
(1)掌握提公因式法的概念;
(2)提公因式法的关键是找出公因式, 公因式的构成一般情况下有三部分:
①系数一各项系数的最大公约数; ②字母 —— 各项含有的相同字母; ③指数 ——
相同字母的最低次数;
(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确
( 2) 75x 3 y5 35 x2 y4
2、公式法 运用公式法分解因式的实质是把整式中的乘法公式反过来使用; 常用的公式:
①平方差公式:
a2- b2= (a+ b)( a- b)
②完全平方公式: a2+ 2ab+ b2=( a+ b)2
a2- 2ab+ b2=( a- b)2
例:( 1) a2b2 0.25c2
12.乘法公式:
①平方差公式:( a+ b)(a-b)= a2- b2 文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差. ②完全平方公式:(a+b)2= a2+2ab+ b2
(a-b)2=a2-2ab+ b2 文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或 减去)这两个数的积的 2 倍. 例 1: (1)(7+6x)(7-6x) ; (2)(3y + x)(x-3y) ; (3)(-m + 2n)(-m-2n) .
分解.
掌握其定义应注意以下几点:
(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整
式,这三个要素缺一不可;
(2)因式分解必须是恒等变形;
(3)因式分解必须分解到每个因式都不能系.
因式分解与整式乘法是互逆变形, 因式分解是把和差化为积的形式, 而整式乘法
10.在 (ax 2+bx- 3)(x 2- 1 x+8)的结果中不含 x 3 和 x 项,则 a= 2
, b=
11.一个长方体的长为 (a+ 4)cm,宽为 (a- 3)cm,高为 (a+ 5)cm,则它的表面积
为
,体积为
。
12.一个长方形的长是 10cm,宽比长少 6cm,则它的面积是
,若将长方
3
4. am an = am-n
( a≠ 0, m、n 都是正整数,且 m> n)
同底数幂相除,底数不变,指数相减.
例:( 1) x 8÷x 2
( 4)(
-a) 7÷(
5 -a)
( 2)a4÷ a
( 3)( ab) 5÷( ab) 2
(5 ) (-b) 5÷ (-b)2
5.零指数幂的概念: a0 =1 ( a≠0) 任何一个不等于零的数的零指数幂都等于 l.
定另一因式. 需注意的是, 提取完公因式后, 另一个因式的项数与原多项式的项
数一致,这一点可用来检验是否漏项.
(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底” ;②
如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的
系数是正的.
例:(1) 8a 3b2 12ab3c
3、 x2 ____ 9 y2 (x _____) 2 ; x2 2x 35 (x 7) (______________ )
2
4、已知 x