开关电源拓扑结构对比(全)

合集下载

最新开关电源拓扑结构

最新开关电源拓扑结构

开关电源拓扑结构开关电源拓扑结构回顾Lloyd H·Dixon Jr前言本文回顾了在开关电源中常用的三种基本电路系列即降压变换电路、升压变换电路和反激(或升降压)电路的特性,这三种电路均可以工作于电感断流或续流模式下。

工作方式的选择对整体电路特性有很大的影响。

所使用的控制方式也能有助于减少与拓扑和工作模式相关的问题。

三种以恒频率工作的控制方法包括:直接占空比控制、电压前馈、和电流模式(双环)控制。

本文还论述了三个基本电路的一些扩展,以及每种拓扑、工作模式、组合控制方法的相对优点。

一、三种基本拓扑结构:三种基本的拓扑结构降压式,升压式,反激式如图1所示。

串联式变换器(CUK)是反激式拓扑的倒置(不宜翻译为逆变,因其意思为DC-AC的变换),不作论述。

这三种不同的开关电路使用了三种相同的元件:电感,晶体管(晶体管包括三极管及MOSFET)和二极管,但是使用了不同的安放方式,(输出电容是滤波元件,不是开关电路的一部分)。

理论上,还有另外三种由这三种元件组成的T型结构的电路,但这三种是前面三种电路的简单镜像和在相反方向的耦合能量。

有一条在任何运行模式和控制方式下都适用于上述三种电路拓扑的原则:在稳态运行下,在每个开关周期内,电感两端的平均电压必须为零,否则平均感应电流将会改变,违反稳态前提。

三种基本电路系列的每一个在输入和输出电压、电流、占空比之间都有一个确定的关系。

例如:降压调整器的功能是使输出电压V0小于输入电压V in,并和它V in有相同的极性。

升压电路的作用是使V0大于V in,并且有相同的极性。

反激拓扑电路的作用是使V0既可大于也可小于V in,但是两者极性相反。

二、断流工作模式:在电感电流断续方式下,或者说“断流模式”下,降压、升压和反激电路的动作方式是相似的,电感电流在每个开关周期的最后部分期间为零(因此不连续)。

在每个周期的开始部分,感应电流从零增加,从输入端得到储存能量。

在周期的第二部分,所有储存的能量通过负载泄放,从输入端汲取能量到输出端。

(整理)开关电源拓扑结构详解

(整理)开关电源拓扑结构详解

开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck 拓扑型开关电源就是属于串联式的开关电源。

上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL 转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff 把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL 由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

开关电源拓扑结构详解

开关电源拓扑结构详解

开关电源拓扑结构详解主回路——开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck 拓扑型开关电源就是属于串联式的开关电源。

上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

DC-DC电源拓扑及其工作模式讲解

DC-DC电源拓扑及其工作模式讲解

DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。

如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。

如果电感连接到输出端,就构成了降压变换器。

基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。

2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。

SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。

Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。

但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。

通过这样串联和演进,产生了新的三个电源拓扑。

同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。

4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。

可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。

将两个正激变换器进行并联,可以形成推挽拓扑。

正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。

开关电源的基本拓扑结构

开关电源的基本拓扑结构
感谢您的观看
总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。

开关电源(SMPS)的拓扑结构(第一部分)

开关电源(SMPS)的拓扑结构(第一部分)
MOSFET 能够以任一方向进行导通;这意味着如果电 感中的电流由于负载较轻到零时,同步 MOSFET 应被 立即关断。否则,因为输出 LC 谐振的原因,电感电流 的方向将反向 (在达到零后 )。在这一场景下,同步 MOSFET 作为输出电容的负载并因其导通电阻 RDSON 而耗能,从而导致断续运行 (在一个开关周期内电感电
前馈控制
在降压转换器中,输入电压变化在电压输出端产生的影 响通常可通过输入电压前馈控制降到最低。与模拟控制 方式相比,使用具有输入电压检测功能的数字信号控制 器能轻易实现前馈控制。在前馈控制方法中,数字信号 控制器一旦检测到输入电压的变化,在输入变化对输出 参数造成实际影响之前就将开始采取自适应措施进行相 应的处理。
AN1114
开关电源 (SMPS)的拓扑结构 (第一部分)
作者: Mohammad Kamil Microchip Technology Inc.
简介
工业驱动向更小、更轻和更高效的电子设备的发展趋势 促 进 了 开 关 电 源 (Switch Mode Power Supply, SMPS)的发展。通常可采用几种不同的拓扑结构实现 SMPS。
DS01114A_CN 第 2 页
2008 Microchip Technology Inc.
图 2:
(A)
降压转换器 IIN
Q1 VIN
D1
L
+ IL -
IOUT VOUT
AN1114
(B) Q1GATE
t
(C)
VL
VIN - VOUT
t
-VOUT
(VIN - VOUT)/L
(D)
IIN
t
-VOUT/L IL2
输入和输出电容的设计取决于每一个转换器的开关频率 乘以并联转换器的个数。从输出电容的角度来看纹波电 流减少 “n”倍。与图 2 (D)中所示的单一转换器相 比,多相同步降压转换器汲取的输入电流是连续的且纹 波较少,如图 3 (E)所示。因此,对于多相同步降压 转换器来说,较小的输入电容能满足设计要求。

开关电源拓扑结构全解

开关电源拓扑结构全解

低压MOS的应用
c.Half –bridge
半桥应用中,一般MOS的选用30-50V,电流根据功率大小最大不会超 过10A.它用到最多的是N+P沟道的SO-8,也有用单独的N,P沟道的管子 作桥壁。
低压MOS的应用
d.full-bridge
全桥应用与半桥差不多,一般MOS的选用30-50V,电流根据功率大小 最大不会超过10A.它用到最多的是N+P沟道的SO-8,也有用单独的N,P 沟道的管子作桥壁。
低压MOS的应用
• 在电动车控制器和电机控制的应用
Hale Waihona Puke • 在电动车控制器里面,实际就是马达调速电路。由六个MOS组成的桥 式电路。通过控制直流输入电压幅值,来控制电机输入方波幅值调整 转速。一般有无刷和有刷两种电机,但不影响MOS的选用。现在用到 的MOS的规格有两种60V/60A,75V/75A(aos-AOT428),根据最大输入 电压36V,48V考虑使用这两个MOS.
低压MOS的应用
• 在AC-DC拓补中应用 a.Flyback
反激电路在150W以下的AC-DC的电源中应用最广,在电脑 等产品中都会用到。他主要用的是600-800V的高压MOS,但也在一些 效率要求高的产品中需要用同步整流,在输出电压小于24V次级采用 100V的MOS整流输出Rds要小,电流要大于10倍输出电流。在大屏 的LCD-TV,大功率100W以上的adaptor就会使用。
Power IC
• AOZ1014
• AOZ1014内置集成了MOS,外加续流管。基本的BUCK应用,它的输 入4.5V-16V,输出电压可调,最低可调到0.8V输出,电流达到5A.可以用 在大屏LCD-TV,portable-TV等。

开关电源的拓扑

开关电源的拓扑

开关电源的拓扑
开关电源的拓扑主要有以下几种:
1. 单端正激式(Buck)拓扑:投入电压大于输出电压时,将电源输入关断,输出电容释放能量给负载;
2. 升压式(Boost)拓扑:投入电压小于输出电压时,通过开关周期性充放电操作,将输出电压升高;
3. 反激式(Flyback)拓扑:通过磁共振,利用辅助绕组将输入电能转移到输出端,适用于输出电压变化较大的场景;
4. 无互感式(Push-Pull)拓扑:利用两个互补的开关管周期性地切换,通过变压器将输入电能传递到负载端;
5. 电桥式(Full-Bridge)拓扑:利用四个开关管,通过变压器传递电能,具有较高的输出功率能力。

不同的拓扑结构适用于不同的应用场景,可以根据需要选择最合适的拓扑。

各类电源拓扑结构分析

各类电源拓扑结构分析

各类电源拓扑结构分析一.非隔离型开关变换器1. 降压变换器(Buck ):输入输出极性相同。

由于稳态时,电感充放电伏、秒积相等,因此,输入输出电压关系为: (Ui-Uo)*ton=Uo*toff => Uo/Ui=ton/(ton+toff)=Δ => Uo/Ui=Δ(占空比)。

Chart 1: buck circuit topology在S 导通时,输入电源通过L 和C 滤波后向负载端提供电流;当S 断开后,L 通过二极管续流,保持负载电流连续。

输出电压因为占空比的作用,不会超过输入电源电压。

2. 升压变换器(Boost ):输入输出极性相同。

利用同样的方法,根据稳态时电感L 的充放电伏、秒积相等的原理,推导出输入输出电压关系为:Uo/Ui=1/(1-Δ)。

Chart 2: boost circuit topology开关管S 和负载构成并联,在S 导通时,电流通过L 滤波,电源对L 充电。

当S 断开时,L 向负载及电源放电,输出电压将是Ui+U L ,达到升压的目的。

3. 逆向变换器(Boost-Buck ):升、降压斩波器,输入输出极性相反,电感传输能量。

电压关系:Uo/Ui= -Δ/(1-Δ)Uo IUo I D D LChart 3: boost-buck circuit topology在S 导通时,输入电源仅对电感L 充电;当S 断开时,再通过电感对负载放电来实现电源传输。

所以,这里的L 用于传输能量。

4. 丘克变换器(Cuk ):升、降压斩波器,输入输出极性相反,电容传输能量。

电压关系:Uo/Ui= -Δ/(1-Δ)。

Chart 4: cuk circuit topology在S 导通时,Ui 对L1充电。

当S 断开时,Ui+L1通过D 对C1进行充电。

再当S 导通时,D 关断,L1继续充电,C1通过L2、C2滤波对负载放电。

所以,这里的C1用于传输能量。

UoUo SD二.隔离型开关变换器1.推挽型变换器:图5:推挽型变换电路S1和S2轮流导通,将在二次侧产生交变的脉动电流,经过全波整流转换为直流信号,再经L 、C 滤波,送给负载。

开关电源拓扑结构概述(降压,升压,反激、正激)

开关电源拓扑结构概述(降压,升压,反激、正激)

开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D 的负极流出,最后回到反电动势eL的负极。

开关电源常用拓扑

开关电源常用拓扑

开关电源常用拓扑开关电源(Switching Power Supply)是一种将电能通过开关元件进行频繁开关的方式进行变换,而产生所需输出电压、电流和功率的电源。

开关电源具有高效、轻便、可靠等优点,广泛应用于电子系统中的各种设备和产品之中。

在实际应用中,开关电源可采用多种不同的拓扑结构,下面我们来介绍几种常用的拓扑结构及其特点。

1.降压型开关电源(Buck Converter)降压型开关电源是常见的一种拓扑结构,其基本原理是通过控制开关管的开关时间和开关频率,将高电压稳定地降低为低电压输出。

相比其他拓扑结构,降压型开关电源具有简单、可靠、成本低等优点,适用于电流小于输出电压的应用场合。

2.提升型开关电源(Boost Converter)提升型开关电源适用于输出电压高于输入电压的场合,其基本原理是通过控制开关管的开关时间和开关频率,将低电压升高至稳定的高电压输出。

相比降压型开关电源,提升型开关电源具有输出电压高、输出能力强等优点,但其效率相对较低。

3.反激型开关电源(Flyback Converter)反激型开关电源采用变压器隔离,其基本原理是通过控制开关管的开关时间和开关频率,将输入电压转换为直流输出,适用于输入、输出电压变化幅度较大、输出电流较小的应用场合。

相比其他拓扑结构,反激型开关电源具有简单、成本低等优点。

4.正激型开关电源(Forward Converter)正激型开关电源也采用变压器隔离,其基本原理是通过控制开关管的开关时间和开关频率,将输入电压转换为直流输出,适用于输入输出电压差不大,输出功率大、质量要求高的应用场合。

正激型开关电源的复杂度相对较高,但其效率高、稳定性好。

以上几种开关电源拓扑结构都有各自的特点和优劣,应根据具体的应用场合选择合适的方案。

为了确保开关电源的稳定性和安全性,还需充分考虑元器件的质量、功率、温度、使用寿命等方面。

尽管如此,开关电源的使用范围和影响力在电子行业中逐渐扩大,为现代电子技术发展提供了强有力的支持。

最详细的5种开关电源拓扑结构.共45页文档

最详细的5种开关电源拓扑结构.共45页文档

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
最详细的5种开关电源拓扑结构.

6、黄金时。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。

详解开关电源拓扑结构的优缺点

详解开关电源拓扑结构的优缺点

首先先列出电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki的表示:Sv=Up/Ua——电压脉动系数 (1)Si=Im/Ia——电流脉动系数 (2)Kv=Ud/Ua——电压波形系数 (3)Ki=Id/Ia——电流波形系数 (4)上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。

脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。

S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。

反激式开关电源的优点和缺点:(1)反激式开关电源的电压和电流的输出特性要比正激式开关电源的差反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。

即电压脉动系数等于2,电流脉动系数等于4。

反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。

由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。

特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。

(2)反激式开关电源的瞬态控制特性相对来说比较差由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。

干货常见开关电源各种拓扑结构对比与分析

干货常见开关电源各种拓扑结构对比与分析

干货常见开关电源各种拓扑结构对比与分析什么是Power Supply?开关电源的元件构成三种基本的非隔离开关电源三种基本的隔离开关电源反激变换器(Flyback)工作原理(电流连续模式)反激变换器(Flyback)工作原理(电流断续模式)反激变换器(Flyback)工作原理(1)反激变换器(Flyback)工作原理(2)反激变换器(Flyback)工作原理(3)反激变换器(Flyback)工作原理(4)反激变换器(Flyback)特征总结谐振复位正激变换器(Resonant Reset Forward)(1)谐振复位正激变换器(Resonant Reset Forward)(2)谐振复位正激变换器(Resonant Reset Forward)(3)谐振复位正激变换器(Resonant Reset Forward)(4)谐振复位正激变换器(Resonant Reset Forward)(5)谐振复位正激变换器(Resonant Reset Forward)特征有源钳位正激变换器(Active Clamped Forward)(1)有源钳位正激变换器(Active Clamped Forward)(2)有源钳位正激变换器(Active Clamped Forward)(3)有源钳位正激变换器(Active Clamped Forward)(4)有源钳位正激变换器(Active Clamped Forward)(5)有源钳位正激变换器(Active Clamped Forward)(6)有源钳位正激变换器(Active Clamped Forward)(7)有源钳位正激变换器(Active Clamped Forward)(8)有源钳位正激变换器(Active Clamped Forward)(9)有源钳位正激变换器(Active Clamped Forward)(10)桥式变换器(Bridge Type Converter)桥式变换器(Bridge Type Converter)(1)桥式变换器(Bridge Type Converter)(2)桥式变换器(Bridge Type Converter)(3)桥式变换器(Bridge Type Converter)(4)桥式变换器(Bridge Type Converter)(5)桥式变换器(Bridge Type Converter)(6)桥式变换器(Bridge Type Converter)(7)几种隔离式变换器之比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源拓扑结构概述(降压,升压,反激、正激)开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL 四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck拓扑型开关电源就是属于串联式的开关电源/blog/100019740上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г 型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。

串联式开关电源输出电压uo的平均值Ua为:1.2. 并联式结构并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C 充电。

由此可见,并联式结构中,可以获得高于输入电压的输出电压,因此为升压式变换。

并且为了获得连续的负载电流,并联结构比串联结果对输出滤波电容C的容量有更高的要求。

例如boots拓扑型的开关电源就是属于并联型式的开关电源。

并联开关电源输出电压Uo为:boots拓扑输出电压Uo:Uo=Ui(1+D/1-D)=Ui(1/1-D)(D 为占空比)1.3.极性反转型变换器结构(inverting)极性反转——输出电压与输入电压的极性相反。

电路的基本结构特征是:在主回路中,相对于输入端而言,电感器L与负载成并联。

(也是串联式开关电源的一种,一般又称为反转式串联开关电源)开关管T交替工作于通/断两种状态,工作过程与并联式结构相似,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载RL 靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,电感器L中的自感电动势通过续流二极管D对负载RL供电,并同时对电容器C充电;由于续流二极管D的反向极性,使输出端获得相反极性的电压输出。

反转式串联开关电源输出电压Uo为:由(1-27)式可以看出,反转式串联开关电源输出电压与输入电压与开关接通的时间成正比,与开关关断的时间成反比。

2. 隔离式电路的类型:隔离——输入端与输出端电气不相通,通过脉冲变压器的磁偶合方式传递能量,输入输出完全电气隔离。

2.1. 单端正激式 single Forward Converter(又叫单端正激式变压器开关电源 )单端——通过一只开关器件单向驱动脉冲变压器;正激式:就是只有在开关管导通的时候,能量才通过变压器或电感向负载释放,当开关关闭的时候,就停止向负载释放能量。

目前属于这种模式的开关电源有:串联式开关电源,buck拓扑结构开关电源,激式变压器开关电源、推免式、半桥式、全桥式都属于正激式模式。

反激式:就是在开关管导通的时候存储能量,只有在开关管关断的时候释放才向负载释放能量。

属于这种模式的开关电源有:并联式开关电源、boots、极性反转型变换器、反激式变压器开关电源。

正激变压器——脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲变压器原边时,变压器付边同时对负载供电。

所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。

(正激式变压器开关电源是推免式变压器开关电源衍生过来的,推免式有两个控制开关,正激式改成一个开关控制。

)U1是开关电源的输入电压,N是开关变压器,T是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,RL是负载电阻。

在上图中,需要特别注意的是开关变压器初、次级线圈的同名端。

如果把开关变压器初线圈或次级线圈的同名端弄反,上图就不再是正激式变压器开关电源了该电路的最大问题是:开关管T交替工作于通/断两种状态,当开关管关断时,脉冲变压器处于“空载”状态,其中储存的磁能将被积累到下一个周期,直至电感器饱和,使开关器件烧毁。

图中的D3与N3构成的磁通复位电路,提供了泄放多余磁能的渠道。

2.2. 单端反激式 Single F1yback Converter(单端反激式变压器开关电源)所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。

反激式电路与正激式电路相反,脉冲变压器的原/付边相位关系,确保当开关管导通,驱动脉冲变压器原边时,变压器付边不对负载供电,即原/付边交错通断。

脉冲变压器磁能被积累的问题容易解决,但是,由于变压器存在漏感,将在原边形成电压尖峰,可能击穿开关器件,需要设置电压钳位电路予以保护D3、N3构成的回路。

从电路原理图上看,反激式与正激式很相象,表面上只是变压器同名端的区别,但电路的工作方式不同,D3、N3的作用也不同。

反激式变压器开关电源的输出电压为:(1-110)式中,Uo为反激式变压器开关电源的输出电压,Ui变压器初级线圈输入电压,D为控制开关的占空比,n为变压器次级线圈与初级线圈的匝数比。

2.3. 推挽 Push pull (变压器中心抽头)式这种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断,工作过程类似于线性放大电路中的乙类推挽功率放大器。

主要优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。

主要缺点:变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。

2.4. 全桥式 Full Bridge Converter这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边。

图中T1、T4为一对,由同一组信号驱动,同时导通/关端;T2、T3为另一对,由另一组信号驱动,同时导通/关端。

两对开关管轮流通/断,在变压器原边线圈中形成正/负交变的脉冲电流。

主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。

主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。

这种电路结构通常使用在1KW以上超大功率开关电源电路中。

2.5. 半桥式 Half Bridge Converter电路的结构类似于全桥式,只是把其中的两只开关管(T3、T4)换成了两只等值大电容C1、C2。

主要优点:具有一定的抗不平衡能力,对电路对称性要求不很严格;适应的功率范围较大,从几十瓦到千瓦都可以;开关管耐压要求较低;电路成本比全桥电路低等。

这种电路常常被用于各种非稳压输出的DC变换器,如电子荧光灯驱动电路中。

DC/DC电源变换器的拓扑类型/elec/8416.html0 引言本文的第一部分为“DC/DC电源变换器拓扑的分类”,第二部分是在参考美国TI公司资料的基础上撰写而成的,新增加了各种DC/DC电源变换器的主要特点及PWM控制器的典型产品,另外还按照目标对电路结构、波形参数和汁算公式中的物理量作了统一。

本文的特点足以表格形式归纳了常见DC/DC电源变换器的拓扑结构.这对电源专业的广大技术人员是一份不可多得的技术资料。

1 DC/DC电源变换器拓扑结构的分类DC/DC电源变换器的拓扑类型主要有以下13种:(1)Buck Converter降压式变换器;(2)Boost Conyerter升压式变换器;(3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;(4)Cuk Converter升压,升压串联式变换器;(5)SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器;(6)F1yback Converter反激式(亦称回扫式)变换器;(7)Forward Converter正激式变换器:(8)Double Switches Forward Converter双开关正激式变换器;(9)Active Clamp Forward Converter有源箝位(0)Half Bridge Converter半桥式变换器;(11)Full Bridge Converter全桥式变换器;(12)Push pull Convener推挽式变换器:(13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。

2 常见DC/DC电源变换器的拓扑类型常见DC/DC电源变换器的拓扑类型见表1~表3所列。

相关文档
最新文档