行测数量关系常见问题
行测数量关系题型及解题技巧
行测数量关系题型及解题技巧数量关系题型常见于行测中的数学部分,主要考查考生对于数量关系的分析与判断能力。
这类题型通常给出若干个元素之间的数量关系,考生需要通过分析这些关系,确定出符合题意的选项。
以下是一些常见的数量关系题型及解题技巧。
1.数量比较题这类题目给出了两个或多个元素的数量,要求考生判断它们的大小关系。
解决这类题目的关键是明确每个元素的数量和大小,并进行数量的直观比较。
解题技巧:-将每个元素的数量进行对比,特别是当数量之间存在比较混乱的情况时,可将每个元素的数量转换为最小公倍数的倍数形式。
-若题目所给的元素之间的数量关系无法明确判断,可以试着通过代入法验证每个选项是否符合题意。
2.含有比例关系的问题这类题目给出了两个或多个元素之间的比例关系,要求考生根据这些比例关系确定元素的数量。
解决这类题目的关键是找到比例关系中的未知数,并利用给出的已知条件进行求解。
解题技巧:-要正确理解比例的含义,比例关系应该是常数若干倍的关系。
可将已知的比例关系写成等式形式,然后根据已知条件写出相应的等式。
-如果比例关系中的元素数量较多,可以适当转换一下比例关系,以便更方便地将比例关系应用于求解。
3.含有百分比的问题这类题目给出了元素的数量,要求考生根据这些数量计算出具体的百分比。
解决这类题目的关键是理解百分数的含义,并进行相应的换算。
解题技巧:-将百分数看作百分之一,可通过将百分数除以100来计算出相应的小数。
-对于涉及到“多少倍”或“几倍”的问题,可以利用比例的概念进行求解。
4.含有增减或加减的问题这类题目给出了元素的数量,并要求考生根据给出的增减或加减情况,计算出相应的元素数量。
解决这类题目的关键是理解增减或加减的原理,并根据已知条件进行求解。
解题技巧:-对于增减或加减的问题,应该注意增长或减少的数量相对于原始数量的比例关系。
-利用增减或加减的关系将已知条件转化为等式形式,从而求解未知数。
总结起来,解决数量关系题型的技巧主要有:-理解题意,明确每个元素的数量或比例关系。
公务员行测常见数量关系题解析
公务员行测常见数量关系题解析数量关系题是公务员行测考试中的一类经典题型。
它主要考察考生的逻辑推理能力、数学思维能力和解决实际问题的能力。
在解答这类题目时,我们需要运用一些基本的数学运算和逻辑推理的方法。
接下来,将为大家详细解析公务员行测常见数量关系题。
1. 等比数列等比数列是数量关系题中出现频率较高的一种情况。
在等比数列中,每两个连续的数之间的比值都是相等的。
为了解答等比数列题,我们可以运用以下公式:第n项 = 第1项 * 公比^(n-1)举例来说,如果题目给出了等比数列的前两项和第几项,我们可以利用上述公式求出等比数列中的任意一项。
2. 比例关系比例关系题在数量关系题中也是较为常见的。
比例关系一般分为直接比例和间接比例两种情况。
直接比例是指两个变量之间的比例关系保持不变。
例如,如果题目告诉我们A和B成正比,我们可以利用以下公式解答题目:A1 / B1 = A2 / B2间接比例是指两个变量之间的比例关系与另一个变量的比例关系成正比。
例如,如果题目中告诉我们A和B成反比,同时A和C也成反比,我们可以利用以下公式解答题目:A1 / B1 = C2 / A2在解答比例关系题时,我们还需要注意换算单位的问题,以确保比例关系的一致性。
3. 百分比和利率百分比和利率也是公务员行测中常见的数量关系题。
在这类题目中,我们需要将百分数或利率转换为小数来进行计算。
同时,我们还需要注意百分比的加减运算和百分比与整体数量之间的关系。
例如,如果题目告诉我们某项费用上涨了50%,我们可以将其转换为1.5倍,即原来的费用乘以1.5来计算。
4. 货币兑换货币兑换题也是公务员行测中常见的一类数量关系题。
在这类题目中,我们需要根据给定的汇率进行货币单位之间的换算。
例如,如果题目给定了人民币兑换美元的汇率为1:6.8,我们可以将美元转换为人民币,或者将人民币转换为美元来计算题目中的换算问题。
总结:在解答公务员行测中的数量关系题时,我们需要掌握一些基本的数学运算和逻辑推理方法。
云南省考行测数量关系每日一练及答案解析
云南省考行测数量关系每日一练及答案解析导语:数量关系是行政职业能力测验中的一项重要内容,它要求考生具备较强的逻辑思维能力、数学运算能力和数据分析能力。
为了帮助广大考生在云南省考中取得优异成绩,本文特推出每日一练,并提供详细的答案解析。
一、练习题目【题目1】某单位有员工70人,其中男员工和女员工的比例是3:2,女员工中有25%是党员。
请问该单位党员员工有多少人?【题目2】一项工程,甲单独做需要10天完成,乙单独做需要15天完成。
现在甲乙两人合作,从第一天开始,甲每天工作,乙隔天工作。
请问完成这项工程需要多少天?【题目3】小王从A地出发,以每小时10公里的速度向B地行驶,同时小张从B地向A地行驶,速度为每小时15公里。
两人在距离中点5公里的地方相遇。
求A、B两地之间的距离。
二、答案解析【题目1】答案:20人解析:设男员工有3x人,女员工有2x人,根据题意有3x +2x = 70,解得x = 10。
所以男员工有3x = 30人,女员工有2x = 20人。
女员工中有25%是党员,即20 × 25% = 5人。
所以该单位党员员工共有30 + 5 = 35人。
【题目2】答案:6天解析:设工程总量为1,甲单独做需要10天,乙单独做需要15天。
甲每天完成1/10的工程量,乙隔天完成1/15的工程量。
第一天甲乙合作完成1/10 + 1/30 = 4/30的工程量,第二天乙休息,甲完成1/10的工程量,以此类推。
经过6天,甲共完成6 × 1/10 = 3/5的工程量,乙共完成3 × 1/15 = 1/5的工程量。
所以6天后,两人共完成3/5 + 1/5 = 4/5的工程量,剩下的1/5工程量由甲单独完成,需要1天。
因此,完成这项工程共需要6 + 1 = 7天。
【题目3】答案:40公里解析:设A、B两地之间的距离为x公里。
根据题意,小王和小张相遇时,小王行驶了10公里,小张行驶了15公里。
行测数量关系题型常见陷阱
行测数量关系题型常见陷阱在公务员考试的行政职业能力测验(简称“行测”)中,数量关系一直是让众多考生头疼的模块。
不仅题目难度较大,而且还存在着各种各样的陷阱,稍不留意就会导致错误。
下面,我们就来详细探讨一下行测数量关系题型中常见的陷阱。
一、单位陷阱单位不一致是数量关系中常见的陷阱之一。
有些题目在题干中给出的数据单位与所求问题的单位不同,如果考生没有注意到这一点,就很容易出错。
例如,题目中给出的速度是千米/小时,而时间是分钟,在计算路程时就需要先将时间单位统一换算成小时,否则计算结果必然错误。
再比如,在涉及到面积、体积的计算时,单位的换算更是至关重要。
二、时间陷阱时间问题也是容易设陷阱的地方。
比如,一件工作甲单独完成需要3 天,乙单独完成需要 4 天,问两人合作需要几天完成。
这里的“3 天”和“4 天”并不是指准确的 72 小时和 96 小时,而是指甲、乙的工作效率分别是 1/3 和 1/4,计算两人合作的时间应该是 1÷(1/3 + 1/4)。
还有一些题目会故意模糊时间概念,比如“从上午 8 点到第二天上午 8 点”,这期间的时间不是 24 小时,而是 32 小时。
三、百分比陷阱在涉及百分比的题目中,要特别注意基数的变化。
例如,某商品先降价 20%,然后又涨价 20%,此时商品的价格与原价相比是降低了。
因为降价是在原价的基础上,而涨价是在降价后的价格基础上,两次的基数不同。
另外,对于“增长率”和“减少率”的理解也容易出错。
比如,说增长率为 20%,那实际增长的数量是在原有的基础上增加 20%;而说减少率为 20%,则实际减少的数量是在原有的基础上减少 20%。
四、行程问题陷阱行程问题中,常见的陷阱包括“相向而行”与“同向而行”的混淆、“平均速度”的计算错误等。
例如,甲、乙两人相向而行,经过一段时间相遇,求相遇时间。
如果把相向而行看成同向而行,那么计算出的结果就会完全错误。
关于平均速度,很多人会误以为平均速度就是速度的平均值,其实平均速度应该是总路程除以总时间。
行测数量关系例题
行测数量关系例题嘿,朋友们!咱今儿来聊聊行测里那让人又爱又恨的数量关系。
说起这数量关系啊,就好像是一场神秘的探险之旅。
有时候你觉得自己找到了线索,可一转眼又迷失在数字的迷宫里。
就拿一道常见的例题来说吧。
比如,有一个工程,甲单独完成需要10 天,乙单独完成需要 15 天,两人合作完成需要几天?这是不是有点像两个人在赛跑,甲跑得快,乙跑得慢,一起跑才能更快到达终点呢?再比如说,那种关于利润的问题。
一件商品进价 100 元,要达到 20%的利润率,售价应该定多少?这不就跟咱去菜市场买菜,琢磨怎么卖菜能多赚点钱一个道理嘛!还有那种行程问题,甲从 A 地到 B 地,速度是多少,乙从 B 地到A 地,速度又是多少,问他们啥时候能相遇。
这多像两个人约好了在中间碰头,得算好时间别让对方等太久啊!做数量关系的题,可不能瞎蒙。
得像侦探破案一样,细心寻找线索,抽丝剥茧。
你要是粗心大意,那可就容易掉进陷阱里啦!而且啊,得学会灵活运用方法。
有时候用方程,把未知的都设成未知数,列出等式求解;有时候用比例,看看各种量之间的比例关系,能省不少事儿呢!就像爬山,不能一股脑儿地往上冲,得找好路径,看准落脚点。
数量关系也是,不能死脑筋,得换着法子来。
做数量关系题的时候,可别着急。
一着急,脑子就乱了,那还能做得对吗?得沉住气,慢慢分析。
咱得有耐心,一道题不会,别轻易放弃。
多琢磨琢磨,说不定就灵光一闪,找到突破口啦!总之,行测的数量关系虽然有点难,但只要咱用心,多练习,掌握方法,就一定能攻克它!相信自己,数量关系这块硬骨头,咱们啃得下!。
行测数量关系13种题型的难易
行测数量关系13种题型的难易本文将介绍行测中数量关系部分的13种题型,难易程度排名,并给出解题技巧和注意事项。
1. 比例问题难度:易解题技巧:确定比例关系,利用交叉乘积法或倍数关系法解题。
注意事项:注意单位转换,特别是涉及到货币单位的题目。
2. 百分数问题难度:易解题技巧:将百分数转化为小数或分数,利用倍数关系法解题。
注意事项:注意百分数与小数之间的转换关系。
3. 倍数问题难度:易解题技巧:确定倍数关系,利用比例关系法解题。
注意事项:注意单位转换,特别是涉及到货币单位的题目。
4. 平均数问题难度:易解题技巧:求出总量和个数,计算平均数。
注意事项:注意数据是否齐全,是否有“除以个数”的错误。
5. 增减量问题难度:易解题技巧:确定增减量,并计算出最终的数量。
注意事项:注意单位转换,特别是涉及到货币单位的题目。
6. 比例分配问题难度:中等解题技巧:利用比例关系和总量计算各个部分的数量。
注意事项:注意比例关系的转化和单位转换。
7. 组合问题难度:中等解题技巧:将数量关系分解为若干个子问题求解,再合并计算。
注意事项:注意题目中是否有限制条件,如“每个组合中必须包含某个元素”。
8. 合作问题难度:中等解题技巧:利用公式计算出各个人的效率,再计算总体效率。
注意事项:注意题目中是否有限制条件,如“某个人每天只能工作4小时”。
9. 换算问题难度:中等解题技巧:利用换算公式计算出转换后的数量。
注意事项:注意单位换算的关系,如“1千克=1000克”。
10. 比例混合问题难度:中等解题技巧:利用比例关系解决混合问题。
注意事项:注意题目中是否有限制条件,如“混合物质的比例不能超过某个范围”。
11. 货币换算问题难度:中等解题技巧:利用货币换算公式计算出换算后的数量。
注意事项:注意货币单位的关系,如“1元=10角=100分”。
12. 线性方程问题难度:较难解题技巧:将数量关系表示为线性方程组,并解方程组。
注意事项:注意方程组的求解过程,如消元、代入等。
国考数量关系常考题型
国考数量关系常考题型
国考数量关系是指行测科目中的一种题型,主要考察考生的数学运算能力和逻辑思维能力。
以下是国考数量关系中常考的题型:
1. 计算问题:考察考生的基本数学运算能力,如加减乘除、百分数计算等。
2. 排列组合问题:考察考生对于排列组合原理的理解和应用能力。
3. 工程问题:考察考生对于实际工程问题的解决能力,如工时计算、成本分析等。
4. 利润问题:考察考生对于商业利润计算的理解和应用能力。
5. 行程问题:考察考生对于路程、速度和时间之间关系的理解和应用能力。
6. 容斥问题:考察考生对于集合交、并、补的计算原理的理解和应用能力。
7. 几何问题:考察考生对于几何图形的认识和计算能力,如平面几何、立体几何等。
8. 概率问题:考察考生对于概率计算的理解和应用能力。
9. 函数图像问题:考察考生对于函数图像的理解和分析能力。
10. 极值问题:考察考生对于最值问题的理解和应用能力,如最大值、最小值等。
行测数量关系--还原与年龄问题之解答技巧
【典型问题】1. 某数加上6,乘以6,减去6,除以6,其结果等于6,则这个数是多少?解答:(6×6+6)÷6-6=1,这个数是1.2. 两个两位数相加,其中⼀个加数是73,另⼀个加数不知道,只知道另⼀个加数的⼗位数字增加5,个位数字增加1,那么求得的和的后两位数字是72,问另⼀个加数原来是多少?解答:和的后两位数字是72,说明另⼀个加数变成了99,所以原来的加数是99-51=48.3. 有砖26块,兄弟⼆⼈争着去挑。
弟弟抢在前⾯,刚摆好砖,哥哥赶到了。
哥哥看弟弟挑的太多,就抢过⼀半。
弟弟不肯,⼜从哥哥那⼉抢⾛⼀半。
哥哥不服,弟弟只好给哥哥5块,这时哥哥⽐弟弟多挑2块。
问最初弟弟准备挑多少块?解答:先算出最后各挑⼏块:(和差问题)哥哥是(26+2)÷2=14,弟弟是26-14=12,然后来还原:1. 哥哥还给弟弟5块:哥哥是14-5=9,弟弟是12+5=17;2. 弟弟把抢⾛的⼀半还给哥哥:抢⾛了⼀半,那么剩下的就是另⼀半,所以哥哥就应该是9+9=18,弟弟是17-9=8;3. 哥哥把抢⾛的⼀半还给弟弟:那么弟弟原来就是8+8=16块.4. 甲、⼄、丙三⼈钱数各不相同,甲最多,他拿出⼀些钱给⼄和丙,使⼄和丙的钱数都⽐原来增加了两倍,结果⼄的钱最多;接着⼄拿出⼀些钱给甲和丙,使甲和丙的钱数都⽐原来增加了两倍,结果丙的钱最多;最后丙拿出⼀些钱给甲和⼄,使甲和⼄的钱数都⽐原来增加了两倍,结果三⼈钱数⼀样多了。
如果他们三⼈共有81元,那么三⼈原来的钱分别是多少元?解答:三⼈最后⼀样多,所以都是81÷3=27元,然后我们开始还原:1. 甲和⼄把钱还给丙:每⼈增加2倍,就应该是原来的3倍,所以甲和⼄都是27÷3=9,丙是81-9-9=63;2. 甲和丙把钱还给⼄:甲9÷3=3,丙63÷3=21,⼄81-3-21=57;3. 最后是⼄和丙把钱还给甲:⼄57÷3=19,丙21÷3=7,甲81-19-7=55元.5. 甲、⼄、丙三⼈各有糖⾖若⼲粒,甲从⼄处取来⼀些,使⾃⼰的糖⾖增加了⼀倍;接着⼄从丙处取来⼀些,使⾃⼰的糖⾖也增加了⼀倍;丙再从甲处取来⼀些,也使⾃⼰的糖⾖增加了⼀倍。
行测数量关系难题和解析
行测数量关系难题和解析一、难题一:工程问题中的合作与交替工作1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成。
如果甲先做3天,然后甲乙合作2天,剩下的工程由乙单独完成,问乙还需要多少天?2. 解析我们先算出甲和乙的工作效率。
甲单独做10天完成,那么甲一天的工作效率就是1÷10 = 1/10;乙单独做15天完成,乙一天的工作效率就是1÷15 = 1/15。
甲先做3天,完成的工作量就是3×(1/10)=3/10。
甲乙合作2天,完成的工作量就是2×(1/10 + 1/15)。
1/10+1/15 = 3/30+2/30 = 5/30 = 1/6,那么合作2天完成的工作量就是2×(1/6)=1/3。
总共的工作量看作单位1,那么剩下的工作量就是 1 - 3/10 - 1/3。
3/10 = 9/30,1/3 = 10/30,所以剩下的工作量是 1 - 9/30 - 10/30 = 11/30。
乙单独完成需要的时间就是剩下的工作量除以乙的工作效率,即(11/30)÷(1/15)=11/30×15 = 11/2 = 5.5天。
二、难题二:行程问题中的相遇与追及1. 题目甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是每小时6千米,乙的速度是每小时4千米,两人相遇后继续前行,甲到达B地后立即返回,乙到达A地后也立即返回,第二次相遇时距离A地8千米,求A、B两地的距离。
2. 解析设A、B两地的距离为x千米。
第一次相遇时,甲乙两人走过的路程之和就是A、B两地的距离,根据时间 = 路程÷速度,两人相遇所用时间为x÷(6 + 4)=x/10小时。
第二次相遇时,两人走过的路程之和是3倍的A、B两地的距离,所用时间就是3x÷(6 + 4)=3x/10小时。
甲在第二次相遇时走过的路程是x + 8千米,甲的速度是6千米每小时,根据路程 = 速度×时间,可得到方程6×(3x/10)=x + 8。
公考行测数量关系-计算问题
方法二:由题目可知, 。 。 。则 。因为 ,所以 的整数部分是149。
9.一本书的正文页码数字中总计出现了87次2,问出现3的次数比6多多少次?
从表格中可计算出2出现的次数为 次,题干为87次,还需要出现4个2,接下来230页、231页、232页共有4个2。前229页出现3的次数和6的次数同样多,故只有在最后三页(230、231、232)中3的个数比6多,共多出现了3次。
1.甲乙丙丁四个学生共同使用一条宽带上网。他们平均分摊了上月使用的宽带上网费(无任何套餐,按流量计算),并约定届时按各人实际使用流量进行结算。根据流量查询结果,甲乙丙分别比丁多用了3G、7G、14G的网络流量。最后结算时,乙将超平均流量的使用费0.7元付给丁,那么丙应付给丁多少钱?
假设丁使用了xG流量,则甲、乙、丙三人共用了3x+24G流量,四人总共用了4x+24G流量。则平均每人可用流量为(4x+24)÷4=x+6G。乙比平均流量多用了1G,多付了0.7元;丙比平均流量多8G,应多付8×0.7=5.6元。而甲比平均流量少用了3G,故应补给甲3×0.7=2.1元,因此补给丁的钱数应为5.6﹣2.1=3.5元。
2.已知 ,问
。
3. 的最后两位数字是:试算可知,76的任意次方的尾数仍为76,25的任意次方尾数仍为25,故相加尾数为01。
4.对分数 进行操作,每次分母加15,分子加7,问至少经过几次这样的操作能使得到的分数不小于 :
依据题意,设经过 次这种操作可使得到的分数不小于 ,则可列式为: ,化简后得: , ,故必须要经过48次操作才可满足要求。
5.( + + + )( )的值为:
根据平方差公式逆向考虑,每一项均可转化为分母为1的形式。原式可转化为: 。
行测(职业能力倾向测验)数量关系部分解题技巧
行测(职业能力倾向测验)数量关系部分解题技巧2019.5.291、鸡兔同笼问题:假设全被为小鸡或者兔子,计算公式:整体差值÷个体差值=兔子数量(鸡的数量)例如:有大小两个瓶子,大瓶可以装水5kg ,小瓶可以装1kg ,现在有100kg 水共装了52瓶,问大瓶和小瓶相差多少个?解析:假设全部都是小瓶,整体差值就是100-52=48,个体差值就是5-1=4,根据公式得出48÷4=12,12就是大瓶的个数,小瓶就是52-12=40个。
2、牛吃草问题:草场原有草量=(牛数-每天长草量)×天数例如:某河段的沉积河沙可以供80人连续开采6个月或者60人连续开采10个月。
如果要保证河段河沙不被开采完,问最多可供多少人连续开采?解析:根据公式:(60-X )×10=(80-X )×6,解得X=30。
3、空瓶换水问题:M 空瓶换一瓶水,相当于M-1个空瓶可以喝到一瓶水。
例如:12个空瓶可以换一瓶水,现在有101个空瓶,最多可以喝到几瓶水?解析:101÷(12-1)=9.....2,最多喝到9瓶。
4、剪绳子问题:一根绳子对折n 次,再剪M 刀,则绳子剪成12+⨯M n 段5、日期问题:①平年365天,闰年366天(闰年2月有29天),能被4整除不能被100整除(或者能被400整除不能被3200整除)的年份为闰年。
②平年有52周零1天,闰年有52周零2天。
③最小公倍数:两个循环的周期为两者的最小公倍数。
如,小花每4天值班一次,小王每6天值班一次,那么两个是每12天共同值班一次。
④每5天和每隔5天(实际为每6天)的区别。
例如:小明、小红、小桃三人定期到棋馆学围棋,小明每隔3天去一次,小红每隔4天去一次,小桃每隔5天去一次。
2019年5月23日恰好在棋馆相遇,则下次相遇的时间为()解析:算出来他们的最小公倍数为60,则下次相遇就是在60天之后。
即为2019年7月22日。
行测数量关系题型大全
行测数量关系题型大全
行测中的数量关系题型主要包括以下几类:
1. 基本量问题:通过已知条件计算出需要求的量,例如:已知两个数的和为10,差为2,求这两个数。
2. 增长率问题:已知某数在一段时间内的增长率,求在另一段时间内的增长率。
3. 平均数问题:已知一组数据的平均数,求这组数据的总数。
4. 比例问题:已知两个数之间的比例关系,求其中一个数。
5. 排队问题:已知一组人的顺序关系,求其中某个人的位置。
6. 时间问题:已知两个事件之间的时间间隔和一个事件的时间,求另一个事件的时间。
7. 工程问题:已知完成一项工程所需的时间和工作效率,求完成整个工程所需的时间。
8. 利润问题:已知一笔投资的利润和成本,求投资的回报率。
9. 概率问题:已知某个事件发生的概率,求另一个事件发生的概率。
以上仅是数量关系题型的一部分,实际上数量关系题型
非常多样化,需要根据具体情况灵活运用各种数学知识和方法进行解答。
国考行测数量关系常见问题
国考行测数量关系常见问题数学运算是行测中较难的一个模块,得分率较低,且考试做答题时普遍反映数学运算需要不少时间。
诚然,每年的数学运算都会有些新题出来,但大多数的题还是以往见过的类型,因此熟练掌握常规解法极其重要。
并且,如果能记住一些重要的公式和结论,遇到适用的题型能直接套用公式的话,能大大缩短解题时间,也会有很高的正确率。
因此考生一定要记住一些常用的公式结论。
在记忆这些常用公式的时候一定要注意适用的条件,最好是用典型例题进行训练;另外,公式结论的记忆准确性也极其重要,记错了当然得分就无从谈起了。
错位排序问题例:小明给5个国家的5位朋友分别写一封信,这些信都装错了信封的情况共有多少种?a、32b、44c、64d、120结论:有n封信和n个信封,每封信都不装在自己的信封里,可能的方法的总数记为d,则:d1=0 d2=1 d3=2 d4=9 d5=44 d6=265根据结论,可得5封信进行错位排列,为44种情况。
选b数学运算就是行测中较难的一个模块,得分率较低,且考试搞答题时广泛充分反映数学运算须要不少时间。
诚然,每年的数学运算都会有些新题出,但大多数的题还是以往见过的类型,因此熟练掌握常规数学分析极其重要。
并且,如果能够忘记一些关键的公式和结论,碰到适用于的题型能够轻易套用公式的话,能够大大缩短解题时间,也可以存有很高的正确率。
因此学生一定必须忘记一些常用的公式结论。
在记忆这些常用公式的时候一定要注意适用的条件,最好是用典型例题进行训练;另外,公式结论的记忆准确性也极其重要,记错了当然得分就无从谈起了。
多人传球问题例:4个人进行篮球传球接球练习,要求每人接球后再传给别人。
开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有多少种传球方式?2021年国家公务员考试行测试卷a、60b、65c、70d、75结论:m个人传n次球,记x=m-1n/m,则与x最吻合的整数为托付给“非自己的某人”的方法数;与x第二接近的整数为传回到自己的方法数。
行测数量关系十大题型
课后题解析
男-女=30;男÷女=1.5 有: 女生=30÷(1.5-1)=60人 男生=60*1.5=90人或60+30=90人
和差问题
已知两数之和及两数之差,可以快速得出 这两个数 参考公式 大+小=和 大-小=差 则 小=(和-差)÷2 大= (和+差)÷2
父子两人共60岁,父比子大30岁,则父子各多 少?
植树问题
已知每一边上的数量,求方阵一圈的个数 已知每一圈的数量,求方阵一边上的个数 参考公式 若一圈的个数为m,一边的个数为n. 则: m=4n-4 N=(m+4)÷4
在大楼的正方形平顶四周等距离地装上彩灯, 四个角上都装上一盏,每一边装有8盏,一共 有多少盏灯?
解析此题是已知一边求一圈,一边是8盏灯, n=8。根据公式,一圈彩灯的数量为
解析: 1两端都植树:段数=60÷3=20,棵树= 段数+1=20+1=21棵;
2两端都不植树:段数=60÷3=20,棵树=段数 +1=20-1=19棵;
课后题 有一根木料,要锯成7断,每锯开一段要花掉8
分钟,全部锯完要用多长时间?
课后题解析
锯成7断需要锯6次,则有用时=6×8=48分钟:
在山洞时间(洞长-车长)÷车速=(500-300) ÷20=10秒;
课后题
一列火车通过一座长2400米长的大桥用了90秒, 用同样的速度穿越长1800米的隧道用了70秒。 问这列火车的速度是多少?
课后题解析
过大小桥问题: 车速=(大桥-小桥)÷时间差=(2400-1800)÷(90-70)=30米/秒
容斥极值问题
已知N个集合A/B/C......,以及全集I,求N个 集合公共部分最少为多少个 参考公式: N个集合之和-(N-1)倍合集 两集合交集最少:A+B-I 三集合交集最少:A+B+C-2I 四集合交集最少:A+B+C+D-3I
公务员行测数量关系必考题型
公务员行测数量关系必考题型公务员百日上岸行动计划1.华公火车站有一、二、三号三个售票窗口,某天一号以外的窗口卖出了746张票,二号以外的窗口卖出了726张票,三号以外的窗口卖出了700张票。
问当天该站共售车票多少张:A.1086B.988C.986D.9802.甲乙两个班级各有同学若干名。
若从甲班中抽取12名同学到乙班,则此时甲乙两班人数之比为1:4。
若从乙班抽取4名同学到甲班,则甲乙两班人数相差1人。
那么甲班原有多少名同学:A.23B.25C.27D.293.某车队运输一批蔬菜。
如果每辆汽车运 3500 千克。
那么还剩下5000 千克;如果每辆汽车运送 4000 千克,那么还剩 500 千克,则该车队有多少辆汽车:A.8B.9C.10D.114.每年三月某单位都要组织员工去 A、B 两地参加植树活动,已知去 A 地每人往返车费20 元,人均植树 5 棵,去 B 地每人往返车费 30 元,人均植树 3 棵,设到 A 地有员工x 人,A、B 两地共植树y 棵,y 与x 之间满足y = 8x -15 ,若往返车费总和不超过 3000 元时,那么,最多可植树多少棵?A.498B.400C.489D.5005.建造一个容积为8 立方米,深为2 米的长方体无盖水池。
如果池底和池壁的造价分别为 120 元/平方米和 80 元/平方米,那么水池的最低总造价是()元。
A.1560B.1660C.1760D.18606.旅游团安排住宿,如果4 个房间每间住4 人,其余房间每间住5 人,空余 2 个床位;若有 4 个房间每间住 5 人,其余房间每间住 4 人,正好住满,该旅游团有多少人?A.28B.42C.44D.487.华公教育工厂组织职工参加周末公益劳动,有80%的职工报名参加。
其中报名参加周六活动的人数与报名参加周日活动的人数比为2︰1,两天的活动都报名参加的人数为只报名参加周日活动的人数的50%。
问未报名参加活动的人数是只报名参加周六活动的人数的()A.20%B.30%C.40%D.50%8.小王参加了五门百分制的测验,每门成绩都是整数,其中语文94 分,数学的得分最高,外语的得分等于语文和物理的平均分,物理的得分等于五门的平均分,化学的得分比外语多2 分,并且是五门中第二高的得分,问小王的物理考了多少分?A.94B.95C.96D.979.某旅游公司有能载4 名乘客的轿车和能载7 名乘客的面包车若干辆,某日该公司将所有车辆分成车辆数相等的两个车队运送两支旅行团。
(完整版)公务员考试行测数量关系50个常见问题公式法巧解
公务员考试行测数量关系50个常见问题公式法巧解一、页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。
依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二、握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2 例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。
按照排列组合假设总数为X人则Cx取3=152 但是在计算X 时却是相当的麻烦。
我们仔细来分析该题目。
以某个人为研究对象。
则这个人需要握x-3次手。
每个人都是这样。
则总共握了x×(x-3)次手。
但是没2个人之间的握手都重复计算了1次。
则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
行测数量关系题型分类与解题方法详解
行测数量关系题型分类与解题方法详解在公务员行测考试中,数量关系一直是让众多考生感到头疼的一个模块。
但实际上,只要我们对其题型进行清晰的分类,并掌握相应的解题方法,就能在考试中应对自如,提高得分率。
一、行测数量关系题型分类1、工程问题工程问题是研究工作效率、工作时间和工作总量之间关系的问题。
常见的题型有两人合作完成一项工程、多人合作完成多项工程等。
2、行程问题行程问题主要涉及速度、时间和路程之间的关系。
包括相遇问题、追及问题、流水行船问题等。
3、利润问题这类问题围绕成本、售价、利润、利润率等概念展开,通常需要我们根据给定的条件计算相关数值。
4、排列组合问题排列组合是研究从给定元素中选取若干元素进行排列或组合的方式数量。
5、概率问题概率问题是基于排列组合的基础上,计算某一事件发生的可能性大小。
6、几何问题包括平面几何和立体几何,需要我们运用几何公式和定理来求解边长、面积、体积等。
7、溶液问题溶液问题主要涉及浓度、溶质和溶剂的关系,通过三者之间的变化来求解问题。
8、年龄问题年龄问题的特点是年龄差不变,根据不同时间点的年龄关系来建立方程求解。
二、解题方法详解1、方程法方程法是解决数量关系问题最基本也是最常用的方法。
当题目中存在明显的等量关系时,我们可以设未知数,然后根据等量关系列出方程或方程组进行求解。
例如,在工程问题中,如果已知甲、乙两人的工作效率之比和合作完成一项工作的时间,就可以设甲、乙的工作效率分别为 x 和 y,根据工作总量=工作效率×工作时间列出方程。
2、赋值法对于一些给出比例关系但具体数值不明确的题目,我们可以采用赋值法。
通过赋予某些量特定的值,从而简化计算。
比如在利润问题中,如果只给出了利润率和价格的比例关系,我们可以赋值成本为一个具体的数值,进而计算出售价和利润。
3、代入排除法当选项信息充分或者正面求解困难时,可以将选项逐一代入题干进行验证,排除不符合条件的选项,从而得出正确答案。
行测数量关系题型分类与快速解题方法
行测数量关系题型分类与快速解题方法在行政职业能力测验(简称行测)中,数量关系是让很多考生感到头疼的一个模块。
但其实,只要我们对其题型进行合理分类,并掌握相应的快速解题方法,就能在考试中更加从容应对,提高得分率。
一、行测数量关系题型分类1、工程问题工程问题通常涉及工作量、工作效率和工作时间之间的关系。
常见的命题形式有多人合作完成一项工程、轮流工作等。
2、行程问题行程问题是研究物体运动过程中速度、时间和路程之间关系的问题。
包括相遇问题、追及问题、流水行船问题等。
3、利润问题这类问题与商品的进价、售价、利润、折扣等相关,需要我们根据给定的条件计算相关的数值。
4、排列组合问题排列组合是研究从给定元素中选取若干个元素进行排列或组合的方式数量。
5、概率问题概率问题是基于排列组合知识,计算某个事件发生的可能性大小。
6、几何问题包括平面几何和立体几何,涉及图形的周长、面积、体积等计算。
7、溶液问题主要涉及溶液的浓度、溶质和溶剂的量之间的关系。
8、年龄问题年龄问题的特点是年龄差不变,通过设未知数,根据年龄关系列出方程求解。
二、快速解题方法1、代入排除法当选项信息充分,或者正面求解困难时,可以将选项逐一代入题干进行验证。
例如,在年龄问题中,如果题目给出了若干关于年龄的条件,我们可以将选项中的年龄代入,看是否满足所有条件。
2、数字特性法利用数字的整除特性、奇偶特性、倍数特性等快速排除选项。
比如,在一个题目中,如果已知两个数的和是奇数,那么这两个数必然一奇一偶。
3、方程法对于一些比较复杂的问题,可以通过设未知数,根据题目中的等量关系列出方程来求解。
方程法是解决数量关系问题的基础方法之一。
4、赋值法在一些题目中,如果给出的条件没有具体的数值,只有比例关系或倍数关系,可以通过赋值来简化计算。
比如在工程问题中,常常赋值工作总量为工作时间的最小公倍数。
5、画图法对于行程问题、几何问题等,通过画图可以更加直观地理解题目中的条件和关系,有助于找到解题思路。
行测数量关系常见题型与答题技巧
行测数量关系常见题型与答题技巧在公务员行测考试中,数量关系一直是让众多考生感到头疼的模块。
然而,只要我们熟悉常见题型,并掌握相应的答题技巧,就能在考试中取得更好的成绩。
下面,就让我们一起来探讨一下行测数量关系中的常见题型及答题技巧。
一、常见题型1、工程问题工程问题是数量关系中较为常见的题型之一。
这类问题通常会给出工作总量、工作效率和工作时间之间的关系,然后要求我们计算其中的某个量。
例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,两人合作需要多少天完成?对于这类问题,我们通常可以使用“工作总量=工作效率×工作时间”这个公式来解题。
在两人合作的情况下,工作效率等于两人工作效率之和。
2、行程问题行程问题也是行测数量关系中的常客。
它涉及速度、时间和路程之间的关系。
比如:甲、乙两人同时从 A、B 两地相向而行,甲的速度是 5 千米/小时,乙的速度是 4 千米/小时,经过 3 小时两人相遇,A、B 两地的距离是多少千米?解决行程问题,我们要牢记“路程=速度×时间”这个公式,根据题目所给条件,灵活运用。
3、利润问题在利润问题中,我们经常会遇到成本、售价、利润、利润率等概念。
像这样的题目:某商品进价为 100 元,按 20%的利润率定价,然后打 9 折出售,该商品的利润是多少?解答这类问题,我们要清楚利润=售价成本,利润率=利润÷成本等公式。
4、排列组合问题排列组合问题主要考查的是对不同元素的排列和组合方式的计算。
例如:从 5 个不同的元素中选取 3 个进行排列,有多少种排列方式?在解决排列组合问题时,要区分排列和组合的概念,掌握相关的计算公式。
5、概率问题概率问题通常会让我们计算某个事件发生的可能性大小。
比如:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球是红球的概率是多少?解决概率问题,我们需要明确概率的定义和计算方法。
二、答题技巧1、代入排除法当我们面对一些选择题时,如果直接计算比较复杂,可以尝试将选项中的数值代入题干中进行验证,从而排除不符合条件的选项,找到正确答案。
公考行测数量关系-工程问题
1.甲、乙两辆卡车运输一批货物,其中甲车每次能运输35箱货物。
甲车先满载运输2次后,乙车加入并与甲车共同满载运输10次完成任务,此时乙车比甲车多运输10箱货物。
问如果乙车单独执行整个运输任务且每次都尽量装满,最后一次运多少箱货物?由题意可知,甲车前两次共运输箱货物,后乙车加入后,共同满载10次完成任务,此时乙车比甲车多运输10箱货物,因此可得,解得箱货物,该批货物总量为,,即全部由乙车运输,最后一次运33箱货物。
2.A、B、C三辆卡车一起运输1次,正好能运完一集装箱的某种货物。
现三辆卡车一起执行该种货物共40集装箱的运输任务,A运7次、B运5次、C运4次,正好运完5集装箱的量。
此时C车休息,而A、B车各运了21次,又完成了12集装箱的量。
问如果此后换为A、C 两车同时运输,至少还需要各运多少次才能运完剩余的该种货物?根据题意列方程:A+B+C=1……①,7A+5B+4C=5……②,21A+21B =12……③,由①和②可得,2A=C。
所以方程③可化为7A+7C+7B+14B =12。
所以得到。
再代入①得到。
所以。
3.甲、乙、丙三个工厂承接A和B两批完全相同的加工订单,如果甲厂和乙厂负责A订单而丙厂负责B订单,则丙厂要比甲厂和乙厂晚15天完成;如在上述条件下甲厂分配1/3的生产资源或者乙厂分配1/5的生产资源用于B订单的生产,则A、B两个订单同时完成。
问如果合并三个工厂的生产能力,第几天可以完成A订单的生产任务:根据条件,在甲分配的生产资源或乙分配的生产资源给丙后,用于两个订单的工作效率相同,可列式:;。
化简后得。
设甲的工作效率为3,乙的工作效率为5,则丙的工作效率为6。
设开始A、B两订单的完工时间分别为天、天,则根据A、B订单量相等,可列式:,解得。
则A的订单量为。
那么三厂合并合力加工A订单,需要:天,即第26天可以完成A订单。
4.甲、乙、丙三村共建一项水利工程,原计划三村派出的劳动力之比为8:5:7,因丙村劳动力紧张,经协调,丙村少出的劳动力由甲、乙两村分担,相应的工钱由丙村承担。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列数,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n!/(n-m)! 组合数,从n个中取m个,相当于不排,就是n!/[(n-m)!m!]1.元素与集合是属于和不属于的关系。
2.得摩根公式:(A交B)的补==(A的补)并(B的补)(A并B)的补==(A的补)交(B的补)3.包含关系:是表示集合A和集合B之间的关系。
如果集合A中的全部元素都在集合B中,那么集合B包含集合A,集合A包含于集合B4.容斥原理:两个集合的容斥关系公式:A∪B = A+B - A∩B (∩:重合的部分)三个集合的容斥关系公式:A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A ∩B∩C5.子集个数:如果集合中共有n个元素,那么子集个数是2的n次方。
真子集个数是2的n次方-1。
公务员考试行测数量关系49个常见问题公式法巧解五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
证明:设A、B两地相距S,则往返总路程2S,往返总共花费时间 s/a+s/b故 v=2s/(s/a+s/b)=2ab/(a+b)四,时钟成角度的问题设X时时,夹角为30X , Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)六,空心方阵的总数空心方阵的总数= (最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4= 最外层的每一边的人数^2-(最外层每边人数-2*层数)^2=每层的边数相加×4-4×层数空心方阵最外层每边人数=总人数/4/层数+层数方阵的基本特点:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;②每边人(或物)数和四周人(或物)数的关系:③中实方阵总人(或物)数=(每边人(或物)数)2=(最外层总人数÷4+1)2 七,青蛙跳井问题例如:①青蛙从井底向上爬,井深10米,青蛙每跳上5米,又滑下4米,这样青蛙需跳几次方可出井?(6)②单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米来,问小赵几次才能爬上单杠?(7)总解题方法:完成任务的次数=井深或绳长 - 每次滑下米数(遇到半米要将前面的单位转化成半米)例如第二题中,每次下滑半米,要将前面的4米转换成8个半米再计算。
完成任务的次数=(总长-单长)/实际单长+1八,容斥原理总公式:满足条件一的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数【国2006一类-42】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人? A.27人 B.25人 C.19人 D.10人上题就是数学运算试题当中经常会出现的“两集合问题”,这类问题一般比较简单,使用容斥原理或者简单画图便可解决。
但使用容斥原理对思维要求比较高,而画图浪费时间比较多。
鉴于此类问题一般都按照类似的模式来出,下面华图名师李委明给出一个通解公式,希望对大家解题能有帮助:例如上题,代入公式就应该是:40+31-x=50-4,得到x=25。
我们再看看其它题目:【国2004A-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是多少?A.22 B.18 C.28 D.26代入公式:26+24-x=32-4,得到x=22九,传球问题这道传球问题是一道非常复杂麻烦的排列组合问题。
【李委明解三】不免投机取巧,但最有效果(根据对称性很容易判断结果应该是3的倍数,如果答案只有一个3的倍数,便能快速得到答案),也给了一个启发----传球问题核心公式N个人传M次球,记X=[(N-1)^M]/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数。
大家牢记一条公式,可以解决此类至少三人传球的所有问题。
四人进行篮球传接球练习,要求每人接球后再传给别人。
开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式:A.60种B.65种C.70种D.75种x=(4-1)^5/4 x=60十,圆分平面公式:N^2-N+2,N是圆的个数十一,剪刀剪绳对折N次,剪M刀,可成M*2^n+1段将一根绳子连续对折3次,然后每隔一定长度剪一刀,共剪6刀。
问这样操作后,原来的绳子被剪成了几段?A.18段B.49段C.42段D.52段十二,四个连续自然数,性质一,为两个积数和两个偶数,它们的和可以被2整除,但是不能被4整除性质二,他们的积+1是一个奇数的完全平方数十三,骨牌公式公式是:小于等于总数的2的N次方的最大值就是最后剩下的序号十四,指针重合公式关于钟表指针重合的问题,有一个固定的公式:61T=S(S为题目中最小的单位在题目所要求的时间内所走的格书,确定S后算出T的最大值知道相遇多少次。
)十五,图色公式公式:(大正方形的边长的3次方)—(大正方形的边长—2)的3次方。
十六,装错信封问题小明给住在五个国家的五位朋友分别写信,这些信都装错的情况共有多少种44种f(n)=n!(1-1/1!+1/2!!-1/3!......+(-1)n(1/n!))或者可以用下面的公式解答装错1信 0种装错2信:1种3 24 95 44递推公式是S(n)=n.S(n-1)+(-1)^n~~~~~如果是6封信装错的话就是265~~~~十七,伯努利概率模型某人一次涉及击中靶的概率是3/5,设计三次,至少两次中靶的概率是集中概率3/5,则没集中概率2/5,即为两次集中的概率+三次集中的概率公式为 C(2,3)*[(3/5)^2]*[(2/5)^1]+C(3,3)[(3/5)^3]*[(2/5)^0]81/125十八,圆相交的交点问题N个圆相交最多可以有多少个交点的问题分析 N*(N-1)十九,约数个数问题M=A^X*B^Y 则M的约数个数是(X+1)(Y+1)360这个数的约数有多少个?这些约数的和是多少?解‟360=2×2×2×3×3×5,所以360的任何一个约数都等于至多三个2(可以是零个,下同),至多两个3和至多一个5的积。
如果我们把下面的式子(1+2+4+8)×(1+3+9)×(1+5)展开成一个和式,和式中的每一个加数都是在每个括号里各取一个数相乘的积。
由前面的分析不难看出,360的每一个约数都恰好是这个展开式中的一个加数。
由于第一个括号里有4个数,第二个括号里有3个数,第三个括号里有2个数,所以这个展开式中的加数个数为4×3×2=24,而这也就是360的约数的个数。
另一方面,360的所有约数的和就等于这个展开式的和,因而也就等于(1+2+4+8)×(1+3+9)×(1+5)=15×13×6=1,170答:360的约数有24个,这些约数的和是1,170。
甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?解:一个整数被它的约数除后,所得的商也是它的约数,这样的两个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.2800=24×52×7.在它含有的约数中是完全平方数,只有1,22,24,52,22×52,24×52.在这6个数中只有22×52=100,它的约数是(2+1)×(2+1)=9(个).2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×52,因此乙数至少要含有24和7,而24×7=112恰好有(4+1)×(1+1)=10(个)约数,从而乙数就是112.综合起来,甲数是100,乙数是112.二十,吃糖的方法当有n块糖时,有2^(n-1)种吃法。
二十一,隔两个划数1987=3^6+12581258÷2×3+1=1888即剩下的是1888减去1能被3整除二十二,边长求三角形的个数三边均为整数,且最长边为11的三角形有多少个?[asdfqwer]的最后解答:11,11,11;11,11,10;11,11,9;...11,11,1;11,10,10;11,10,9;...11,10,2;11,9,9;...11,9,3;11,8,8;...11,8,4;11,7,7,...11,7,5;11,6,6;1+3+5+7+9+11=6^2=36如果将11改为n的话,n=2k-1时,为k^2个三角形;n=2k时,为(k+1)k个三角形。
二十三,2乘以多少个奇数的问题如果N是1,2,3,…,1998,1999,2000的最小公倍数,那么N等于多少个2与1个奇数的积?解:因2^10=1024,2^11=2048>2000,每个不大于2000的自然数表示为质因数相乘,其中2的个数不多于10个,而1024=2^10,所以,N等于10个2与某个奇数的积。
二十四,直线分圆的图形数设直线的条数为N 则总数=1+{N(1+N)}/2将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.…解‟我们来一条一条地画直线。
画第一条直线将圆形纸片划分成2块.画第二条直线,如果与第一条直线在圆内相交,则将圆形纸片划分成4块(增加了2块),否则只能划分成3块.类似地,画第三条直线,如果与前两条直线都在圆内相交,且交点互不相同(即没有3条直线交于一点),则将圆形纸片划分成7块(增加了3块),否则划分的块数少于7块.下图是画3条直线的各种情形由此可见,若希望将纸片划分成尽可能多的块数,应该使新画出的直线与原有的直线都在圆内相交,且交点互不相同.这时增加的块数等于直线的条数。
(为什么?)这样划分出的块数,我们列个表来观察:直线条数纸片最多划分成的块数1 1+12 1+1+23 1+1+2+34 1+1+2+3+45 1+1+2+3+4+5不难看出,表中每行右边的数等于1加上从1到行数的所有整数的和。