2014年高考(大纲全国)理科数学
2014年高考理科数学大纲卷-答案
【考点】双曲线的性质
10.【答案】C
【解析】 , , ,
∵ ,∴
【提示】给出等比数列两项求变形数列的前n项和
【考点】等比数列
11.【答案】B
【解析】将C点移至A点,做 ,由于 ,所以 ,因为二面角 为 ,所以可令 ,可求得 , , ,易求得
【提示】给出空间上的异面直线求余弦值
【考点】异面直线及其所成的角
12.【答案】D
【解析】 与其反函数关于 对称,因为 与 关于 对称,
所以有
【提示】给出约束条件求反函数
【考点】反函数
第Ⅱ卷
二、填空题
13.【答案】70
【解析】 由 ,即 ,解得 ,∴ 系数为
【提示】给出解析式利用二项式定理解得某项系数
【考点】二项式定理.
14.【答案】5
三、解答题
17.【答案】
【解析】由题设和正弦定理得 ,
, ,
又 ,
【提示】给出约束条件利用正弦定理解求某个角度
【考点】正弦定理,三角函数
18.【答案】(Ⅰ)
(Ⅱ)
【解析】(Ⅰ)由 , 为整数知,等差数列 的公差 为整数.又 ,故 ,于是 ,解得 ,因此 ,
故数列 的通项公式为 ,
(Ⅱ) ,于是
【提示】给出约束条件求等差数列的通项公式、给出数列求前n项和公式
(i)当 时,由已知 ,故结论成立;
(ii)假设当 时结论成立,即
当 时, ,
,即当 时有 ,结论成立.
根据(i)、(ii)知对任何 结论都成立
【提示】给出函数解析式讨论其单调性,根据组合式证明其取值范围
【考点】导数的意义
若 则 , 在 上是增函数
(ii)当 时, , 成立当且仅当 , 在 上是增函数
2014年(大纲全国卷)数学(理科) 高考真题及答案解析
函数是( ).
A.y=g(x) B.y=g(-x) C.y=-g(x) D.y=-g(-x)
【答案】D
【解析】因为函数 y=f(x)的图像与函数 y=g(x)的图像关于直线 x+y=0 对称,
而函数图像与其反函数的图像关于直线 y=x 对称,
所以这两个函数的反函数图像也关于直线 x+y=0 对称.
设函数 y=f(x)的反函数图像上任一点 P(x,y),
62
是
.
【答案】(-∞,2]
4
【解析】f(x)=cos 2x+asin x=1-2sin2x+asin x.
令 t=sin x,∵x∈
π,π
62
,∴t∈
1 2
,1
,
∴g(t)=1-2t2+at=-2t2+at+1
1 2
<
t
<
1
,
由题意知2×(-2)
≤
1 ,∴a≤2,
2
∴a 的取值范围为(-∞,2].
11.(2014 大纲全国,理 11)已知二面角α-l-β为 60°,AB⊂α,AB⊥l,A 为垂足,CD⊂β,C∈l,∠ACD=135°,则
异面直线 AB 与 CD 所成角的余弦值为( ).
A.1
B. 2
C. 3
D.1
4
4
4
2
【答案】B
【解析】如图,在平面α内过 C 作 CE∥AB,
则∠ECD 为异面直线 AB 与 CD 所成的角或其补角,
【答案】C
【解析】∵a=sin 33°,b=cos 55°=sin 35°,c=tan 35°=csoins3355°°, ∴csoins3355°°>sin 35°>sin 33°. ∴c>b>a,选 C.
2014年全国统一高考数学试卷(理科)及答案
2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为_________.(用数字填写答案)14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_________.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为_________.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为_________.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:A={x|x2﹣2x﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x<2},则A∩B={x|﹣2≤x≤﹣1},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.解答:解:==﹣(1+i)=﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.解答:解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C 的一条渐近线的距离为=.故选:A.点评:本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题;概率与统计.分析:求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.解答:解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.点评:本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.考点:抽象函数及其应用.专题:三角函数的图像与性质.分析:在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.解答:解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.考点:程序框图.专题:概率与统计.分析:根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.解答:解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=考点:三角函数的化简求值.专题:三角函数的求值.分析:化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.解答:解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关.排除选项A,B后验证C,当时,sin(α﹣β)=sin()=cosα成立.故选:C.点评:本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答:解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D在x+2y≥﹣2 区域的上方,故A:∀(x,y)∈D,x+2y≥﹣2成立;在直线x+2y=2的右上方区域,:∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;由图知,p3:∀(x,y)∈D,x+2y≤3错误;x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.解答:解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴直线PF的斜率为﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.点评:本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,由于而f(0)=1>0,x→+∞时,f(x)→﹣∞,可知:存在x0>0,使得f(x0)=0,要使满足条件f(x)存在唯一的零点x0,且x0>0,则必须极小值>0,解出即可.解答:解:当a=0时,f(x)=﹣3x2+1=0,解得x=,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=>0,列表如下:x (﹣∞,0)0f′(x)+0 ﹣0 +f(x)单调递增极大值单调递减极小值单调递增∵x→+∞,f(x)→+∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=<0,列表如下:0 (0,+∞)x(﹣∞,)f′(x)﹣0 + 0 ﹣f(x)单调递减极小值单调递增极大值单调递减而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值=,化为a2>4,∵a<0,∴a<﹣2.综上可知:a的取值范围是(﹣∞,﹣2).故选:C.点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:画出图形,结合三视图的数据求出棱长,推出结果即可.解答:解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.点评:本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)考点:二项式定理的应用;二项式系数的性质.专题:二项式定理.分析:由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.解答:解:(x+y)8的展开式中,含xy7的系数是:=8.含x2y6的系数是=28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20点评:本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.考点:进行简单的合情推理.专题:推理和证明.分析:可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.解答:解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.点评:本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量之间的关系,利用圆直径的性质,即可得到结论.解答:解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为临边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°点评:本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得b2+c2﹣bc=4.再利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得它的面积的值.解答:解:△ABC中,∵a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,∴利用正弦定理可得4﹣b2=(c﹣b)c,即b2+c2﹣bc=4.再利用基本不等式可得4≥2bc﹣bc=bc,∴bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,它的面积为==,故答案为:.点评:本题主要考查正弦定理的应用,基本不等式,属于中档题.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.考点:数列递推式;等差关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.解答:(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:①当λ=0时,a n a n+1=﹣1,假设{a n}为等差数列,设公差为d.则a n+2﹣a n=0,∴2d=0,解得d=0,∴a n=a n+1=1,∴12=﹣1,矛盾,因此λ=0时{a n}不为等差数列.②当λ≠0时,假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.点评:本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.考点:正态分布曲线的特点及曲线所表示的意义;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.解答:解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.点评:本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.考点:用空间向量求平面间的夹角;空间向量的夹角与距离求解公式.专题:空间向量及应用.分析:(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.解答:解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为点评:本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设F(c,0),利用直线的斜率公式可得,可得c.又,b2=a2﹣c2,即可解得a,b;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.与椭圆的方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出S△OPQ.通过换元再利用基本不等式的性质即可得出.解答:解:(Ⅰ)设F(c,0),∵直线AF的斜率为,∴,解得c=.又,b2=a2﹣c2,解得a=2,b=1.∴椭圆E的方程为;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时,,.∴|PQ|===,点O到直线l的距离d=.∴S△OPQ==,设>0,则4k2=t2+3,∴==1,当且仅当t=2,即,解得时取等号.满足△>0,∴△OPQ的面积最大时直线l的方程为:.点评:本题综合考查了椭圆的标准方程及其性质、斜率计算公式、椭圆的方程联立可得根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,考查了换元法和转化方法,属于难题.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x ﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.点评:本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.考点:与圆有关的比例线段.专题:选作题;几何证明.分析:(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE 为等边三角形.解答:证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.点评:本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.考点:基本不等式;基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:(Ⅰ)由条件利用基本不等式求得ab≥4,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥4及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.解答:解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)由(1)可知,2a+3b≥2=2≥4>6,故不存在a,b,使得2a+3b=6成立.点评:本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.参与本试卷答题和审题的老师有:lincy;caoqz;wyz123;刘长柏;sxs123;wfy814;孙佑中;minqi5;清风慕竹;maths;qiss(排名不分先后)菁优网2014年6月23日。
2014年全国高考理科数学试题及答案-全国卷
22 3 1y + = + = + 2 2 + = 2014 年普通高等学校统一考试(大纲)理科第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.10i1. 设 z =3 + i,则 z 的共轭复数为()A . -1+ 3iB . -1- 3iC .1+ 3iD .1- 3i2. 设集合 M = {x | x 2- 3x - 4 < 0}, N = {x | 0 ≤ x ≤ 5},则 MN = ()A . (0, 4]B .[0, 4)C .[-1, 0)D . (-1, 0]3. 设 a = sin 330, b = cos 550, c = tan 350,则()A. a > b > cB. b > c > aC. c > b > aD. c > a > b4. 若向量 a , b 满足:| a |= 1, (a + b ) ⊥ a , (2a + b ) ⊥ b ,则| b |= ()A .2B .C .1D .25. 有 6 名男医生、5 名女医生,从中选出 2 名男医生、1 名女医生组成一个医疗小组,则不同的选法共有( )A .60 种B .70 种C .75 种D .150 种x 2 y 2 6.已知椭圆 C : + a 2 b 2 = 1 (a > b > 0) 的左、右焦点为 F 1 、 F 2,离心率为 3,过 F 2 的直线l 交 C 于 A 、B 两点,若∆AF 1B 的周长为4,则 C 的方程为()x 2 y 2A .B .x= 1 x 2 y 2C . x 2y 2D . 13 2312 812 47. 曲线 y = xex -1在点(1,1)处切线的斜率等于()A .2eB .eC .2D .18. 正四棱锥的顶点都在同一球面上,若该棱锥的高为 4,底面边长为 2,则该球的表面积为( )81 A .B .164C. 927 D.49. 已知双曲线 C 的离心率为 2,焦点为 F 1 、 F 2 ,点 A 在 C 上,若| F 1 A |= 2 | F 2 A | ,则cos ∠AF 2 F 1 =3 122 23y x⎪⎩1 ()1 1 A.B .C .D .434310. 等比数列{a n }中, a 4 = 2, a 5 = 5 ,则数列{lg a n } 的前 8 项和等于()A .6B .5C .4D .311. 已知二面角- l - 为600 , AB ⊂, AB ⊥ l ,A 为垂足, CD ⊂, C ∈ l ,∠ACD = 1350 ,则异面直线 AB 与 CD 所成角的余弦值为()1 1A.B .C .D .444212. 函数 y =f (x ) 的图象与函数 y =g (x ) 的图象关于直线 x + y = 0 对称,则 y = f (x ) 的反函数是()A. y = g (x )B. y = g (-x )C. y = -g (x )D . y = -g (-x )第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.(x - y )8的展开式中 x 2 y 2 的系数为 .⎧ x - y ≥ 014.设 x 、y 满足约束条件⎨x + 2 y ≤ 3 ,则 z = x + 4 y 的最大值为.⎪ x - 2 y ≤ 115.直线l 1 和l 2 是圆 x 2+ y 2= 2 的两条切线,若l 与l 的交点为(1,3),则l 1 与l 2 的夹角的正切值 等于.16.若函数 f (x ) = cos 2x + a sin x 在区间( , ) 是减函数,则 a 的取值范围是.6 2三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分 10 分)∆ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,已知3a cos C = 2c cos A , tan A =18.(本小题满分 12 分)等差数列{a n }的前 n 项和为 S n ,已知 a 1 = 10 , a 2 为整数,且 S n ≤ S 4 .(1) 求{a n }的通项公式;1,求 B.323 =a a 11(2) 设b nn n +1,求数列{b n }的前 n 项和T n . 19. (本小题满分 12 分)如图,三棱柱 ABC - A 1B 1C 1 中,点 A 1 在平面 ABC 内的射 影D 在 AC 上, ∠ACB = 900, BC = 1, AC = CC = 2 . (1) 证明: AC 1 ⊥ A 1B ;(2) 设直线 AA 1 与平面 BCC 1B 1 的距离为,求二面角A 1 - AB -C 的大小.20. (本小题满分 12 分)设每个工作日甲、乙、丙、丁 4 人需使用某种设备的概率分别为0.6、0.5、0.5、0.4 ,各人是否需使用设备相互独立.(1)求同一工作日至少 3 人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求 X 的数学期望. 21. (本小题满分 12 分)已知抛物线 C : y 2= 2 px ( p > 0) 的焦点为 F ,直线 y = 4 与 y 轴的交点为 P ,与 C 的交点为 Q ,5且| QF |= | PQ | .4(1) 求 C 的方程;(2) 过 F 的直线l 与 C 相交于 A 、B 两点,若 AB 的垂直平分线l '与 C 相较于 M 、N 两点,且 A 、M 、B 、N 四点在同一圆上,求l 的方程. 22. (本小题满分 12 分)函数 f (x ) = ln(x +1) -(1)讨论 f (x ) 的单调性;axx + a(a > 1) .2 3 (2)设 a 1 = 1, a n +1 = ln(a n +1) ,证明:n +2< a n ≤n + 2.3 10 3n 13一、选择题:参考答案1. D2.B3.C4.B5.C6.A7.C8.A9.A10.C11.B12.D二、填空题:4 13. 70 14.5 15.16. (-∞, 2]3三、解答题:17.(本小题满分 10 分)解:由题设和正弦定理得3sin A cos C = 2 sin C cos A 故 3 tan A c os C = 2 s in C1因为tan A =1,所以cos C = 2 sin C3 即 tan C = ……………………………6 分2所以tan B = tan[180- ( A + C )]= - tan( A + C )= tan A + tan C tan A tan C -1 ……………8 分 = -1即 B = 135................................................................10 分18.(本小题满分 12 分)解:(Ⅰ)由 a 1 = 10 , a 2 为整数知,等差数列{a n }的公差 d为整数又 S n ≤ S 4 ,故 a 4 ≥ 0, a 5 ≤ 0 即 10 + 3d ≥ 0,10 + 4d ≤ 0 10 5 解得 - ≤ d ≤ - 3 2 因此d = -3 数列{a n }的通项公式为 a n = 13 - 3n ............................................. 6 分11 1 1(Ⅱ) b n = (13 - 3n )(10 - 3n ) = ⋅ ( - - - 3n) ................................8 分3于是T n = b 1 + b 2 +... + b n= 1 [( 1 - 1 ) + ( 1 - 1 ) +... + ( 1 - 1 )] 3 7 10 4 7 10 - 3n 13 - 3n = 1 (1 - 1 ) 3 10 - 3n = n10(10 - 3n )10……………….12 分19.(本小题满分 12 分)解法一:(Ⅰ)因为 A 1D ⊥ 平面 ABC , A 1D ⊂ 平面 AA 1C 1C ,故平面AA 1C 1C ⊥ 平面 ABC , 又 BC ⊥ AC ,所以 BC ⊥ 平面AA 1C 1C , ......... 3 分连结 A 1C ,因为侧面 AA 1C 1C 为菱形,故AC 1 ⊥ A 1C由三垂线定理得 AC 1 ⊥ A 1B ............ 5 分(Ⅱ) BC ⊥ 平面 AA 1C 1C , BC ⊂ 平面 BCC 1B 1 ,故平面AA 1C 1C ⊥ 平面 BCC 1B 1作 A 1E ⊥ CC 1 , E 为垂足,则 A 1E ⊥ 平面 BCC 1B 1又直线 AA 1 // 平面 BCC 1B 1 ,因而 A 1E 为直线 AA 1 与平面 BCC 1B 1 的距离,A 1E = 因为 A 1C 为∠ACC 1 的平分线,故 A 1D = A 1E =………………8 分作 DF ⊥ AB , F 为垂足,连结 A 1F ,由三垂线定理得 A 1F ⊥ AB , 故∠A 1FD 为二面角 A 1 - AB - C 的平面角 由 AD =DF = 1 ⨯ AC ⨯ BC == 1得 D 为 AC 中点,5 , tan ∠A FD = A 1D = 2 AB 51DF所以二面角 A 1 - AB - C 的大小为arctan ………………12 分解法二:以 C 为坐标原点,射线 CA 为 x 轴的正半轴,以 CB 的长为单位长,建立如图所示的空间3 AA 2 - A D 21 115153 直角坐标系C - xyz ,由题设知 A 1D 与 z 轴平行, x 轴在平面 AA 1C 1C 内(Ⅰ)设 A 1 (a , 0, c ) ,由题设有 a ≤ 2 , A (2, 0, 0) ,B (0,1, 0) ,则 AB = (-2,1, 0) , AC = (-2, 0, 0) , AA 1 = (a - 2, 0, c ) ,AC 1 = AC + AA 1 = (a - 4, 0, c ) , BA 1 = (a , -1, c ) .................... 2 分由| AA 1 |= 2 得 a 2 - 4 a + c 2 = 0= 2 ,即①于是 AC ⋅ BA = a 2- 4a + c 2= 0 ,所以 AC ⊥ A B ............................... 5 分1111(Ⅱ)设平面 BCC 1B 1 的法向量 m = (x , y , z ) ,则 m ⊥ CB , m ⊥ BB 1 ,即 m ⋅ CB = 0 ,m ⋅ BB 1 = 0因为CB = (0,1, 0) , BB 1 = AA 1 = (a - 2, 0, c ) ,故 y = 0 ,且(a - 2)x + cz = 0 令 x = c ,则 z = 2 - a , m = (c , 0, 2 - a ) ,点 A 到平面 BCC 1B 1 的距离为| CA ⋅ m | 2c| CA | ⋅ | cos < m , C A >|= = = c| m | c 2 + (2 - a )2又依题设, A 到平面 BCC 1B 1 的距离为 ,所以c = 代入①解得 a = 3 (舍去)或 a = 1 于是 AA 1 = (-1, 0, 3)………………………………………8 分设平面 ABA 1 的法向量 n = ( p , q , r ) ,则 n ⊥ AA 1 , n ⊥ AB ,即 n ⋅ AA 1 = 0 ,n ⋅ AB = 0 ,- p + 3r = 0 且-2 p + q = 0 ,令 p = ,则 q = 2 , r = 1,n = ( 3, 2 3,1) ,又 p = (0, 0,1) 为平面 ABC 的法向量,故(a - 2)2+ c 233 3cos <n, p >= n ⋅p =1| n | ⋅ | p | 41所以二面角A1-AB -C 的大小为arccos4 ............................12 分20.(本小题满分12 分)解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i = 0,1, 2 ,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3 人需使用设备(Ⅰ)D =A1⋅B ⋅C +A2 ⋅B +A2 ⋅B ⋅CP(B) = 0.6, P(C) = 0.4, P( A ) =C i ⨯0.52 , i = 0,1, 2 .......... 3 分i 2所以 P(D) =P( A1 ⋅B ⋅C +A2 ⋅B +A2 ⋅B ⋅C)=P( A1 ⋅B ⋅C) +P( A2⋅B) +P( A2⋅B ⋅C)=P( A1 ) ⋅P(B) ⋅P(C) +P( A2) ⋅P(B) +P( A2) ⋅P(B) ⋅P(C)= 0.31 ................................................ 6 分(Ⅱ)的可能取值为0,1,2,3,4,其分布列为P(= 0) =P(B ⋅A⋅C)=P(B) ⋅P( A) ⋅P(C)= (1- 0.6) ⨯ 0.52 ⨯(1- 0.4)= 0.06P(= 1) =P(B ⋅A0 ⋅C +B ⋅A⋅C +B ⋅A1⋅C)=P(B) ⋅P( A0 ) ⋅P(C) +P(B) ⋅P( A) ⋅P(C) +P(B) ⋅P( A1) ⋅P(C)= 0.6 ⨯ 0.52 ⨯(1- 0.4) + (1- 0.6) ⨯ 0.52 ⨯ 0.4 + (1- 0.6) ⨯ 0.52 ⨯(1- 0.4)= 0.25P(= 4) =P( A ⋅B ⋅C) =P( A ) ⋅P(B) ⋅P(C) = 0.52 ⨯ 0.6 ⨯ 0.4 = 0.062 2P(= 3) =P(D) -P(= 4) = 0.25P(= 2) = 1-P(= 0) -P(= 1) -P(= 3) -P(= 4)= 1- 0.06 - 0.25 - 0.25 - 0.06= 0.38 ....................................................................................... 10 分数学期望EX = 0 ⨯ P (= 0) +1⨯ P (= 1) + 2 ⨯ P (= 2) + 3⨯ P (= 3) + 4 ⨯ P (= 4)= 0.25 + 2 ⨯ 0.38 + 3⨯ 0.25 + 4 ⨯ 0.06= 2 ................................................................................ 12 分21.(本小题满分 12 分)解:(Ⅰ)设Q (x , 4) ,代入 y 2= 2 px 得 x = 8p8 pp 8所以| PQ |= ,| QF |= + x = + p 2 02 p p 8 5 8由题设得 + = ⨯ ,解得 p = -2 (舍去)或 p = 22 p 4 p所以 C 的方程为 y 2= 4x ..................................................... 5 分 (Ⅱ)依题意知l 与坐标轴不垂直,故可设l 的方程为 x = my +1(m ≠ 0)代入 y 2= 4x 得y 2 - 4my - 4 = 0设 A (x 1 , y 1 ), B (x 2 , y 2 ) ,则 y 1 + y 2 = 4m , y 1 y 2 = -4故 AB 的中点为 D (2m 2 +1.2m ),| AB |= | y - y |= 4(m 2+1)又l ' 的斜率为-m ,所以l ' 的方程为 x = - 1 m1 2y + 2m 2 + 3将上式代入 y 2 = 4x ,并整理得 y 2 + 4 y - 4(2m 2+ 3) = 0m设 M (x , y ), N (x , y ) ,则 y + y = - 4 , y y = -4(2m 2+ 3)3 34 4故 MN 的中点为3 4 m 3 4E ( 2 + 2m 2 m 2 + 3, - 2) ,| MN |m| y 3 - y 4|= …10 分m 21由于 MN 垂直平分 AB ,故 A , M , B , N 四点在同一圆上等价于| AE |=| BE |= 从而 1 | AB |2 + | DE |2= 1 | MN |244| MN |,2即4(m 2+1)2+ (2m + 2)2 + ( 2 + 2)2 =4(m 2 +1)2 (2m 2 +1) m m 2 m 4化简得 m 2-1 = 0 ,解得 m = 1或 m = -1m 2 +1 1+ 1 m 2 4(m 2 +1) 2m 2 +12 23 所求直线l 的方程为 x - y -1 = 0 或 x + y -1 = 0 ...................................... 12 分22.(本小题满分 12 分) 解:(Ⅰ) f (x ) 的定义域为(-1, +∞), f '(x ) = 2[x - (a 2 - 2a )] (x +1)(x + a )2………………….2 分(ⅰ)当1 < a < 2 时,若 x ∈(-1, a 2 - 2a ) ,则 f '(x ) > 0 , f (x ) 在(-1, a 2- 2a ) 是增函数;若 x ∈(a 2- 2a , 0) ,则 f '(x ) < 0 , f (x ) 在(a 2- 2a , 0) 是减函数;若 x ∈(0, +∞) ,则 f '(x ) > 0 , f (x ) 在(0, +∞) 是增函数; ............... 4 分(ⅱ)当 a = 2 时, f '(x ) ≥ 0 , f '(x ) = 0 成立当且仅当 x = 0 , f (x ) 在(-1, +∞) 是增函数; (ⅲ)当 a > 2 时,若 x ∈(-1, 0) ,则 f '(x ) > 0 , f (x ) 在(-1, 0) 是增函数;若 x ∈(0, a 2- 2a ) ,则 f '(x ) < 0 , f (x ) 在(0, a 2- 2a ) 是减函数;若 x ∈(a 2- 2a , +∞) ,则 f '(x ) > 0 , f (x ) 在(a 2- 2a , +∞) 是增函数;……6 分(Ⅱ)由(Ⅰ)知,当 a = 2 时, f (x ) 在(-1, +∞) 是增函数,2x当 x ∈(0, +∞) 时, f (x ) > f (0) = 0 ,即ln(x +1) >x + 2(x > 0)又由(Ⅰ)知,当 a = 3 时, f (x ) 在[0, 3) 是减函数, 3x当 x ∈(0, 3) 时, f (x ) < f (0) = 0 ,即ln(x +1) <23x + 3(0 < x < 3) .......................... 9 分下面用数学归纳法证明n + 2 < a n ≤n + 2(ⅰ)当 n = 1 时,由已知 3< a 1 = 1 ,故结论成立; (ⅱ)设当 n = k 时结论成立,即k + 2 < a k ≤ k + 2当 n = k +1 时,a k +1= ln(a k+1) > ln(2 k + 2+1) > 2 ⨯ 2k + 2 = 2 + 2 2 k + 3 k + 23⨯ 3a k +1 = ln(a k +1) ≤ ln( 3 k + 2 +1) > k + 2 = 3 + 3 3 k + 3k + 22 3即当 n = k +1 时有k + 3 < a k +1 ≤ k + 3,结论成立。
数学高考真题-2014全国大纲理科
2014年普通高等学校招生全国统一考试全国卷(大纲 理科)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设z =10i 3+i,则z 的共轭复数为( ) A .-1+3i B .-1-3iC .1+3iD .1-3i2. 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0]3.设a =sin 33°,b =cos 55°,c =tan 35°,则( )A .a >b >cB .b >c >aC .c >b >aD .c >a >b4.若向量a ,b 满足:|a|=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( )A .2 B. 2C .1 D.225.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 7. 曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .18.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π49.已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则 cos ∠AF 2F 1=( ) A.14 B.13 C.24 D.2310.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .311.已知二面角α-l -β为60°,AB ⊂α,AB ⊥l ,A 为垂足,CD ⊂β,C ∈l ,∠ACD =135°,则异面直线AB 与CD 所成角的余弦值为( )A.14B.24C.34D.1212.\函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13. ⎝⎛⎭⎫x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 14.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.15. 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.16. 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B . 18.(本小题满分12分)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n . 19.(本小题满分12分)如图1-1所示,三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 AB C 的大小.20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.21.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.22.(本小题满分12分)函数f (x )=ln(x +1)-ax x +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.。
2014高考真题理科数学(全国大纲版)
2014高考真题理科数学(全国大纲版)设,则z的共轭复数为()A.B.C.D.【答案解析】D设集合,,则()A.B.C.D.【答案解析】B设则()A.B.C.D.【答案解析】C若向量满足:则()A.2 B.C.1 D.【答案解析】B有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【答案解析】C已知椭圆C:的左、右焦点为、,离心率为,过的直线交C于A、B两点,若的周长为,则C的方程为()A.B.C.D.【答案解析】A曲线在点(1,1)处切线的斜率等于()A.B.C.2 D.1【答案解析】C正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.C.D.【答案解析】A已知双曲线C的离心率为2,焦点为、,点A在C上,若,则()A.B.C.D.【答案解析】A等比数列中,,则数列的前8项和等于()A.6 B.5 C.4 D.3【答案解析】C已知二面角为,,,A为垂足,,,,则异面直线与所成角的余弦值为()A.B.C.D.【答案解析】B.函数的图象与函数的图象关于直线对称,则的反函数是()A.B.C.D.【答案解析】D第Ⅱ卷(共90分)的展开式中的系数为.(用数字作答)【答案解析】70.设满足约束条件,则的最大值为.【答案解析】5.直线和是圆的两条切线,若与的交点为,则与的夹角的正切值等于.【答案解析】.若函数在区间是减函数,则的取值范围是.【答案解析】.(本小题满分10分)的内角A,B,C的对边分别为a,b,c,已知,,求B.【答案解析】解:由题设和正弦定理得又.(本小题满分12分)等差数列的前n项和为,已知,为整数,且.(I)求的通项公式;(II)设,求数列的前n项和.【答案解析】解:(I)由,为整数知,等差数列的公差为整数.又,故于是,解得,因此,故数列的通项公式为.(II),于是.(本小题满分12分)如图,三棱柱中,点在平面ABC内的射影D在AC上,,.(I)证明:;(II)设直线与平面的距离为,求二面角的大小.【答案解析】解:解法一:(I)平面,平面,故平面平面.又,面.作为垂足,则平面.又直线Ⅱ平面,因而为直线与平面的距离,.Ⅱ为的角平分线,故.作为垂足,连结,由三垂线定理得,故为二面角的平面角.由得为的中点,Ⅱ二面角的大小为.解法二:以为坐标原点,射线为轴的正半轴,以长为单位长,建立如图所示的空间直角坐标系.由题设知与轴平行,轴在平面内.(I)设,由题设有则由得,即(Ⅱ).于是.(II)设平面的法向量则即.故,且.令,则,点到平面的距离为.又依题设,点到平面的距离为.代入Ⅱ解得(舍去)或.于是.设平面的法向量,则,即,故且.令,则.又为平面的法向量,故,Ⅱ二面角的大小为.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为各人是否需使用设备相互独立.(I)求同一工作日至少3人需使用设备的概率;(II)X表示同一工作日需使用设备的人数,求X的数学期望.【答案解析】解:记表示事件:同一工作日乙、丙恰有人需使用设备,;表示事件:甲需使用设备;表示事件:丁需使用设备;表示事件:同一工作日至少3人需使用设备.(I),又(II)的可能取值为0,1,2,3,4.,Ⅱ数学期望(本小题满分12分)已知抛物线C:的焦点为F,直线与y轴的交点为P,与C的交点为Q,且. (I)求C的方程;(II)过F的直线与C相交于A,B两点,若AB的垂直平分线与C相较于M,N两点,且A,M,B,N四点在同一圆上,求的方程.【答案解析】解:(I)设,代入,得.由题设得,解得(舍去)或,ⅡC的方程为;(II)由题设知与坐标轴不垂直,故可设的方程为,代入得.设则.故的中点为.又的斜率为的方程为.将上式代入,并整理得.设则.故的中点为.由于垂直平分线,故四点在同一圆上等价于,从而即,化简得,解得或.所求直线的方程为或.(本小题满分12分)函数.(I)讨论的单调性;(II)设,证明:.【答案解析】解:(I)的定义域为.(i)当时,若,则在上是增函数;若则在上是减函数;若则在上是增函数.(ii)当时,成立当且仅当在上是增函数.(iii)当时,若,则在是上是增函数;若,则在上是减函数;若,则在上是增函数.(II)由(I)知,当时,在是增函数.当时,,即.又由(I)知,当时,在上是减函数;当时,,即.下面用数学归纳法证明.(i)当时,由已知,故结论成立;(ii)假设当时结论成立,即.当时,,即当时有,结论成立.根据(i)、(ii)知对任何结论都成立.。
2014年全国统一高考数学试卷(理科)(大纲版)教师版
2014 年全国一致高考数学试卷(理科)(纲领版)一、选择题(本大题共12 小题,每题 5 分)1.(5 分)(2014?纲领版)设 z=,则 z 的共轭复数为()A.﹣ 1+3i B.﹣ 1﹣3i C.1+3i D.1﹣3i【剖析】直接由复数代数形式的除法运算化简,则z 的共轭可求.【解答】解:∵ z= =,∴.应选: D.2.(5 分)(2014?纲领版)设会合M={ x| x2﹣3x﹣4<0} ,N={ x| 0≤x≤5} ,则 M ∩N=()A.( 0, 4]B.[ 0, 4)C.[ ﹣1,0)D.(﹣ 1,0]【剖析】求解一元二次不等式化简会合M ,而后直接利用交集运算求解.2【解答】解:由 x ﹣3x﹣ 4< 0,得﹣ 1<x<4.∴M={ x| x2﹣ 3x﹣4<0} ={ x| ﹣1<x<4} ,又 N={ x| 0≤x≤5} ,∴M∩N={ x| ﹣ 1< x< 4} ∩{ x| 0≤x≤5} =[ 0, 4).应选: B.3.(5 分)(2014?纲领版)设 a=sin33 ,°b=cos55 °,c=tan35 A.a>b>c B.b>c> a C.c>b>a ,°则()D.c>a>b【剖析】可得b=sin35 °,易得b>a,c=tan35 °=>sin35 °综合可得.,【解答】解:由引诱公式可得b=cos55°=cos(90°﹣35°)=sin35 °,由正弦函数的单一性可知b>a,而 c=tan35 °=> sin35 °=b,∴ c>b>a应选: C.4.(5 分)(2014?纲领版)若向量、知足:| | =1,( + )⊥ ,(2 + )⊥ ,则| | =( )A .2B .C .1D .【剖析】 由条件利用两个向量垂直的性质,可得(+ ) ?,( 2+ ) ? ,=0 =0由此求得 | | .【解答】 解:由题意可得,( + )?=+=1+,∴﹣ ;=0= 1(2+)?=2 + ﹣,∴ 2 ,=2+ =0 b =2则||=,应选: B .5.( 5 分)(2014?纲领版)有 6 名男医生、 5 名女医生,从中选出2 名男医生、 1名女医生构成一个医疗小组,则不一样的选法共有()A .60 种B .70 种C .75 种D .150 种【剖析】依据题意,分 2 步剖析,先从 6 名男医生中选 2 人,再从 5 名女医生中选出 1 人,由组合数公式挨次求出每一步的状况数量,由分步计数原理计算可得答案.【解答】 解:依据题意,先从 6 名男医生中选 2 人,有 C 62=15 种选法,再从 5 名女医生中选出 1 人,有 C 51=5 种选法,则不一样的选法共有 15× 5=75 种;应选: C ..( 分)( 纲领版)已知椭圆: + ( > > )的左、右焦点为 、 6 52014?C=1 a bF 1 2,离心率为,过 F 2 的直线 l 交 C 于 A 、B 两点,若△ AF 1 B 的周长为4,F则 C 的方程为()A .+=1. +y 2 =1B C . +=1D .+ =1【剖析】 利用△ AF 1B 的周长为 4 ,求出 a=,依据离心率为 ,可得 c=1,求出 b,即可得出椭圆的方程.【解答】解:∵△ AF1B 的周长为 4,∵△ AF1B 的周长 =| AF1|+| AF2|+| BF1|+| BF2| =2a+2a=4a,∴4a=4 ,∴a= ,∵离心率为,∴,c=1,∴ b==,∴椭圆 C 的方程为+=1.应选: A.7.( 5 分)(2014?纲领版)曲线y=xe x﹣1在点( 1,1)处切线的斜率等于()A.2e B.e C.2D.1【剖析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为 f ′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当 x=1 时, f ′( 1) =2,即曲线 y=xe x﹣1在点( 1, 1)处切线的斜率k=f (′1)=2,应选: C.8.( 5 分)( 2014?纲领版)正四棱锥的极点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.PO1上,记为O,求出PO1,【剖析】正四棱锥P﹣ ABCD的外接球的球心在它的高OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为 4,底面边长为 2,∴R2=(4﹣R)2+()2,∴R= ,∴球的表面积为4π?()2=.故: A.9.(5 分)(2014?大版)已知双曲 C 的离心率 2,焦点 F1、F2,点 A 在C 上,若 | F1A| =2| F2A| ,cos∠AF2F1=()A.B.C.D.【剖析】依据双曲的定,以及余弦定理成立方程关系即可获得.【解答】解:∵双曲 C 的离心率 2,∴ e=,即c=2a,点 A 在双曲上,| F1A| | F2A| =2a,又 | F1A| =2| F2A| ,∴解得 | F1A| =4a, | F2A| =2a,|| F1F2| =2c,由余弦定理得cos ∠ AF2F1 ===.故: A.10.( 5 分)(2014?大版)等比数列 { a n } 中, a4, 5 ,数列n} 的前 8 =2 a =5{ lga和等于()A.6B.5C.4D.3【剖析】利用等比数列的性可得 a1 8 27 3 6 4 5.再利用数的运算性a =a a =a a =a a =10即可得出.【解答】解:∵数列 { a n } 是等比数列, a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1 +lga2+⋯+lga8=lg(a1a2?⋯ ?a8)=4lg10=4.应选: C.11.( 5 分)(2014?纲领版)已知二面角α﹣l﹣β为60°,AB?α,AB⊥l,A为垂足,CD? β,C∈l,∠ACD=135°,则异面直线 AB 与CD 所成角的余弦值为()A.B.C.D.AB 与CD 所成角,【剖析】第一作出二面角的平面角,而后再结构出异面直线利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过 A 点做 AE⊥ l,使 BE⊥β,垂足为 E,过点 A 做 AF∥CD,过点 E 做 EF⊥AE,连结 BF,∵AE⊥l∴∠ EAC=90°∵CD∥AF又∠ ACD=135°∴∠ FAC=45°∴∠ EAF=45°在 Rt△BEA中,设 AE=a,则 AB=2a,BE= a,在 Rt△AEF中,则 EF=a,AF= a,在 Rt△BEF中,则 BF=2a,∴异面直线 AB 与 CD所成的角即是∠ BAF,∴ cos∠ BAF===.应选: B.12.( 5 分)(2014?纲领版)函数 y=f ( x )的图象与函数 y=g (x )的图象对于直线 x+y=0 对称,则y=f ( x )的反函数是()A .y=g (x )B .y=g (﹣ x )C .y=﹣g (x )D .y=﹣g (﹣ x )【剖析】 设 P (x ,y )为 y=f ( x )的反函数图象上的随意一点,则 P 对于 y=x 的对称点 P ′( y ,x )一点在 y=f ( x )的图象上, P ′(y ,x )对于直线 x+y=0 的对称点 P ″(﹣ x ,﹣ y )在 y=g ( x )图象上,代入分析式变形可得.【解答】 解:设 P ( x , y )为 y=f (x )的反函数图象上的随意一点,则 P 对于 y=x 的对称点 P ′(y , x )一点在 y=f (x )的图象上,又∵函数 y=f (x )的图象与函数 y=g (x )的图象对于直线 x+y=0 对称,∴ P ′(y , x )对于直线 x+y=0 的对称点 P ″(﹣ x ,﹣ y )在 y=g (x )图象上,∴必有﹣ y=g (﹣ x ),即 y=﹣ g (﹣ x )∴ y=f ( x )的反函数为: y=﹣g (﹣ x )应选: D .二、填空题 ( 本大题共 4 小题,每题 5 分 )13.(5 分)( 2014?纲领版)的睁开式中 x 2y 2 的系数为70 .(用数字作答)【剖析】先求出二项式睁开式的通项公式,再令x 、y 的幂指数都等于 2,求得 r的值,即可求得睁开式中 x 2y 2 的系数.【解答】解:的睁开式的通项公式为T r +1 r?= ?(﹣ )= ? 1 ?(﹣ 1) r ??,令 8﹣ = ﹣4=2,求得 r=4,故睁开式中 x 2y 2的系数为=70,故答案为: 70.、 知足拘束条件,则 z=x+4y 的最大14.(5 分)( 2014?纲领版)设 x y值为5 .【剖析】由拘束条件作出可行域, 化目标函数为直线方程的斜截式, 由图获得最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由拘束条件作出可行域如图,联立,解得 C( 1, 1).化目标函数 z=x+4y 为直线方程的斜截式,得.由图可知,当直线过 C 点时,直线在 y 轴上的截距最大, z 最大.此时 z max=1+4×1=5.故答案为: 5.15.( 5 分)( 2014?纲领版)直线 l1和 l2是圆 x2+y2=2 的两条切线,若 l1与 l2的交点为( 1,3),则 l1与 l2的夹角的正切值等于.【剖析】设 l1与 l2的夹角为 2θ,因为 l1与 l2的交点 A(1,3)在圆的外面,由直角三角形中的边角关系求得sin θ=的值,可得cos θ、 tan θ的值,再依据tan2 θ=,计算求得结果.【解答】解:设 l1与 l2的夹角为 2θ,因为 l1与 l2的交点 A(1,3)在圆的外面,且点 A 与圆心 O 之间的距离为 OA==,圆的半径为 r=,∴ sin θ= =,∴ cosθ=,tanθ== ,∴ tan2 θ=== ,故答案为:.16.( 5 分)(2014?纲领版)若函数f( x) =cos2x+asinx 在区间(,)是减函数,则 a 的取值范围是(﹣∞,2].【剖析】利用二倍角的余弦公式化为正弦,而后令t=sinx 换元,依据给出的x 的范围求出t 的范围,联合二次函数的图象的张口方向及对称轴的地点列式求解 a 的范围.【解答】解:由 f( x)=cos2x+asinx=﹣2sin2 x+asinx+1,令 t=sinx,则原函数化为 y=﹣2t2 +at+1.∵ x∈(,)时f(x)为减函数,则 y=﹣2t 2+at+1 在 t∈(,1)上为减函数,∵ y=﹣2t2+at+1 的图象张口向下,且对称轴方程为t= .∴,解得: a≤2.∴a 的取值范围是(﹣∞,2] .故答案为:(﹣∞, 2] .三、解答题17.( 10 分)( 2014?纲领版)△ ABC的内角 A、B、C 的对边分别为a、 b、c,已知 3acosC=2ccosA,tanA= ,求 B.【剖析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[ π﹣(A+C)] =﹣tan (A+C)即可得出.【解答】解:∵ 3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵ tanA= ,∴2tanC=3× =1,解得 tanC= .∴ tanB=tan[ π ( A+C)] = tan( A+C)=,== 1∵ B∈( 0,π),∴B=18.( 12 分)( 2014?大版)等差数列 { a n} 的前 n 和 S n,已知 a1=13,a2整数,且 S n≤S4.( 1)求 { a n } 的通公式;( 2)b n=,求数列{ b n} 的前n 和T n.【剖析】(1)通 S n≤ S4得 a4≥0,a5≤0,利用 a1=13、 a2整数可得 d= 4,而可得;( 2)通 a n =13 3n,分别分母可得b n= (),并相加即可.【解答】解:(1)在等差数列 { a n} 中,由 S n≤S4得:a4≥ 0, a5≤0,又∵ a1=13,∴,解得≤d≤ ,∵ a2整数,∴ d= 4,∴{ a n} 的通: a n=17 4n;( 2)∵a n =17 4n,∴ b n===(),于是 T n=b1+b2+⋯⋯+b n[ ()+()+⋯⋯+() ]== ()=..(分)( 2014?大版)如,三棱柱1 11中,点A1 在平面ABC19 12ABC ABC内的射影 D 在 AC上,∠ ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明: AC1⊥A1B;(Ⅱ)设直线AA 与平面1BCC的距离为1B1,求二面角 A ﹣AB﹣ C 的大小.1【剖析】(Ⅰ)由已知数据联合线面垂直的判断和性质可得;(Ⅱ)作协助线可证∠ A1FD 为二面角 A1﹣ AB﹣C 的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵ A1D⊥平面 ABC,A1D? 平面 AA1 C1C,∴平面 AA1C1C⊥平面 ABC,又 BC⊥AC∴BC⊥平面 AA1C1C,连结 A1C,由侧面 AA1C1C 为菱形可得 AC1⊥ A1C,又 AC1⊥BC,A1C∩BC=C,∴AC1⊥平面 A1 BC, AB1? 平面 A1BC,∴AC1⊥A1B;(Ⅱ)∵ BC⊥平面 AA1C1C,BC? 平面 BCC1B1,∴平面 AA1C1C⊥平面 BCC1B1,作 A1E⊥CC1,E 为垂足,可得 A1E⊥平面BCC1B1,又直线 AA1∥平面 BCC1B1,∴ A为直线AA1与平面 BCC的距离,即 A,1E1B11E=∵A1C 为∠ ACC1的均分线,∴ A1D=A1E= ,作 DF⊥ AB,F 为垂足,连结 A1 F,又可得 AB⊥A1D, A1 F∩ A1D=A1,∴AB⊥平面 A1DF,∵ A1 F? 平面 A1DF∴A1F⊥ AB,∴∠ A1FD 为二面角 A1﹣AB﹣ C 的平面角,由 AD==1 可知 D 为 AC中点,∴ DF== ,∴tan∠ A1FD= = ,∴二面角 A1﹣AB﹣C 的大小为 arctan20.( 12 分)(2014?纲领版)设每个工作日甲、乙、丙、丁4 人需使用某种设施的概率分别为 0.6、0.5、0.5、0.4,各人能否需使用设施互相独立.(Ⅰ)求同一工作日起码 3 人需使用设施的概率;(Ⅱ) X 表示同一工作日需使用设施的人数,求X 的数学希望.【剖析】记 A i表示事件:同一工作日乙丙需要使用设施,i=0, 1,2,B 表示事件:甲需要设施, C 表示事件,丁需要设施, D 表示事件:同一工作日起码 3 人需使用设施(Ⅰ)把 4 个人都需使用设施的概率、 4 个人中有 3 个人使用设施的概率相加,即得所求.(Ⅱ) X 的可能取值为 0,1,2,3,4,分别求出 PX i,再利用数学希望公式计算即可.【解答】解:由题意可得“同一工作日起码3 人需使用设施”的概率为0.6×0.5× 0.5×0.4+(1﹣0.6)× 0.5×0.5× 0.4+0.6×( 1﹣0.5)× 0.5× 0.4+0.6×0.5×( 1﹣ 0.5)× 0.4+0.6×0.5×0.5×( 1﹣0.4)=0.31.(Ⅱ) X 的可能取值为 0,1,2,3,4P(X=0) =( 1﹣0.6)× 0.52×( 1﹣0.4)=0.06P(X=1) =0.6×0.52×( 1﹣0.4)+( 1﹣ 0.6)× 0.52×0.4+(1﹣0.6)× 2×0.52×(1﹣0.4)=0.25P(X=4) =P(A2?B?C)=0.52× 0.6×0.4=0.06,P(X=3) =P(D)﹣ P( X=4)=0.25,P(X=2) =1﹣P(X=0)﹣ P(X=1)﹣ P(X=3)﹣ P(X=4)=1﹣0.06﹣ 0.25﹣0.25﹣0.06=0.38.故数学希望 EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=221.( 12 分)( 2014?纲领版)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且 | QF| = | PQ| .(Ⅰ)求 C 的方程;(Ⅱ)过 F 的直线 l 与 C 订交于 A、B 两点,若 AB的垂直均分线l 与′ C 订交于 M 、N 两点,且 A、M 、B、N 四点在同一圆上,求l 的方程.【剖析】(Ⅰ)设点 Q 的坐标为( x0,4),把点 Q 的坐标代入抛物线C 的方程,求得 x0= ,依据 | QF| = | PQ| 求得 p 的值,可得 C 的方程.(Ⅱ)设l 的方程为 x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长 | AB| .把直线 l 的′方程代入抛物线方程化简,利用韦达定理、弦长公式求得 | MN| .因为 MN 垂直均分线段 AB,故 AMBN 四点共圆等价于 | AE| =| BE| = | MN| ,由此求得 m 的值,可得直线 l 的方程.【解答】解:(Ⅰ)设点 Q 的坐标为(x0,4),把点 Q 的坐标代入抛物线C:y2=2px (p>0),可得 x0= ,∵点 P(0,4),∴ | PQ| = .又 | QF| =x0+ = + , | QF| = | PQ| ,∴+ = ×,求得 p=2,或 p=﹣2(舍去).故 C 的方程为 y2=4x.(Ⅱ)由题意可得,直线 l 和坐标轴不垂直, y2=4x 的焦点 F( 1, 0),设 l 的方程为 x=my+1(m≠0),代入抛物线方程可得 y2﹣ 4my﹣ 4=0,明显鉴别式△ =16m2+16> 0,y1+y2=4m,y1?y2=﹣ 4.∴ AB的中点坐标为 D ( 2m2+1 , 2m ),弦长 | AB| =| y1﹣y 2| =(m2+1).=4又直线 l 的′斜率为﹣ m,∴直线 l ′方程为的x=﹣y+2m2+3.过 F 的直线 l 与 C 订交于 A、 B 两点,若 AB 的垂直均分线 l 与′ C 订交于 M 、N 两点,把线 l ′方程代入抛物线方程可得的y2+ y﹣4(2m2+3)=0,∴ y3+y4=,y3?y4=﹣4(2m2+3).故线段MN 的中点 E 的坐标为(+2m2+3,),∴ | MN| =| y3﹣y4| =,∵MN 垂直均分线段 AB,故 AMBN 四点共圆等价于 | AE| =| BE| = | MN| ,∴+DE2= MN 2,∴ 4( m2+1)2 ++= ×,化简可得m2﹣1=0,∴m=± 1,∴直线 l 的方程为 x﹣y﹣1=0,或 x+y﹣ 1=0.22.( 12 分)( 2014?纲领版)函数 f( x) =ln( x+1)﹣(a>1).(Ⅰ)议论 f (x)的单一性;(Ⅱ)设 a1=1, a n+1=ln(a n+1),证明:<a n≤(n∈ N*).【剖析】(Ⅰ)求函数的导数,经过议论 a 的取值范围,即可获得 f (x)的单一性;(Ⅱ)利用数学概括法即可证明不等式.【解答】解:(Ⅰ)函数 f(x)的定义域为(﹣ 1,+∞),f (′x)=,①当 1<a<2 时,若 x∈(﹣ 1,a2﹣2a),则 f (′x)> 0,此时函数 f(x)在(﹣1,a2﹣2a)上是增函数,若 x∈( a2﹣ 2a,0),则 f ′(x)< 0,此时函数 f(x)在( a2﹣2a,0)上是减函数,若 x∈( 0,+∞),则 f ′( x)> 0,此时函数 f (x)在( 0, +∞)上是增函数.②当 a=2 时, f ′(x)≥0,此时函数 f( x)在(﹣ 1,+∞)上是增函数,③当 a>2 时,若 x∈(﹣ 1,0),则 f ′(x)> 0,此时函数 f (x)在(﹣ 1, 0)上是增函数,若 x∈( 0,a2﹣ 2a),则 f ′(x)< 0,此时函数 f(x)在( 0,a2﹣2a)上是减函数,若 x∈( a2﹣ 2a,+∞),则 f ′( x)> 0,此时函数 f(x)在( a2﹣2a, +∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2 时,此时函数 f(x)在(﹣ 1, +∞)上是增函数,当 x∈( 0,+∞)时, f( x)> f( 0) =0,即 ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3 时, f( x)在( 0,3)上是减函数,当 x∈( 0,3)时, f(x)< f(0)=0,ln(x+1)<,下边用数学概括法进行证明<a n≤成立,①当 n=1 时,由已知<,故结论成立.②假定当 n=k 时结论成立,即<,则当 n=k+1 时, a n+1(n+1)> ln()>,=ln aa k+1=ln(a k+1)< ln()<,即当 n=k+1 时,<成立,综上由①②可知,对任何n∈N?结论都成立.。
2014年高考全国Ⅰ理科数学试题及答案(word解析版)
2014年高考全国Ⅰ理科数学试题及答案(word解析版)2014年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年全国Ⅰ,理1,5分】已知集合{}2230A x x x =--≥,{}22B x x =-≤<,则A B I =( )(A )[]2,1-- (B )[)1,2- (C )[]1,1- (D )[)1,2 【答案】A【解析】∵{}{}223013A x x x x x x =--≥=≤-≥或,{}22B x x =-≤<,∴{}21A B x x =-≤≤-I ,故选A .(2)【2014年全国Ⅰ,理2,5分】()()321i 1i+=-( ) (A )1i + (B )1i - (C )1i -+ (D )1i -- 【答案】D【解析】∵32(1i)2i(1i)1i (1i)2i++==----,故选D . (3)【2014年全国Ⅰ,理3,5分】设函数()f x ,()g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )(A )()()f x g x 是偶函数 (B )()()f x g x 是奇函数 (C )()|()|f x g x 是奇函数 (D )|()()|f x g x 是奇函数 【答案】C 【解析】∵()f x 是奇函数,()g x 是偶函数,∴()f x 为偶函数,()g x 为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得()|()|f x g x 为奇函数,故选C .(4)【2014年全国Ⅰ,理4,5分】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )(A )3 (B )3 (C )3m (D )3m 【答案】A【解析】由C :223(0)x my m m -=>,得22133x y m -=,233,33c m c m =+=+,设()33,0Fm +,一条渐近线33y xm=,即0x my -=,则点F 到C的一条渐近线的距离3331m d m+==+,故选A .(5)【2014年全国Ⅰ,理5,5分】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )(A )18 (B )38(C )58 (D )78【答案】D【解析】由题知()13,0F -,()23,0F 且220012x y -=,所以()()120003,3,MF MF x y x y ⋅=---⋅--u u u u r u u u u r2220003310x y y =+-=-<,解得033y-<<,故选D .(6)【2014年全国Ⅰ,理6,5分】如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( )(A ) (B )(C ) (D ) 【答案】B【解析】如图:过M 作MD OP ⊥于D ,则sin PM x =,cos OM x =,在Rt OMP ∆中,cos sin 1cos sin sin 212x x OM PM MD x x x OP ⋅⋅===⋅=,∴()1sin 2(0)2f x x x π=≤≤,故选B . (7)【2014年全国Ⅰ,理7,5分】执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )(A )203 (B )165 (C )72 (D )158 【答案】D【解析】输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===; 4n =时:输出158M =,故选D . (8)【2014年全国Ⅰ,理8,5分】设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( )(A )32παβ-= (B )22παβ-= (C )32παβ+= (D )22παβ+= 【答案】B【解析】∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+,()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<,∴2παβα-=-,即22παβ-=,故选B . (9)【2014年全国Ⅰ,理9,5分】不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )(A )2p ,3p (B )1p ,4p (C )1p ,2p (D )1p ,3p 【答案】C【解析】作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min220z=-+=,∴0z ≥,∴命题1p 、2p 真命题,故选C .(10)【2014年全国Ⅰ,理10,5分】已知抛物线C :28yx=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =u u u r u u u r,则||QF =( )(A )72 (B )52(C )3 (D )2 【答案】C【解析】过Q 作QM l ⊥于M ,∵4FP FQ =u u u r u u u r ,∴34PQ PF =,又344QM PQ PF==,∴3QM =,由抛物线定义知3QF QM ==,故选C .(11)【2014年全国Ⅰ,理11,5分】已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >, 则a 的取值范围为( ) (A )()2,+∞ (B )(),2-∞- (C )()1,+∞ (D )(),1-∞- 【答案】B【解析】解法一:由已知0a ≠,2()36f x axx'=-,令()0f x '=,得0x =或2x a =,当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意. 当0a <时,()22,,()0;,0,()0;0,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞<∈>∈+∞< ⎪ ⎪⎝⎭⎝⎭ 要使()f x 有唯一的零点0x 且0x>,只需2()0f a >,即24a>,2a <-,故选B .解法二:由已知0a ≠,()3231f x ax x =-+有唯一的正零点,等价于3113a x x =⋅-有唯一的正零根,令1t x=,则问题又等价于33a t t=-+有唯一的正零根,即y a =与33y t t =-+有唯一的交点且交点在在y 轴右侧记3()3f t t t =-+,2()33f t t '=-+,由()0f t '=,1t =±,()(),1,()0;1,1,()0;t f t t f t ''∈-∞-<∈->, ()1,,()0t f t '∈+∞<,要使33a t t =-+有唯一的正零根,只需(1)2a f <-=-,故选B .(12)【2014年全国Ⅰ,理12,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )(A )62 (B )42 (C )6(D )4 【答案】C【解析】如图所示,原几何体为三棱锥D ABC -,其中4,42,25AB BC AC DB DC =====,()24246DA =+=,故最长的棱的长度为6DA =,故选C .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分 (13)【2014年全国Ⅰ,理13,5分】8()()x y x y -+的展开式中22x y的系数为 .(用数字填写答案)【答案】20-【解析】8()x y +展开式的通项为818(0,1,,8)r rrr T C x y r -+==L ,∴777888T C xy xy ==,626267828T C x y x y ==,∴8()()x y x y -+的展开式中27x y 的项为7262782820x xy y x y x y ⋅-⋅=-,故系数为20-. (14)【2014年全国Ⅰ,理14,5分】甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .【答案】A【解析】由乙说:我没去过C 城市,则乙可能去过A 城市或B城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A .(15)【2014年全国Ⅰ,理15,5分】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+u u u r u u u r u u u r,则AB u u u r 与AC u u u r 的夹角为 .【答案】090【解析】∵1()2AO AB AC =+u u u r u u u r u u u r,∴O 为线段BC 中点,故BC 为O e 的直径,∴090BAC ∠=,∴AB u u u r与AC u u u r 的夹角为090.(16)【2014年全国Ⅰ,理16,5分】已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .3【解析】由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=, 224b c bc bc=+-≥,∴1sin 32ABCSbc A ∆=≤三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)【2014年全国Ⅰ,理17,12分】已知数列{}na 的前n 项和为n S ,11a =,0n a ≠,11n n na a S λ+=-,其中λ为常数. (1)证明:2n na a λ+-=;(2)是否存在λ,使得{}na 为等差数列?并说明理由. 解:(1)由题设11n n n a a S λ+=-,1211n n n a a S λ+++=-,两式相减()121n n n n a a a a λ+++-=,由于0na ≠,所以2n na a λ+-=.……6分(2)由题设11a =,1211a a S λ=-,可得211a λ=-,由(1)知31a λ=+假设{}n a 为等差数列,则123,,a a a 成等差数列,∴1322a a a +=,解得4λ=;证明4λ=时,{}n a 为等差数列:由24n na a +-=知:数列奇数项构成的数列{}21m a -是首项为1,公差为4的等差数列2143m a m -=-,令21,n m =-则12n m +=,∴21nan =-(21)n m =-数列偶数项构成的数列{}2ma 是首项为3,公差为4的等差数列241ma m =-,令2,n m =则2n m =, ∴21na n =-(2)n m =,∴21na n =-(*n N ∈),12n n a a +-=因此,存在存在4λ=,使得{}na 为等差数列. ……12分 (18)【2014年全国Ⅰ,理18,12分】从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(2)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示100件产品中质量指标值为区间(187.8,212.2)的产品件数,利用(i )的结果,求EX . 附:15012.2≈.若2(,)Z N μδ:,则()0.6826P Z μδμδ-<<+=,(22)P Z μδμδ-<<+=0.9544. 解:(1)抽取产品质量指标值的样本平均数x 和样本方差2s 分别为:1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02150s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯=.……6分(2)(ⅰ)由(1)知(200,150)Z N :,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+=.……9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826依题意知(100,0.6826)X B :,所以1000.682668.26EX =⨯=. ……12分 (19)【2014年全国Ⅰ,理19,12分】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱 形,1AB B C ⊥.(1)证明:1AC AB =;(2)若1AC AB ⊥,o160CBB ∠=,AB BC =,求二面角111A ABC --的余弦值. 解:(1)连结1BC ,交1B C 于O ,连结AO .因为侧面11BB C C 为菱形,所以11B C BC ⊥,且O 为1B C 与1BC 的中点.又1AB B C ⊥,所以1B C ⊥平面ABO ,故1B C AO ⊥又 1B O CO =,故1AC AB =. ……6分(2)因为1AC AB ⊥且O 为1B C 的中点,所以AO CO =,又因为AB BC =,所以BOA BOC ∆≅∆,故OA OB ⊥,从而OA ,OB ,1OB 两两互相垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O xyz -. 因为0160CBB ∠=,所以1CBB ∆为等边三角形.又AB BC =,则30,0,A ⎛⎫ ⎪ ⎪⎝⎭,()1,0,0B ,130,,0B ⎛⎫ ⎪ ⎪⎝⎭,30,,0C ⎛⎫- ⎪ ⎪⎝⎭,1330,,AB ⎛⎫=- ⎪ ⎪⎝⎭u u u u r ,1131,0,A B AB ⎛⎫==- ⎪ ⎪⎝⎭u u u u r u u u r ,1131,,0B C BC ⎛⎫==-- ⎪ ⎪⎝⎭u u u u r u u u r ,设(),,nx y z =r是平面的法向量,则1110n AB n A B ⎧=⎪⎨=⎪⎩r u u u u r g r u u u u r g ,即33030y z x z ⎧-=⎪⎨⎪-=⎪⎩所以可取()1,3,3n =r,设mu r 是平面的法向量,则11110m A B n B C ⎧=⎪⎨=⎪⎩u r u u u u rg r u u u u r g ,同理可取()1,3,3m =-u r,则1cos ,7n m n m n m ==r u rr u r g r u r g ,所以二面角111A ABC --的余弦值为17. ……12分 (20)【2014年全国Ⅰ,理20,12分】已知点()0,2A -,椭圆E :22221(0)x y a b a b+=>>的离心率为3,F 是椭圆的焦点,直线AF 的斜率为23,O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.解:(1)设(),0F c ,由条件知223c =,得3c =,又3c a =, 所以2a =,2221b a c =-=,故E 的方程2214x y +=. ……6分(2)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y ,将2y kx =-代入2214xy +=, 得()221416120k xkx +-+=,当216(43)0k ∆=->,即234k >时,21,28243k k x ±-从而2221241431k k PQ k x +-+-=g 又点O 到直线PQ 的距离21d k =+,所以OPQ ∆的 面积214432OPQk S d PQ ∆-==,设243k t -=,则t >,244144OPQ t S t t t∆==≤++,当且仅当2t =,7k =等号成立,且满足0∆>,所以当OPQ∆的面积最大时,l 的方程为:72y =- 或72y =-..……12分(21)【2014年全国Ⅰ,理21,12分】设函数()1ln x xbe f x ae x x -=+,曲线()y f x =在点()()1,1f 处的切线为(1)2y e x =-+. (1)求,a b ;(2)证明:()1f x >.解:(1)函数()f x 的定义域为()0,+∞,112()ln xxx x a b b f x ae x ee e xx x--'=+-+由题意可得(1)2,(1)f f e '==,故1,2a b ==.……6分(2)由(1)知,12()ln x xe f x e x x -=+,从而()1f x >等价于2ln xx x xee->-,设函数()ln g x x x =,则()ln g x x x '=+,所以当10,x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,故()g x 在10,e ⎛⎫⎪⎝⎭单调减, 在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,从而()g x 在()0,+∞的最小值为11()g e e=-. ……8分设函数2()xh x xee-=-,则()()1xh x ex -'=-,所以当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,故()h x 在()0,1单调递增,在()1,+∞单调递减,从而()h x ()g x 在()0,+∞的最小值为1(1)h e =-. 综上:当0x >时,()()g x h x >,即()1f x > .……12分请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)【2014年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,四边形ABCD 是O e 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(1)证明:D E ∠=∠;(2)设AD 不是O e 的直径,AD 的中点为M ,且MB MC =,证明:ABC ∆为等边三角形. 解:(1)由题设得,A ,B ,C ,D 四点共圆,所以,D CBE ∠=∠又CB CE =Q ,CBE E ∴∠=∠,所以D E ∠=∠ ……5分 (2)设BC 的中点为N ,连结MN ,则由MB MC =知MN BC ⊥,故O 在直线MN 上,又AD 不是O e 的直径,M 为AD 的中点,故OM AD ⊥,即MN AD ⊥,所以//AD BC ,故A CBE ∠=∠,又CBE E ∠=∠,故A E ∠=∠,由(1)知,D E ∠=∠,所以ADE ∆为等边三角形. ……10分 (23)【2014年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线22:149x y C +=,直线2:22x tl y t=+⎧⎨=-⎩(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.解:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为260x y +-=. ……5分(2)曲线C 上任意一点(2cos ,3sin )P θθ到l 的距离为54cos 3sin 6|d θθ=+-, 则25|||5sin()6|sin30dPA θα==+-o,其中α为锐角,且4tan 3α=, 当sin()1θα+=-时,||PA 225 当sin()1θα+=时,||PA 25.……10分(24)【2014年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)若0a >,0b >且 11ab a b +=. (1)求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.解:(111ab a b ab=+,得2ab ≥,且当2a b = 故3333242a b a b +≥,且当2a b ==时等号成立,所以33a b +的最小值为42 ……5分(2)由(1)知,232643a b ab +≥,由于436,从而不存在,a b,使得236+=.……10分a b。
2014年高考数学真题大纲【理】试题及答案
2014年高考数学(大纲)(理)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设iiz +=310,则z 的共轭复数为( ) A .i 31+- B .i 31-- C .i 31+ D .i 31-2.设集合{}{}50|,043|2≤≤=<--=x x N x x x M ,,则=N M ( ) A .(]4,0 B .[)4,0 C .[)0,1- D .(]0,1- 3.设33sin =a ,55cos =b ,35tan =c ,则( ) A .c b a >> B .a c b >> C .a b c >> D .b a c >>4.若向量a ,b 1=,()a b a ⊥+,()b b a ⊥+2=( )A .2B .2C .1D .22 5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6.已知椭圆C :)0(12222>>=+b a by a x 的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若B AF 1∆的周长为34,则椭圆C 的方程为( )A .12322=+y xB .1322=+y x C .181222=+y x D .141222=+y x 7.曲线1-=x xey 在点()1,1处切线的斜率等于( )A .e 2B .eC .2D .18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .481π B .π16 C .π9 D .427π29.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若A F A F 212=,则=∠12cos F AF ( )A .41 B .31 C .42 D .3210.等比数列{}n a 中,5,254==a a ,则数列{}n a lg 的前8项和等于( ) A .6 B .5 C .4 D .311.已知二面角βα--l 为60,α⊂AB ,l AB ⊥,A 为垂足,β⊂CD ,l C ∈,135=∠ACD ,则异面直线AB 与CD 所成角的余弦值为( )A .41 B .42 C .43 D .21 12.函数)(x f y =的图象与函数)(x g y =的图象关于直线0=+y x 对称,则)(x f y =的反函数是( )A .)(x g y =B .)(x g y -=C .)(x g y -=D .)(x g y --= 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 8⎪⎪⎭⎫ ⎝⎛-x y y x 的展开式中22y x 的系数为_____________. 14.设x 、y 满足约束条件⎪⎩⎪⎨⎧≤-≤+≥-12320y x y x y x ,则y x z 4+=的最大值为_____________.15.直线1l 和2l 是圆222=+y x 的两条切线,若1l 与2l 的交点为()3,1,则1l 与2l 的夹角的正切值等于_____________.16.若函数x a x x f sin 2cos )(+=在区间⎪⎭⎫⎝⎛2,6ππ是减函数,则a 的取值范围是_________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)2014年高考数学(大纲)【理】试题及答案3ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知A c C a cos 2cos 3=,31tan =A ,求B .18. (本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知101=a ,2a 为整数,且4S S n ≤. (1)求{}n a 的通项公式; (2)设11+=n n n a a b ,求数列{}n b 的前n 项和n T .19. (本小题满分12分)如图,三棱柱111C B A ABC -中,点1A 在平面ABC 内的射影D 在AC 上,90=∠ACB ,2,11===CC AC BC .(1)证明:B A AC 11⊥;(2)设直线1AA 与平面11B BCC 的距离为3,求 二面角C AB A --1的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为4.0,5.0,6.0,各人需使用设备是相互独立的.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望. 21. (本小题满分12分)已知抛物线C :)0(22>=p px y 的焦点为F ,直线4=y 与y 轴的交点为P ,与抛物线C的交点为Q ,且PQ QF 45=. (1)求抛物线C 的方程;4(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线'l 与C 相较于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程. 22. (本小题满分12分) 函数)1()1ln()(>+-+=a ax axx x f . (1)讨论)(x f 的单调性;(2)设)1ln(,111+==+n n a a a ,证明:2322+≤<+n a n n . 参考答案一、选择题: 1.D 2.B 3.C 4.B 5.C6.A7.C8.A9.A10.C 11.B12.D二、填空题13.70 14.5 15.4316.(]2,∞- 三、解答题:17.本题主要考等差数列的证明,通项公式、数列求和,考查运算求解能力.满分10分. 解:(Ⅰ)由2122n n n a a a ++=-+,2112n n n n a a a a +++-=-+,即12n n b b +=+,又1211b a a =-=,所以{}n b 是首项为1,公差为2的等差数列. ……5分 (Ⅱ)由(1)得12(1)21n b n n =+-=-,即121n n a a n +-=-,于是111()(21)nnk k k k a a k +==-=-∑∑.所以211n a a n +-=,即211n a n a +=+,又11=a 所以}{n a 的通项公式222n a n n =-+.……10分18.本题主要考查正弦定理,三角函数的基本关系式、两角和三角公式,考查运算求解能力.满分12分.解:由题设和正弦定理得:3sin cos 2sin cos A C C A =,故3tan cos 2sin A C C =,2014年高考数学(大纲)【理】试题及答案5因为1tan 3A =,所以cos 2sin C C =,1tan 2C =, ……6分 所以tan tan tan tan[180()]tan()1tan tan 1A CB B C B C A C -=︒-+=-+==-- (10)分即135B =︒. (12)分【考点】正弦定理同角基本关系,两角差的正切公式,逻辑分析、运算解题能力. 19.本题主要考查空间几何体的结构特征,空间垂直关系的证明以及二面角的求解,直线和平面的距离的转化等,考查空间想象能力和逻辑推理能力,满分12分. 解法一:(Ⅰ)因为1A D ⊥平面ABC ,1A D ⊂平面11AA C C ,故平面11AA C C ⊥平面ABC .又BC AC ⊥,所以BC ⊥平面11AA C C . ……3分 连结1A C ,因为侧面11AA C C 为菱形,故11AC A C ⊥,由三垂线定理得11AC A B ⊥. ……5分 (Ⅱ)BC ⊥平面11AA C C ,BC ⊂平面11BCC B ,故平面11AA C C ⊥平面11BCC B .作11A E CC ⊥,E 为垂足,则1A E ⊥平面11BCC B .又直线1AA ∥平面11BCC B ,因而1A E 为直线1AA 与平面11BCC B的距离,1A E = 因为1A C 为1ACC ∠的平分线,故11A D A E = ……8分 作DF AB ⊥,F 为垂足,连结1A F ,由三垂线定理得1A F AB ⊥. 故1A FD ∠为二面角1A AB C --的平面角.由1AD 得D 为AC 中点,12AC BC DF AB ⨯=⨯=11tan A D A FD DF∠= 所以二面角1A AB C --的大小为. ……12分 解法二:ABC DFEA 11C 16以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C xyz -,由题设知1AD 与z 轴平行,x 轴在平面11AA C C 内.(Ⅰ)设()1,0,A a c ,由题设有2≤a ,()2,0,0A ,()0,1,0B ,则()2,1,0AB =-,()2,0,0AC =-,()12,0,AA a c =-.()114,0,AC AC AA a c =+=-,()1,1,BA a c =-. ……2分 由1||2AA =2,即2240a a c -+=. ①于是221140AC BA a a c ⋅=-+=,所以11AC A B ⊥. ……5分(Ⅱ)设平面11BCC B 的法向量(),,x y z =m ,则CB ⊥m ,1BB ⊥m ,即0CB ⋅=m ,10BB ⋅=m .因()0,1,0CB =,()112,0,BB AA a c ==-,故0y =,且()20a x cz -+=. 令x c =,则2z a =-,(),0,2c a =-m ,点A 到平面11BCC B 的距离为|||||cos ,|||CA CA CA c ⋅⋅<>===m m m .又依题设,A 到平面11BCC Bc =.代入①解得c =(舍去)或3a =. ……8分 于是(1AA =-.设平面1ABA 的法向量()p q r =n ,,,则1AA ⊥n ,AB ⊥n ,即10AA ⋅=n ,0AB ⋅=n .0p -+=,且20p q-+=,令p q =1r =,)1=n .又()0,0,1=p 为平面ABC 的法向量,故 1cos ,||||4⋅<>==n p n p n p . 所以二面角1A AB C --的大小为1arccos 4. ……12分20.考查独立事件、互斥事件的概率,以及分类讨论思想,逻辑推理能力,满分12分. 解:记i A 表示事件:同一工作日乙、丙中恰有i 人需要使用设备,0,1,2i =.B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,2014年高考数学(大纲)【理】试题及答案7D 表示事件:同一工作日至少3人需使用设备,E 表示事件:同一工作日4人需使用设备,F 表示事件:同一工作日需使用设备的人数大于k .(Ⅰ)122D A B C A B A B C =⋅⋅+⋅+⋅⋅,()0.6P B =,()0.4P C =,()220.5ii P A C =⨯,0,1,2i =, ……3分所以()()122P D P A B C A B A B C =⋅⋅+⋅+⋅⋅ ()()()122P A B C P A B P A B C =⋅⋅+⋅+⋅⋅()()()()()()()()1220.31P A P B P C P A P B P A P B P C =++=. ……6分 (II )由(I )知,若2k =,则()0.310.1P F =>.又2E B C A =⋅⋅,()()()()()220.06P E P B C A P B P C P A =⋅⋅==. 若3k =,则()0.060.1P F =<.所以k 的最小值为3. ……12分21.本题主要考查二次函数的基本性质、导数的应用等基本知识,考查综合运用数学思想方法分析与解决问题的能力.满分12分.解:(Ⅰ)2()363,f x ax x '=++()0f x '=的判别式36(1)a ∆=-(ⅰ)若1,≥a 则()0,≥f x '且()0f x '=当且仅当1, 1.a x ==-故此时()f x 在R 上是增函数 (ⅱ)由于0a ≠,故当1a <时,()0f x '=有两个根:12x x == 若01,a <<则当2(,)x x ∈-∞或1(,)x x ∈+∞时()0,f x '>故()f x 分别在2(,),x -∞1(,)x +∞是增函数;当21(,)x x x ∈时()0,f x '<故()f x 在21(,)x x 是减函数;若0,a <则当1(,)x x ∈-∞或2(,)x x ∈+∞时()0,f x '<故()f x 分别在1(,),x -∞2(,)x +∞是减函数;当12(,)x x x ∈时()0,f x '>故()f x 在12(,)x x 是增函数(2)当0,0a x >>时,2()3630,f x ax x '=++>故当0a >时,()f x 在区间(1,2)是增函数8当0a <时,()f x 在区间(1,2)是增函数当且仅当(1)0(2)0≥≥f f ''且,解得504≤a -<综上,a 的取值范围是5[,0)(0,).4-+∞22.本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力.满分12分. 解:(Ⅰ)设0(,4)Q x ,代入22y px =得08x p=. 所以8PQ p =,822p p p QF x p=+=+. 由题设得85824p p p+=⨯.解得2p =-或2p =. 所以C 的方程为24y x =.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为1x my =+(0m ≠).代入24y x =得2440y my --=.设11(,)A x y ,22(,)B x y ,则124y y m +=,124y y =-.故AB 的中点为2(21,2)D m m +.214(1)AB y m =-=+. 又'l 的斜率为m -,所以'l 的方程为2123x y m m=-++. 将上式代入24y x =,并整理得2244(23)0y y m m+-+=. 设(,)33M x y ,(,)44N x y ,则344y y m+=-,2344(23)y y m =-+. 故MN 的中点为2222(23,)E m m m++-.3MN y =-=. 由于MN 垂直平分AB ,故A 、M 、B 、N 四点在同一圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即2222222222224(1)(21)4(1)(2)(2)m m m m m m m +++++++=. 化简得210m -=,解得1m =或1m =-. 所求直线l 的方程为:10x y --=或10x y +-=.2014年高考数学(大纲)【理】试题及答案9。
2014年全国统一高考数学试卷高考理科数学大纲版试卷及参考答案与试题解析
2014年全国统一高考数学试卷高考理科数学大纲版试卷及参考答案与试题解析 一、选择题(本大题共12小题,每小题5分)1.(5分)设z =,则z 的共轭复数为( ) A.-1+3i B.-1-3i C.1+3i D.1-3i2.(5分)设集合M ={x|x 2-3x -4<0},N ={x|0≤x ≤5},则M ∩N =( ) A.(0,4] B.[0,4) C.[-1,0) D.(-1,0]3.(5分)设a =sin33°,b =cos55°,c =tan35°,则( ) A.a >b >c B.b >c >a C.c >b >a D.c >a >b4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=( )A.2B.C.1D.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A.60种 B.70种 C.75种 D.150种6.(5分)已知椭圆C :+=1(a >b >0)的左、右焦点为F 1、F 2,离心率为,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为4,则C 的方程为( )A.+=1B.+y 2=1C.+=1D.+=17.(5分)曲线y =xe x -1在点(1,1)处切线的斜率等于( ) A.2e B.e C.2 D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A. B.16π C.9π D.9.(5分)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上,若|F 1A|=2|F 2A|,则cos ∠AF 2F 1=( )A.B.C.D.10.(5分)等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( ) A.6 B.5 C.4 D.311.(5分)已知二面角α-l -β为60°,AB ⊂α,AB ⊥l,A 为垂足,CD ⊂β,C ∈l,∠ACD =135°,则异面直线AB 与CD 所成角的余弦值为( )A.B.C.D.12.(5分)函数y =f(x)的图象与函数y =g(x)的图象关于直线x +y =0对称,则y =f(x)的反函数是( )A.y =g(x)B.y =g(-x)C.y =-g(x)D.y =-g(-x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y满足约束条件,则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{an }的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn =,求数列{bn}的前n项和Tn.19.(12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1-AB-C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)-(a>1). (Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).2014年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为( )A.-1+3iB.-1-3iC.1+3iD.1-3i【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N=( )A.(0,4]B.[0,4)C.[-1,0)D.(-1,0]【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2-3x-4<0,得-1<x<4.∴M={x|x2-3x-4<0}={x|-1<x<4},又N={x|0≤x≤5},∴M∩N={x|-1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则( )A.a>b>cB.b>c>aC.c>b>aD.c>a>b【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°-35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=( )A.2B.C.1D.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=-1;(2+)•=2+=-2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为( )A.+=1B.+y2=1C.+=1D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b ==,∴椭圆C 的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y =xe x -1在点(1,1)处切线的斜率等于( ) A.2e B.e C.2 D.1【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率. 【解答】解:函数的导数为f′(x)=e x -1+xe x -1=(1+x)e x -1, 当x =1时,f′(1)=2,即曲线y =xe x -1在点(1,1)处切线的斜率k =f′(1)=2, 故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A. B.16π C.9π D.【分析】正四棱锥P -ABCD 的外接球的球心在它的高PO 1上,记为O,求出PO 1,OO 1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则 ∵棱锥的高为4,底面边长为2, ∴R 2=(4-R)2+()2,∴R =,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C 的离心率为2,焦点为F 1、F 2,点A 在C 上,若|F 1A|=2|F 2A|,则cos ∠AF 2F 1=( )A. B. C. D.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论. 【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|-|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)等比数列{an }中,a4=2,a5=5,则数列{lgan}的前8项和等于( )A.6B.5C.4D.3【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{an }是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α-l-β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为( )A. B. C. D.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是( )A.y=g(x)B.y=g(-x)C.y=-g(x)D.y=-g(-x)【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(-x,-y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(-x,-y)在y=g(x)图象上,∴必有-y=g(-x),即y=-g(-x)∴y=f(x)的反函数为:y=-g(-x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为70 .(用数字作答)【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.【解答】解:的展开式的通项公式为 Tr+1=•(-1)r••=•(-1)r••,令 8-=-4=2,求得 r=4,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y满足约束条件,则z=x+4y的最大值为 5 .【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时zmax=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(-∞,2] .【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t 的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.【解答】解:由f(x)=cos2x+asinx=-2sin2x+asinx+1,令t=sinx,则原函数化为y=-2t2+at+1.∵x∈(,)时f(x)为减函数,则y=-2t2+at+1在t∈(,1)上为减函数,∵y=-2t2+at+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(-∞,2].故答案为:(-∞,2].【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π-(A+C)]=-tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π-(A+C)]=-tan(A+C)=-=-=-1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{an }的前n项和为Sn,已知a1=13,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn =,求数列{bn}的前n项和Tn.【分析】(1)通过Sn ≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=-4,进而可得结论;(2)通过an =13-3n,分离分母可得bn=(-),并项相加即可.【解答】解:(1)在等差数列{an }中,由Sn≤S4得:a 4≥0,a5≤0,又∵a1=13,∴,解得-≤d≤-,∵a2为整数,∴d=-4,∴{an }的通项为:an=17-4n;(2)∵an=17-4n,∴bn===-(-),于是Tn =b1+b2+……+bn=-[(-)+(-)+……+(-)]=-(-)=.【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.19.(12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1-AB-C的大小.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1-AB-C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1-AB-C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠AFD==,1-AB-C的大小为arctan∴二面角A1【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C 【分析】记Ai表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.,再利用数学期望公式计算即可.(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PXi【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1-0.6)×0.52×(1-0.4)=0.06P(X=1)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25•B•C)=0.52×0.6×0.4=0.06,P(X=4)=P(A2P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38. 故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x=,根据|QF|=|PQ|求得 p的值,可得C的方程.(Ⅱ)设l的方程为 x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x,4),把点Q的坐标代入抛物线C:y2=2px(p>0),可得x=,∵点P(0,4),∴|PQ|=.又|QF|=x+=+,|QF|=|PQ|,∴+=×,求得 p=2,或 p=-2(舍去).故C的方程为 y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为 x=my+1(m≠0),代入抛物线方程可得y2-4my-4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=-4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1-y2|==4(m2+1).又直线l′的斜率为-m,∴直线l′的方程为 x=-y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得 y2+y-4(2m2+3)=0,∴y3+y4=,y3•y4=-4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3-y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得 m2-1=0,∴m=±1,∴直线l的方程为 x-y-1=0,或 x+y-1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.22.(12分)函数f(x)=ln(x+1)-(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,an+1=ln(an+1),证明:<an≤(n∈N*).【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(-1,+∞),f′(x)=,①当1<a<2时,若x∈(-1,a2-2a),则f′(x)>0,此时函数f(x)在(-1,a2-2a)上是增函数,若x∈(a2-2a,0),则f′(x)<0,此时函数f(x)在(a2-2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(-1,+∞)上是增函数,③当a>2时,若x∈(-1,0),则f′(x)>0,此时函数f(x)在(-1,0)上是增函数,若x∈(0,a2-2a),则f′(x)<0,此时函数f(x)在(0,a2-2a)上是减函数,若x∈(a2-2a,+∞),则f′(x)>0,此时函数f(x)在(a2-2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(-1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<an≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,an+1=ln(an+1)>ln(),ak+1=ln(ak+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.。
2014年高考(大纲全国)理科数学
x y 13.(2014 大纲全国,理 13) 的展开式中 x2y2 的系数为____.(用数字作答) y x
答案:70
8
x y 解析:设 的第 r+1 项中含有 x2y2,则 y x x Tr +1=C y
4 3 2,
解析: 如图所示, 设 l1 与圆 O: x2+y2=2 相切于点 B, l2 与圆 O: x2+y2=2 相切于点 C, 则 OB
OA 10 , AB 2 2 .
∴ tan
OB 2 1 . AB 2 2 2
1 2 2 tan 2 4. ∴ tan BAC tan 2 2 1 tan 1 1 3 4
1 ,求 B. 3
分析: 通过 3acos C = 2ccos A ,借助于正弦定理把 a , c 转化成关于 A , C 的三角函数值,由已知
1 tan A ,从而求出 tan C,再利用公式 tan B=-tan(A+C)求出 B. 3
解:由题设和正弦定理得 3sin Acos C=2sin Ccos A. 故 3tan Acos C=2sin C, 因为 tan A
3. x2 y 2 =1 ,选 A. 3 2
2014年全国高考理科数学试题及答案-全国卷
的内角A、B、C的对边分别为a、b、c,已知,,求B. 18.(本小题满分12分)
等差数列的前n项和为,已知,为整数,且. (1)求的通项公式; (2)设,求数列的前n项和.
7. 曲线在点(1,1)处切线的斜率等于( ) A.2e B.e C.2 D.1
8.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为 2,则该球的表面积为( )
A. B. C. D. 9. 已知双曲线C的离心率为2,焦点为、,点A在C上,若,则( )
A. B. C. D. 10. 等比数列中,,则数列的前8项和等于( )
A.6 B.5 C.4 D.3 11. 已知二面角为,,,A为垂足,,,,则异面直线AB与CD所成角的
余弦值为( ) A. B. C. D.
12. 函数的图象与函数的图象关于直线对称,则的反函数是( ) A. B. C. D.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 的展开式中的系数为 . 14. 设x、y满足约束条件,则的最大值为 . 15.直线和是圆的两条切线,若与的交点为(1,3),则与的夹角的正切
………………………………………………………………… 10分
数学期望 ……………………………………………………………12分 21.(本小题满分12分) 解:(Ⅰ)设,代入得 所以 由题设得,解得(舍去)或 所以C的方程为……………………………………………5分 (Ⅱ)依题意知与坐标轴不垂直,故可设的方程为 代入得 设,则 故的中点为 又的斜率为,所以的方程为 将上式代入,并整理得 设,则 故的中点为
2014年全国统一高考数学试卷(理科)(大纲版)
2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4) C.[﹣1,0)D.(﹣1,0]3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B.C.1 D.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=17.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.10.(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6 B.5 C.4 D.311.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y满足约束条件,则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*).2014年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4) C.[﹣1,0)D.(﹣1,0]【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B.C.1 D.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.1【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6 B.5 C.4 D.3【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为70.(用数字作答)【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r 的值,即可求得展开式中x2y2的系数.=•(﹣1)r••【解答】解:的展开式的通项公式为T r+1=•(﹣1)r••,令8﹣=﹣4=2,求得r=4,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y满足约束条件,则z=x+4y的最大值为5.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2] .【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a 的范围.【解答】解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1.∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(﹣∞,2].故答案为:(﹣∞,2].【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)通过S n≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过a n=13﹣3n,分离分母可得b n=(﹣),并项相加即可.【解答】解:(1)在等差数列{a n}中,由S n≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{a n}的通项为:a n=17﹣4n;(2)∵a n=17﹣4n,∴b n===﹣(﹣),于是T n=b1+b2+……+b n=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=.【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.【分析】记A i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PX i,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*).【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,=ln(a n+1)>ln(),则当n=k+1时,a n+1a k+1=ln(a k+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.。
2014年高考真题—理科数学(全国大纲卷)
2014年普通高等学校统一考试(大纲)理科一、选择题:1.设103i z i=+,则z 的共轭复数为( ) A .13i -+ B .13i -- C .13i + D .13i -2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =I ( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-3.设0sin 33a =,0cos55b =,0tan 35c =,则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >> 4.若向量,a b r r 满足:||1a =r ,()a b a +⊥r r r ,(2)a b b +⊥r r r ,则||b =r ( )A .2BC .1D 5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种6.已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y += 7.曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .18.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .814π B .16π C .9π D .274π 9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若12||2||F A F A =,则21cos AF F ∠=( )A .14B .13 CD10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .311.已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,0135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14 B.4 CD .1212.函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.8-的展开式中22x y 的系数为 . 14.设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .16.若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B.18. (本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤.(1)求{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.21. (本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (1)求C 的方程;(2)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线'l 与C 相较于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.22. (本小题满分12分) 函数()ln(1)(1)ax f x x a x a=+->+. (1)讨论()f x 的单调性;(2)设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+.。
2014年全国统一高考数学试卷(理科)(大纲版)教师版
2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)(2014•大纲版)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.2.(5分)(2014•大纲版)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M ∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.3.(5分)(2014•大纲版)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.4.(5分)(2014•大纲版)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2B.C.1D.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.5.(5分)(2014•大纲版)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.6.(5分)(2014•大纲版)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.7.(5分)(2014•大纲版)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2D.1【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.8.(5分)(2014•大纲版)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.9.(5分)(2014•大纲版)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.10.(5分)(2014•大纲版)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6B.5C.4D.3【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.11.(5分)(2014•大纲版)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.12.(5分)(2014•大纲版)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D.二、填空题(本大题共4小题,每小题5分)13.(5分)(2014•大纲版)的展开式中x2y2的系数为70.(用数字作答)【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r 的值,即可求得展开式中x2y2的系数.=•(﹣1)r••=•【解答】解:的展开式的通项公式为T r+1(﹣1)r••,令8﹣=﹣4=2,求得r=4,故展开式中x2y2的系数为=70,故答案为:70.14.(5分)(2014•大纲版)设x、y满足约束条件,则z=x+4y的最大值为5.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.15.(5分)(2014•大纲版)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.16.(5分)(2014•大纲版)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2] .【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.【解答】解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1.∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(﹣∞,2].故答案为:(﹣∞,2].三、解答题17.(10分)(2014•大纲版)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=18.(12分)(2014•大纲版)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)通过S n≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过a n=13﹣3n,分离分母可得b n=(﹣),并项相加即可.【解答】解:(1)在等差数列{a n}中,由S n≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{a n}的通项为:a n=17﹣4n;(2)∵a n=17﹣4n,∴b n===﹣(﹣),于是T n=b1+b2+……+b n=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=.19.(12分)(2014•大纲版)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC 内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan20.(12分)(2014•大纲版)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.【分析】记A i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PX i,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=221.(12分)(2014•大纲版)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.22.(12分)(2014•大纲版)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*).【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知<,故结论成立.②假设当n=k时结论成立,即<,=ln(a n+1)>ln()>,则当n=k+1时,a n+1a k+1=ln(a k+1)<ln()<,即当n=k+1时,<成立,综上由①②可知,对任何n∈N•结论都成立.。
2014年全国统一高考数学试卷(理科)(大纲版)学生版
2014 年全国一致高考数学试卷(理科)(纲领版)一、选择题(本大题共12 小题,每题 5 分)1.(5 分)(2014?纲领版)设z=,则z 的共轭复数为()A.﹣ 1+3i B.﹣ 1﹣3i 2.(5 分)(2014?纲领版)设会合C.1+3i D.1﹣3iM={ x| x2﹣3x﹣4<0} ,N={ x| 0≤x≤5} ,则M∩N=()A.(0,4]B.[ 0,4)C.[ ﹣1,0)D.(﹣1,0] 3.(5 分)(2014?纲领版)设 a=sin33 ,°b=cos55 °,c=tan35 ,°则()A.a>b>c B.b>c> a C.c>b>a D.c>a>b4.(5分)(纲领版)若向量、知足:|| =1,( + )⊥ ,(2 +)⊥ ,则| |= 2014?()A.2B.C.1D.5.( 5 分)(2014?纲领版)有 6 名男医生、 5 名女医生,从中选出 2 名男医生、 1名女医生构成一个医疗小组,则不一样的选法共有()A.60 种B.70 种C.75 种D.150 种.(分)(纲领版)已知椭圆:+(>>)的左、右焦点为1、6 52014?C=1 a b 0FF2,离心率为,过 F2的直线 l 交 C 于 A、B 两点,若△ AF1B 的周长为 4,则 C 的方程为()A.+=1.+y2=1BC. +=1D.+=17.( 5 分)(2014?纲领版)曲线 y=xe x﹣1在点( 1,1)处切线的斜率等于()A.2e B.e C.2D.18.( 5 分)( 2014?纲领版)正四棱锥的极点都在同一球面上,若该棱锥的高为4,底面边长为 2,则该球的表面积为()A.B.16πC.9πD.9.(5 分)(2014?纲领版)已知双曲线C 的离心率为,焦点为1、F2,点A在2FC 上,若 | F1A| =2| F2A| ,则 cos∠AF2F1=()A.B.C.D.10.( 5 分)(2014?纲领版)等比数列 { a n} 中, a4=2, a5=5,则数列 { lga n} 的前 8项和等于()A.6B.5C.4D.311.( 5 分)(2014?纲领版)已知二面角α﹣l﹣β为60°,AB?α,AB⊥l,A为垂足,CD? β,C∈l,∠ACD=135°,则异面直线 AB 与CD 所成角的余弦值为()A.12.( 5B.分)(2014?纲领版)函数C.y=f( x)的图象与函数D.y=g(x)的图象对于直线 x+y=0 对称,则y=f( x)的反函数是()A.y=g(x)B.y=g(﹣ x)C.y=﹣g(x)D.y=﹣g(﹣ x)二、填空题( 本大题共 4 小题,每题 5 分)13.( 5 分)(2014?纲领版)的睁开式中x2y2的系数为.(用数字作答)、知足拘束条件,则 z=x+4y 的最大14.(5 分)( 2014?纲领版)设 x y值为.15.( 5 分)( 2014?纲领版)直线 l1和 l2是圆 x2+y2=2 的两条切线,若 l1与 l2的交点为( 1,3),则l1与l2的夹角的正切值等于.16.( 5 分)(2014?纲领版)若函数数,则 a 的取值范围是.f( x) =cos2x+asinx 在区间(,)是减函三、解答题17.( 10 分)( 2014?纲领版)△ ABC的内角 A、B、C 的对边分别为a、 b、c,已知 3acosC=2ccosA,tanA= ,求 B.18.( 12 分)( 2014?纲领版)等差数列 { a n} 的前 n 项和为 S n,已知 a1=13,a2为整数,且 S n≤S4.( 1)求 { a n } 的通项公式;( 2)设 b n=,求数列 { b n} 的前 n 项和 T n.19.( 12 分)( 2014?纲领版)如图,三棱柱ABC﹣A1B1 C1中,点 A1在平面 ABC 内的射影 D 在 AC上,∠ ACB=90°,BC=1,AC=CC .1=2(Ⅰ)证明: AC ⊥A ;11B(Ⅱ)设直线 AA与平面 BCC的距离为,求二面角 A ﹣AB﹣ C 的大小.11B1120.( 12 分)(2014?纲领版)设每个工作日甲、乙、丙、丁4 人需使用某种设施的概率分别为 0.6、0.5、0.5、0.4,各人能否需使用设施互相独立.(Ⅰ)求同一工作日起码 3 人需使用设施的概率;(Ⅱ) X 表示同一工作日需使用设施的人数,求X 的数学希望.21.( 12 分)( 2014?纲领版)已知抛物线C:y2=2px(p>0)的焦点为 F,直线y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且 | QF| = | PQ| .(Ⅰ)求 C 的方程;(Ⅱ)过 F 的直线 l 与 C 订交于 A、B 两点,若 AB的垂直均分线l 与′ C 订交于 M 、N 两点,且 A、M 、B、N 四点在同一圆上,求l 的方程..(12分)(纲领版)函数f()()﹣(a> 1).222014?x=ln x+1(Ⅰ)议论 f (x)的单一性;(Ⅱ)设 a1=1, a n+1=ln(a n+1),证明:<a n≤(n∈ N*).。
2014高考理科数学大纲版
2014年全国统一高考数学试卷(理科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.设z=,则z的共轭复数为()4.若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()6.已知椭圆C:+=1(a>b>0)的左、右焦点为F 1、F2,离心率为,过F2的直线l交C于+=1 +y2=1+=1 +=1二、填空题(本大题共4小题,每小题5分)13.的展开式中x2y2的系数为.(用数字作答)14.设x、y满足约束条件,则z=x+4y的最大值为.15.直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{a n}的前n项和为S n.已知a1=10,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(1)讨论f(x)的单调性;(2)设a1=1,a n+1=ln(a n+1),证明:<a n ≤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试大纲全国理科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014大纲全国,理1)设10i3iz =+,则z 的共轭复数为( ). A .-1+3i B .-1-3i C .1+3i D .1-3i 答案:D 解析:2210i 10i 3i 30i 1013i 3i 3i 3i 31z (-)+====++(+)(-)+,13i z =-,选D. 2.(2014大纲全国,理2)设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ). A .(0,4] B .[0,4) C .[-1,0) D .(-1,0] 答案:B解析:∵M ={x |x 2-3x -4<0}={x |-1<x <4}, N ={x |0≤x ≤5},∴M ∩N ={x |0≤x <4}=[0,4),选B. 3.(2014大纲全国,理3)设a =sin 33°,b =cos 55°,c =tan 35°,则( ). A .a >b >c B .b >c >a C .c >b >a D .c >a >b 答案:C解析:∵a =sin 33°,b =cos 55°=sin 35°,sin 35tan 35cos35c ︒=︒=︒,∴sin 35sin 35sin 33cos35︒>︒>︒︒.∴c >b >a ,选C. 4.(2014大纲全国,理4)若向量a ,b 满足:|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ).A .2BC .1D .2答案:B解析:∵(a +b )⊥a ,|a |=1, ∴(a +b )·a =0,∴|a |2+a ·b =0,∴a ·b =-1. 又∵(2a +b )⊥b , ∴(2a +b )·b =0.∴2a ·b +|b |2=0.∴|b |2=2.∴||b = B.5.(2014大纲全国,理5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种 答案:C解析:从6名男医生中选出2名有26C 种选法,从5名女医生中选出1名有15C 种选法,故共有216565C C 57521⨯⋅=⨯=⨯种选法,选C. 6.(2014大纲全国,理6)已知椭圆C :2222=1x y a b+(a >b >0)的左、右焦点为F 1,F 2,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为则C 的方程为( ). A .22=132x y + B .22=13x y + C .22=1128x y + D .22=1124x y + 答案:A解析:∵2222=1x y a b +(a >b >0)的离心率为3,∴c a =. 又∵过F 2的直线l 交椭圆于A ,B 两点,△AF 1B 的周长为∴4a =,∴a =∴b =22=132x y +,选A. 7.(2014大纲全国,理7)曲线y =x e x -1在点(1,1)处切线的斜率等于( ). A .2e B .e C .2 D .1 答案:C解析:∵y =x e x -1,∴y ′=e x -1+x e x -1, ∴k =y ′|x =1=e 0+e 0=2,选C.8.(2014大纲全国,理8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ).A .81π4 B .16π C .9π D .27π4答案:A解析:由图知,R 2=(4-R )2+2,∴R 2=16-8R +R 2+2,∴94R =, ∴281814π4ππ164S R ⨯=表==,选A. 9.(2014大纲全国,理9)已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( ).A .14 B .13 CD答案:A解析:∵双曲线的离心率为2,∴2ca=,∴a ∶b ∶c =12.又∵121222AF AF a F A F A ⎧-=⎪⎨=⎪⎩,,∴|AF 1|=4a ,|AF 2|=2a , ∴|F 1F 2|=2c =4a ,∴22222222121212212||||||4161641cos 2||||224164AF F F AF a a a a AF F AF F F a a a +-+-∠====⨯⨯,选A.10.(2014大纲全国,理10)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ).A .6B .5C .4D .3 答案:C解析:∵a 4=2,a 5=5,∴a 4a 5=a 1a 8=a 2a 7=a 3a 6=10,∴lg a 1+lg a 2+…+lg a 8=lg a 1a 2…a 8=lg(a 1a 8)4=lg(a 4a 5)4=4lg a 4a 5=4lg 10=4,选C.11.(2014大纲全国,理11)已知二面角α-l-β为60°,AB⊂α,AB⊥l,A为垂足,CD ⊂β,C∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为().A.14B.4CD.12答案:B解析:如图,在平面α内过C作CE∥AB,则∠ECD为异面直线AB与CD所成的角或其补角,不妨取CE=1,过E作EO⊥β于O.在平面β内过O作OH⊥CD于H,连EH,则EH⊥CD.因为AB∥CE,AB⊥l,所以CE⊥l.又因为EO⊥平面β,所以CO⊥l.故∠ECO为二面角α-l-β的平面角,所以∠ECO=60°.而∠ACD=135°,CO⊥l,所以∠OCH=45°.在Rt△ECO中,CO=CE·cos∠ECO=1·cos 60°=1 2 .在Rt△COH中,CH=CO·cos∠OCH=1sin 454⋅︒=.在Rt△ECH中,4cos1CHECHCE∠===所以异面直线AB与CD所成角的余弦值为4.故选B.12.(2014大纲全国,理12)函数y=f(x)的图像与函数y=g(x)的图像关于直线x+y=0对称,则y=f(x)的反函数是().A.y=g(x) B.y=g(-x)C.y=-g(x) D.y=-g(-x)答案:D解析:因为函数y=f(x)的图像与函数y=g(x)的图像关于直线x+y=0对称,而函数图像与其反函数的图像关于直线y=x对称,所以这两个函数的反函数图像也关于直线x+y=0对称.设函数y=f(x)的反函数图像上任一点P(x,y),则其关于直线x+y=0的对称点Q(-y,-x)在函数y=g(x)的反函数的图像上,又Q(-y,-x)关于直线y=x的对称点M(-x,-y)在函数y=g(x)的图像上.所以,-y=g(-x),即y=-g(-x).故函数y=f(x)的反函数为y=-g(-x).故选D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2014大纲全国,理13)8⎛⎫的展开式中x 2y 2的系数为____.(用数字作答) 答案:70解析:设8⎛⎫的第r +1项中含有x 2y 2,则82882188C C (1)rr rrr r r r r r T x y -----⎛⎫⎛=⋅-⋅ ⎝+=, 因此822r r --=,822rr --=,即r =4. 故x 2y 2的系数为4488765C (1)704321⨯⨯⨯⨯-==⨯⨯⨯. 14.(2014大纲全国,理14)设x ,y 满足约束条件02321x y x y x y -≥⎧⎪≤⎨⎪≤⎩,+,-,则z =x +4y 的最大值为________.答案:5解析:画出x ,y 的可行域如图阴影区域.由z =x +4y ,得144z y x =-+. 先画出直线14y x =-,再平移直线14y x =-, 当经过点B (1,1)时,z =x +4y 取得最大值为5.15.(2014大纲全国,理15)直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.答案:43解析:如图所示,设l与圆O :x 2+y2=2相切于点B ,l 2与圆O :x 2+y 2=2相切于点C ,则OB ,OA =,AB =∴1tan 2OB AB α===. ∴2122tan 42tan tan 211tan 314BAC ααα⨯∠====--. 16.(2014大纲全国,理16)若函数f (x )=cos 2x +a sin x 在区间ππ,62⎛⎫⎪⎝⎭是减函数,则a 的取值范围是________.答案:(-∞,2]解析:f (x )=cos 2x +a sin x =1-2sin 2x +a sin x .令t =sin x ,∵x ∈ππ,62⎛⎫ ⎪⎝⎭, ∴1,12t ⎛⎫∈ ⎪⎝⎭,∴g (t )=1-2t 2+at =-2t 2+at +1112t <<, 由题意知1222a -≤⨯(-),∴a ≤2,∴a 的取值范围为(-∞,2].三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2014大纲全国,理17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知3a cos C =2c cos A ,1tan 3A =,求B . 分析:通过3a cos C =2c cos A ,借助于正弦定理把a ,c 转化成关于A ,C 的三角函数值,由已知1tan 3A =,从而求出tan C ,再利用公式tan B =-tan(A +C )求出B . 解:由题设和正弦定理得3sin A cos C =2sin C cos A .故3tan A cos C =2sin C , 因为1tan 3A =,所以cos C =2sin C ,1tan 2C =. 所以tan B =tan[180°-(A +C )] =-tan(A +C )=tan tan tan tan 1A CA C +-=-1, 即B =135°.18.(本小题满分12分)(2014大纲全国,理18)等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设11n n n b a a +=,求数列{b n }的前n 项和T n . 分析:(1)通过条件分析,a 2为整数,且S n ≤S 4,得到a 5≤0,a 4≥0,把a 4,a 5用公差d 和a 1表示,得到公差的取值范围,从而确定公差,进而求出{a n }的通项公式.(2)将(1)的结果代入11n n n b a a +=,整理变形后利用裂项求前n 项和T n . 解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数, 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0. 解得10532d -≤≤-. 因此d =-3.数列{a n }的通项公式为a n =13-3n .(2)1133103n b n n =(-)(-)=1113103133n n ⎛⎫- ⎪--⎝⎭. 于是T n =b 1+b 2+…+b n=1111111371047103133n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦… =111310310n ⎛⎫- ⎪-⎝⎭=10103nn (-). 19.(本小题满分12分)(2014大纲全国,理19)如图,三棱柱ABC -A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B ;(2)设直线AA 1与平面BCC 1B 1A 1-AB -C 的大小.分析:(方法一)(逻辑推理)(1)由AC =CC 1=2,知侧面AA 1C 1C 为菱形,借助于三垂线定理即可证得AC 1⊥A 1B .(2)先作出二面角A 1-AB -C 的平面角∠A 1FD ,通过线面垂直关系得△A 1DF 为直角三角形.把∠A 1FD 放入Rt △A 1FD 中通过解直角三角形的有关知识求出∠A 1FD .(方法二)(坐标法)(1)以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长建立空间直角坐标系.设A 1(a,0,c ),a ≤2,写出1AC ,1BA 的坐标表示, 利用110AC BA ⋅=证明AC 1⊥A 1B .(2)先根据已知条件求出a ,c ,再求出面ABA 1的法向量n 和面ABC 的法向量p ,利用公式cos ,||||⋅=〈〉n pn p n p 求解.解法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C , 故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C .连结A 1C .因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1, 故平面AA 1C 1C ⊥平面BCC 1B 1.作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1. 又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,1A E =.因为A 1C 为∠ACC 1的平分线,故11A D A E ==作DF ⊥AB ,F 为垂足,连结A 1F . 由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1-AB -C 的平面角.由1AD ==得D 为AC 中点,12AC BC DF AB ⨯=⨯=,11tan A D A FD DF ∠==所以二面角A 1-AB -C 的大小为解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长, 建立如图所示的空间直角坐标系C -xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a,0,c ),由题设有a ≤2,A (2,0,0),B (0,1,0), 则(2,1,0)AB =-,(2,0,0)AC =-,1(2,0)AA a c =-,, 11(4,0)AC AC AA a c =+=-,,1(1)BA a c =,-,.由12AA =2,即a 2-4a +c 2=0. ①于是221140AC BA a a c ⋅=-+=,所以AC 1⊥A 1B .(2)设平面BCC 1B 1的法向量m =(x ,y ,z ), 则CB ⊥m ,1BB ⊥m , 即0CB ⋅=m ,10BB ⋅=m .因()0,1,0CB =,11(2,0)BB AA a c ==-,, 故y =0,且(a -2)x +cz =0.令x =c ,则z =2-a,m =(c,0,2-a ),点A 到平面BCC 1B 1的距离为|cos ,|CA CA CA c ⋅⋅===〈〉m m m.又依题设,A 到平面BCC 1B 1c =代入①解得a =3(舍去)或a =1. 于是1=(AA-.设平面ABA 1的法向量n =(p ,q ,r ), 则1AA ⊥n ,AB ⊥n ,即10AA ⋅=n ,0AB ⋅=n ,0p -=,且-2p +q =0.令p =q =r =1,=n . 又p =(0,0,1)为平面ABC 的法向量,故1cos,||||4⋅==〈〉n p n p n p .所以二面角A 1-AB -C 的大小为arccos14.20.(本小题满分12分)(2014大纲全国,理20)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.分析:(1)设出事件的字母表示,用所设字母表示所求事件,利用事件的相互独立性求出所求问题的概率.(2)明确随机变量的取值:X =0,1,2,3,4.把随机变量转化为相应的事件,利用事件的相互独立性求出每个随机变量取相应值的概率,较复杂的概率可用分布列的性质去求.利用数学期望公式求得X 的数学期望.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅.P (B )=0.6,P (C )=0.4,()22C 0.5i i P A ⨯=,i =0,1,2, 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅ =()()122()P A B C P A B P A B C ⋅⋅⋅⋅⋅++=()()()()()()()122()P A P B P C P A P B P A P B P C ++ =0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为0(0)()P X P B A C ==⋅⋅=0()()()P B P A P C =(1-0.6)×0.52×(1-0.4) =0.06,001(1)()P X P B A C B A C B A C ==⋅⋅+⋅⋅+⋅⋅=001()()()()()()()()()P B P A P C P B P A P C P B P A P C ++=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4) =0.25,P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4) =1-0.06-0.25-0.25-0.06 =0.38,数学期望EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4) =0.25+2×0.38+3×0.25+4×0.06 =2.21.(本小题满分12分)(2014大纲全国,理21)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.分析:(1)设出Q 点坐标,利用54QF PQ =列出关于p 的方程,借助于p 的几何意义及抛物线的性质确定p .(2)通过题设分析判断直线l 与x 轴不垂直.因直线l 过F (1,0),可设l 的方程为x =my +1(m ≠0).直线l 与抛物线方程联立,利用韦达定理得到y 1+y 2,y 1y 2关于m 的表达式,借助弦长公式得12|||AB y y =-(其中A (x 1,y 1),B (x 2,y 2)),同理可得34|||MN y y =-(其中M (x 3,y 3),N (x 4,y 4)). 由题目中的A ,M ,B ,N 四点在同一圆上得到关于m 的方程,进而求出m ,得到直线l 的方程.解:(1)设Q (x 0,4),代入y 2=2px 得08x p=. 所以8||PQ p =,08||22p p QF x p=+=+. 由题设得85824p p p +=⨯, 解得p =-2(舍去)或p =2.所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0).代入y 2=4x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4.故AB 的中点为D (2m 2+1,2m ),212|||4(1)AB y y m =-=+.又l ′的斜率为-m ,所以l ′的方程为2123x y m m =-++. 将上式代入y 2=4x ,并整理得2244(23)0y y m m+-+=. 设M (x 3,y 3),N (x 4,y 4),则344y y m+=-,y 3y 4=-4(2m 2+3). 故MN 的中点为222223,E m mm ⎛⎫++- ⎪⎝⎭,34|||MN y y =-=由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而22211||||||44AB DE MN +=, 即2222222242241214(1)22m m m m m m m (+)(+)⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭++, 化简得m 2-1=0,解得m =1或m =-1.所求直线l 的方程为x -y -1=0或x +y -1=0.22.(本小题满分12分)(2014大纲全国,理22)函数()=ln(1)ax f x x x a -++(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2322n a n n <≤++. 思路分析:(1)通过观察f (x )及要求的结论,先求出f (x )的定义域,借助于导数这一工具讨论f (x )的单调性.由于0与a 2-2a 的大小关系不确定,因而要分类讨论.再借助于导函数讨论f (x )的单调性.(2)借助第(1)问的结论,利用赋值法得到23ln(1)23x x x x x <+<++.由于问题是关于n 的证明问题,想到利用数学归纳法证明,注意当n =k +1时,要利用n =k 的结论及23ln(1)23x x x x x <+<++. (1)解:f (x )的定义域为(-1,+∞),()22[(2)](1)()x x a a f x x x a --'=++. ①当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a,0),则f ′(x )<0,f (x )在(a 2-2a,0)是减函数;若x ∈(0,+∞),则f ′(x )>0,f (x )在(0,+∞)是增函数.②当a =2时,f ′(x )≥0,f ′(x )=0成立当且仅当x =0,f (x )在(-1,+∞)是增函数; ③当a >2时,若x ∈(-1,0),则f ′(x )>0,f (x )在(-1,0)是增函数;若x ∈(0,a 2-2a ),则f ′(x )<0,f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,f (x )在(a 2-2a ,+∞)是增函数.(2)证明:由(1)知,当a =2时,f (x )在(-1,+∞)是增函数.当x ∈(0,+∞)时,f (x )>f (0)=0,即2ln(1)2x x x +>+(x >0). 又由(1)知,当a =3时,f (x )在[0,3)是减函数.当x ∈(0,3)时,f (x )<f (0)=0,即3ln(1)3x x x +<+(0<x <3). 下面用数学归纳法证明2322n a n n <≤++. ①当n =1时,由已知1213a <=,故结论成立; ②设当n =k 时结论成立,即2322k a k k <≤++. 当n =k +1时,122222ln(1)ln 122322k k k a a k k k +⨯⎛⎫+=+>+>= ⎪++⎝⎭++, 133332ln(1)ln 132332k k k a a k k k ⨯⎛⎫+≤+<= ⎪++⎝⎭+++=+, 即当n =k +1时有12333k a k k +<≤++,结论成立. 根据①,②知对任何n ∈N *结论都成立.。