《高等数学一》第六章多元函数微分学历年试题模拟试题课后习题大汇总(含答案解析)

合集下载

《多元函数微分学》练习题参考答案

《多元函数微分学》练习题参考答案

解:在 L 上任取一点 P ( x, y ),
f (x , y ) = 0
考虑 d = ( x − x0 ) + ( y − y0 ) 在条件 f ( x, y ) = 0 下的极值问题 作 F = ( x − x 0 ) + ( y − y 0 ) + λ f ( x , y ) ,则
' ⎧ ⎪ F x = 2(x − x 0 ) + λ f 'x ( x , y ) = 0 , ⎨ ' ⎪ ⎩F y = 2( y − y 0 ) + λ f 'y (x , y ) = 0 2 2 2 2 2
P87-练习 4 设 z = f ( xy,
x y ) + g ( ) ,其中 f 有二阶连续偏导数, g 有二阶导数,求 y x
∂2z . (2000) ∂x∂y
解: 根据复合函数求偏导公式
∂z 1 y = f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ (− 2 ) , ∂x y x
24
∂2 z ∂ ⎛ ∂z ⎞ ∂ ⎛ 1 y ⎞ = ⎜ ⎟ = ⎜ f1′ ⋅ y + f 2′ ⋅ + g ′ ⋅ ( − 2 ) ⎟ ∂x∂y ∂y ⎝ ∂x ⎠ ∂y ⎝ y x ⎠ x 1 1 x y 1 = f1′ + y[ f11′′ x + f12′′ ⋅ (− 2 )] − 2 f 2′ + [ f 21′′ x + f 22′′ ⋅ (− 2 )] − g ′′ ⋅ 3 − g ′ ⋅ 2 y y y y x x 1 x y 1 = f1′ + xyf11′′ − 2 f 2′ − 3 f 22′′ − 3 g ′′ − 2 g ′ y y x x

考研数学复习教程答案详解高数部分

考研数学复习教程答案详解高数部分

第一篇高等数学第一章函数、极限与连续强化训练(一)一、选择题1.2.提示:参照“例1.1.5”求解。

3.4.解因选项(D)中的 不能保证任意小,故选(D)5.6.7.8.9.10.二、填空题11.提示:由2cos 12sin 2xx =-可得。

12.13.提示:由1 未定式结果可得。

14.提示:分子有理化,再同除以n即可。

15.提示:分子、分母利用等价无穷小代换处理即可。

16.17.提示:先指数对数化,再利用洛必达法则。

18.19.解因()2000122(1cos )22cos 2lim lim lim lim lim 1x x x x x x x xx f x x xxx -----→→→→→⋅---=====- ()0lim lim xx x f x ae a --→→==, 而()0f a =,故由()f x 在 0x =处连续可知,1a =-。

20.提示:先求极限(1∞型)得到()f x 的表达式,再求函数的连续区间。

三、 解答题 21.(1)(2)提示:利用皮亚诺型余项泰勒公式处理12sin ,sin x x。

(3)(4)(5)提示:先指数对数化,再用洛必达法则。

(6)提示:请参照“例1.2.14(3)”求解。

22.23.解 由题设极限等式条件得21()ln(cos )201()lim ,limln(cos )1f x x xxx x f x e e x x x+→→=+=, 即 2201()1()limln(cos )lim ln(1cos 1)1x x f x f x x x x x x x→→+=+-+=, 利用等价无穷小代换,得201()lim(cos 1)1x f x x x x →-+=,即230cos 1()lim()1x x f x x x→-+=, 故 30()3lim 2x f x x →=。

24.提示:先指数对数化,再由导数定义可得。

25.26.28.提示:利用皮亚诺型余项泰勒公式求解。

2024年考研高等数学一多元函数微分学历年真题

2024年考研高等数学一多元函数微分学历年真题

2024年考研高等数学一多元函数微分学历年真题在2024年考研高等数学一的多元函数微分学部分,历年真题一直是备考的重要资料。

通过复习历年真题,不仅可以熟悉考试题型,还能够理解题目的解题思路和考点要点。

本文将为大家呈现2024年考研高等数学一多元函数微分学的历年真题,供大家参考复习备考。

第一节:选择题1. 设函数 $z=f(x,y)$ 在点 $(x_0,y_0)$ 处可微分,且对任意 $t$ ,有$f(tx_0,ty_0)=tf(x_0,y_0)$ ,则 $\frac{\partial z}{\partialx}|_{(x_0,y_0)}$ 和 $\frac{\partial z}{\partial y}|_{(x_0,y_0)}$ 的关系是()。

A. $\frac{\partial z}{\partial x}|_{(x_0,y_0)}+2\frac{\partial z}{\partial y}|_{(x_0,y_0)}=0$B. $\frac{\partial z}{\partial x}|_{(x_0,y_0)}-2\frac{\partial z}{\partial y}|_{(x_0,y_0)}=0$C. $\frac{\partial z}{\partial x}|_{(x_0,y_0)}+3\frac{\partial z}{\partial y}|_{(x_0,y_0)}=0$D. $\frac{\partial z}{\partial x}|_{(x_0,y_0)}-3\frac{\partial z}{\partial y}|_{(x_0,y_0)}=0$2. 设函数 $f(x,y)$ 具有二阶连续偏导数, $df(x,y)$ 是其全微分,下列说法错误的是()。

A. $df(x,y)=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partialy}dy$B. $df(x,y)=\frac{\partial f}{\partial x}|_{(x,y)}dx+\frac{\partialf}{\partial y}|_{(x,y)}dy$C. $df(x,y)=f_x(x,y)dx+f_y(x,y)dy$D. $df(x,y)=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partialy}dy+\frac{\partial^2 f}{\partial x\partial y}dxdy$第二节:简答题1. 证明函数 $z=2x^2+3xy$ 在点 $(1, 2)$ 处的全微分为$dz=8dx+7dy$ 。

考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2002年试题,二)考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性质Q,则有( ).A.②→③→①B.③→②→①C.③→④→①D.③→①→④正确答案:A解析:由题设,分析4条性质可知,①与④没有直接联系,从而可排除C,D,关于A和B,重点在于分析性质②和③,显然性质②更强,即f的两个偏导数连续则f可微,因此②→⑧,B也被排除,从而只有A正确,选A.知识模块:多元函数微分学2.(1997年试题,二)二元函数在点(0,0)处( ).A.连续,偏导数存在B.连续,偏导数不存在C.不连续,偏导数存在D.不连续,偏导数不存在正确答案:C解析:二元函数的连续性与可偏导性之间的关系并非与一元函数中可导与连续的关系一样,因此需要按定义一一加以判断.由已知,[*]所以f(x,y)在点(0,0)处不连续;又[*]因此f(x,y)在(0,0)点的两个偏导数都存在.综上选C.讨论分段、分块定义的函数的连续性、偏导数的存在性以及可微性一般按定义处理.知识模块:多元函数微分学3.(2012年试题,一)如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是( ).A.若极限存在,则f(x,y)在(0,0)处可微B.若极限存在,则,(x,y)在(0,0)处可微C.若f(x,y)在(0,0)处可微,则极限存在D.若f(x,y)在(0,0)处可微,则极限存在正确答案:B解析:f(x,y)在(0,0)处连续,如果存在,则f(0,0)=0.且由存在,知存在,则即fx(0,0)=0,同理可得fy(0,0)=0,再根据可微定义;0.可知f(x,y)在(0,0)处可微.选B.知识模块:多元函数微分学4.(2005年试题,二)设函数其中函数φ具有二阶导数,ψ具有一阶导数,则必有( ).A.B.C.D.正确答案:B解析:由题意可得因为所以选B.题中含有二元变限积分,求偏导时,可将一个变量视为常数,按一元函数积分学中求变限积分的导数方法求解即可.知识模块:多元函数微分学5.(2010年试题,一)设函数z=z(x,y)由方程确定,其中F为可微函数,且F2’≠0,则等于( ).A.xB.zC.一xD.-z正确答案:B解析:根据题意可得故而有即正确答案为B.解析二在方程两边求全微分得从而即正确答案为B.解析三方程两边分别对X,Y求偏导数,则有解得从而即正确答案为B.知识模块:多元函数微分学6.(2005年试题,二)设有三元方程xy—xlny+exy=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)正确答案:D解析:根据题意,记方程为F(x,y,z)=0,其中F(x,y,z)=xy—zlny+exx 一1F对x,y,z均有连续偏导数,而且可知r(0,1,1)=0由于F(X,y,z)满足偏导数的连续性,根据隐函数存在定理可知,存在点(0,1,1)的一个邻域,在此邻域该方程可确定有连续偏导数的隐函数:x=x(y,z)和y=y(x,z)所以选D.求解此题应理解隐函数存在性定理的条件和结论,该知识点是2005年大纲新增加的考点.知识模块:多元函数微分学7.(2008年试题,一)函数一在点(0,1)处的梯度等于( ).A.iB.一iC.jD.一j正确答案:A解析:梯度的计算公式中涉及到函数的偏导数,故先求二元函数f(x,y)的偏导数:则fx(0,1)=lfy(0,1)=0.梯度gradf(0,1)=1×i+0×j=i,故应选A.知识模块:多元函数微分学8.(2001年试题,二)设函数f(x,y)在点(0,0)附近有定义,且fx’(0,0)=3,fy’(0,0)=1,则( ).A.出dz|(0,0)=3dx+dyB.曲面z=f(x,y)在点(0,0,f(0,0))的法向量为{3,1,1}C.曲线在点(0,0,f(0,0))的切向量为{1,0,3}D.曲线在点(0,0,f(0,0))的切向量为{3,0,1}正确答案:C解析:多元函数可偏导不一定可微,这一点与一元函数有本质区别,因此从题设给定(0,0)点有偏导数的条件无法推出在(0,0)点函数可微,因而A不一定成立;关于B,假设z=f(x,y)在(0,0,f(0,0))点法向量存在,由定义知该法向量也应为{3,1,一1},何况题设仅给出(0,0)点处fx’,fy’的值,因此B也可排除;选项C,D是互斥的,可算出曲线在点(0,0,f(0,0))的切向量为{3,1,一1}×{0,1,0}={1,0,3},从而选C.本题考查了多个知识点:可微性与可偏导的关系,曲面的法向量及其求法,空间曲线的切向量及其求法.注意A选项是考生易犯的错误,简单地认为将偏导数代入全微分计算公式即得出全微分,而忽视了全微分是否存在的前提.知识模块:多元函数微分学9.(2011年试题,一)设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是( ).A.f(0)>1,f’’(0)>0B.f(0)>1,f’’(0)0D.f(0)若z=f(x)lnf(y)在(0,0)处取极值,则A=f’’(0)lnf(0),B=0,c=f’’(0)由AC=[f’’(0)]2lnf(0)>0且A>0得f(0)>1且.f’’(0)>0,故选A.知识模块:多元函数微分学10.(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φy’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).A.若fx’(x0,y0)=0,则f’(x’,y’)=0B.若fx’(x0,y0)=0,则fy’(x0,y0)≠0C.若fx’(x0,y0)≠0,则fy’(x0,y0)=0D.若fx’(x0,y0)≠0,则fy’(x0,y0)≠0正确答案:D解析:考查化条件极值问题为一元函数极值问题.根据拉格朗日乘子法,令F(x,y,λ)=,(x,y)+λφ(x,y),则(x0,y0)满足若fx’(x0,y0)=0,由(1)→λ=0或φx’(x0,y0)=0当A=0时,由(2)得fx’(x0,y0)=0;但当A≠0时,由(2)及φy’(x0,x0)≠0,fy’(x0,y0)≠0所以A,B错误.若fx’(x0,y0)≠0,由(1)→λ≠0,再由(2)及φy’(x0,x0)≠0→fy’(x0,y0)≠0故选D.知识模块:多元函数微分学11.(2003年试题,二)已知函数f(x,y)在点(0,0)的某个邻域内连续,且则( ).A.点(0,0)不是f9x,y)的极值点B.点(0,0)是f(x,y)的极大值点C.点(0,0)是f(x,y)的极小值点D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点正确答案:A解析:根据题意,可将原式改用极坐标表示,即因此且f(pcosθ,psinθ)=ρ2cosθ.sinθ+ρ4+o(ρ4)当p充分小时,f(pcosθ,psinθ)的符号由p2cosθ.sin θ决定,但sinθ.cosθ符号不定,因此f(x,y)在(0,0)点不取极值,选A.知识模块:多元函数微分学填空题12.(2011年试题,二)设函数=____________.正确答案:涉及知识点:多元函数微分学13.(2009年试题,二)设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则____________.正确答案:则解析二因f(u,v)有二阶连续偏导数,故而涉及知识点:多元函数微分学14.(2007年试题,二)设f(u,v)为二元可微函数,z=f(xy,yz).则=____________.正确答案:涉及知识点:多元函数微分学15.(1998年试题,一)设具有二阶连续导数,则=______________.正确答案:由题设,有解析:本题亦可先求再求.因为题设复合函数的混合偏导数与求导次序无关.但求导时应注意f(xy)和φ(x+y)均为一阶复合函数,对x求导时,y被视为常数;对y求导时,x视为常数,切不可与多元复合函数的求导法则混淆.知识模块:多元函数微分学16.(2005年试题,一)设函数单位向量则=____________.正确答案:由题意可知根据方向导数计算公式可得涉及知识点:多元函数微分学17.(2003年试题,一)曲面z=x2+y2与平面2x+4y一z=0平行的切平面的方程是________________。

《高等数学一》第六章 多元函数微分学 历年试题模拟试题课后习题大汇总(含答案解析)

《高等数学一》第六章 多元函数微分学  历年试题模拟试题课后习题大汇总(含答案解析)

第六章多元函数微分学[单选题]1、设积分域在D由直线所围成,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】实用文档[单选题]2、().A、9B、4C、3实用文档D、1【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】?? [单选题]3、设,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】实用文档首先设出,然后求出最后结果中把用次方代换一下就可以得到结果.[单选题]4、实用文档设则().A、B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】本题直接根据偏导数定义得到. [单选题]5、设,=().A、B、实用文档C、D、【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】实用文档对x求导,将y看做常数,.[单选题]6、设,则= ().A、B、C、D、【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]7、A、B、C、D、【从题库收藏夹删除】实用文档【正确答案】B【您的答案】您未答题【答案解析】[单选题]8、实用文档函数的定义域为().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】,,综上满足:.[单选题]9、().A、0B、﹣1C、1D、∞【从题库收藏夹删除】实用文档【正确答案】A【您的答案】您未答题【答案解析】[单选题]10、设,则().A、实用文档B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】[单选题]11、函数的确定的隐函数,则=().A、B、C、实用文档D 、【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】方程左右两边求导,,实用文档.[单选题]12、设,则在(0,0)处().A、取得极大值B、取得极小值C、无极值D、无法判定是否取得极值【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】故,故取得极小值[单选题]13、设,则=().A、实用文档B、C、D、【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】[单选题]实用文档14、设z=x^2/y,x=v-2u,y=u+2v,则().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】[单选题]15、设函数z=ln(x2+y2),则=( )A、实用文档B、C、D、实用文档【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】[单选题]16、设函数,则=().A、B、C、D、【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】参见教材P178~179。

考研数学一(多元函数微分学)历年真题试卷汇编5(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编5(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2017年] 函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量,n={1,2,2}的方向导数为( ).A.12B.6C.4D.2正确答案:D解析:因,则因给出的方向向量不是单位向量,将其单位化得则,故所求的方向导数为仅D入选.知识模块:多元函数微分学2.[2008年] 函数f(x,y)=arctan(x/y)在点(0,1)处的梯度等于( ).A.iB.一iC.jD.-j正确答案:A解析:由函数f(x,y)在点(0,1)处的梯度计算公式知,只需求出f(x,y)在点(0,1)处的一阶偏导数.事实上,有故gradf(x,y)|(0,1)=f’x(0,1)i+f’y(0,1)j=1·i+0·j=i.仅A入选.知识模块:多元函数微分学3.[2001年] 设函数f(x,y)在点(0,0)附近有定义,且f’x(0,0)=3,f’y(0,0)=1,则( ).A.dz|(0,0)=3dx+dyB.曲面z=f(x,y)在点(0,0,f(0,0))的法向量为(3,1,1)C.曲面在点(0,0,f(0,0))的切向量为(1,0,3)D.曲面在点(0,0,f(0,0))的切向量为(3,0,1)正确答案:C解析:C中所给曲线方程为交面式方程注意到F’x(0,0,f(0,0))=f’x(x,y)|(0,0,f(0,0))=f’x(0,0)=3,F’y(0,0,f(0,0))=f’y(0,0)=1,F’z(0,0,f(0,0))=一1,G’x(0,0,f(0,0))=G’z(0,0,f(0,0))=0,G’y(0,0,f(0,0))=1,有故在点P0(0,0,f(0,0))处的切向量为(1,0,3).仅C入选.知识模块:多元函数微分学4.[2013年] 曲面x2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为( ).A.x—y+z=一2B.x+y+z=0C.x一2y+z=一3D.x—y—z=0正确答案:A解析:令F(x,y,z)=x2+cos(xy)+yz+x,则曲面F(x,y,z)在点(0,1,一1)处的法向量为n={F’x,F’y,F’z}={2x-ysin(xy)+1,-xsin(xy)+z,y}|(0,1,-1)={1,一1,1},则曲面F(x,y,z)=0在点(0,1,一1)处的切平面方程为1·(x-0)一1·(y 一1)+1·(z+1)=0,即x—y+z=一2.仅A入选.知识模块:多元函数微分学5.[2003年] 已知函数f(x,y)在点(0,0)的某个邻域内连续,且{[f(x,y)-xy]/(x2+y2)2}=1,①则( ).A.点(0,0)不是f(x,y)的极值点B.点(0,0)是f(x,y)的极大值点C.点(0,0)是f(x,y)的极小值点D.根据所给条件无法判别点(0,0)是否为f(x,y)的极值点正确答案:A解析:由极限与无穷小的关系知,在点(0,0)充分小的邻域内有即f(x,y)=xy+(1+α)(x2+y2)2,③其中.又由式①及(x2+y2)=0得到即于是f(x,y)-xy=(1+α)(x2+y2)2,即f(x,y)=xy+(x2+y2)2+α(x2+y2)2,亦即f(x,y)=f(x,y)=f(0,0)=xy+(x2+y2)2+o((x2+y2)2)=xy+(x2+x2)2+o(r2) (r=x2+y2 →0).当y=x时,f(x,y)—f(0,0)=x2+(x2+y2)2+o(r2)>0 (0<r<σ).当y=一x 时,f(x,y)一f(0,0)=一x2+(x2+x2)2+o(r2)<0 (0<r<σ),其中σ是充分小的正数.可知,(0,0)不是f(x,y)的极值点.仅A入选.知识模块:多元函数微分学6.[2011年] 设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是( ).A.f(0)>1,f’’(0)>0B.f(0)>1,f’’(0)<0C.f(0)<1,f’’(0)>0D.f(0)<1,f’’(0)<0正确答案:A解析:若函数z=f(x)lnf(y)在点(0,0)处取得极小值,则得到又由式①有则lnf(0)>0,即f(0)>1.②又因lnf(0)>0,由得到f’’(0)>0.③由式②、式③得到f(0)>1,f’’(0)>0.仅A入选.知识模块:多元函数微分学7.[2014年]∫-ππ(x一a1cosx-b1sinx)2dx={∫-ππ(x一acosx一bsinx)2dx},则a1cosx+b1sinx=( ).A.2sinxB.2cosxC.2nsinxD.2πcosz正确答案:A解析:∫-ππ(x一acosx一bsinx)2dx=∫-ππ[(x一bsinx)-acosx]2dx=∫-ππ[(x—b sinx)2一2a cosx(x—b sinx)+a2cos2x]2dx=∫-ππ(x2一2bx sinx+b2sin2x+a2cos2x)dx (注意cosx(x一b sinx)为奇函数)=2∫0π(x2一2bx sinx+b2sin2x+a2cos2x)dz,因∫0πxsinxdx=,∫0πsin2x dx=,故F(a,b)=∫-ππ(x-a cosx一b sinx)2dx=π3—4b2π+b37π+a3π①=π(a2+b2一4b)+π3=π[a2+(b-2)2一4]+π3.因而当a=0,b=2时,上述积F(a,b)最小.于是a1=a=0,b1=b=2,a1cosx+b1sinx=2sinx.仅A入选.知识模块:多元函数微分学8.[2006年] 设f(x,y)与φ(x,y)均为可微函数,且φ’y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).A.若f’x(x0,y0)=0,则f’y(x0,y0)=0B.若f’x(x0,y0)=0,则f’y(x0,y0)≠0C.若f’x(x0,y0)≠0,则f’y(x0,y0)=0D.若f’x(x0,y0)≠0,则f’y(x0,y0)≠0正确答案:D解析:由拉格朗日乘数法,得消去λ,得f’x(x0,y0)φ’y(x0,y0)一f’y(x0,y0)φ’x(x0,y0)=0.因φ’y(x0,y0)≠0,故因而当f’x(x0,y0)≠0时,必有f’y(x0,y0)≠0.仅D入选.知识模块:多元函数微分学填空题9.[2016年] 设函数f(u,v)可微,z=z(x,y)由方程(x+1)z-y2=x2f(x—z,y)确定,则dz|(0,1)=______.正确答案:一dx+2dy解析:先在所给方程两边求偏导,得到z+(x+1)z’x>=2xf(x—z,y)+x2f’1·(1一z’x),(x+1)z’y—2y=x2[f’1·(一z’y)+f’2].将x=0,y=1代入所给方程得到z-1=0,即z=1,再将x=0,y=1,z=1分别代入上述两式得到1+z’x=2·0·f(0—1,1)+0.f’1·[1一z’x]=0,故z’x=一1.z’y-2=0,故z’y=2.应用微分公式得到dz|(0,1)=z’xdx+z’ydy=一dx+2dy.知识模块:多元函数微分学10.[2005年] 设函数u(x,y,z)=,单位向量,则=______.正确答案:解析:根据三元函数方向导数的计算公式即有因n=(1,1,1)=n0为单位向量,故cosα=cosβ=cosγ=.由于u=f(x,y,z)=1+x2/6+y2/12+z2/18,P0=(1,2,3),下面求出函数u在点P0处各个偏导数:则将其代入方向导数的计算公式中得到知识模块:多元函数微分学11.[2012年]grad(xy+z/y)|(2,1,1)=______.正确答案:3解析:令u=xy+z/y,则故知识模块:多元函数微分学12.[2003年] 曲面z=x2+y2与平面2x+4y—z=0平行的切平面的方程是______.正确答案:2x+4y—z=5解析:设曲面的显式方程为z=f(x,y),该曲面的法向量为n=(f’x,f’y,一1)=(2x,2y,一1).设切点坐标为M0(x0,y0,z0),则过切点M1(x0,y0,z0)的切平面的法向量为n=(2x0,2y0,一1).由假设有,故x0=1,y0=2,因而z0=x02+y02=5,故所求的切平面方程为2(x一1)+4(y一2)一(z一5)=0,即2x+4y —z=5.知识模块:多元函数微分学13.曲面x2+2y2+3z2=21在点(1,一2,2)处的法线方程为______.正确答案:解析:先求曲面F(x,y,z)=x2+2y2+3z2一21=0在点(1,一2,2)处的法向量.n=(F’x,F’y,F’z)|(1,-2,2)=(2x,4y,6z)|(1,-2,2)=(2,一8,12)=2(1,一4,6),则在点(1,一2,2)处的法线方程为知识模块:多元函数微分学14.[2014年] 曲面z=x2(1一siny)+y2(1一sinx)在点(1,0,1)处的切平面方程为______.正确答案:2x—y一z—1=0解析:令F=x2(1一siny)+y2(1一sinx)-z,则故在点(1,0,1)处的法向量为n={2,一1,一1},切平面方程为2(x一1)一(y-0)一(z一1)=0,即2x—y一z—1=0.知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。

考研数学一(多元函数微分学)历年真题试卷汇编4(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编4(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编4(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2006年)若f(x,y)与φ(x,y)均为可微函数,且φ’y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是A.若f’x(x0,y0)=0,则f’y(x0,y0)=0.B.若f’0(x0,y0)=0.则f’(x0,y0)≠0.C.若f’x(x0,y0)≠0,则f’y(x0,y0、)=0.D.若f’x(x0,y01)≠0,则f’y(x0,y0)≠0.正确答案:D解析:由拉格朗日乘数法知,若(x0,y0)是f(x.y)在约束条件φ(x,y)=0下的极值点。

则必有若f’x(x0,y0)≠0,由①式知,λ≠0,加之原题设φ’y(x,y)≠0,由②式知,λφ’(x0,y0)≠0,从而必有f’y(x0,y0)≠0,故应选(D).知识模块:多元函数微分学2.(2008年)函数在点(0,1)处的梯度等于A.iB.一iC.jD.一j正确答案:A解析:解1 由知则f’x(0,1)=1,f’(0,1)=0,所以gradf(0,1)=i 解2 由知则gradf(0.1)=i 知识模块:多元函数微分学3.(2010年)设函数z=z(x,y)由方程确定,其中F为可微函数,且F’2≠0,则A.x.B.z.C.一x.D.一z.正确答案:B解析:由隐函数求导公式得则解 2 等式分别对x,y求偏导得(1)式乘x2加(2)式乘xy得(一z)F’2+F’2(xzx+yzy)=0则xzx+yzy=z (F’2≠0) 知识模块:多元函数微分学4.(2011年)设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是A.f(0)>1,f”(0)>0.B.f(0)>1,f”(0)<0.C.f(0)<1,f”(0)>0.D.f(0)<1,f”(0)<0.正确答案:A解析:则AC—B2>0故应选(A).知识模块:多元函数微分学5.(2012年)如果f(x,y)在(0,0)处连续,那么下列命题正确的是A.若极限存在,则f(x,y)在(0,0)处可微.B.若极限存在,则f(x,y)在(0,0:)处可微.C.若f(x,y)在(0,0)处可微,则极限存在.D.若f(x,y)在(0,0)处可微,则极限存在.正确答案:B解析:解l 由f(x,y)在(0,0)处连续可知,如果存在,则必有又极限则由存在知即由微分的定义知f(x,y)在(0,0)处可微.解2 排除法:取f(x,y)=|x|+|y|,显然,存在,但f(x,y)=|x|+|y|在(0,0)处不可微,这是由于f(x,0)=|x|,而|x|在x=0处不可导,则fx(0,0)不存在.则排除(A);若取f(x,y)=x,显然,f(x,y)在(0,0)处可微,但不存在,则不存在,排除(C).又则不存在,排除(D).故应选(B).知识模块:多元函数微分学6.(2013年)曲面x2+cos(xy)+yz+x=0在点(0,1,一1)处的切平面方程为A.x—y+z=一2.B.x+y+z=0.C.x一2y+z=一3.D.x—y一z=0.正确答案:A解析:令F(x,y,z)=x2+cos(xy)一yz+x,则则所求切平面方程为x一(y 一1)+(z+1)=0即x—y+z=一2 知识模块:多元函数微分学7.(2017年)函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量n=(1,2,2)的方向导数为A.12.B.6.C.4.D.2.正确答案:D解析:fx(1,2,0)=2xy|(1,2,0)=4 fy(1,2,0)=x2|(1,2,0)=1 fz(1,2,0)=3z2|(1,2,0)=0 向量n={1,2,2}的方向余弦为则知识模块:多元函数微分学填空题8.(2003年)曲面z=x2+y2与平面2x+4y一z—0平行的切平面方程是_____________.正确答案:2x+4y—z=5解析:曲面z=x2+y2在点(x0,y0,z0)处切平面的法向量为n1={2x0,2y0,一1)而平面2x+4y一z=0的法向量为n2={2,4,一1}.由题设知n1//n2,则从而有x0=1,y0=2,代入z=x2+y2 得z0=5,n1={2,4,一1}则所求切平面方程为2(x一1)+4(y一2)一(z一5)=0即2x+4y—z=5 知识模块:多元函数微分学9.(2005年)设函数单位向量则正确答案:解析:ux(1,2,3)=uy(1,2,3)=uz(1,2,3)=则知识模块:多元函数微分学10.(2007年)设f(u,v)为二元可微函数,z=f(xy,yx),则正确答案:yxy-1f’1+y2lnyf’2.解析:由复合函数求导法知知识模块:多元函数微分学11.(2009年)设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则正确答案:f’2+xf”12+xyf”22解析:知识模块:多元函数微分学12.(2011年)设函数则正确答案:4解析:解1 △解2 由偏导数定义知知识模块:多元函数微分学13.(2012年)正确答案:(1,1,1)解析:知识模块:多元函数微分学14.(2014年)曲面z=z2(1一siny)+y2(1一sinx)在点(1,0,1)处的切平面方程为_____________.正确答案:2x—y一z=1.解析:由z=x2(1一siny)+y2(1一sinx)得z’x=2x(1一siny)一y2cosx,z’x(1,0)=2 z’y=一x2cosy+2y(1一sinx),z’ y(1,0)=一1所以,曲面z=x2(1一siny)+y2(1一sinx)在点(1.0.1)处的法向量为[*]=(2.一1,一1),该点处切平面方程为2(x-1)一y一(z一1)=0即2x—y一z=1.知识模块:多元函数微分学15.(2015年)若函数z=z(x,y)由方程ez+xyz+x+cosx=2确定,则dz|(0,1)=_____________.正确答案:一dx解析:将x=0,y=1代入ez+xyz+x+cosx=2 中得ez+1=2,则z=0.方程ez+xyz+x+cosx=2两端微分得ezdz+yzdx+xzdy+xydz+dx—sinxdx=0 将x=0,y=1.z=0代入上式得dx+dz=0则dz|(0,1)=一dx 知识模块:多元函数微分学16.(2016年)设函数f(u,v)可微,z=z(x,y)由方程(x+1)z—y2=x2f(x一z,y)确定,则dz|(0,1)=___________.正确答案:一dz+2dy.解析:解1 由原方程知,当x=0,y=1时,z=1.方程(x+1)z一y2=xf(x —z,y)两边求全微分zdx+(x+1)dz一2ydy=2xf(x一z,y)dx+x2[f’1·(dx一dz)+f’2dy] 将x=0,y=1,z=1代入上式得dz|(0,1)=-dx+2dy 解2 由原方程知,当x=0,y=1时,z=1.方程两边分别对x、y求偏导数,有把x=0,y=1,z=1代入上式得所以dz|(0,1)=-dx+2dy 知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。

《高等数学》多元函数微分学部分 练习题答案

《高等数学》多元函数微分学部分 练习题答案

八、多元函数的微积分: (一)求下列函数的偏导数:(1)33xy y x z -=解:233zx y y x ∂=-∂, 323z x xy y ∂=-∂.(2))ln(xy z =解:()12ln()z xy =,()1211ln()()2z xy y x xy -∂==∂ ()1211ln()()2z xy x y xy -∂==∂.(3)2arcsin()cos ()z xy xy =+,2arcsin()cos ()z xy xy =+;2cos()[sin()]sin(2)z y xy xy x y xy x ∂=+-=-∂,2cos()[sin()]sin(2)z x xy xy x x xy y ∂=+-=-∂.(4)yxy z )1(+=解:关于x 是幂函数故:121(1)(1)y y zy xy y y xy x--∂=+=+∂, 关于y 是幂指函数,将其写成指数函数ln(1)y xy z e+=,故:ln(1)1[ln(1)](1)(ln(1))11y xy y z xy e xy y x xy xy y xy xy+∂=++=+++∂++ 解II: 两边取对数得ln ln(1)z y xy =+,因此11z y y z x xy ∂=∂+ , 1l n (1)1z xxy y z y xy ∂=++∂+, 即21(1)y zy xy x-∂=+∂, 1(1)ln(1)(1)y y z xy xy xy xy y -∂=++++∂. (二)求下列函数的全微分:(1) xz x yy=+ , 因为1z y x y ∂=+∂,2z x x y y ∂=-∂.所以21()d ()d z z xdz dx dy y x x y x y y y ∂∂=+=++-∂∂ . (2)2x yz e -=,因为2x y ze x -∂=∂,22x y z e y -∂=-∂.所以2(d 2d )x y z zdz dx dy e x y x y-∂∂=+=-∂∂. (3)z =因为()()()()13322222222232221[]()22z xyy x y y x y x xy x y x x xy---∂∂-=+=-+⋅=-+=∂∂+,()23222z x yxy∂==∂+所以()()233222222)z zxyx dz dx dy dx dy xdy ydx x yxyxy∂∂-=+=+=-∂∂++(4)yzu x = 因为11()yz yz u yz x yzx x --∂==∂,ln ln yz yz u x x z zx x y ∂=⋅=∂,ln ln yz yz u x x y yx x z ∂=⋅=∂ 所以u u udu dx dy dz x y z∂∂∂=++∂∂∂=1ln ln )yz yz yz yzx dx yx xdy yx xdz -++ (ln ln )yz yzx dx y xdy y xdz x=++(三)求下列函数的偏导数和微分: (1)设2ln ,,32,x z u v u v x y y ===-,求,z z x y∂∂∂∂. 解:212ln 3z f u f v u u v x u x v x y v ∂∂∂∂∂=+=⋅+⋅∂∂∂∂∂()()22223ln 3232x x x y y x y y =-+-, z f u f v y u y v y ∂∂∂∂∂=+∂∂∂∂∂222ln ()(2)x u u v y v =⋅-+⋅-()()223222ln 3232x x x y y x y y=---- (2)设32 ,sin ,t y t x e z y x ===-,求dz ;3222sin 22cos (2)(3)(cos 6)x y x y t t dz z dx z dye t e t e t t dt x dt y dt---∂∂=+=+-=-∂∂ dz 3sin 22(cos 6)d t t e t t t -=-.(四)设下列方程所确定的函数为()y f x =,求dxdy.(1)ln 0xy y -=解: 设(,)ln .F x y xy y =- 则,x F y = 1y F x y=-, x yF dydx F =-1yx y=--21y xy =--21y xy =-.(2) 0sin 2=-+xy e y x解I : 设2(,)sin .xF x y y e xy =+-则2,xx F e xy =- cos 2y F y xy =-,2d d cos 2xx y F y y e x F y xy-=-=-.解II :22cos d d d 2d 0(cos 2)d ()d x xy y e x y x xy y y xy y y e x +--=⇒-=-2d d cos 2xy y e x y xy-⇒=-.(3) ln ln 0xy x y ++= 解: 设(,)ln ln .F x y xy x y =++ 则1,x F y x=+1y F x y =+,x y F dy dx F =-11y x x y+=-+(1)(1)y xy x xy +=-+y x =-.(五)对下列隐函数, 求x z ∂∂,y z ∂∂,xy∂∂及dz .(1)20x y z ++-解:设(,,)2F x y z x y z =++-则1x F =21y z F F =-=,x z F z x F ∂=-====∂y zF z y F ∂=-====∂y xF x y F ∂=-====∂.dz =+解II :(隐函数法)两边关于x求导:10z x ∂+=∂,得xyxyz xyzyz x z --=∂∂两边关于y求导:20z y ∂+=∂得xyxyz xyzxz y z --=∂∂2两边关于y求导:20x y ∂+=∂得x y ∂=∂.dz =+解III:令(),,2F x y z x y z =++-则1x F =,2y F =1z F =故1x z F zx F ∂=-==∂-,1y z F z y F ∂=-==∂1y x F xy F ∂=-===∂.dz =+(2) 0ze xyz -=解: 设(,,).zF x y z e xyz =-则,x F yz =- ,z y z F xz F e xy =-=-,,x z z F z yz x F e xy ∂=-=∂- ,y z z F z xz y F e xy ∂=-=∂-.Fx x yF yy x∂∂∂=-=-∂∂∂ .z z yz xz dz dx dy e xy e xy=+--(3)yz z x ln = (3) 设),(y x z z =是由方程y zz x ln =所确定的隐函数,求x z ∂∂和yz ∂∂. 解I : 用隐函数求导公式(),,ln ln x F x y z z y z=-+,,1z x F =∂∂∴,1y y F =∂∂z z x z F 12--=∂∂ ,112z x z z z x z x z +=---=∂∂∴)(1122z x y z zz x yy z +=---=∂∂,11Fx z y yF yy xz∂∂∂=-=-=-∂∂∂. 2.()z z dz dx dy x z y x z =+++解II : 将z 看作y x ,的函数,两边对x 求导,得:xz z z x zxz ∂∂=∂∂-12 即zx zx z +=∂∂,同理两边对y 求导得)(2z x y z y z +=∂∂ 将x 看作,y z 的函数,两边对y 求导,得:1xyz y∂∂=-即.x z y y∂=-∂ 2.()z z dz dx dy x z y x z =+++解III : 将方程两边求全微分,得:y dyz dz z xdz zdx -=-2,解出dz 得:()dy z x y z dx x z z dz +++=2 zx zx z +=∂∂∴,)(2z x y z y z +=∂∂, 将方程两边求全微分,得:y dy z dz z xdz zdx -=-2,解出dx 得:z x z dx dy dz y z +=-+ .x z y y∂∴=-∂ (六)1、设333,z xyz a -= 求2zx y∂∂∂.解I : 设33(,,)3,.F x y z z xyz a =--则3,x F yz =- 23,33y z F xz F z xy =-=-,2,x z F z yz x F z xy ∂=-=∂- 2.y z F z xzy F z xy∂=-=∂- 2222()()(2)()()z zz yz xy yz z x z z y yx y y x z xy ∂∂+---∂∂∂∂∂==∂∂∂∂- 22222()()(2)()xz xzz y z xy yz z x z xy z xyz xy +-----=-22223[()]()[(2()]()z z xy yxz z xy yz zxz x z xy z xy -+----=- 322253222323()()2()()z z xy yz xz x y z xyz x y z z xy z xy --+--==--.解II :利用隐函数求导 方程两边同时对x 求导23330,z z zyz xy x x ∂∂--=∂∂20,z zz yz xy x x∂∂--=∂∂ 2,z yz x z xy ∂=∂-同理2,z xzy z xy∂=∂-对方程20,z zzyz xy x x∂∂--=∂∂两边同时再对y 求导 22220,z z z z z z z z z y x xy y x x y y x x y∂∂∂∂∂∂+----=∂∂∂∂∂∂∂∂ 22()2z z z z z z xy z x y zx y x y x y ∂∂∂∂∂-=++-∂∂∂∂∂∂22222yz xz yz xzz x y z z xy z xy z xy z xy =++-----33222z 2()z xy xyz z xy z xy +=---522322z 2()z x y xyz z xy --=-, 所以2522323z 2.()z z x y xyz x y z xy ∂--=∂∂-解III :333,z xyz a -=方程两边同时微分,23d 3(d d d )0z z yz x xz y xy z ---=,2()d d d z xy z yz x xz y -=+, 22d d d .yz xzz x y z xy z xy =+--所以 22,z yz z xz x z xy y z xy∂∂==∂-∂-. 222222222()()(2)()()(2)()()z z xz xz z y z xy yz z x z y z xy yz z x z y y z xy z xyx y z xy z xy ∂∂+---+---∂∂∂--==∂∂--22223[()]()[(2()]()z z xy yxz z xy yz zxz x z xy z xy -+----=- 322253222323()()2()()z z xy yz xz x y z xyz x y zz xy z xy --+--==--.2、设0ze xyz -=, 求22zx ∂∂.解: 设(,,).z F x y z e xyz =-则,x F yz =- ,zy z F xz F e xy =-=-,,x z z F z yz x F e xy ∂=-=∂- .y z z F z xzy F e xy∂=-=∂- 2222()()()()()()z z z z z z z z ze xy z e y e ze xy zyz z x x x y y x x x e xy e xy ∂∂∂-----+∂∂∂∂∂∂===∂∂∂-- 2()()z z z z yze ze xy zye xyy e xy --+-=-3()()()z z z z e ze xy yz zy e xy y e xy --+-=-22322()z z z yze yz e xy z y e xy --=-2223322.()z z z y ze y z e xy z e xy --=-十二、计算下列二重积分:1.22()Dx y d σ+⎰⎰其中D 是矩形区域:1,1x y ≤≤; 解: 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是11222211()()Dx y d dx x y dy σ--+=+⎰⎰⎰⎰1231111[]3x y y dx --=+⎰ 1212(2)3x dx -=+⎰31122[]33x x -=+=8.3= 2.22()Dxy x d σ+-⎰⎰其中D 由直线22y y x y x ===、与所围成;解: 积分区域可表示为1,:202,y x y D y ⎧≤≤⎪⎨⎪≤≤⎩原式()222102yy dy x y x dx =+-⎰⎰132201211()32yyx y x x dx =+-⎰232019313().2486y y dy =-=⎰ 3.2Dxy d σ⎰⎰其中D 2y x y x ==由抛物线和直线所围成; 解: 积分区域可表示为201,:,x D x y x ≤≤⎧⎨≤≤⎩21220xx Dxy d dx xy dy σ=⎰⎰⎰⎰21301[]3x x xy dx =⎰ 14701()3x x dx =-⎰1111[].35840=-= 1题图 2题图 3题图11。

高等数学第六章习题及答案

高等数学第六章习题及答案

微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。

专升本高等数学一(多元函数积分学)模拟试卷2(题后含答案及解析)

专升本高等数学一(多元函数积分学)模拟试卷2(题后含答案及解析)

专升本高等数学一(多元函数积分学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.化二重积分f(x,y)dσ为极坐标下的二次积分,其中D:4≤x2+y2≤9,正确的是( )A.∫02πdθ∫4θf(x,y)rdrB.∫02πdθ∫23f(x,y)rdrC.∫02πdθ∫23f(rcosθ,rsinθ)rdrD.∫02πdθ∫49f(rcosθ,rsinθ)rdr正确答案:C解析:该积分区域在极坐标系下可表示为:0≤θ≤2π,2≤r≤3,则该积分在极坐标系下为f(x,y)dσ=∫02πdθ∫23f(rcosθ,rsinθ)rdr,故选C.知识模块:多元函数积分学2.二次积分∫0dθ∫0cosθf(rcosθ,rsinθ)rdr可以写成( )A.B.C.D.正确答案:D解析:积分区域D为:0≤θ≤,0≤r≤cosθ,令x=rcosθ,y=rsinθ,则0≤x≤1,0≤x2+y2≤x,即0≤x≤1,0≤y≤,故二次积分可写成∫01dx,D也可表示为0≤y≤,故选D.知识模块:多元函数积分学3.若∫01dx∫x2xf(x,y)dy=∫01dy∫yφ(y)f(x,y)dx成立,则φ(y)= ( ) A.y2B.yC.D.正确答案:C解析:积分区域D可表示为0≤x≤1,x2≤y≤x,也可表示为0≤y≤1,y ≤x≤,故φ(y)=.知识模块:多元函数积分学4.设L为直线x+y=1上从点A(1,0)到B(0,1)的直线段,则∫L(x+y)dx—dy= ( )A.2B.1C.一1D.一2正确答案:D解析:用积分路径L可表示为:y=1一x,起点:x=1,终点:x=0,所以∫L(x+y)dx—dy=∫10dx+dx=-2.知识模块:多元函数积分学5.积与路径无关的是( )A.∫L(x2+y2)dx+dyB.∫Lxdx+xydyC.∫Ldx+xydyD.∫Lydx+xdy正确答案:D解析:A项,=1,故选D.知识模块:多元函数积分学6.L为从点(0,0)经点(0,1)到点(1,1)的折线,则∫Lx2dy+ydx= ( ) A.1B.2C.0D.一1正确答案:A解析:积分路径如图5—13所示,∫Lx2dy+ydx=x2dy+ydx+x2dy+ydx=0+∫01dx=1,故选A知识模块:多元函数积分学7.设曲线L的方程是x=acost,y=asint(a>0,0≤t≤2π),则曲线积分(x2+y2)nds=( )A.2πa2nB.2πa2n+1C.一πanD.πan正确答案:B解析:(x2+y2)nds=∫02π(a2)n dt=2πa2n+1.知识模块:多元函数积分学填空题8.当函数f(x,y)在有界闭区域D上________时,f(x,y)在D上的二重积分必存在.正确答案:连续解析:由二重积分的定义和极限存在的定义可知,当函数f(x,y)在有界闭区域D上连续时,f(x,y)在D上的二重积分必存在.知识模块:多元函数积分学9.设区域D={(x,y)|0≤x≤1,0≤y≤1},则=________.正确答案:2解析:=2SD=2.知识模块:多元函数积分学10.若D是中心在原点、半径为a的圆形区域,则(x2+y2)2dσ=_______.正确答案:πa6解析:(x2+y2)2dσ=∫02πdθ∫0ar4.rdr=a6×2π=πa6.知识模块:多元函数积分学11.设D是由Y=,y=x,y=0所围成的第一象限部分,则=_______.正确答案:解析:由题意,该积分易于在极坐标系下计算,又积分区域D可表示为:于是有知识模块:多元函数积分学12.交换I=∫01dx f(x,y)dy的次序为I=________.正确答案:∫01dy∫0y2f(x,y)dx+∫12dy f(x,y)dx解析:由0≤x≤1,得区域D如图5—3所示,D由x=y2,(y一1)2+x2=1,x=0围成,改变积分次序后区域需分2块.D可表示为D1+D2={(x,y)|0≤y≤1,0≤x≤y2}+{(x,y)|1≤y≤2,0≤x≤},则知识模块:多元函数积分学13.设区域D由y轴与曲线x=cosy(其中所围成,则二重积分3x2sin2ydxdy=________.正确答案:解析:知识模块:多元函数积分学14.L为三顶点分别为(0,0),(3,0),(3,2)的三角形正向边界,则(2x —y+4)dx+(5y+3x一6)dy=_______.正确答案:12解析:如图5—14所示,(2x—Y+4)dx+(5y+3x一6)dy==∫03(2x+4)dx+∫02(5y+3)dy+∫30xdx=21+16—25=12.知识模块:多元函数积分学15.设L为直线y=x一1上的点(1,0)到点(2,1)的直线段,则曲线积分∫L(x—y+2)ds=_______.正确答案:解析:∫L(x—y+2)ds=∫12(x一(x一1)+2).知识模块:多元函数积分学解答题16.计算∫0πdy dx.正确答案:积分区域又可表示为{(x,y)|0≤x≤,0≤y≤x2},则涉及知识点:多元函数积分学17.求,其中D由y=和y=x2围成.正确答案:如图5—4所示,区域D:0≤x≤1,x2≤y≤,故涉及知识点:多元函数积分学18.计算y2exydσ,其中D:0≤x≤1,0≤y≤1.正确答案:由题意可知y2exydσ=∫01dy∫01y2exydx=∫01(yey-y)dy=.涉及知识点:多元函数积分学19.求,其中D:0≤y≤x,0≤x≤.正确答案:根据被积函数的特点,选择先对y积分.区域D可表示为:{(x,y)|0≤x≤,0≤y≤x},.涉及知识点:多元函数积分学20.计算,其中D:4≤x2+y2≤9.正确答案:=∫02π(ln3-ln2)dθ=2πln.涉及知识点:多元函数积分学21.计算∫12dx.正确答案:由于作为y的函数,其原函数不能用初等函数表示,因此交换积分次序.区域D由直线y=x,x=1,x=4,y=2及抛物线y=所围成,如图5-7阴影部分所示,因此区域D可以写为D={(x,y)|1≤y≤2,y≤x≤y2},故∫12dx+∫24dx=∫12dy∫yy2=∫12=(2+π).涉及知识点:多元函数积分学22.计算二重积分,D:x2+y2≤R2,0≤y≤x,x≥0.正确答案:选择极坐标系计算,区域D的表示式为涉及知识点:多元函数积分学23.求,其中D是顶点分别为(0,0),(π,0)及(π,π)的三角形区域.正确答案:如图5—10所示区域D:0≤x≤π,0≤y≤x,故xsin(x+y)dσ=∫0πdx∫0xxsin(x+y)dy=∫0π(xcosx-xcos2x)dx=(xsinx+cosx—cos2x)|0π=一2.涉及知识点:多元函数积分学24.计算x3dy—y3dx,其中L为x2+y2=a2顺时针方向.正确答案:L为顺时针方向,即为反向,故x3dy—y3dx=一=-3x2一(一y2)dxdy=一3∫02πdθ∫0ar2.rdr=.涉及知识点:多元函数积分学25.计算对坐标的曲线积分I=∫L(x2+y)dx+(x-siny)dy,其中L是圆周y=上由点(0,0)到点(1,1)的一段弧.正确答案:P=x2+y,Q=x—siny,因为,所以曲线积分与路径无关,故可选择从(0,0)→(1,0)→(1,1),则I=∫L(x2+y)dx+(x—siny)dy=∫01x2dx+∫01(1-siny)dy=+1+cosy|01=+cos1.涉及知识点:多元函数积分学26.求曲线积分,其中L为如图5—1所示的闭路OAB,是x2+y2=a2上一段弧,端点为A(0,a),.正确答案:涉及知识点:多元函数积分学27.求∫L(y-x)ds,其中L:y=|1一x|—x;0≤x≤2.正确答案:当0≤x≤1时,y=1一x—x=1—2x当1≤x≤2时,y=x-1一x=一1.∫L(y-x)ds=∫01(1-2x)一x]+∫12(-1-x)=.涉及知识点:多元函数积分学。

考研数学一(多元函数微分学)模拟试卷2(题后含答案及解析)

考研数学一(多元函数微分学)模拟试卷2(题后含答案及解析)

考研数学一(多元函数微分学)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设函数u=u(x,y)满足u有二阶连续偏导数,则u11’’(x,2x)= ( ) A.B.C.D.正确答案:B解析:等式u(x,2x)=x两边对x求导得u1’+2u2’=1,两边再对x求导得u11’’+2u12’’+2u21’’+4u22’’=0,①等式u1’(x,2x)=x2两边对x求导得u11’’+2u12’’=2x,②将②式及u12’’=u21’’,u11’’=u22’’代入①式中得知识模块:多元函数微分学2.利用变量替换u=x,,可将方程化成新方程( )A.B.C.D.正确答案:A解析:由复合函数微分法于是知识模块:多元函数微分学3.若函数其中f是可微函数,且则函数G(x,y)= ( )A.x+yB.x—yC.x2一y2D.(x+y)2正确答案:B解析:设,则u=xyf(t),于是即G(x,y)=x一y.知识模块:多元函数微分学4.已知du(x,y)=[axy3+cos(x+2y)]dx+[-3x2y2+bcos(x+2y)]dy,则( ) A.a=2,b=一2B.a=3,b=2C.a=2,b=2D.a=一2,b=2正确答案:C解析:由du(x,y)=[axy3+cos(x+2y)]dx+[3x2y2+bcos(37+2y)]dy可知,以上两式分别对y,x求偏导得3axy2-2sin(x+2y)=6xy2-bsin(s+2y),故得a=2,b=2. 知识模块:多元函数微分学5.设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的( )A.最大值点和最小值点必定都在D的内部B.最大值点和最小值点必定都在D的边界上C.最大值点在D的内部,最小值点在D的边界上D.最小值点在D的内部,最大值点在D的边界上正确答案:B解析:令由于B2一AC>0,函数u(x,y)不存在无条件极值,所以,D的内部没有极值,故最大值与最小值都不会在D的内部出现.但是u(x,y)连续,所以,在平面有界闭区域D上必有最大值与最小值,故最大值点和最小值点必定都在D的边界上.知识模块:多元函数微分学6.函数f(x,y)=exy在点(0,1)处带皮亚诺余项的二阶泰勒公式是( ) A.B.C.D.正确答案:B解析:直接套用二元函数的泰勒公式即知B正确.知识模块:多元函数微分学7.函数f(x,y)=x4一3x3y2+x一2在点(1,1)处的二阶泰勒多项式是( )A.一3+(4x3一6xy2+1)x一6x2.y.y+[(12x2一6y2)x2一24xy.xy一6x2.y2] B.一3+(4x2—6xy2+1)(x一1)一6x2y(y一1)+[(12x2一6y2)(x—1)2一24xy(x 一1).(y一1)一6x2(y一1)2]C.一3一(x一1)一6(y一1)+[6(x一1)2一24(x一1)(y一1)一6(y一1)2 D.一3一x一6y+(6x2一24xy一6y2)正确答案:C解析:直接套用二元函数的泰勒公式即知C正确.知识模块:多元函数微分学8.若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是( ).A.α1,α2,α3线性无关B.α1,α2,α3线性相关C.α1,α2,α4线性无关D.α1,α2,α4线性相关正确答案:B解析:若α1,α2,α3线性无关,因为α4不可由α1,α2,α3线性表示,所以α1,α2,α3,α4线性无关,矛盾,故α1,α2,α3线性相关,选(B).知识模块:线性代数部分填空题9.设则fz’(0,1)=___________.正确答案:1解析:知识模块:多元函数微分学10.设f可微,则由方程f(cx一az,cy一bz)=0确定的函数z=z(x,y)满足azx’+bzy’=_________.正确答案:c解析:本题考查多元微分法,是一道基础计算题.方程两边求全微分,得f1’.(cdx—adz)+f2’.(cdy—bdz)=0,即知识模块:多元函数微分学11.设f(z),g(y)都是可微函数,则曲线在点(x0,y0,z0)处的法平面方程为_____.正确答案:f’(z0)g’(y0)(x-x0)+(y—y0)+g’(y0)(z—z0)=0解析:曲线的参数方程为:x=f[g(y)],y=y,z=g(y).知识模块:多元函数微分学12.函数的定义域为_______.正确答案:解析:由可得.知识模块:多元函数微分学13.设z=eminxy,则dz=___________.正确答案:esinxycos xy(ydx+xdy)解析:zx’=esinxycosxy.y,zy’=esinxycos xy.x;dz=esinxycos xy(ydx+xdy).知识模块:多元函数微分学14.设函数f(x,y)=exln(1+y)的二阶麦克劳林多项式为,则其拉格朗日型余项R2=____________.正确答案:ξ在0,x之间,η在0,y之间解析:知识模块:多元函数微分学15.设z=eminxy,则dz=___________.正确答案:esinxycos xy(ydx+xdy)解析:zx’=esinxycosxy.y,zy’=esinxycos xy.x;dz=esinxycos xy(ydx+xdy).知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。

多元函数微分学习题及详细解答

多元函数微分学习题及详细解答

C. 可能确定两个具有连续偏导数的隐函数 x x( y, z) 和 z z(x, y)
D. 可能确定两个具有连续偏导数的隐函数 x x( y, z) 和 y y(x, z)
3.证明:函数 f (x, y) xy 在点 O(0, 0) 处可微。
证明:由定义,
f
x
(0,
0)
lim
x0
(f x, 0) x
f
(0, 0)
0
4.设
z
xy+f
(u),
,u
y x
,f
(u)
为可微函数,求:
x
z x
y
z y
解: z x
y
xf
(u)
y x2
f (u)
f (u)
y
y x
f (u)
z x xf (u) 1 x f (u).
y
x

x
z x
y z y
x
f
(u)
y
f
(u) x
y
yx
f (u)
xf (u) xy yf (u) xy yf (u)
(3)如果函数 f (x, y) 在点 0, 0 处连续,那么下列命题正确的是( B )
A.若极限 lim f (x, y) 存在,则 f (x, y) 在点 0,0 处可微
x0 x y
y0
B.
若极限 lim x0
f (x, y) 存在,则 x2 y2
f (x, y) 在点 0, 0 处可微
y0
2 ,求
f
xx
(0,0,1),f
yz
(0,
1,0),f
zzx
(2,0,1)

考研数学一(多元函数微分学)模拟试卷5(题后含答案及解析)

考研数学一(多元函数微分学)模拟试卷5(题后含答案及解析)

考研数学一(多元函数微分学)模拟试卷5(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设则f(x,y)在点0(0,0)处( )A.极限不存在B.极限存在,但不连续C.连续,但不可微D.可微正确答案:C解析:|f(x,y)-0|=所以f(x,y)=0,f(x,y)在点O(0,0)处连续,排除(A),(B).下面考查(C).所以f’x(0,0)=0,f’y(0,0)=0.若在点O(0 0)处可微,则应有但是上式并不成立,事实上,知识模块:多元函数微分学2.二元函数其中m,n为正整数,函数在(0,0)处不连续,但偏导数存在,则m,n需满足( )A.m≥2,n<2B.m≥2,n≥2C.m<2,,n≥2D.m<2,n<2正确答案:B解析:当(x,y)沿y=kx(k≠0趋向点(0,0)时),k取不同值,上式结果不唯一,所以函数在(0,0)处极限不存在,故函数不连续.又因为同理可得f’y(0,0)=0,故偏导数存在.当n<2时,有n=1,因而,函数f(x,y)在(0,0)处连续.同理,当m<2时,函数f(x,y)在(0,0)处连续.综上应选(B).知识模块:多元函数微分学3.函数z=f(x,y)=在(0,0)点( )A.连续,但偏导数不存在B.偏导数存在,但不可微C.可微D.偏导数存在且连续正确答案:B解析:从讨论函数是否有偏导数和函数是否可微入手.当(△x,△y)沿y=x 趋于(0,0)点时,,即α不是ρ的高阶无穷小,因此f(x,y)在(0,0)点不可微,故选(B).知识模块:多元函数微分学4.函数z=x3+y3-3z2-3y2的极小值点是( )B.(2,2)C.(0,2)D.(2,0)正确答案:B解析:由,可以得到4个驻点(0,0),(2,2),(0,2)和(2,0).在(0,2)点和(2,0)点,均有AC-B2<0,因此这两个点不是极值点;在(0,0)点,AC-B2=36>0,且A=-6<0,所以点(0,0)是极大值点;在(2,2)点,AC-B2=36>0,且A-12>0,所以点(2,2)是极小值点,故选(B).知识模块:多元函数微分学5.函数( )A.等于1B.等于2C.等于0D.不存在正确答案:C解析:当xy≠0时,≤|x|+|y|,当(x,y)→(0,0)时,由夹逼准则,可得极限值为0.知识模块:多元函数微分学6.z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的( )A.必要条件但非充分条件B.充分条件但非必要条件C.充要条件D.既非必要也非充分条件正确答案:D解析:若z=z(x,y)=,则点(0,0)为其极小值点,但z’x(0,0),z’y(0,0)均不存在.知识模块:多元函数微分学7.函数不连续的点集为( )A.y轴上的所有点B.x=0,y≥0的点集C.空集D.x=0,y≤0的点集正确答案:C解析:当x≠0时,f(x,y)为二元连续函数,而当所以,(0,y0)为f(x,y)的连续点,故此函数的不连续点为空集.知识模块:多元函数微分学8.极限( )A.等于0C.等于D.存在,但不等于也不等于0正确答案:B解析:当取y=kx时,与k有关,故极限不存在.知识模块:多元函数微分学9.设u=(r),而=( )A.B.C.D.正确答案:B解析:属基本计算,考研计算中常考这个表达式.知识模块:多元函数微分学填空题10.函数f(c,y)=ln(x2+y2-1)的连续区域是______正确答案:x2+y2>1解析:一切多元初等函数在其有定义的区域内是连续的.知识模块:多元函数微分学11.设=_______正确答案:0 涉及知识点:多元函数微分学12.若函数z=2x2+2y2+3xy+ax+by+c在点(-2,3)处取得极小值-3,则常数a、b、c之积abc=_______正确答案:30解析:由极值的必要条件知在点(-2,3)处,z’x=0,z’y=0,从而可分别求出a、b、C之值.知识模块:多元函数微分学13.曲面z=eyz+xsin(x+y)在处的法线方程为______正确答案:涉及知识点:多元函数微分学14.设=_______正确答案:-sinθ解析:由x=rcosθ,y=rsinθ,得u= 知识模块:多元函数微分学15.设f(x,y)=则f’x(0,1)=_______正确答案:1解析:知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。

成人高考《高等数学一》章节练习题答案及解析

成人高考《高等数学一》章节练习题答案及解析

成人高考《高等数学一》章节练习题答案及解析- 1 -2021 年专升本数学一习题第一章极限、连续1.已知f(x) = � 3x + 2,x ≥0x 2 −1,x < 0。

求f(0)=2. limx→∞sinxx=3. limx→2 (x −2)sin1x−2=4. limx→0xln(3x+1)=5. limx→0sin4xx=6. limx→∞�1 +5x �x =7. limx→0tan2x2x=8. limx→0 (1 −x)1x =9. limx→0 (1 + x)−1x =10. limx→∞�1 +1x �x+2 =11. limx→0x ⋅tanx= 12. limx→0sinxsin2x =13. limx→0ln (2x+1)sin3x14. limx→1x−1x 2 −1=15. limx→4x−4√x+5−3=- 2 -- 2 -16. limx→∞2x 3 +3x 2 +5 7x 3 +4x 2 −1 = 17.设f(x) = �x −1,x < 0 0,x = 0x + 1,x > 0,求limx→0f(x)18. limx→2x 2 +x−6x 2 −4=19. limx→0x−sinxx 2 +x=20.设函数f(x) = �√x3,x < 0,x 2 + 1,x ≥0, 则在点x=0 处是否连续。

21.函数f(x) =x 2 +1x−3的间断点是()。

22.设函数f(x) = �e x,x < 0x + a,x ≥0 在x=0 处连续,则a=()第二章一元函数微分学1.已知f ′(2) = 2,求limΔx→0f(2−3Δx)−f(2)Δx=2.已知f ′(4) = 1,求limΔx→0f(4+2Δx)−f(4)Δx=3x + lnx在点(1,0)处切线斜率K。

4lnx在点(1,0)处的切线方程和法线方程。

5x 2 上的一点,使该点处的切线与直线y = 2x + 2平行。

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学一(多元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.= ( )A.0B.C.一D.+∞正确答案:B解析:.知识模块:多元函数积分学2.关于函数f(x,y)=下列表述错误的是( ) A.f(x,y)在点(0,0)处连续B.fx(0,0)=0C.fy(0,0)=0D.f(x,y)在点(0,0)处不可微正确答案:A解析:,随k取不同数值而有不同的结果,所以不存在,从而f(x,y)在(0,0)点不连续,因此选项A是错误的,故选A.知识模块:多元函数积分学3.设函数z=3x2y,则= ( )A.6yB.6xyC.3xD.3x2正确答案:D解析:因为z=3x2y,则=3x2.知识模块:多元函数积分学4.设二元函数z== ( )A.1B.2C.x2+y2D.正确答案:A解析:因为z==1.知识模块:多元函数积分学5.已知f(xy,x-y)=x2+y2,则= ( )A.2B.2xC.2yD.2x+2y正确答案:A解析:因f(xy,x—y)=x2+y2=(x—y)2+2xy,故f(x,y)=y2+2x,从而=2.知识模块:多元函数积分学6.设z=f(x,y)=则下列四个结论中,①f(x,y)在(0,0)处连续;②fx’(0,0),fy’(0,0)存在;③fx’(x,y),fy’(x,y)在(0,0)处连续;④f(x,y)在(0,0)处可微.正确结论的个数为( ) A.1B.2C.3D.4正确答案:C解析:对于结论①,=0=f(0,0)f(x,y)在(0,0)处连续,所以①成立;对于结论②,用定义法求fx’(0,0)==0.同理可得fy’(0,0)=00②成立;对于结论③,当(x,y)≠(0,0)时,用公式法求因为当(x,y)→(0,0)时,不存在,所以fx’(x,y)在(0,0)处不连续.同理,fy’(x,y)在(0,0)处也不连续,所以③不成立;对于结论④,fx’(0,0)=0,fy’(0,0)=0,△z=f(0+△x,0+△y)-f(0,0)=((△x)2+(△y)2).sin=ρ2故f(x,y)在(0,0)处可微,所以④成立,故选C.知识模块:多元函数积分学7.设函数z=μ2lnν,而μ=,ν=3x一2y,则= ( )A.B.C.D.正确答案:A解析:知识模块:多元函数积分学8.曲面z=F(x,y,z)的一个法向量为( )A.(Fx,Fy,Fz一1)B.(Fx一1,Fy一1,Fz一1)C.(Fx,Fy,Fz)D.(一Fx,一Fy,1)正确答案:A解析:令G(x,y,z)=F(x,y,z)一z,则Gx=Fx,Gy=Fy,Gz=Fz一1,故法向量为(Fx,Fy,Fz一1).知识模块:多元函数积分学9.曲面z=x2+y2 在点(1,2,5)处的切平面方程为( )A.2x+4y—z=5B.4x+2y—z=5C.z+2y一4z=5D.2x一4y+z=5正确答案:A解析:令F(x,y,z)=x2+y2一z,Fx(1,2,5)=2,Fy(1,2,5)=4,Fz(1,2,5)=一1切平面方程为2(x一1)+4(y一2)一(z一5)=02x+4y—z=5,也可以把点(1,2,5)代入方程验证,故选A.知识模块:多元函数积分学10.函数f(x,y)=x2+xy+y2+x—y+1的极小值点是( )A.(1,一1)B.(一1,1)C.(一1,一1)D.(1,1)正确答案:B解析:∵f(x,y)=x2+xy+y2+x—y+1,∴fx(x,y)=2x+y+1,fy(x,y)=x+2y一1,∴令得驻点(-1,1).又A=fxx(x,y)=2,B=fxy=1,C=fyy=2,∴B2一AC=1—4=一3<0,又A=2>0,∴驻点(一1,1)是函数的极小值点.知识模块:多元函数积分学11.函数z=x2一xy+y2+9x一6y+20有( )A.极大值f(4,1)=63B.极大值f(0,0)=20C.极大值f(一4,1)=一1D.极小值f(一4,1)=一1正确答案:D解析:因z=x2-xy+y2+9x-6y+20,于是=一x+2y-6,令=0,得驻点(-4,1),又因=2,故对于点(-4,1),A=2,B=一1,C=2,B2一AC=-3<0,且A>0,因此z=f(x,y)在点(一4,1)处取得极小值,且极小值为f(一4,1)=一1.知识模块:多元函数积分学填空题12.已知函数f(x+y,ex-y)=4xyex-y,则函数f(x,y)=________.正确答案:(x2一ln2y)y解析:由于f(x+y,ex-y)=[(x+y)2一ln2ex-y].ex-y,所以f(x,y)=(x2一ln2y)y.知识模块:多元函数积分学13.设z=xy,则dz=________.正确答案:yxy-1dx+xylnxdy解析:z=xy,则=yxy-1,=xylnx,所以dz=yxy-1dx+xylnxdy.知识模块:多元函数积分学14.设f(x,y)=sin(xy2),则df(x,y)=________.正确答案:y2cos(xy2)dx+2xycos(xy2)dy解析:df(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy.知识模块:多元函数积分学15.已知z=(1+xy)y,则=________.正确答案:1+2ln2解析:由z=(1+xy)y,两边取对数得lnz=yln(1+xy),则,所以=1+2ln2.知识模块:多元函数积分学16.设f’’(x)连续,z=f(xy)+yf(x+y),则=________.正确答案:yf’’(xy)+f’(x+y)+yf’’(x+y)解析:f’(xy).y+yf’(x+y),f’f’’(xy).x+f’(x+y)+yf’’(x+y)=yf’’(xy)+f ’(x+y)+yf’’(x+y).知识模块:多元函数积分学17.设z==________.正确答案:解析:知识模块:多元函数积分学18.曲面x2+3z2=y在点(1,一2,2)的法线方程为________.正确答案:解析:记F(x,y,z)=x2+3z2一y,M0(1,一2,2),则取n=(2,一1,12),所求法线方程为.知识模块:多元函数积分学19.二元函数f(x,y)=x2(2+y2)+ylny的驻点为_______.正确答案:(0,)解析:fx’(x,y)=2x(2+y2),fy’(x,y)=2x2y+lny+1.令解得唯一驻点(0,).知识模块:多元函数积分学20.设f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处取得极值的必要条件是_______.正确答案:fx’(x0,y0)=fy’(x0,y0)=0解析:f(x,y)在点(x0,y0)处可微,则偏导数fx’(x0,y0),fy’(x0,y0)存在,f(x,y)在点(x0,y0)处取得极值,则有fx’(x0,y0)=fy’(x0,y0)=0;反之不成立.知识模块:多元函数积分学解答题21.求函数z=arcsin的定义域.正确答案:对于≤1,即x2+y2≤4;在中,应有x2+y2≥1,函数的定义域是以上两者的公共部分,即{(x,y)|1≤x2+y2≤4}.涉及知识点:多元函数积分学22.设函数z=x2siny+yex,求.正确答案:=2xsiny+yex,=2siny+yex,=2xcosy+ex.涉及知识点:多元函数积分学23.已知z=ylnxy,求.正确答案:涉及知识点:多元函数积分学24.设2sin(x+2y一3z)=x+2y一3z,确定了函数z=f(x,y),求.正确答案:在2sin(x+2y一3z)=x+2y一3z两边对x求导,则有2cos(x+2y —3z).,整理得.同理,由2cos(x+2y一3z),得=1.也可使用公式法求解:记F(x,y,z)=2sin(x+2y一3z)一x一2y+3z,则Fx=2cos(x+2y一3z).(一3)+3,Fy=2cos(x+2y一3z).2—2,Fx=2cos(x+2y一3z)一1,故=1.涉及知识点:多元函数积分学25.设μ=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.正确答案:.方程exy一y=0两边关于x求导,有exy,方程ez一xz=0两边关于x求导,有ez,由上式可得.涉及知识点:多元函数积分学26.设z=μ2ν一μν2,而μ=xcosy,ν=xsiny,求.正确答案:由于所以=(2μν一ν2)cosy+(μ2一2μν)siny=(2x2cosysiny—x2sin2y)cosy+(x2cos2y一2x2cosysiny)siny=2x2sinycos2y—x2sin2ycosy+x2sinycos2y一2x2sin2ycosy=3x2sinycosy(cosy—siny).=(2μν一ν2)(一xsiny)+(μ2一2μν)xcosy=(2x2cosysiny—x2sin2y)(一xsiny)+(x2cos2y一2x2cosysiny)xcosy=一2x3sinycosy(siny+cosy)+x3(siny+cosy)(sin2y—sinycosy+cos2y)=x3(siny+cosy)(1—3sinycosy).涉及知识点:多元函数积分学27.设f(x—y,x+y)=x2一y2,证明=x+y.正确答案:f(x—y,x+y)=x2一y2=(x+y)(x—y),故f(x,y)=xy.=x+y.涉及知识点:多元函数积分学28.设函数z(x,y)由方程=0所确定,证明:=z —xy.正确答案:涉及知识点:多元函数积分学29.求曲面ez一z+xy=3过点(2,1,0)的切平面及法线.正确答案:设F(x,y,z)=ez一z+xy一3则Fx=y,Fy=x,Fz=ez一1,所以切平面的法向量为n=(1,2,0).所求切平面为x一2+2(y一1)=0,即x+2y一4=0,法线为.涉及知识点:多元函数积分学30.求椭球面x2+2y2+3z2=21上某点M处的切平面π的方程,且π过已知直线L:.正确答案:令F(x,y,z)=x2+2y2+3z2一21,则Fx’=2x,Fy’=4y,Fz’=6z.椭球面的点M(x0,y0,z0)处的切平面π的方程为2x0(x—x0)+4y0(y—y0)+6z0(z—z0)=0,即x0x+2y0y+3z0z=21.因为平面π过直线L上任意两点,比如点应满足π的方程,代入有6x0+6y0+z0=21,z0=2.又因为x02+2y02+3z02=21,解上面方程有:x0=3,y0=0,z0=2及x0=1,y0=2,z0=2.故所求切平面的方程为x+2z=7和x+4y+6z=21.涉及知识点:多元函数积分学31.求旋转抛物面z=x2+y2一1在点(2,1,4)处的切平面及法线方程.正确答案:F(x,y,z)=x2+y2一z一1,n|(2,1,4)=(2x,2y,一1)|(2,1,4)=(4,2,一1).切平面方程为4(x一2)+2(y一1)一(z一4)=0,即4x+2y一z—6=0.法线方程为.涉及知识点:多元函数积分学32.确定函数f(x,y)=3axy—x3一y3(a>0)的极值点.正确答案:=0,联立有解得x=y=a或x=y=0,在(0,0)点,△>0,所以(0,0)不是极值点.在(a,a)点,△<0,且=-6a <0(a>0),故(a,a)是极大值点.涉及知识点:多元函数积分学33.某工厂建一排污无盖的长方体,其体积为V,底面每平方米造价为a 元,侧面每平方米造价为b元,为使其造价最低,其长、宽、高各应为多少?正确答案:设长方体的长、宽分别为x,y,则高为,又设造价为z,由题意可得z=axy+2b(x+y)(x>0,y>0),由于实际问题可知造价一定存在最小值,故x=y=就是使造价最小的取值,此时高为.所以,排污无盖的长方体的长、宽、高分别为时,工程造价最低.涉及知识点:多元函数积分学。

考研数学一(多元函数微分学)模拟试卷3(题后含答案及解析)

考研数学一(多元函数微分学)模拟试卷3(题后含答案及解析)

考研数学一(多元函数微分学)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设函数f(x,y)在点(0,0)附近有定义,且f’x(0,0)=3,f’y(0,0)=1,则( )A.dz|(0,0)=3dx+dy.B.曲面z=f(x,y)在点(0,0,f(0,0))处的法向量为{3,1,1}.C.曲线,在点(0,0,f(0,0))处的切向量为{1,0,3}.D.曲线,在点(0,0,f(0,0))处的切向量为{3,0,1}.正确答案:C解析:化曲线则该曲线在点(0,0,f(0,0))处的切向量为{1,0,f’x(0,0)}={1,0,3},故选C.知识模块:多元函数微分学2.已知fx(x0,y0)存在,则=( )A.fx(x0,y0).B.0.C.2fx(x0,y0).D.fx(x0,y0).正确答案:C解析:故选C.知识模块:多元函数微分学3.设f(x,y)=则f(x,y)在点(0,0)处( )A.两个偏导数都不存在.B.两个偏导数存在但不可微.C.偏导数连续.D.可微但偏导数不连续.正确答案:B解析:由偏导数定义,有故f(x,y)在(0,0)点不可微.应选B.知识模块:多元函数微分学4.已知为某二元函数u(x,y)的全微分,则a等于( )A.0.B.2.C.1.D.一1.正确答案:B解析:知识模块:多元函数微分学5.函数f(x,y)在(0,0)点可微的充分条件是( )A.B.C.D.正确答案:D解析:可知,f(x,y)的两个一阶偏导数fx(x,y)和fy(x,y)在(0,0)点可微,故选D.知识模块:多元函数微分学6.设z=则该函数在点(0,0)处( )A.不连续.B.连续但偏导数不存在.C.连续且偏导数存在但不可微.D.可微.正确答案:C解析:存在,即x(x,y)在点(0,0)不可微,故选C.知识模块:多元函数微分学填空题7.设f(x,y,z)=ex+y2z,其中z=Z(x,y)是由方程x+y+z+xyz=0所确定的隐函数,则f’x(0,1,一1)=_________.正确答案:1解析:已知f(x,y,z)=ex+y2z,那么有f’x(x,y,z)=ex+y2z’x.在等式x+y+z+xyz=0两端对x求偏导可得1+z’x+yz+xyz’x=0.由z=0,y=1,z=一1,可得z’x=0.故f’x(0,1,一1)=e0=1.知识模块:多元函数微分学8.设f(x,y)=在点(0,0)处连续,则a=_________.正确答案:0解析:因为知识模块:多元函数微分学9.设z==_________.正确答案:解析:知识模块:多元函数微分学10.设f(x,y)=,则f’x(1,0)=_________.正确答案:2解析:由题干可知f(x,0)=x2,那么f’x(x,0)=2x.故f’x(1,0)=2x|x=1=2.知识模块:多元函数微分学11.设z=z(x,y)由方程z+e2=xy2所确定,则dz=_________.正确答案:(y2dx+2xydy)解析:知识模块:多元函数微分学12.设函数f(u)可微,则f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=_________.正确答案:4(dx+dy)解析:由题干可知,dz=f’(x2+y2)(2xdx+2ydy),则dz|(1,1)=f’(2)(2dx+2dy)=4(dx+dy).知识模块:多元函数微分学13.设f(u,v)为二元可微函数,z=f(xy,yx),则=_________.正确答案:f’1.yxy—1+f’2.yxlny解析:利用复合函数求偏导的公式,有=f’1.yxy—1+f’2.yxlny。

考研数学一(多元函数积分学)模拟试卷1(题后含答案及解析)

考研数学一(多元函数积分学)模拟试卷1(题后含答案及解析)

考研数学一(多元函数积分学)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设有直线及平由:4x-2y+z-2=0,则直线LA.平行于.B.在上.C.垂直于.D.与斜交.正确答案:C 涉及知识点:多元函数积分学2.如果函数f(x,y)在(0,0)处连续,那么下列命题正确的是A.若极限存在,则f(x,y)在(0,0)处可微.B.若极限存在,则f(x,y)在(0,0)处可微.C.若f(x,y)在(0,0)处可微,则极限存在.D.若f(x,y)在(0,0)处可微,则极限存在.正确答案:B 涉及知识点:多元函数积分学3.二元函数在点(0,0)处A.连续,偏导数存在.B.连续,偏导数不存在.C.不连续,偏导数存在.D.不连续,偏导数不存在.正确答案:C 涉及知识点:多元函数积分学4.设函数,其中函数φ具有二阶导数,ψ具有一阶导数,则必有A.B.C.D.正确答案:B解析:知识模块:多元函数积分学5.设函数z=z(x,y)由方程确定,其中F为可微甬数,且F2’≠0,则=_______.A.xB.zC.-xD.-z正确答案:B解析:知识模块:多元函数积分学6.函数在点(0,1)处的梯度等于A.iB.-iC.jD.-j正确答案:A解析:知识模块:多元函数积分学7.设生产函数为Q=ALαKβ,其巾Q是产出量,L是劳动投入量,K是资本投入量,而A、α、β均为大于零的参数,则Q=1时K关于L的弹性为________.正确答案:-α/β涉及知识点:多元函数积分学填空题8.设函数则=_________.正确答案:4.解析:知识模块:多元函数积分学9.设u=e-xsin(x/y),则在点(2,1/π)处的值为_________.正确答案:π2/e2.解析:知识模块:多元函数积分学10.设函数f(μ,ν)具有二阶连续偏导数,z=f(x,xy),则=__________.正确答案:f12”x+f22”.xy+f2’.解析:知识模块:多元函数积分学11.设函数μ(x,y,z)=1+x2/6+y2/12+z2/18,单位向量则=___________.正确答案:解析:知识模块:多元函数积分学12.=_______.正确答案:i+j+K解析:知识模块:多元函数积分学13.曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.正确答案:(x-1)/1=(y+2)/(-4)=(z-2)/6.解析:即求曲面S:x2+2y2+3z2=21上过点Mo(1,-2,2),以S在Mo的法向量n为方向向量的直线.令F(x,y,z)=x2+2y2+3z2-21,S的方程为F(x,y,z)=0,则S在Mo的法向量={2x,4y,6z}丨Mo=2{1,-4,6}.于是S在Mo点的法线方程为. 知识模块:多元函数积分学14.曲面z=x2+y2与平面2z+4y-z=0平行的切平面方程是___________.正确答案:2x+4y-z=5.解析:曲面在任意点P(x,y,z)处的法向量n={2x,2y,-1},n与平面2x+4y-z=0的法向量n0={2,4,-1}平行n=λn0,λ为某常数,即2x=2λ,2y=4λ,-1=-λ.从而x=1,y=2,又点P在曲面上z=(x2+y2)丨(1,2)=5 P点处的n={2,4,-1}.因此所求切平面方程是2(x-1)+4(y-2)-(z-5)=0,即2x+4y-z=5.知识模块:多元函数积分学解答题解答应写出文字说明、证明过程或演算步骤。

考研数学一(多元函数积分学)模拟试卷2(题后含答案及解析)

考研数学一(多元函数积分学)模拟试卷2(题后含答案及解析)

考研数学一(多元函数积分学)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.已知函数f(x,y)在点(0,0)某邻域内连续,且则A.点(0,0)不是.f(x,y)的极值点.B.点(0,0)是f(x,y)的极大值点.C.点(0,0)是f(x,y)的极小值点.D.根据所给条件无法判断点(0,0)是否为f(x,y)的极值点.正确答案:A 涉及知识点:多元函数积分学2.如图,正方形{(x,y)丨丨x丨≤1,丨y丨≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik={Ik} =A.I1B.I2C.I3D.I4正确答案:A 涉及知识点:多元函数积分学3.设,其中D=丨(x,y)丨x2+y2≤1},则A.I3>I2>I1.B.I1>I2>I3.C.I2>I1>I3.D.I3>I1>I2.正确答案:A 涉及知识点:多元函数积分学4.设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有A.B.C.D.正确答案:C 涉及知识点:多元函数积分学5.设有空间区域Ω1:x2+y2+z2≤R2,z≥0及Ω2:x2+y2+z2≤R2,x≥0,y≥0,z≥0,则正确的是A.B.C.D.正确答案:C 涉及知识点:多元函数积分学6.设f(x,y)为连续函数,则等于A.B.C.D.正确答案:C 涉及知识点:多元函数积分学7.设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是A.B.C.D.正确答案:B 涉及知识点:多元函数积分学填空题8.交换二次积分的积分次序:=_________.正确答案:涉及知识点:多元函数积分学9.设函数f(x)在[0,1]上连续且,则=_________.正确答案:1/2A2 涉及知识点:多元函数积分学10.计算二重积分=_________.正确答案:e-1. 涉及知识点:多元函数积分学11.设区域D={(x,y)丨x2+y2≤1,x≥0}二重积分=__________.正确答案:(π/2)ln2 涉及知识点:多元函数积分学12.设L为椭圆x2/4+y2/3=1,其周长为a,则(2xy+3x2+4y2)ds=__________.正确答案:12a解析:原式=(3x2+4y2)ds=12a. 知识模块:多元函数积分学13.其中a,b为正的常数,L为从点A(2a,0)沿曲线到点O(0,0)的弧I=___________.正确答案:(a2/2)[π(b-a)+4b]. 涉及知识点:多元函数积分学14.计算曲线积分+2(x2-1)ydy,L是曲线y=sinx上从点(0,0)到点(π,0)的一段I=___________..正确答案:-π2/2解析:知识模块:多元函数积分学15.已知曲线L的方程为y=1-丨x 丨(x∈[-1,1]),起点是(-1,0),终点为(1,0),则曲线积分+x2dy=_________.正确答案:0解析:知识模块:多元函数积分学16.已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段.计算曲线积分3x2ydx+(x3+x-2y)dy=_________.正确答案:(π/2)-4 涉及知识点:多元函数积分学解答题解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章多元函数微分学[单选题]1、设积分域在D由直线x+y二0所围成,则| dxdy 如图:[单选题]2、A 9B、4C 3【从题库收藏夹删除】【正确答案】A 【您的答案】您未答题 【答案解析】[单选题]3、 设H 二才,则y=()A V皿2-1)B 、xQnx-1)D【从题库收藏夹删除】【正确答案】C 【您的答案】您未答题 【答案解析】首先设出-,J'二一;,然后求出最后结果中把二】用’’次方代换一下就可以得到结果.[单选题]4、Ft F'y,尸空二dx F f y[% I设Z =则去九£ |()km ,(心+& J D )L 『(也几)AK^*°A'X«■【从题库收藏夹删除】【正确答案】D 【您的答案】您未答题【答案解析】本题直接根据偏导数定义得到[单选题]5、 设z=ln (x+弄),示=()A1B 、X+旷"C1-2妒盂+沙DX + 帘一"【从题库收藏夹删除】 【正确答案】A 【您的答案】您未答题 【答案解析】B 、 lim U m/侃+山+ 3) — / (险用)Ay了0+山』0)—/(兀几)Arlim /(x+Ax.y)-/^)4y|"S 1 I对x求导,将y看做常数,小门•八[单选题]6、设U 了:,;_丁;:£=()【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】<■■-?■■■■■:川[单选题]7、设f(x r x+y) = ^ + x2t则£0,卩)+ £(尽刃二()A丨;B、…C :D ',【从题库收藏夹删除】【正确答案】B【您的答案】您未答题【答案解析】f(x,兀+y)=砂+ F二疏》+兀)/fcy) = ^yX '(^y)=y二兀£(2)+另(“)=曲[单选题]81,ln(x+y)20》x+》21.综上满足:盘+”1[单选题] 9、函数 的定义域为().少(兀+卩);::x F+丿()•B 、D【从题库收藏夹删除】【正确答案 【您的答案OOA您未答题【答案解析1 1-+-lim —3 -- :—7 = 1 im ——— - 0 心卩齐_砂+尹 gw 兀 y尸2 』 / 尸於一 —]+_一7 x[单选题] 10、()•0宀 2护X + (”In X-2芒)妙(y*" - 2侣)矽+ (H In 兀-—2」壬)必【从题库收藏夹删除】【正确答案】D【您的答案】您未答题【答案解析】鸣刁严-F 工=j/lnx-£dz - 3/" -”必 + (疋 In z-[单选题] 11、dz1-^'【从题库收藏夹删除】【正确答案】B 【您的答案】您未答题 【答案解析】方程B 、 C与必+ (#阮—函数'■ - 一 I'"的确定的隐函数,贝U 一()•2z口B、” y左右两边求导,dx dx__ -2zdx/-I12、 设Z = X +丿,则在(0,0)处().取得极大值无极值无法判定是否取得极值 【从题库收藏夹删除】 【正确答案】B 【您的答案】您未答题 【答案解析】小务S 釜二心齐2’【从题库收藏夹删除】【正确答案一+ X) — —八)——2&2 — 2/ — 2砂,+ 2”(/+丹B 、 取得极小值B 2-AC<Q t A>0,故取得极小值[单选题] 13、,则【您的答案您未答题【答案解析7矽B、[单选题]14、dz __ 设z=xA2/y,x=v-2u,y=u+2v ,则J ()2(u - 2v)(u- 3v)A、「(K-2V)(K-3V)B、(加+巧2~)(卄刘C(2#+制(u -2vJ(u+邵)(2u+v)3【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】炭边3兀龛创2A D z z . * 2x(y-7^)—二------ H ---- - -- 1+( ----- 7)- J — ---- 母 -- dv dx dy y y2y2_ 2(v~ 2u)(v+ - V - 2u)) _ 2(y - 2u)(v + 3u)(2V+LT)3[单选题](2v+u)15、设函数z=ln(x2+y2),则=()如)B、—:x-yD J - /【从题库收藏夹删除】【正确答案】A【您的答案】您未答题【答案解析】& 2x & 2y 5c & 2y 2x 2x + 2y 2(x+y) -- • = —: - - = ---- - ;—1 + = ---------------- = ----- =3K F+y3®5?+『’曲勿x2 + y3x2 + y3启+『x3 + y3[单选题]16、设函数,则汕忙丿=().1A、」IzTB、.'■1C、1D、1【从题库收藏夹删除】【正确答案】C【您的答案】您未答题【答案解析】参见教材P178〜179。

(2014年4月真题)[单选题]dz =17、设函数z = xe y,则全微分(2」)()A、edx + 2edyB、2edx + edyc、edx +2dyD、2dx + edy【从题库收藏夹删除】【正确答案】Adz ])= 耳&+?妙=”必-i ■汐&7=孕必 + 2叙F 因此选择A • 参见教材 P190。

( 2014年10月真题) [单选题]/(x f y) = Jxsin-18、设函数X ,则偏导数-1 B 、0D 2【从题库收藏夹删除】【正确答案】C 【您的答案】您未答题[单选题] 19、A 、6+@ B 、6+舁【从题库收藏夹删除】【正确答案】A 【您的答案】您未答题 【答案解析】【您的答案】您未答题 【答案解析】 【答案解析】9/|cos 0 r因此可得(也] J参见教材 P183。

设函数几丿)也+拓'+扎卫2,叽df\(me 二2补用日+込 y/(2,l>4+e+2 = 6+e参见教材P178。

A 4ln2+4【从题库收藏夹删除】A您未答题导数 <仙"+2%27+41112.-— _________________________________________________ 1 M F设函数z二亟;丑,则亦= ________________ 【从题库收藏夹删除】【正确答案】?[sin(i-y)-costx-j/)]【您的答案】您未答题—=尹 $in(jf-y)+" cos(x-y) ■ (-1) = [sm(x- y) - cos(x - y)]【答案解析:]7-[解答题] 22、[单选题]20、设函数"硼2巴则偏导数拙8y【正确答案】 【您的答案】【答案解析】材 P182。

[解答题] 21、 参见教B 、4ln2 - 4计算二重和分I=||xdxdy*其中区域D由曲线y = F及直线."围感.0^ i【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]23、设某企业生产一定量的某产品时可用两种原料,第一种为x (千吨),第二种为y (千吨),其电能消耗量N (万度)与两种原料使用量的关系为^=r J + 2r/+2j3 -4x-6j+105问如何使用两种原料方可使电能消耗达到最低,并求此时的最低能耗. 【从题库收藏夹删除】【正确答案】—= 2x + 2y-47—=2X+47-6Sr 別—= + = —= 2x+4j-6 = 0令:i有x+y = 2/+2y = \ x = l监二100【您的答案】您未答题[解答题]24、设函数z=z (x, y )是由方程x+yz-ln(x+z)=O 所确定的隐函数,求"【从题库收藏夹删除】【正确答案】令歹(兀X?)=兀+尹一1班工+刃用二1-丄禺"尼弋--—JC+Z x+z1 _L则—兀+―—兀+"1徐眄1刃+W-1x + zdz _ 艮;_ z _ z(x+z) 创F;_ 1刃+w-lx+zx+z-1 z(z+z)dz=--------------- d x — ----------- dys yx + yz-} yx + yz-A【您的答案】您未答题[解答题]25、计算二重积分】=0朋+屮)肚切其中D是由直銭31=0,萝=0及梵+y=?所围底的闭区域-【从题库收藏夹删除】D32326、 y =081T【正确答案】【您的答案】您未答题[解答题] 2 2求函数_在点(2,1 )当1 . =0.1 , 0=— 0.2时的全增量和全微分当」]=0.1,二一时,点(2,1)变为(2.1,0.8),所以z 的全增量为丄—--——.:一 -亠「又有:所以「一丄一一 1丄二二---:-【从题库收藏夹删除】z(21).8)=4168【正确答案】2 2z(2,1)=2 X 1+1=5x+y = 3心 必f \(x 2+y 2)dy-6x) dx 二 f (3x - x 3)卜5处=卜(3一屮+£二 L (4兀,十— 6工* 一* ( — 3x 2 +2x 3)tfx= I (― — x* +6兀'—9x 2+9x)tix 4 x 5 , x + A x 3 9 = -—x 6x 9x — + —x'3 5 43 2z ;二寻二加巧二畚二2 +2*2 /3-JTf 3二兀Jo Q(9+丈71-T血二些次+冬妙対4X CU+6X(-0-2)=-08扳dy【您的答案】您未答题[解答题]27、某工厂生产A B两种产品的联合成本函数为 C = 45乙+才直,需求函数『卫=羽1加q丄=45-囲其中P八%q『你分别是」,两种产品的价格和需求量,两种产品各生产多少时利润最大?【从题库收藏夹删除】【正确答案】解析:£二戸£0虫+歹凶占一c二=(30-几)^+(45-九)^-(4 5九+3几)二观卫-几- 4 5几+45务-几- ?几,务=30-迅-9/0,务=45-讥-6处皿令:」“二:解得你=2纸=3,由题意,最大利润一定存在,又函数在定义域内只有惟一驻点^因此,当qn = 2,心二3,即生产2个单位A种产品3个单位E种产品时获利最大【您的答案】您未答题[解答题]2&设隐函数z=z (x,y)由方程e x+y sin (x+z)=0确定,求d乙【从题库收藏夹删除】dx + yyx=0 DIfdxT :叽:一 tan(x + z)]妙|j^y = J :w"妙【正确答案】【您的答案】您未答题[解答题][[29、计算1其中D : y=x , y=1, y 轴所围区域【您的答案】您未答题[解答题]r y【从题库收藏夹删除】【正确答案】•/ D : 0<y < 1, 0< x <y30、设D 为xoy 平面上由x=0 , 所围成的平面区域,试求=6解出所以占二右两端对X 求导得到e x+y sin(x+z)+严cos(x4- zXl + —) Sc 左右两端对 y 求导l&Sl ^+y sm(x+ z) +cos(x+ z)~.,解出—=-tan(x + z) -1—=-tan (龙 + z)ay则(x+ )dx13【从题库收藏夹删除】【正确答案】11 sm —dxdy = |:如y〔气心0L 呻齐字一呻如纠5仇X y21T 2=0一呵)妇典一 i 严5尹吧挣如二远+匸[沁刃:二辺+618 2 ; 8 2[解答题]【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]32、设D 是由直线y=x, y=2x 及y=2所围成的区域,试求 【从题库收藏夹删除】【正确答案】【您的答案】您未答题[解答题]【您的答案】您未答题31、设 z=ln 2x1+ ’- =dx1 —— ------ ■ ------ ----- — — ■ ------ ——2 QJJ* +宀诫妙.1苗cos(x+2y-3z)丰-,求一29y【从题库收藏夹删除】【正确答案】令 F(x f y,z) = 2 5111(^+27-3z)- x-2y+3z,3F dF则一=-2+4 cos(x +2y - 3z),—二 3-6cos(x+^y- 3z) dy 龛fe - 2+4cos(x+2j/-3z)2:-4cos(x+2y-3z} 莎3-6cos(jr +2y- 3z)3-6cos(^ + 2y- 3z)=2/3.【您的答案】您未答题[解答题]34、设D 是由直线y=2,y=x 及y=2x 所围成的区域,计算二重积分心|| (*十八机越【从题库收藏夹删除】【正确答案】35、设z=z(x , y)是由方程z 3-3xyz-1=0所确定的隐函数,求偏导数'’八. 【从题库收藏夹删除】【正确答案】/ z)-z 5- 3xyz - 1F ;(xj,z)二-3yz F ;(和⑵=-加 %沖)二 3z 2- 3砂33、设z=z (x,y )是由方程2妙(x+2y ■②二;所确定的隐函数,并设2 X .(-2X叩P 3妙--r3^3+ V--22y £_24_/一2-<2n【您的答案】您未答题[解答题]dz F*(x t y t z ) -3yz yz— — 二—4 ------------- ~ _ 扳 £(刊,勿3z 2 - 3砂/ -矽dz 町(x,”z) - 3xz xz ¥_ ^(w)_产云_尹_小【您的答案】您未答题[解答题] 36、,其中D 是由直线y=2x , x=l 及曲线y=x 2围成的平面区域.as 24 图1-忙,-2 q l r + =.A -—1 5 0 一 ~2 6」【您的答案】您未答题[解答题]Z- = 3?^+-37、求函数【从题库收藏夹删除】【正确答案dz - (6砂+丄)必+ (3『-刍)莎y y【您的答案 】您未答题【答案解析丘社®L + H 社6卩+丄y y计算二重积分【从题库收藏夹删除】【正确答案】X的全微分dz .旋二町必+兮0二(6耶+丄)必+ (卵-£■呛y y参见教材P190 .(2015年4月真题)[解答题] 38、设z= z (x, y)是由方程z= e"-3z+ 2y所确定的隐函数,求偏导数【从题库收藏夹删除】dx~2【正确答案】沪亠+1【您的答案】您未答题【答案解析】令 F (x, y, z) = e2x一3z+ 2y —z,则E佃力-先匸4(2刃J-(勿J =加怎弓乡二(严益)丿+(2几」⑵十2 巧1=(戶云)±'+ (2y)丿一⑵盘'=一3評仏一 1 从而39、1=\\^dxd y计算二重积分,其中D是由直线x= 1、x= 2及y= 1、区域.y|2 ________]W■ 1 11 1m1 2 x 【从题库收藏夹删除】dz dz站砂y= 2所围成的平面7【正确答案】 「【您的答案】您未答题【答案解析】由图可以看出x 的取值范围为 K X < 2; y 的取值范围为1 < y < 2. 二重积分可以化为2/ = |J —必妙 D y1.2 71 = 6 参见教材 P207〜212.( 2015年4月真题)[解答题],其中D 是由直线y = x , y = 1及x = 5所围成的平面区域,如图所示.由图可以看出X 的取值范围为 K X < 5重积分可以化为7 '= 3X(_?40、计算二重积分~0\\5~ 【从题库收藏夹删除】【正确答案】4 【您的答案】您未答题【答案解析】=P[-!—xflnr-lnl)Wr 刃lnr= ^l£fc = 5-l = 4参见教材P207〜212。

相关文档
最新文档