沥青动力黏度试验报告(真空减压毛细血管法)
沥青动力黏度试验真空减压毛细管法方法
真空减压系统
应能使真空度达到40kpa±66.5pa(300mmHg±0.5mmHg)的压力,各连接处不得漏气,以保证密闭,在开启毛细管减压阀进行测定时,应不得产生水银柱降低情况。在开口端连接水银压力计,可读至133Pa(1mmHg)的刻度,用真空泵或吸气泵抽真空
5
秒表
2个,分度0.1s,总量程15min的误差不大于±0.025%
6
烘箱
有自动温度控制器
7
溶剂
三氯乙烯
8
其他
洗剂、蒸馏水等
4.1试验仪器及材料
4.2试样制备
4.2.1估计试样的粘度,根据试样流经规定体积的时间在60s以上,来选择真空毛细管粘度计的型号。
4.2.2将真空毛细管粘度计用三氯乙烯等溶剂洗涤干净。如粘度计粘有油污,可用洗液、蒸馏水等仔细洗涤。洗涤后置烘箱中烘干或用通过棉花的热空气的热空气吹干。
7.试验报告:
试验报告应包括内容:
①检测项目名称;②原材料的品种、规格和产地;③试验日期及时间;④仪器设备名称、型号及编号;⑤试验结果;⑥执行标准;⑦要说明的其他内容。
8.试验注意事项:
8.12011版中试验仪器和操作步骤与2000版标准有所不同,应注意区分,勿沿用老标准;
8.2非经注明,试验温度为60℃,真空度为40kPa;
4.2.3按本规程T 0602准备沥青试样,将脱水过筛的试样仔细加热至充分流动状态。在加热时,予以适当搅拌,以保证加热均匀,然后将试样倾入另一个便于灌入毛细管的小盛样器中,数量约为50ml,并用盖盖好。
4.2.4将水槽加热,并调节恒温在60℃±0.1℃范围以内,温度计应预先校验。
4.2.5将选用的真空毛细管粘度计和试样置烘箱(135℃±5℃)中加热30min。
沥青动力黏度试验仪检定规程
沥青动力黏度试验仪检定规程1 范围本规程适用于真空减压毛细管法沥青动力黏度试验仪的首次检定、后续检定和使用中检查。
2 引用文件JJG155 工作毛细管黏度计检定规程JTG E20-2011 公路工程沥青及沥青混合料试验规程凡是注日期的引用文件,仅注日期的版本适用于本规程;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规程。
3 概述沥青动力黏度试验仪(以下简称试验仪)主要由真空减压毛细管黏度计、恒温水浴、真空系统、计时器组成,通过测定一定体积的沥青流过毛细管黏度计所用的时间,按照公式(1)计算得到沥青动力黏度。
ηt=k·t(1)式中:ηt——沥青动力黏度,Pa·s;k——所选用的毛细管黏度计常数,Pa·s/s;t——沥青流过毛细管黏度计使用时间。
注:试验仪所用真空减压毛细管黏度计样式,详见附录C、D、E。
4 术语和定义沥青asphalt(bitumen)暗褐色至黑色的、可溶于苯或二硫化碳等溶剂的固体或半固体有机物质,是自然界中天然存在的或是从原油经蒸馏得到的残渣。
黏度viscosity流体流动时内摩擦力的量度,黏度值随温度的升高而降低。
动力黏度dynamic viscosity表示液体在一定剪切应力下流动时内摩擦力的量度。
其值为所加于流动液体的剪切应力和剪切速率之比,用帕[斯卡]秒(Pa·s)表示。
运动黏度kinematic viscosity表示液体在重力作用下流动时内摩擦力的量度,其值为相同温度下液体的动力黏度与其密度之比,以平方米/秒(m2/s)表示。
真空毛细管法黏度viscosity of vacuum capillary在规定温度和真空度的条件下,采用毛细管黏度计对沥青所测得的动力黏度。
5 计量性能要求5.1 真空度试验仪真空度最大允许误差应满足表1的要求。
表1 真空度最大允许误差5.2 恒温水浴试验仪恒温水浴控温最大允许误差应满足表2的要求。
沥青动力粘度计使用说明书
沥青动力粘度计使用说明书一、沥青动力粘度计适用范围SYD-0620沥青动力粘度计适用于真空减压毛细管粘度计测定粘稠石油沥青的动力粘度。
非经注明,试验温度为60℃,真空度为40kPa。
好仪器,好资料,尽在沧州建仪()。
欢迎到网站查询可编辑版本。
打造中国建仪销售第一品牌,树立沧州产品全新形象二、沥青动力粘度计主要特点:1、高精度智能表控温,温度更准确。
2、循环水泵控制水循环。
3、控温范围:室温-90℃4、设有电子记时器。
5、设有冷光照明。
三、沥青动力粘度计主要技术参数:1、控温范围:0.00℃~100.00℃;2、控温精度:±0.01℃;3、使用压力(真空度):300mmHg±0.5mmHg;4、计时范围:0.0s~9999.9s;5、测量范围:约18 Pa.s~580000Pa.s;6.外形尺寸:780x520x940mm7.重量:71KG8.电源电压:220v四、沥青动力粘度计使用方法和注意事项1、本试验仪水平放置于工作台面上,室温0-30℃,相对湿度不超过80%,无震动,无腐蚀性气体,且有良好的接地保护。
2、使用前,先在恒温水浴内注入清纯的自来水,水位高度约为离上平面15mm,用随机软管把两台仪器连接成一体。
3、把两台仪器都查上电源(220V,50Hz),先启动恒温水浴部分的电源开关,按照温度控制器的使用说明书调节温度到所需要的值,启动加热和搅拌开关,经过一段时间后,就能大到所需的温度值。
4、设置好恒温水浴部分后,然后开启真空度控制部分的电源开关。
当电源开关打开后,真空泵直接开始工作,使用者可根据真空表说明书设定真空度(一般情况下,出厂时已经为用户进行了设置,不需要新设置)。
根据表上的数值,慢慢地用调压阀调节真空度,这个过程须经过几次反复。
(此时必须关闭连接毛细管的阀门)。
5、试验过程中,打开照明开关,以便清晰观察整个试验过程五、沥青动力粘度计实验步骤1.将加热的粘度计置一个容器中,然后将热沥青试样自装料管A注入毛细管粘度计。
沥青粘度试验记录表(改)
公司
沥青粘度试验记录表
编号: 第 页 共 页
原始记录第 版。
任务单号 样品编号 样品描述 试验标准 JTG E20-2011
试验方法
见表
收样日期 试验日期 试验仪器
毛细管粘度计( )、真空减压毛细管粘度计( )道路沥青标准粘度计( )
试验环境
沥青运动粘度试验(毛细管法)(T0619-2011)
试验编号 试
验温度(
℃) 毛细管号 C 球的粘
度计标定常数
C c (mm 2
/s ) J 球的粘度计标定常数
C j (mm 2
/s ) 试样流经C 球的时间t c (s) 试样流经J 球的时间tj(s)
经C 球的
运动粘
度γc (mm 2
/s) 经J 球的
运动粘
度γ
j (mm 2
/s) 运动粘度
γT (mm 2
/s)
备注
单值
平均值
沥青动力粘度试验(真空减压毛细管法)(T0620-2000)
试验编号 试验温度(℃) 毛细管号
第一对超过60s 的一
对标线间的粘度计常数K(Pa.s/s)
通过第一对超过60s 的标线的时间间隔t (s )
动力粘度 η(Pa.s ) 备注
单值
均值
沥青标准粘度试验(道路沥青标准黏度计法)(T0621-1993)
试验编
号
试验温度(℃)
流孔孔径(mm ) 试样流出50ml 所
经过的时间t(s) 试验编号
试验温度(℃) 流孔孔
径(mm )
试样流出50ml 所经
过的时间t(s) 备注
单值
均值
单值
均值
试验: 记录: 复核:。
真空减压毛细管法)试验说明
沥青动力粘度计(真空减压毛细管法)试验说明沥青动力粘度计准备工作估计试样的粘度,根据试样流经规定体积的时间在60s以上,来选择真空毛细管粘度计的型号。
将真空毛细管粘度计用三氯乙烯等溶剂洗涤干净。
如粘度计有油污,可用洗液、蒸馏水等仔细洗涤。
洗涤后置烘箱中烘干或用通过棉花的热空气吹干。
按本规程T0602准备沥青试样,将脱水过筛的试样仔细加热至充分流动状态。
在加热时,予以适当搅拌,以保证加热均匀。
然后将试样倾入另一个便于灌入毛细管的小盛样器中,数量均为50ml,并用盖盖好。
将水槽加热,并调节恒温在60℃±0.1℃范围之内,温度计应预先校验。
将选用的真空毛细管粘度计和试样置烘箱(135℃±5℃)中加热30min。
沥青动力粘度计实验步骤将加热的粘度计置一个容器中,然后将热沥青试样自装料管A注入毛细管粘度计,试样应不致粘在管壁上,并使试样液面在E标线处±2mm之内。
将装好试样的毛细管粘度计放回电烘箱(135℃±5.5℃)中,保温10min±2min,以使管中试样所产生气泡逸出。
从烘箱中取出3只毛细管粘度计,在室温条件下冷你却2min后,安装在保持试验温度的恒温水槽中,其位置应使I标线在水槽液面以下至少为20mm.。
自烘箱中取出粘度计,至装好放入恒温水槽的1 目的与适用范围本方法适用于真空减压毛细管粘度计测定粘稠石油沥青的动力粘度。
非经注明,试验温度为60℃,真空度为40kPa。
沥青动力粘度计仪具与材料 1 真空减压毛细管粘度计:一组3支毛细管,式毛细管的形状见图1,型号和尺寸见表1。
2 温度计:50℃~100℃,分度为0.1℃. 3 恒温水槽:硬玻璃制,其高度需使粘度计置入时,最高一条时间标线在液面下至少为20mm,内设有加热和温度自动控制器,能使水温保持在试验温度0.1℃,并有搅拌器及夹持设备。
水槽中不同位置的温度差不得大于0.1℃。
保温装置的控温精密度宜达到0.1℃。
ASTM D 2171-01用真空毛细管粘度计测定沥青粘度的标准试验方法
Designation:D2171–016.1.3Modified Koppers Vacuum Viscometer(MKVV),as described in Appendix X3.Calibrated viscometers are avail-able from commercial suppliers.Details regarding calibration of viscometers are given in Appendix X4.N OTE3—The viscosity measured in a CMVV may be from1to5% lower than either the AIVV or MKVV having the same viscosity range. This difference,when encountered,may be the result of non-Newtonian flow.46.2Thermometers—Calibrated liquid-in-glass thermom-eters(see Table X5.1)of an accuracy after correction of0.02°C (0.04°F)can be used or any other thermometric device of equal accuracy.ASTM Kinematic Viscosity Thermometers47°C and 47°F are suitable for the most commonly used temperature of 60°C(140°F).6.2.1The specified thermometers are standardized at“total immersion,”which means immersion to the top of the mercury column with the remainder of the stem and the expansion chamber at the top of the thermometer exposed to room temperature.The practice of completely submerging the ther-mometer is not recommended.When thermometers are com-pletely submerged,corrections for each individual thermom-eter based on calibration under conditions of complete submergence must be determined and applied.If the thermom-eter is completely submerged in the bath during use,the pressure of the gas in the expansion chamber will be higher or lower than during standardization,and may cause high or low readings on the thermometer.6.2.2It is essential that liquid-in-glass thermometers becalibrated periodically using the technique given in Test Method E77(see Appendix X5).6.3Bath—A bath suitable for immersion of the viscometer so that the liquid reservoir or the top of the capillary,whichever is uppermost,is at least20mm below the upper surface of the bath liquid and with provisions for visibility of the viscometer and the thermometer.Firm supports for the viscometer shall be provided.The efficiency of the stirring and the balance between heat losses and heat input must be such that the temperature of the bath medium does not vary by more than60.03°C (60.05°F)over the length of the viscometer,or from viscom-eter to viscometer in the various bath positions.6.4Vacuum System—A vacuum system5capable of main-taining a vacuum to within60.5mm of the desired level up to and including40.0kPa300mm Hg.The essential system is shown schematically in Fig. 1.Glass tubing of 6.35-mm (1⁄4-in.)inside diameter should be used,and all glass joints should be airtight so that when the system is closed,no loss of vacuum is indicated by the open-end mercury manometer having1-mm graduations.A vacuum or aspirator pump is suitable for the vacuum source.6.5Timer—A stop watch or other timing device graduated in divisions of0.1s or less and accurate to within0.05%when tested over intervals of not less than15min.6.6Electrical Timing Devices may be used only on electri-cal circuits,the frequencies of which are controlled to an accuracy of0.05%or better.6.6.1Alternating currents,the frequencies of which are intermittently and not continuously controlled,as provided by some public power systems,can cause large errors,particularly over short timing intervals,when used to actuate electrical timing devices.7.Sample Preparations7.1Heat the sample with care to prevent local overheating until it has become sufficientlyfluid to pour,occasionally stirring the sample to aid heat transfer and to assure uniformity.7.2Transfer a minimum of20mL into a suitable container and heat to13565.5°C(275610°F),stirring occasionally to prevent local overheating and taking care to avoid the entrap-ment of air.N OTE4—If it is suspected that the sample may contain solid material, strain the melted sample into the container through a No.50(300-µm) sieve conforming to No.50Specification E11.8.Procedure8.1The specific details of operation vary somewhat for the various types of viscometers.See the detailed descriptions of viscometers in Appendix X1-Appendix X3for instructions for using the type of viscometer selected.In all cases,however, follow the general procedure described in8.1.1-8.1.9.8.1.1Maintain the bath at the test temperature within6 0.03°C(0.05°F).Apply the necessary corrections,if any,to all thermometer readings.4Supporting data are available from ASTM Headquarters,100Barr Harbor Drive,West Conshohocken,PA19428-2959.Request RR:D04-1003.5The vacuum control system marketed by Cannon Instrument Co.,P.O.Box16, State College,PA16801,has been found satisfactory for thispurpose.FIG.1Suggested Vacuum System for Vacuum CapillaryViscometers8.1.2Select a clean,dry viscometer that will give a flow time greater than 60s,and preheat to 13565.5°C (275610°F).8.1.3Charge the viscometer by pouring the prepared sample to within 62mm of fill line E (Fig.2,Fig.3,and Fig.4).8.1.4Place the charged viscometer in an oven or bath maintained at 13565.5°C (275610°F)for a period of 1062min,to allow large air bubbles to escape.8.1.5Remove the viscometer from the oven or bath and,within 5min,insert the viscometer in a holder,and position the viscometer vertically in the bath so that the upper most timing mark is at least 20mm below the surface of the bath liquid.8.1.6Establish a 40.060.07kPa (30060.5mm Hg)vacuum below atmospheric pressure in the vacuum system and connect the vacuum system to the viscometer with the toggle valve or stopcock closed in the line leading to the viscometer.8.1.7After the viscometer has been in the bath for 3065min,start the flow of asphalt in the viscometer by opening the toggle valve or stopcock in the line leading to the vacuum system.8.1.8Measure to within 0.1s the time required for the leading edge of the meniscus to pass between successive pairs of timing marks.Report the first flow time which exceeds 60s between a pair of timing marks,noting the identification of the pair of timing marks.8.1.9Upon completion of the test,clean the viscometer thoroughly by several rinsings with an appropriate solvent completely miscible with the sample,followed by a completelyvolatile solvent.Dry the tube by passing a slow stream of filtered dry air through the capillary for 2min,or until the last trace of solvent is removed.Alternatively,the viscometer may be cleaned in a glass-cleaning oven,at a temperature not to exceed 500°C (932°F),followed by rinses with distilled or deionized water,residue-free acetone,and filtered dry air.Periodically clean the instrument with a strong acid cleaning solution to remove organic deposits,rinse thoroughly with distilled water and residue-free acetone,and dry with filtered dry air.8.1.9.1Chromic acid cleaning solution may be prepared by adding,with the usual precautions,800mL of concentrated sulphuric acid to a solution of 92g of sodium dichromate in 458mL of water.The use of similar commercially available sulphuric acid cleaning solutions is acceptable.Nonchromium-containing,strongly oxidizing acid cleaning solutions 6may be substituted so as to avoid the disposal problems of chromium-containing solutions.8.1.9.2Use of alkaline glass cleaning solutions may result in a change of viscometer calibration,and is not recommended.9.Calculation9.1Select the calibration factor that corresponds to the pair of timing marks used for the determination,as prescribed in6A commercial source for a nonchromium-containing cleaning solution is Godax Laboratories Inc.,480Canal St.,New York,NY10013.All dimensions are in millimeters.FIG.2Cannon-Manning Vacuum CapillaryViscometerAll dimensions are in millimeters.FIG.3Asphalt Institute Vacuum CapillaryViscometer8.1.8.Calculate and report the viscosity to three significant figures using the following equation:Viscosity,Pa ·s 5~Kt !(1)where:K =selected calibration factor,Pa ·s/s,and t =flow time,s.N OTE 5—If the viscometer constant or calibration factor (K cgs )is known in cgs units (Poise/s)calculate the calibration factor (Ksi)in SI units (pascal·seconds/second)as follows:Ksi 5~Pa ·s /s !5K cgs /10or ~P /s !/10(2)10.Report10.1Always report the test temperature and vacuum with the viscosity test result.For example,viscosity at 60°C (140°F)and 300mm Hg vacuum,in Pa ·s.11.Precision and Bias11.1The following criteria (see Note 1)should be used for judging the acceptability of results (95%probability):11.1.1Repeatability —Duplicate results by the same opera-tor using the same viscometer should not be considered suspect unless they differ by more than 7%of their mean.11.1.2Reproducibility —The results submitted by each of two laboratories should not be considered suspect unless the two results differ by more than 10%of their mean.APPENDIXES(Nonmandatory Information)X1.CANNON-MANNING V ACUUM CAPILLARY VISCOMETER (CMVV)X1.1ScopeX1.1.1The Cannon-Manning vacuum capillary viscometer (CMVV)7,8is available in eleven sizes (Table X1.1)covering a range from 0.0036to 8000Pa ·s (0.036to 80000P).Sizes 10through 14are best suited to viscosity measurements of asphalt cements at 60°C (140°F).X1.2ApparatusX1.2.1Details of the design and construction of Cannon-Manning vacuum capillary viscometers are shown in Fig.2.The size numbers,approximate bulb factors,K ,and viscosity ranges for the series of Cannon-Manning vacuum capillary viscometers are given in Table X1.1.X1.2.2For all viscometer sizes,the volume of measuring bulb C is approximately three times that of bulb B .X1.2.3A convenient holder can be made by drilling two holes,22and 8mm in diameter,respectively,through a No.117Griffith,J.M.and Puzinauskas,P.,“Relation of Empirical Tests to Fundamental Viscosity of Asphalt Cement and the Relative Precision of Data Obtained by Various Tests Methods,”Symposium on Fundamental Viscosity of Bituminous Materials,ASTM STP 328,Am.Soc.Testing Mats.,ASTTA,1962,pp.20–44.8Manning,R. E.,“Comments on Vacuum Viscometers for Measuring the Viscosity of Asphalt Cements,”Symposium on Fundamental Viscosity of Bituminous Materials,ASTM STP No.328,Am.Soc.Testing Mats.,ASTTA,1962,pp.44–47.All dimensions are in millimeters.FIG.4Modified Koppers Vacuum Capillary ViscometerTABLE X1.1Standard Viscometer Sizes,Approximate Calibration Factors,K and Viscosity Ranges for Cannon-Manning VacuumCapillary ViscometersViscometer Size Number Approximate Calibration Factor,K ,A 40kPa (300mm Hg)Vacuum,Pa ·s/s (P/s/10)Viscosity Range,Pa ·s B Viscosity Range,P BBulb BBulb C 40.00020.000060.0036to 0.080.036to 0.850.00060.00020.012to 0.240.12to 2.460.0020.00060.036to 0.80.36to 870.0060.0020.12to 2.4 1.2to 2480.020.0060.36to 8 3.6to 8090.060.02 1.2to 2412to 240100.20.06 3.6to 8036to 800110.60.212to 240120to 240012 2.00.636to 0.8360to 813 6.0 2.0120to 24001200to 240001420.06.0360to 80003600to 80000A Exact calibration factors must be determined with viscosity standards.BThe viscosity ranges shown in this table correspond to a filling time of 60to 400s.Longer flow times (up to 1000s)may beused.rubber stopper.The center-to-center distance between holes should be 25mm.Slit through the rubber stopper between holes and also between the 8-mm hole and edge of the stopper.When placed in a 51-mm (2-in.)diameter hole in the bath cover,the stopper holds the viscometer in place.Such holders are commercially available.X2.ASPHALT INSTITUTE V ACUUM CAPILLARY VISCOMETER (AIVV)X2.1ScopeX2.1.1The Asphalt Institute vacuum capillary viscometer (AIVV)7,8is available in seven sizes (Table X2.1)from a range from 4.2to 580000Pa ·s (42to 5800000P).Sizes 50through 200are best suited to viscosity measurements of asphalt cements at 60°C (140°F).X2.2ApparatusX2.2.1Details of design and construction of the Asphalt Institute vacuum capillary viscometer are shown in Fig.3.The size numbers,approximate radii,approximate bulb factors,K ,and viscosity range for the series of Asphalt Institutevacuum capillary viscometers are given in Table X2.1.X2.2.2This viscometer has measuring bulbs,B ,C ,and D ,located on the viscometer arm,M ,which is a precision bore glass capillary.The measuring bulbs are 20-mm long capillary segments,separated by timing marks,F ,G ,H ,and I .X2.2.3A convenient holder can be made by drilling two holes,22and 8mm in diameter,respectively,through a No.11rubber stopper.The center-to-center distance between holes should be 25mm.Slit through the rubber stopper between the holes and also between the 8-mm hole and edge of the stopper.When placed in a 51-mm (2-in.)diameter hole in the bath cover,the stopper holds the viscometer in place.Such holders are commercially available.TABLE X2.1Standard Viscometer Sizes,Capillary Radii,Approximate Calibration Factors,K ,and Viscosity Ranges for Asphalt InstituteVacuum Capillary ViscometersViscometer Size Number Capillary Radius,mmApproximate Calibration Factor,K ,A 40kPa (300mm)Hg Vacuum,Pa ·s/s (P/s)/10Viscosity Range,Pa ·s B Viscosity Range,P BBulb B Bulb C Bulb D 250.1250.2.10.07 4.2to 8042to 800500.250.8.4.318to 320180to 32001000.50 3.2 1.6 1.060to 1280600to 12800200 1.012.8 6.4 4.0240to 52002400to 52000400 2.050.025.016.0960to 200009600to 200000400R C 2.050.025.016.0960to 1400009600to 1400000800R C4.0200.0100.064.03800to 58000038000to 5800000A Exact calibration factors must be determined with viscosity standards.BThe viscosity ranges shown in this table correspond to a filling time of 60to 400s.Longer flow times (up to 1000s)may be used.CSpecial design for roofing asphalts having additional marks at 5and 10mm above timing mark,F (see Fig.3).Thus,using these marks,the maximum viscosity range is increased from that using the bulb B calibrationfactor.X3.MODIFIED KOPPERS V ACUUM CAPILLARY VISCOMETER (MKVV)X3.1ScopeX3.1.1The Modified Koppers vacuum capillary viscometer (MKVV)9,10,11is available in five sizes (Table X3.1)covering a range from 4.2to 20000Pas (42to 2000000).Sizes 50through 200are best suited to viscosity measurements of asphalt cements at 60°C (140°F).X3.2ApparatusX3.2.1Details of design and construction of the Modified Koppers vacuum capillary viscometer are shown in Fig.4.Thesize numbers,approximate radii,approximate bulb factors,K ,and viscosity ranges for the series of Modified Koppers vacuum capillary viscometers are given in Table X3.1.X3.2.2This viscometer consists of a separate filling tube,A ,and precision-bore glass capillary vacuum tube,M .These two parts are joined by a borosilicate ground glass joint,N ,having a 24/40standard taper.The measuring bulbs B ,C ,and D ,on the glass capillary are 20-mm long capillary segments,separated by timing marks F ,G ,H ,and I .X3.2.3A viscometer holder can be made by drilling a 28-mm hole through the center of a No.11rubber stopper and slitting the stopper between the hole and the edge.When placed in a 51-mm (2-in.)diameter hole in the bath cover,it holds the viscometer in place.9Rhodes,E.O.,V olkmann,E.W.,and Barker,C.T.,“New Viscometer for Bitumens Has Extended Range,”Engineering News-Record ,V ol 115,No.21,1935,p.714.10Lewis,R.H.and Halstead,W.J.,“Determination of the Kinematic Viscosity of Petroleum Asphalts with a Capillary Tube Viscometer,”Public Roads ,V ol 21,No.7,September 1940,p.127.11Heithaus,J.J.,“Measurement of Asphalt Viscosity with a Vacuum Capillary Viscometer,”Papers on Road and Paving Materials and Symposium on Microvis-cometry,ASTM STP 309,1961,p.63.TABLE X3.1Standard Viscometer Sizes,Capillary Radii,Approximate Calibration Factors,K ,and Viscosity Ranges for Asphalt InstituteVacuum Capillary ViscometersViscometer SizeNumberCapillary Radius,mmApproximate Calibration Factor,K ,A 40kPa (300mm)Hg Vacuum,Pa ·s/s (P/s)/10Viscosity Range,Pa ·s BViscosity Range,Pa ·s BBulb B Bulb C Bulb D 250.1250.20.1.007 4.2to 8042to 800500.250.80.40.318to 320180to 32001000.50 3.2 1.6 1.060to 1280600to 12800200 1.012.8 6.4 4.0240to 52002400to 520004002.050.025.016.0960to 200009600to 200000A Exact calibration factors must be determined with viscosity standards.BThe viscosity ranges shown in this table correspond to a filling time of 60to 400s.Longer flow times (up to 100s)may beused.X4.CALIBRATION OF VISCOMETERSX4.1ScopeX4.1.1This appendix describes the materials and proce-dures used for calibrating or checking the calibration of viscometers used in this method.X4.2Reference MaterialsX4.2.1Viscosity Standards having approximate viscosities are given in Table X4.1.X4.3CalibrationX4.3.1Calibration of Vacuum Viscometer by Means of Viscosity Standards —Calibrate the vacuum viscometer as fol-lows:X4.3.1.1Select from Table X4.1a viscosity standard having a minimum flow time of 60s at the calibration temperature.X4.3.1.2Charge a clean,dry viscometer by pouring the sample to within 62mm of fill line E (See Fig.2,Fig.3,and Fig.4).X4.3.1.3Place the charged viscometer in the viscometer bath,maintained at the calibration temperature 60.01°C (60.02°F).X4.3.1.4Establish a 30060.5-mm (40.06.07kPa)Hg vacuum in the vacuum system and connect the vacuum system to the viscometer with the toggle valve or stopcock closed in the line leading to the viscometer.X4.3.1.5After the viscometer has been in the bath for 3065min,start the flow of standard in the viscometer by opening the stopcock or toggle valve in the line leading to the vacuum system.X4.3.1.6Measure to within 0.1s,the time required for the leading edge of the meniscus to pass between timing marks Fand G .Using a second timer,also measure to within 0.1s,the time required for the leading edge of the meniscus to pass between timing marks G and H .If the instrument contains additional timing marks,similarly determine the flow time for each successive bulb.X4.3.1.7Calculate the calibration factor,K ,for each bulb as follows:K 5h /t(X4.1)where:K =viscometer bulb calibration factor,(Pa ·s/s)40.0kPa(300mm),h =viscosity of viscosity standard at calibration tempera-ture,P,and t =flow time,s.X4.3.1.8Repeat the calibration procedure using the same viscosity standard or another viscosity standard.Record the average calibration constant,K ,for each bulb.N OTE X4.1—The duplicate determinations of calibration constant,K ,for each bulb must agree with 2%of their mean (Note X4.2).N OTE X4.2—The bulb constants are independent of temperature.X4.3.2Calibration of Vacuum Viscometer by Means of Standard Vacuum Viscometer —Calibrate the vacuum viscom-eter as follows:X4.3.2.1Select any petroleum asphalt having a flow time of at least 60s.Select also a standard viscometer of known bulb constants.X4.3.2.2Mount the standard viscometer together with the viscometer to be calibrated in the same bath at 60°C (140°F)and determine the flow times of the asphalt by the procedure described in 8.1.X4.3.2.3Calculate the constant,K ,for each bulb as follows:K 15~t 23K 2!/t 1(X4.2)where:K 1=constant of viscometer bulb being calibrated,t 1=flow time of viscometer bulb being calibrated,K 2=bulb constant of standard viscometer,andt 2=flow time of corresponding bulb in standard viscom-eter.X5.ICE POINT DETERMINATION AND RECALIBRATION OF KINEMATIC VISCOSITY THERMOMETERSX5.1To achieve an accuracy of 60.02°C for calibrated kinematic viscosity thermometers,it is required that a check at the ice point be made and the corrections altered for the change seen in the ice point.It is recommended that the interval of checking be every six months;for a new thermometer,check monthly for the first six months.X5.2A detailed procedure for the measurement of the ice point and recalibration of thermometers is described in 6.5ofTest Method E 77.The suggestions in the following sections of this appendix are given specifically for the mercury-in-glass kinematic viscosity thermometers described in Table X5.1,and may not apply to other thermometers.X5.2.1The ice point reading of kinematic viscosity ther-mometers shall be taken within 60min after being at the test temperature for not less than 3min.The ice point reading shall be expressed to the nearest 0.01°C or 0.02°F.TABLE X4.1Viscosity StandardsViscosity Approximate Viscosity,Pa ·s Approximate Viscosity,PAt 20°C (68°F)At 40°C (104°F)At 20°C (68°F)At 40°C (104°F)N30000A 150211500210N190000A 80014080001400S30000A...21 (210)AAvailable in 1-pt containers.Purchase orders should be addressed to CannonInstrument Co.,P .O.Box 16,State College,PA 16801.Shipment will be made as specified or by bestmeans.X5.2.2Select clear pieces of ice,preferably made from distilled or pure water.Discard any cloudy or unsound por-tions.Rinse the ice with distilled water and shave or crush into small pieces,avoiding direct contact with the hands or any chemically unclean objects.Fill the Dewar vessel with the crushed ice and add sufficient distilled and preferably pre-cooled water to form a slush,but not enough to float the ice.As the ice melts,drain off some of the water and add more crushed ice.Insert the thermometer packing the ice gently about the stem,to a depth approximately one scale division below the 0°C (32°F)graduation.It may be necessary to repack the ice around the thermometer because of melting.X5.2.3After at least 3min have elapsed,tap the stem gently,and observe the reading.Successive readings taken at least 1min apart should agree within one tenth of a division.X5.2.4Record the ice point reading and compare it with the previous reading.If the reading is found to be higher or lower than the reading corresponding to a previous calibration,readings at all other temperatures will be correspondingly increased or decreased.X5.2.5The ice point procedure given in X5.1-X5.2.4is used for the recalibration of kinematic viscosity thermometers,and a complete new calibration of the thermometer is not necessary in order to meet the accuracy ascribed to this design thermometer.X5.3It is recommended that these kinematic viscosity thermometers be stored vertically when not in use so as to avoid the separation of the mercury column.X5.4It is recommended that these kinematic viscosity thermometers be read to the nearest 1⁄5of a division using appropriate magnification.Since these thermometers are typi-cally in a kinematic viscosity bath (which has vision through the front),the thermometer is read by lowering the thermom-eter such that the top of the mercury column is 5to 15mm below the surface of the bath liquid.Be careful to ensure that the expansion chamber at the top of the thermometer is above the lid of the constant temperature bath.If the expansion chamber is at elevated or lowered temperatures from ambient temperatures,a significant error can occur.This error can be as much as one or two thermometer divisions.A reading glass such as used for reading books may be useful to ensure reading the scale to 1⁄5of a division.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website ().TABLE X5.1Kinematic Viscosity Test Thermometers ATest Temperature Scale Error BThermometer Number °C°F ASTM C IP D 20and 21.168and 7044C,F 29C,F 257745C,F 30C,F 3086118C,F ...37.810028F 31C,F 40120C ...5012246C,F 66C,F 54.413029F 34C,F 6014047C,F 35C,F 82.218048F 90C,F 93.3200...36C,F 98.9and 100210and 21230F 32C,F100121C 135275110C,FAThe smallest graduation of the Celsius thermometers is 0.05°C and for the Fahrenheit thermometers is 0.1°F.BScale error for the Celsius thermometers is not to exceed 60.1°C for the Fahrenheit thermometers it is 60.2°F (except for ASTM 110F which is 60.3°F).These scale errors are required to apply only at the given test temperature.CComplete construction detail is given in Specifications E 1.DComplete construction detail is given in Part I of IP Standards for Petroleum and itsProducts.。
橡胶沥青动力粘度 实测值
序号 A-01 A-02 A-03 A-04 A-05 A-06 A-07a A-07b A-07c A-08a A-08b A-08c 统计值
注: (1) 试验规程: 《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)。 (2) 试验方法:真空减压毛细管法, 试验温度 60 ℃,真空度 40kPa ± 66.5Pa(300mmHg±0.5mmHg)。
动力粘度值(104 Pa.s) 22.50 14.47 22.58 17.41 16.15 21.97 19.57 19.69 20.10 18.19 17.82 18.33
全部平均值 19.065×104 Pa.s 去掉最大、最小值后的平均值 19.173×104 Pa.s
橡胶沥青动力粘度 实测值 2
毛细管编号/规格 583 / 800R 583 / 800R 583 / 800R 583 / 800R 583 / 800R 583 / 800R 582 / 800R 583 / 800R 585 / 800R 582 / 800R 583 / 800R 585 / 800R
实验日期 2014.04.26 2014.04.26 2014.04.27 2014.04.28 2014.04.28 2014.04.29 2014.04.30 2014.04.30 2014.04.30 2014.04.30 2014.04.304 Pa.s 去掉最大、最小值后的平均值 0.574×104 Pa.s
序号 B1-01a B1-01b B1-01c B1-02a B1-02b B1-02c B1-03a B1-03b B1-03c B1-04a B1-04b B1-04c B1-05a B1-05b B1-05c 统计值 注: (1) 试验规程: 《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)。 (2) 试验方法:真空减压毛细管法, 试验温度 60 ℃,真空度 40kPa ± 66.5Pa(300mmHg±0.5mmHg)。 毛细管编号/规格 582 / 800R 583 / 800R 585 / 800R 582 / 800R 583 / 800R 585 / 800R 582 / 800R 583 / 800R 585 / 800R 582 / 800R 583 / 800R 585 / 800R 582 / 800R 583 / 800R 585 / 800R 实验日期 2014.05.01 2014.05.01 2014.05.01 2014.05.02 2014.05.02 2014.05.02 2014.05.04 2014.05.04 2014.05.04 2014.05.04 2014.05.04 2014.05.04 2014.05.05 2014.05.05 2014.05.05 动力粘度值(10 Pa.s) 0.6342 0.5385 0.6825 1.0540 0.9334 0.6445 0.3929 0.4971 0.3538 0.4337 0.4587 0.4790 0.5133 0.6179 0.6307
沥青三大指标实验
沥青三大指标实验沥青是常见的路面材料之一,其性能指标对于道路的耐久性和使用寿命具有重要影响。
常用的沥青三大指标实验包括黏度、软化点和针入度实验。
一、黏度实验黏度是沥青流动性的衡量指标,是指沥青在一定温度下的粘度大小。
黏度实验通常采用旋转黏度计进行测定。
实验步骤如下:1.准备一定数量的待测沥青,放入黏度计的毛细管中。
2.将黏度计放置在恒温水浴中,提前进行温度稳定。
3.启动黏度计,记录沥青通过毛细管的时间。
4.根据黏度计的刻度以及通过毛细管的时间,计算出沥青的黏度数值。
黏度实验的结果可用于判断沥青的粘结性、流动性以及加热和成型的适宜温度范围。
二、软化点实验沥青的软化点指的是沥青在一定温度下开始软化的温度。
软化点实验常用的仪器是软化点仪。
实验步骤如下:1.准备一定数量的待测沥青,在软化点仪的容器中加热。
2.设置仪器的加热速率和起始温度。
3.启动软化点仪,记录沥青开始软化的温度。
软化点的实验结果可以用于判断沥青的熔点范围,即沥青固化和软化的温度范围。
三、针入度实验针入度是指在一定温度下,针头垂直刺入沥青的深度。
针入度实验主要用于评价沥青的厚度和粘度。
实验步骤如下:1.准备一定数量的待测沥青,将其放置在粘度杯中。
2.将粘度杯放入沥青仪中,以事先设置好的温度加热。
3.当沥青温度达到指定温度时,慢慢将针入度仪的针头均匀刺入沥青中。
4.记录针头下降到设定深度的时间,得出针入度值。
针入度实验的结果可以用于评价沥青的硬度和粘度,从而根据不同环境温度选择适宜的沥青材料。
总结起来,黏度、软化点和针入度是评价沥青性能的重要指标。
黏度实验可用于评价沥青的流动性和粘着性,软化点实验可以判断沥青的熔点范围,针入度实验则用于评估沥青的厚度和粘度。
这三个指标的实验结果有助于选择合适的沥青材料,以提高道路的耐久性和使用寿命。
SYD-0620B沥青动力粘度试验器
4、可根据用户的选择和设置,自动对 2 至 4 个平行试验的结果计算均值及误差 百分数。这种计算允许多次进行,方便用户除掉不满意的结果,同时还可以打印出 试验报告。
3 号管粘度值:**.***Pa.s **.*%
4 号管粘度值:**.***Pa.s **.*%
平均粘度值为:**.***Pa.s
11、时间校正
触摸主界面上时钟位置,连续 2 秒,系统会弹出校正界面(见图 5)。
触摸需修改的数字,用上下键修改之,Enter 键确认即可。
图5
9
技术支持:中国厂家网
的结果。
10、打印
如果触摸
,微型打印机将打印出如下试验报告:
试验报告
时间:11/06/02 12:20
水浴温度:60.00℃
武汉格莱莫检测设备有限公司
真空压力:300mmHg 注:有几个试验结果,就会打印几组粘度值数据。
1 号管粘度值:**.***Pa.s
2 号管粘度值:**.***Pa.s
② 可以同时用 2 至 4 支毛细管对同一种试样做平行试验,之后选择平行样均值
计算,系统会计算出平均粘度值和各次结果与均值之差的百分数。用户可以根据结
果进行取舍并最终打印出试验报告,不仅含有各次结果,同时也包含计算结果。
③ 均值的计算取决于平行框内的勾,系统只对打勾的数据进行计算,并且这种
计算可以重复进行,用户可以按照需要选择不同的数据做均值。
触摸
按钮,可以开启真空泵,系统将自动控制工作真空度保持在
300mmHg±0.5mmHg 的范围内。
粘度测量实验报告
粘度测量实验报告一、实验目的粘度是流体的重要物理性质之一,对于许多工业生产和科学研究都具有重要意义。
本次实验的目的是通过测量不同流体的粘度,掌握粘度测量的基本原理和方法,了解影响流体粘度的因素,并对实验结果进行分析和讨论。
二、实验原理1、粘度的定义粘度是流体内部阻碍其相对流动的一种性质,表现为流体在流动时所受到的内摩擦力。
粘度的大小取决于流体的种类、温度和压力等因素。
2、粘度的测量方法本次实验采用毛细管法测量流体的粘度。
根据泊肃叶定律,在一定条件下,流体在毛细管中流动的速度与粘度成反比,与压力差和毛细管的几何尺寸成正比。
通过测量流体在毛细管中流动的时间和相关参数,可以计算出流体的粘度。
三、实验仪器和材料1、仪器粘度计、恒温水浴、秒表、温度计、移液管、分析天平。
2、材料蒸馏水、乙醇、甘油。
四、实验步骤1、准备工作(1)将粘度计洗净并干燥,确保毛细管内壁清洁无杂质。
(2)将恒温水浴调节至设定温度,并保持温度稳定。
2、测量蒸馏水的粘度(1)用移液管吸取一定量的蒸馏水注入粘度计中,使液面高于刻度线。
(2)将粘度计垂直放入恒温水浴中,待温度稳定后,用吸耳球将蒸馏水吸至刻度线上方,然后让其依靠重力自然流下。
(3)用秒表记录蒸馏水从刻度线的上标线流至下标线所需的时间,重复测量三次,取平均值。
3、测量乙醇的粘度(1)用移液管吸取适量的乙醇注入洗净干燥的粘度计中。
(2)按照测量蒸馏水粘度的方法,测量乙醇在相同温度下从刻度线的上标线流至下标线所需的时间,重复测量三次,取平均值。
4、测量甘油的粘度(1)重复上述步骤,测量甘油在相同温度下的流动时间。
5、实验结束后,将仪器洗净并整理好实验台。
五、实验数据记录与处理1、实验数据记录|流体|温度(℃)|流动时间(s)|平均值(s)|||||||蒸馏水|_____|_____|_____||乙醇|_____|_____|_____||甘油|_____|_____|_____|2、数据处理根据泊肃叶定律,流体的粘度可以通过以下公式计算:\\eta =\frac{\pi r^4 \Delta p t}{8 L V}\其中,\(\eta\)为粘度,\(r\)为毛细管半径,\(\Delta p\)为压力差,\(t\)为流动时间,\(L\)为毛细管长度,\(V\)为流体体积。
沥青60℃动力粘度的试验方法比较研究
分 单 位 都 利 用 它 来 直 接 测 试 道 路 石 油 沥 青 的
6 ℃动力粘度。真空减压毛细管粘度计法测定的 0
是 材料 的动 力 粘 度 (ya cvsoi ) dnmi i sy ,也 称 绝 c t 对粘 度 (bouevsoi ) aslt i sy ,是粘 度 管 常数 ( c t K) 与相 应 流动 时间 () 的乘 积 ,即 :叩= t z Kx ,单 位 是 P S 0C 度 分级 世 界上 基 本统 一 采用 a・ ,6  ̄粘 该 方法 … 。两种 粘 度 测 试 方 法 所 得 结 果 的 计 量 单 位一致 而 方法 原理却 完全 不 同 ,为 了能够 对这 两 种测试 方 法有 更深 入 的理解 ,需 要进 行有 针对 性 的 比对 分 析 。
值 。当被测 物体 为 牛顿流体 时 ,所 得粘 度 又称 为 绝 对粘 度 ;当采用 某个 剪切应 力 和剪切 变率 进行 非 牛顿 流体 的粘 度测 量时 ,所得 的粘 度 即可 称 为 表 观粘 度 。 b 运 动粘 度 。一般 采用 毛细 管 法 直接 测定 ) 沥青材料 的运 动粘 度 ,它是 动力粘 度 与对应 温度
直观 ,清洗 容易 ,因此 现在 交通行 业 内
21 0 0年第 2 4卷
和赛波特粘度。条件粘度与运动粘度也可通过一 定 方法 进行换 算 J 。 若按测试 方法进行 分类 ,粘度也 可分为 3
类:
用 该方法 所测 动力粘 度只是其 表观 粘度 ,此 时 只
2 1 2月 0 0年
石 油 沥 青
PT O E MAP A T E R L U SH L
第2 4卷第 1 期
沥 青 6  ̄ 力 粘 度 的 试 验 方 法 比较 研 究 0C动
08.8沥青(动力粘度)已改
08.8沥青(动力粘度)已改江苏苏信工程检测有限公司作业指导书文件编号:GX/JCXZ08.3-00-2009 第1版第0次修改第1页共4页主题:沥青动力黏度试验实施日期:2009.09.01 拟稿审核批准1.引用标准:1.1《沥青路面施工及验收规范》GB50092-961.2《公路沥青路面施工技术规范》JTG F40-20041.3《公路工程沥青及沥青混合料试验规程》JTG E20-20111.4《公路工程施工质量验收规范》DGJ08-119-20052.抽样方法及样本大小:2.1取样频率及抽样方法、样本大小:见《沥青针入度测定试验作业指导书》。
3. 检测项目、被测参数及其范围:检测项目被测参数范围沥青动力黏度试验耐热性4. 检测仪器:设备名称型号量程准确度分辨率真空减压毛细管黏度仪--- 合格0.1℃温度计--- 50-100℃合格0. 1℃恒温水槽--- --- 合格--- 真空减压系统--- 40±66.5Pa 合格--- 附件秒表筛、烘箱、三氯乙烯溶剂、洗液、蒸馏水等5. 检测系统框图:选计型号洗涤吹干选型号加热盛样注料入粘度计烘箱保温出泡装黏度计连接闭门开真空泵开门计时6. 检测前、后对被测样品、检测仪器、环境要求、设备安装的检查:6.1 检测前:6.1.1 对被测样品,进行外观、数量、规格方面检查,发现问题退样重取。
6.1.2检查检测仪具是否在准用期内,并登录使用情况。
7.《公路工程沥青及沥青混合料试验规程》JTG E20-2011检测步骤:7. 1 试样制备过程:7.1.1将装有试样的盛样器带盖放入恒温烘箱中,当石油沥青中含有水分时,烘箱温度80℃左右,加热至沥青全部熔化后供脱水用。
当石油沥青中无水分时,烘箱温度宜为软化点温度以上90℃,通常为135℃左右。
对取来的沥青试样不得直接利用电炉或燃气炉明火加热。
当石油沥青试样中含有水分时,将盛样器皿放在可控温的砂浴、油浴、电热套上加热脱水,不得已采用电炉、燃气炉加热脱水时必须放石棉垫,加热时间不超过30min,并用玻璃棒轻轻搅拌,防止局部过热。
8-06沥青动力粘度试验记录
第1页,共1页
沥青动力粘度试验检测记录表JJ0811
试验室名称:中交三公局第二工程有限公司中心试验室记录编号:
工程部位/用途
委托/任务编号
试验依据
样品编号
样品描述
样品名称
试验条件
温度:℃湿度:%
试验日期
主要仪器设备及编号
试验次数
毛细管半径
(mm)
通过第一对超过60s标线的时间间隔(s)
相对应的粘度计常数(Pa·s/s)
试样动力粘度(Pa·s)
平均值
(Pa·s)1ຫໍສະໝຸດ 23备注:
试验:复核:日期:年月日
沥青动力粘度试验
沥青动力粘度试验
沥青动力粘度试验,这可真是个有趣的事儿呢!你知道吗,就好像我们要去探索一个神秘的世界一样。
沥青,平常看着普普通通的,可在这个试验里,它就变得特别起来了。
把它放到特定的仪器里,就像是给它安排了一场独特的挑战。
想象一下,那沥青在试验中,就像个小运动员,努力地展示着自己的能力。
我们通过各种手段,去测量它的动力粘度,这可不是随随便便就能搞定的呀!得非常仔细,非常精准。
这个试验就像是一场精彩的表演,每一个步骤都至关重要。
温度的控制,仪器的调整,每一个细节都不能马虎。
这不就跟我们准备一场重要的考试一样吗?一点差错都不能有。
有时候我就在想,这沥青的动力粘度到底意味着什么呢?它是不是就像人的性格一样,各有不同呢?有的沥青可能动力粘度高一些,就像性格倔强的人;有的可能低一些,就像性格随和的人。
而且这个试验还能告诉我们很多关于沥青的特性呢。
它的流动性能怎么样,它在不同条件下会有怎样的表现。
这可太有意思了,就好像我们在一点点揭开沥青的神秘面纱。
在做这个试验的时候,真的会有一种探索的乐趣。
每一次的数据变化,都让人充满期待。
难道不是吗?看着那些数字的跳动,就好像是沥青在和我们对话一样。
这个沥青动力粘度试验,真的不简单啊!它能让我们更加了解沥青,也能让我们在工程应用中更加得心应手。
它就像是一把钥匙,打开了我们对沥青认知的大门。
我觉得,这个试验真的是非常非常重要的呀!它让我们看到了平时看不到的东西,让我们对沥青有了更深的理解和把握。
所以啊,可千万别小看了这个试验哟!。
沥青动力黏度试验真空减压毛细管法方法
8.4真空减压系统应能使真空度达到40kpa±66.5pa(300mmHg±0.5mmHg)的压力,各连接处不得漏气,以保证密闭;
8.5试验时,仪器和用具应在室温下进行
5
秒表
2个,分度0.1s,总量程15min的误差不大于±0.025%
6ห้องสมุดไป่ตู้
烘箱
有自动温度控制器
7
溶剂
三氯乙烯
8
其他
洗剂、蒸馏水等
4.1试验仪器及材料
4.2试样制备
4.2.1估计试样的粘度,根据试样流经规定体积的时间在60s以上,来选择真空毛细管粘度计的型号。
4.2.2将真空毛细管粘度计用三氯乙烯等溶剂洗涤干净。如粘度计粘有油污,可用洗液、蒸馏水等仔细洗涤。洗涤后置烘箱中烘干或用通过棉花的热空气的热空气吹干。
5.试验步骤:
具体试验步骤依据《公路工程沥青及沥青混合料试验规程JTG E20-2011》T0620-2000的方法进行试验。
6.试验结果整理:
6.1沥青试样的动力粘度按下式计算。
式中:η—沥青试样在测定温度下的动力粘度,Pa.s;
K—选择的第一对超过60s的一对标线间的粘度计常数,Pa.s;
t—通过第一对超过60s标线的时间间隔,s。
7.试验报告:
试验报告应包括内容:
①检测项目名称;②原材料的品种、规格和产地;③试验日期及时间;④仪器设备名称、型号及编号;⑤试验结果;⑥执行标准;⑦要说明的其他内容。
8.试验注意事项:
8.12011版中试验仪器和操作步骤与2000版标准有所不同,应注意区分,勿沿用老标准;
8.2非经注明,试验温度为60℃,真空度为40kPa;
沥青动力黏度试验仪检定规程
沥青动力黏度试验仪检定规程1 范围本规程适用于真空减压毛细管法沥青动力黏度试验仪的首次检定、后续检定和使用中检查。
2 引用文件JJG155 工作毛细管黏度计检定规程JTG E20-2011 公路工程沥青及沥青混合料试验规程凡是注日期的引用文件,仅注日期的版本适用于本规程;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规程。
3 概述沥青动力黏度试验仪(以下简称试验仪)主要由真空减压毛细管黏度计、恒温水浴、真空系统、计时器组成,通过测定一定体积的沥青流过毛细管黏度计所用的时间,按照公式(1)计算得到沥青动力黏度。
ηt=k·t(1)式中:ηt——沥青动力黏度,Pa·s;k——所选用的毛细管黏度计常数,Pa·s/s;t——沥青流过毛细管黏度计使用时间。
注:试验仪所用真空减压毛细管黏度计样式,详见附录C、D、E。
4 术语和定义沥青asphalt(bitumen)暗褐色至黑色的、可溶于苯或二硫化碳等溶剂的固体或半固体有机物质,是自然界中天然存在的或是从原油经蒸馏得到的残渣。
黏度viscosity流体流动时内摩擦力的量度,黏度值随温度的升高而降低。
动力黏度dynamic viscosity表示液体在一定剪切应力下流动时内摩擦力的量度。
其值为所加于流动液体的剪切应力和剪切速率之比,用帕[斯卡]秒(Pa·s)表示。
运动黏度kinematic viscosity表示液体在重力作用下流动时内摩擦力的量度,其值为相同温度下液体的动力黏度与其密度之比,以平方米/秒(m2/s)表示。
真空毛细管法黏度viscosity of vacuum capillary在规定温度和真空度的条件下,采用毛细管黏度计对沥青所测得的动力黏度。
5 计量性能要求5.1 真空度试验仪真空度最大允许误差应满足表1的要求。
表1 真空度最大允许误差5.2 恒温水浴试验仪恒温水浴控温最大允许误差应满足表2的要求。
沥青旋转黏度、运动黏度试验记录表
管理编号: -223试验编号: 第页共页
样品编号
样品名称
试样描述
主要仪器及编号
规格/型号
试验环境
温度: ℃ 湿度: %
试验地点
来样日期
试验依据
试验日期
试验单位
沥青旋转黏度试验(布洛克菲尔德黏度计法)结果
试验温度
(℃)
转子
型号
转子
速率
(r/min)
第1次
第2次
第3次
黏度平均值
(Pa·s)
黏度
(Pa·s)
·s)
扭距
(%)
黏度
(Pa·s)
扭距
(%)
沥青运动黏度(毛细管法)试验结果
试验温度
(℃)
毛细管编号
C、J球的标定常数(mm2/s2)
流经C、J球的时间(s)
流经C、J球的运动黏度((mm2/s)
运动黏度((mm2/s)
Cc
Cj
tC
tJ
vC
vJ
备注:
复核:试验:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
委托单位 样品名称 检验项目 检验依据
湖北省交通运输厅工程质量监督局 沥青 沥青动力黏度(60℃) JTG E20-2011
样品来源 样品说明 送样日期 检验日期
Hale Waihona Puke 现场取样,通界高速路面标 (湖北泰富进口双龙)
A-70#基质沥青 2014.06.19 2014.06.20
仪器名称、型号、编号:沥青动力粘度试验仪 03093001; 恒温水槽 03008001;烘箱 03126001 环境温度: 24℃ 检 验 结 果 试样编号 试验项目 1 试验温度(℃) 通过超过60秒的第一对标线的时 间(s) 通过超过60秒的第一对标线的一 对标线的黏度计常数(Pa·s/s) 试验温度下的动力黏度(Pa·s) 60 2 60 3 60
55.7
62.7
59.8
3.487
3.029
3.361
194.2
189.9
201.0
平均值(Pa·s)
195.0
结论: 所检指标符合公路沥青路面施工技术规范JTG F40-2004的要求。 试验: 校核: 签发: