平面向量与解析几何交汇的综合问题新课标人教a版2

合集下载

2019-2020学年新人教A版必修二 平面向量的概念 知识点经典练习

2019-2020学年新人教A版必修二  平面向量的概念    知识点经典练习

名称定义向量既有大小又有方向的量叫作向量,向量的大小叫作向量的长度(或称模) 零向量长度为零的向量叫作零向量,其方向是任意的,零向量记作0单位向量长度等于1个单位的向量平行向量表示两个向量的有向线段所在的直线平行或重合,则这两个向量叫作平行向量,平行向量又叫共线向量.规定:0与任一向量平行相等向量长度相等且方向相同的向量相反向量长度相等且方向相反的向量易误提醒1.对于平行向量易忽视两点:(1)零向量与任一向量平行.(2)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件.2.单位向量的定义中只规定了长度没有方向限制.[自测练习]1.若向量a与b不相等,则a与b一定( )A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量解析:若a与b都是零向量,则a=b,故选项C正确.答案:C2.若m∥n,n∥k,则向量m与向量k( )A.共线B.不共线C.共线且同向D.不一定共线解析:可举特例,当n=0时,满足m∥n,n∥k,故A,B,C选项都不正确,故D 正确.答案:D向量运算定义法则(或几何意义)运算律 加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ;(2)结合律: (a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫作a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb易误提醒1.作两个向量的差时,要注意向量的方向是指向被减向量的终点. 2.数乘向量仍为向量只是模与方向发生变化,易认为数乘向量为实数.[自测练习]3.已知在△ABC 中,D 是BC 的中点,那么下列各式中正确的是( ) A.AB →+AC →=BC →B.AB →=12BC →+DA →C.AD →-DC →=AC → D .2CD →+BA →=CA →解析:本题考查向量的线性运算.A 错,应为AB →+AC →=2AD →;B 错,应为12BC →+DA →=BD →+DA →=BA →;C 错,应为AC →=AD →+DC →;D 正确,2CD →+BA →=CB →+BA →=CA →,故选D.答案:D知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . 易误提醒1.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 2.要注意向量共线与三点共线的区别与联系. 必记结论 三点共线等价关系:A ,P ,B 三点共线⇔AP →=λAB →(λ≠0)⇔OP →=(1-t )·OA →+tOB →(O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP →=xOA →+yOB →(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[自测练习]4.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )],所以⎩⎪⎨⎪⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-13考点一 向量的基本概念|1.已知a ,b ,c 是任意向量,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ∥b ,则a ,b 方向相同或相反; ③若a =-b ,则|a |=|b |;④若a ,b 不共线,则a ,b 中至少有一个为零向量,其中正确命题的个数是( ) A .4 B .3 C .2D .1解析:按照平面向量的概念逐一判断.若b =0,则①②都错误;若a =-b ,则|a |=|b |,③正确;若a ,b 不共线,则a ,b 中一定没有零向量,④错误,所以正确命题只有1个.答案:D2.设a ,b 都是非零向量,下列四个条件中,一定能使a |a |+b|b |=0成立的是( ) A .a =2b B .a ∥b C .a =-13bD .a ⊥b解析:由a |a |+b |b |=0得a |a |=-b |b |≠0,即a =-b|b |·|a |≠0,则a ,b 共线且方向相反,因此当向量a ,b 共线且方向相反时,能使a |a |+b|b |=0成立.对照各个选项可知,选项A中向量a ,b 的方向相同,选项B 中向量a ,b 共线,方向相同或相反,选项C 中向量a ,b 的方向相反,选项D 中向量a ,b 互相垂直,故选C.答案:C解决向量的概念问题应关注五点(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即平行向量,它们均与起点无关.(4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(5)非零向量a 与a |a |的关系:a|a |是a 方向上的单位向量.考点二 平面向量的线性运算|(1)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →[解析] 由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →,故选A.[答案] A(2)(2015·东北三校联考(二))已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________. [解析] 因为AD →=2DB →,CD →=13CA →+λCB →,所以CD →=CA →+AD →=CA →+23AB →=CA →+23(CB→-CA →)=13CA →+23CB →,所以λ=23.[答案]3平面向量线性运算问题的两种类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合平行四边形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.1.设O 为△ABC 内部的一点,且OA →+OB →+2OC →=0,则△AOC 的面积与△BOC 的面积之比为( )A.32 B.53 C .2D .1解析:取AB 的中点E ,连接OE ,则有OA →+OB →+2OC →=2(OE →+OC →)=0,OE →+OC →=0,所以E ,O ,C 三点共线,所以有△AEO 与△BEO 面积相等,因此△AOC 的面积与△BOC 的面积之比为1,故选D.答案:D考点三 共线向量定理的应用|设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. [解析] 由于λa +b 与a +2b 平行,所以存在μ∈R ,使得λa +b =μ(a +2b ),即(λ-μ)a +(1-2μ)b =0,因为向量a ,b 不平行,所以λ-μ=0,1-2μ=0,解得λ=μ=12.[答案]21.共线向量定理的应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值.(2)若a,b不共线,则λa+μb=0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB→=λAC→,则A、B、C三点共线.2.设两个非零向量e1和e2不共线.(1)如果AB→=e1-e2,BC→=3e1+2e2,CD→=-8e1-2e2,求证:A,C,D三点共线;(2)如果AB→=e1+e2,BC→=2e1-3e2,AF→=3e1-k e2,且A,C,F三点共线,求k的值.解:(1)证明:AB→=e1-e2,BC→=3e1+2e2,∴AC→=AB→+BC→=4e1+e2,又CD→=-8e1-2e2,∴CD→=-2AC→,∴AC→与CD→共线.又∵AC→与CD→有公共点C,∴A,C,D三点共线.(2)∵AB→=e1+e2,BC→=2e1-3e2,∴AC→=AB→+BC→=3e1-2e2.∵A,C,F三点共线.∴AC →∥AF →,从而存在实数λ,使得AC →=λAF →. ∴3e 1-2e 2=3λe 1-λk e 2, 又e 1,e 2是不共线的非零向量,∴⎩⎪⎨⎪⎧3=3λ,-2=-λk ,因此k =2.∴实数k 的值为2.13.方程思想在平面向量呈线性运算中的应用【典例】 如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →.[思路点拨] (1)用已知向量来表示另外一些向量是用向量解题的基本要领,要尽可能地转化到平行四边形或三角形中去.(2)既然OM →能用a ,b 表示,那我们不妨设出OM →=m a +n b . (3)利用向量共线建立方程,用方程的思想求解. [解] 设OM →=m a +n b ,则AM →=OM →-OA →=m a +m b -a =(m -1)a +n b . AD →=OD →-OA →=12OB →-OA →=-a +12b .又∵A ,M ,D 三点共线,∴AM →与AD →共线. ∴存在实数t ,使得AM →=tAD →,即(m -1)a +n b =t ⎝⎛⎭⎪⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t 得,m -1=-2n ,即m +2n =1.①又∵CM →=OM →-OC →=m a +n b -14a =⎝⎛⎭⎪⎫m -14a +n b ,CB →=OB →-OC →=b -14a =-14a +b .又∵C ,M ,B 三点共线, ∴CM →与CB →共线.∴存在实数t 1,使得CM →=t 1CB →,∴⎝ ⎛⎭⎪⎫m -14a +n b =t 1⎝ ⎛⎭⎪⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1.②由①②得m =17,n =37,∴OM →=17a +37b .[方法点评] (1)本题考查了向量的线性运算,知识要点清楚,但解题过程复杂,有一定的难度.(2)易错点是,找不到问题的切入口,想不到利用待定系数法求解.(3)数形结合思想是向量加法、减法运算的核心,向量是一个几何量,是有“形”的量,因此在解决向量有关问题时,多数习题要结合图形进行分析、判断、求解,这是研究平面向量最重要的方法与技巧.如本题易忽视A ,M ,D 三点共线和B ,M ,C 三点共线这个几何特征.(4)方程思想是解决本题的关键,要注意体会.[跟踪练习] 如图,△ABC 中,GA →+GB →+GC →=0,CA →=a ,CB →=b .若CP →=m a ,CQ →=n b ,CG ∩PQ =H ,CG →=2CH →,则1m +1n=________.解析:由GA →+GB →+GC →=0,知G 为△ABC 的重心,取AB 的中点D (图略),则CH →=12CG→=13CD →=16(CA →+CB →)=16m CP →+16n CQ →,由P ,H ,Q 三点共线,得16m +16n =1,则1m +1n =6.答案:6课时跟踪检测 A 组 考点能力演练1.关于平面向量,下列说法正确的是( ) A .零向量是唯一没有方向的向量 B .平面内的单位向量是唯一的C .方向相反的向量是共线向量,共线向量不一定是方向相反的向量D .共线向量就是相等向量解析:对于A ,零向量是有方向的,其方向是任意的,故A 不正确;对于B ,单位向量的模为1,其方向可以是任意方向,故B 不正确;对于C ,方向相反的向量一定是共线向量,共线向量不一定是方向相反的向量,故C 正确;对于D ,由共线向量和相等向量的定义可知D 不正确,故选C.答案:C2.已知O ,A ,B ,C 为同一平面内的四个点,若2AC →+CB →=0,则向量OC →等于( ) A.23OA →-13OB → B .-13OA →+23OB →C .2OA →-OB →D .-OA →+2OB →解析:因为AC →=OC →-OA →,CB →=OB →-OC →,所以2AC →+CB →=2(OC →-OA →)+(OB →-OC →)=OC →-2OA →+OB →=0,所以OC →=2OA →-OB →,故选C.答案:C3.已知在△ABC 中,M 是BC 的中点,设CB →=a ,CA →=b ,则AM →=( ) A.12a -b B.12a +b C .a -12bD .a +12b解析:AM →=AC →+CM →=-CA →+12CB →=-b +12a .答案:A4.(2015·海淀期中)如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =( )A .2B .-2C .1D .-1解析:AC →=AB →+BC →=AB →+32BD →=AB →+32(AD →-AB →)=-12AB →+32AD →,则m =-12,n=32,所以m -n =-2. 答案:B5.若a ,b 是两个不共线的非零向量,a 与b 的起点相同,已知a ,t b ,13(a +b )三个向量的终点在同一条直线上,则t =( )A.12 B .-12C .2D .-2 解析:设OA →=a ,OB →=t b ,OC →=13(a +b ),则AC →=OC →-OA →=-23a +13b ,AB →=OB →-OA →=t a -a .要使A ,B ,C 三点共线,只需AC →=λAB →,即-23a +13b =λt b -λa 即可,又a ,b 是两个不共线的非零向量,∴⎩⎪⎨⎪⎧ -23=-λ,13=λt ,解得⎩⎪⎨⎪⎧λ=23,t =12,∴当三个向量的终点在同一条直线上时,t =12.答案:A6.(2016·长沙一模)在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)解析:在矩形ABCD 中,因为O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC→+BC →)=12(5e 1+3e 2).答案:12(5e 1+3e 2)7.已知向量e 1,e 2是两个不共线的向量,若a =2e 1-e 2与b =e 1+λe 2共线,则λ=________.解析:因为a 与b 共线,所以a =x b ,⎩⎪⎨⎪⎧x =2,λx =-1,故λ=-12.答案:-128.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,如图所示,△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,O 是坐标原点,则|OA →|的最大值为________.解析:因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC 是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA →|取得最大值,且最大值为2|GA →|=2.答案:29.已知a ,b 不共线,OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.10.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心. 解:如图,记AM →=AB→|AB→|,AN →=AC→|AC→|,则AM →,AN →都是单位向量,∴|AM →|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC . ∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →, ∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.B 组 高考题型专练1.)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.BC →B.12AD →C.AD →D.12BC → 解析:设AB →=a ,AC →=b ,则EB →=-12b +a ,FC →=-12a +b ,从而EB →+FC →=⎝ ⎛⎭⎪⎫-12b +a +⎝ ⎛⎭⎪⎫-12a +b =12(a +b )=AD →,故选C. 答案:C2.对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2解析:对于A 选项,设向量a ,b 的夹角为θ,∵|a ·b |=|a ||b ||cos θ|≤|a ||b |,∴A 选项正确;对于B 选项,∵当向量a ,b 反向时,|a -b |≥||a |-|b ||,∴B 选项错误;对于C 选项,由向量的平方等于向量模的平方可知,C 选项正确;对于D 选项,根据向量的运算法则,可推导出(a +b )·(a -b )=a 2-b 2,故D 选项正确,综上选B.答案:B3.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →,所以λ1=-16,λ2=23,即λ1+λ2=12.答案:124.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是________.(写出所有正确结论的编号)①a 为单位向量;②b 为单位向量;③a ⊥b ;④b ∥BC →;⑤(4a +b )⊥BC →.解析:∵AB →=2a ,AC →=2a +b ,∴a =12AB →,b =BC →,又△ABC 是边长为2的等边三角形,∴|a |=1,|b |=2,故①正确,②错误,③错误;由b =BC →,知b ∥BC →,故④正确;∵4a +b =2AB →+BC →=AB →+AC →,∴(4a +b )·BC →=(AB →+AC →)·BC →=-2+2=0,∴(4a +b )⊥BC →,故⑤正确.答案为①④⑤.答案:①④⑤。

统编人教高中数学A版必修二第六章第2节《平面向量的运算》优质说课稿

统编人教高中数学A版必修二第六章第2节《平面向量的运算》优质说课稿

(新)人教高中数学A版必修二第六章第2节《平面向量的运算》优质说课稿今天我说课的内容是新人教高中数学A版必修二的第六章第1节《平面向量的概念》。

向量理论具有深刻的数学内涵、丰富的物理背景。

向量既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁.向量是描述直线、曲线,平面、曲面以及高维空间数学同题的基本工具,是进一步学习和研究其他数学领域问题的基础,在解决实际问题中发挥着重要作用。

本章的学习可以帮助学生理解平面向量的几何意义和代数意义;掌握平面向量的概念、运算、平面向量基本定理;用向量语言、方法表述和解决现实生活、数学和物理中的问题:提升数学运算、直观想象和逻辑推理素养.第2节主要讲平面向量的运算。

本节教学承载着实现上述目标的任务,为了更好地教学,下面我从课程标准、教材分析、核心素养、教学重难点、教学方法、教学过程等方面进行说课。

一、说课程标准普通高中数学课程标准(2017年版2020年修订)【内容要求】1.平面向量及其应用。

内容包括:向量运算①借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义。

②通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义。

理解两个平面向量共线的含义。

③了解平面向量的线性运算性质及其几何意义。

④通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积。

⑤通过几何直观,了解平面向量投影的概念以及投影向量的意义。

⑥会用数量积判断两个平面向量的垂直关系。

二、教材分析。

对于“运算"学生并不陌生,他们已经学习了数的运算、代数式的运算、集合的运算等,针对每一种代数运算无外乎要研究运算的背景、意义、法则、性质、应用等,从而建立相应的运算体系,平面向量运算内容关注了以下两个方面: 一是引导学生从物理、几何、代数三个角度理解向量运算;二是引导学生类比数的运算研究向量的运算.本节在学生已经学习了平面向量概念的基础上,对平面向量这个新获得的数学研究对象,从运算的角度进一步展开研究。

平面向量的概念 课件-高一下学期数学人教A版(2019)必修第二册

平面向量的概念 课件-高一下学期数学人教A版(2019)必修第二册
南偏东 30°的方向飞行 2 000 km 到达 C 地,再从 C 地按西南方向飞行 1 000 2 km 到
达 D 地.
→ → → →
(1)作出向量AB,BC,CD,DA;
→ → → →
解 由题意,作出向量AB,BC,CD,DA,
如图所示.
跟踪训练1
(2)问D地在A地的什么方向?D地距A地多远?


③若向量AB是单位向量,则BA也是单位向量;
1

④△ABC 中,∠A=90°,若该三角形的外接圆的半径长为 ,则BC为单位向量.
2
3
其中正确的个数是______.
跟踪训练2


解析 ①正确,由于|a|=|AB|=AB,|b|=|BA|=BA=AB,因此有|a|=|b|.
②不正确,由单位向量的定义知,凡长度为1个单位长度的向量均称为单位

依题意知,△ABC为正三角形,
所以AC=2 000 km.
又因为∠ACD=45°,CD=1 000 2 km,
所以△ACD 为等腰直角三角形,则 AD=1000 2 km,∠CAD=45°,
所以 D 地在 A 地的东南方向,距 A 地 1000 2 km.
2
零向量、单位向量
知 识 梳 理
两个特殊向量
→ → → → →
BA,CD,DE,CE与AB方向相反,

→ → → → → → →
所以与向量AB共线的向量为BA,CD,DC,ED,DE,EC,CE.
跟踪训练3
(2)如图所示,四边形ABCD与ABDE是平行四边形.

②找出与向量AB相等的向量.
解 由四边形 ABCD 与 ABDE 是平行四边形,

人教A版高中数学必修第二册 平面向量的应用

人教A版高中数学必修第二册 平面向量的应用

同理,在单杠上做引体向上运动,两臂的夹角越小越省力。
思考:1当为何值时,F1 最小?最小值是多少?
G
当 0时,F1 最小。F1 2 为最小值。
2 F1 能等于 G 吗?为什么?
F1 能等于G。若要使F1
G,只需cos
2
1 ,此时
2
2
1 ,即
2
2
3
知识探究(二):向量在物理中的应用举例
例4、如图6.4 6,一条河两岸平行,河的宽度d 500m, 一艘船从河岸边的A地出发,向河对岸航行。已知船的
人教必修二 第六章
6.4平面向量的应用
旧知导入 思考:你还记得平面向量学习了哪些知识吗? 1、平面向量的定义;
2、平面向量的加、减、数乘三种线性运算;
3、平面向量的数量积运算;
4、平面向量基本定理;
5、平面向量的坐标表示及坐标运算;
平面向量在解决数学和实际问题中有举足轻重的作用,那 么,接下来我们将借助向量的运算探索三角形边长与角度的关 系,把解直角三角形问题拓展到解任意三角形问题。
2
这里,G 为定值。
知识探究(二):向量在物理中的应用举例
通过这个式子发现,当由0逐渐变大到时, 由0逐渐变大到 ,
2
2
c
os
2
的值由大逐渐变小,此时
F1
由小逐渐变大
反之,当 由逐渐变小到 0时, 由 逐渐变小到 0,cos 的值由小逐渐变大,
22
2
此时 F1由大逐渐变小。 这就是说,F1, F2之间的夹角越大越费力,夹角越小越省力。
所以AD 1 AB, AE 1 AC
从而DE
2 AE AD
1
2 AC
1

2019-2020学年新教材人教A版高中数学必修第二册课件:第六章 6.4.1 平面几何中的向量方法

2019-2020学年新教材人教A版高中数学必修第二册课件:第六章 6.4.1 平面几何中的向量方法
证明:因为 BC =OC -OB ,AE =OE -OA =(OA+OB +OC )-OA=OB +OC , 所以 AE ·BC =(OB +OC )·(OC -OB )=|OC |2-|OB |2. 因为O为△ABC的外心,所以|OC |=|OB |,所以 AE ·BC =0,即AE⊥ BC.
第十一页,共34页。
2
又| AC |2=|a+b|2=a2+2a·b+b2=1+4+2a·b=6, ∴ | AC |= 6 ,即AC= 6 .
第十七页,共34页。
◆利用向量法解决长度问题的方法 (1)基向量法:利用图形特点选择基底,向向量的数量积转化,用 公式|a|2=a2求解; (2)坐标法:建立平面直角坐标系,确定相应向量的坐标,代入公 式,若a=(x,y),则|a|= x2 y2 .
第五页,共34页。
◆用向量方法解决平面几何问题的“三步曲” (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元 素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问 题; (3)把运算结果“翻译”成几何关系. ◆用向量法解决平面几何问题的两种方法 (1)几何法:选取适当的基底(基底中的向量尽量已知模或夹角), 将题中涉及的向量用基底表示出来,利用向量的运算法则、运算律或 性质计算. (2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问 题中的长度、垂直、平行等问题转化为代数运算. 一般地,存在坐标系或易建坐标系的题目适合用坐标法.
1.用向量方法解决平面几何问题的“三步曲” (1)建立平面几何与向量的联系,用 向量 表示问题中涉及 的几何元素,将平面几何问题转化为 向量问题 ; (2)通过 向量运算 ,研究几何元素之间的关系,如距离、 夹角等问题; (3)把运算结果“翻译”成几何关系. 2.向量在物理中的应用 (1)物理问题中常见的向量有力、速度、位移等. (2)向量的加减法运算体现在一些物理量的合成和分解中. (3)动量 mv 是向量的数乘运算. (4)功是力 F 与位移 s 的数量积.

平面向量的概念 课件-高中数学人教A版(2019)必修第二册

平面向量的概念 课件-高中数学人教A版(2019)必修第二册
系.
(3)不正确.依据规定:与任意向量平行.
(4)不正确.因为向量与向量若有一个是零向量,则其方向不定.
(5)正确.向量完全由它的模和方向确定,与起点无关.
练习
变1.下列说法正确的是( ).
A.若与平行,与平行,则与一定平行
B.一定在同一直线上
C.若|| < ||,则 <
解:(1)如图所示,作出 , , : 解:(2)由题意知//, = ,
所以四边形是平行四边形.
所以 = = 400,所以|| =
400.
Байду номын сангаас
练习
变3.在四边形中, = ,且|| = ||,则这个四边形是( ).
A.正方形
B.矩形
C.等腰梯形
D.菱形
答案:D.
解:由 = 可知//,且|| = ||,
所以四边形为平行四边形.
练习
方法技巧:
平面向量在实际生活中的应用
生活中很多问题可以归结为向量的问题,如力、速度、位移等,因此运用
向量的知识进行解答可使问题简化,易于求解,解答时,一般先把实际问题用
有向线段表示向量,使向量有了直观形象.
向量的大小称为向量的长度(或模),记作||.长度为0的向量叫做零向量,
记作.长度等于1个单位长度的向量,叫做单位向量.
(向量的字母表示)向量也可以用字母, , , …表示.
印刷用黑体,书写用.
Ԧ
新知探索
1.向量的定义及表示
(1)定义:既有大小又有方向的量叫做向量.
头的线段来表示向量,线段按一定比例(标度)画出,它的长短表示向量的大小,
箭头的指向表示向量的方向.
新知探索
通常在线段的两个端点中,规定一个顺序,假设为起点,为终点,我们就

新教材高中数学第6章平面向量及其应用:平面向量基本定理pptx课件新人教A版必修第二册

新教材高中数学第6章平面向量及其应用:平面向量基本定理pptx课件新人教A版必修第二册

1.已知平行四边形 ABCD,则下列各组向量中,是该平面内所
有向量基底的是( )
A.{A→B,D→C}
B.{A→D,B→C}
C.{B→C,C→B}
D.{A→B,D→A}
D [由于A→B,D→A不共线,所以是一组基底.]
2.设 D 为△ABC 所在平面内一点,B→C=3C→D,则( )
A.A→D=-13A→B+43A→C B.A→D=13A→B-43A→C
所以O→B=O→P+P→B=O→P-B→P=23μ-2λa+μ3+λb,
又O→B=b,所以2μ33μ+-λ=2λ=1,0,
解得λ=54, μ=53,
所以B→P=45B→N,即 BP∶PN=4∶1.
2.将本例中点 M,N 的位置改为“O→M=12M→B, N 为 OA 的中点”,其他条件不变,试用 a,b 表示 O→P.
用基底表示向量
【例 2】 (1)(多选题)D,E,F 分别为△ABC 的边 BC,CA,AB
上的中点,且B→C=a,C→A=b,则下列结论正确的是( )
A.A→D=-12a-b
B.B→E=a+12b
C.C→F=-12a+12b
D.E→F=12a
(2)如图所示,▱ABCD 中,点 E,F 分别为 BC,DC 边上的中点, DE 与 BF 交于点 G,若A→B=a,A→D=b,试用 a,b 表示向量D→E,B→F.
[解] B→N=O→N-O→B=12a-b, O→M=O→A+A→M=O→A+13A→B=O→A+13(O→B-O→A)=23O→A+13O→B=23a +13b. 因为 B,P,N 和 O,P,M 分别共线, 所以存在实数 λ,μ 使B→P=λB→N=2λa-λb,
O→P=μO→M=23μa+μ3b,

高中新课程数学(新课标人教A版)必修四《2.1.1平面向量的背景及其基本概念》课件

高中新课程数学(新课标人教A版)必修四《2.1.1平面向量的背景及其基本概念》课件

课前探究学习
课堂讲练互动
活页规范训练
规律方法 要充分理解与向量有关的概念, 明白它们各自所表示 的含义,搞清它们之间的区别是解决与向量概念有关问题的关 键.
课前探究学习
课堂讲练互动
活页规范训练
【变式 1】 下列说法正确的是(
).
A.数量可以比较大小,向量也可以比较大小 B.方向不同的向量不能比较大小,但同向的可以比较大小 C.向量的大小与方向有关 D.向量的模可以比较大小 解析 A 中不管向量的方向如何,它们都不能比较大小,∴A
课前探究学习 课堂讲练互动 活页规范训练
解析 (1)错误.由|a|=|b|仅说明 a 与 b 模相等,但不能说明它 们方向的关系. (2)错误.0 的模|0| =0. (3)正确.对于一个向量只要不改变其大小和方向,是可以任意 移动的. (4)错误.共线向量即平行向量,只要求方向相同或相反即可, → 、CD → 必须在同一直线上. 并不要求两个向量AB 答案 (3)
不能漏掉“→”.
课前探究学习
课堂讲练互动
活页规范训练
2.共线向量 (1)共线向量也就是平行向量,其要求是几个非零向量的方向相 同或相反,当然向量所在的直线可以平行,也可以重合,其中 “共线”的含义不同于平面几何中“共线”的含义. (2)共线向量有四种情况:方向相同且模相等,方向相同且模不 等,方向相反且模相等,方向相反且模不等.这样,也就找到 了共线向量与相等向量的关系, 即共线向量不一定是相等向量, 而相等向量一定是共线向量. (3)如果两个向量所在的直线平行或重合,则这两个向量是平行 向量.
课前探究学习
课堂讲练互动
活页规范训练
【变式 3】 如图所示,△ABC 的三边均不相等,E、F、D 分 别是 AC、AB、BC 的中点. → (1)写出与EF共线的向量; → (2)写出与EF的模相等的向量; → 相等的向量. (3)写出与EF

(新教材)人教A版高中数学必修第二册课件:6.3.1 平面向量基本定理

(新教材)人教A版高中数学必修第二册课件:6.3.1 平面向量基本定理

若直接利用基底表示向量比较困难,可设出目标向量并建立其 与基底之间满足的二元关系式,然后利用已知条件及相关结论, 从不同方向和角度表示出目标向量(一般需建立两个不同的向 量表达式),再根据待定系数法确定系数,建立方程或方程组, 解方程或方程组即得.
1.设{e1,e2}是平面内的一个基底,且 a=e1+2e2,b=-e1+ e2,则 e1+e2=______a+______b. 解析:由ab= =-e1+e1+2e2e,2 ,解得ee12= =1313aa- +2313bb, . 故 e1+e2=13a-23b+13a+13b=23a+-13b.
③因为 e1-2e2=-12(4e2-2e1), 所以 e1-2e2 与 4e2-2e1 共线, 即 e1-2e2 与 4e2-2e1 不能作为一组基底. ④设 e1+e2=λ(e1-e2),则(1-λ)e1+(1+λ)e2=0,则11+-λλ==00,,无 解,所以 e1+e2 与 e1-e2 不共线,即 e1+e2 与 e1-e2 能作为一组基 底. 【答案】 ③
2.[变条件]若本例中的点 N 为 AC 的中点,其他条件不变,求 AP∶PM 与 BP∶PN. 解:如图,设B→M=e1,C→N=e2, 则A→M=A→C+C→M=-2e2-e1,B→N=B→C+C→N= 2e1+e2. 因为 A,P,M 和 B,P,N 分别共线, 所以存在实数 λ,μ 使得A→P=λA→M=-λe1-2λe2, B→P=μB→N=2μe1+μe2.
第六章 平面向量及其应用
6.3 平面向量基本定理及坐标表示
6.3.1 平面向量基本定理
第六章 平面向量及其应用
考点
学习目标
核心素养
理解平面向量基本定
平面向量基本定理 理及其意义,了解向量

人教A版高中数学必修第二册-第六章 -6-4-1平面几何中的向量方法

人教A版高中数学必修第二册-第六章 -6-4-1平面几何中的向量方法

高中数学 必修第二册 RJ·A
方法二 如图所示,建立平面直角坐标系,设正方形的边长为2,则 A(0,0),D(0,2),E(1,0),F(2,1),
则A→F=(2,1),D→E=(1,-2).
, 因为A→F·D→E=(2,1)·(1,-2) =2-2=0
所以A→F⊥D→E,即 AF⊥DE.
高中数学 必修第二册 RJ·A
跟踪训练
一物体在力F1=(3,-4),F2=(2,-5),F3=(3,1)的共同作用下从点A(1,1)移动到点B(0,5).在这个过程中三 个力的合力所做的功为_-__4_0____.
解析 ∵F1=(3,-4),F2=(2,-5),F3=(3,1), ∴合力F=F1+F2+F3=(8,-8).
又∵A→B=(-1,4), ∴F·A→B=8×(-1)+(-8)×4=-40,
即52m-12- 23× 23=0, 解得 m=45,
高中数学 必修第二册 RJ·A
二 利用平面向量求几何中的长度问题
例2 在平行四边形ABCD中,AD=1,AB=2,对角线BD=2,求对角线AC的长.




解 设AD=a,AB=b,则BD=a-b,AC=a+b, →
而|BD|=|a-b|= a2-2a·b+b2= 1+4-2a·b = 5-2a·b=2,
高中数学 必修第二册 RJ·A
知识点二 向量在物理中的应用
(1)物理问题中常见的向量有 力、速度、加速度、位移 等. (2)向量的加减法运算体现在 力、速度、加速度、位移的合成与分解 . (3)动量mv是向量的 数乘 运算. (4)功是 力F 与 所产生的位移s的数量积.
高中数学 必修第二册 RJ·A
高中数学 必修第二册 RJ·A

高中数学人教A版必修(第二册)第六章 平面向量及其应用知识点

高中数学人教A版必修(第二册)第六章 平面向量及其应用知识点

高中数学人教A版必修(第二册)第六章平面向量及其应用知识点第六章平面向量及其应用1.向量的概念与向量的模1) 向量是既有大小又有方向的量,如物理中的矢量:速度、加速度、力。

只有大小没有方向的量叫做数量,如物理中的标量:身高、体重、年龄。

在数学中,向量的大小叫做向量的模,这是一个标量。

海拔、温度、角度都是数量,不是向量。

向量可以平移,与位置无关。

2) 向量的几何表示:用有向线段表示向量,有向线段的长度表示有向向量的大小,用箭头所指的方向表示向量的方向。

即用表示有向线段的起点、终点的字母表示,例如AB、BC 等,用小写字母a、b等表示。

有向线段的长度为模,表示为|AB|、|a|等。

3) 向量的模:AB的大小,也就是AB的长度(或称模),记作|AB|。

4) 零向量:长度为零的向量叫做零向量,记作0,零向量的长度为0,方向是任意的。

5) 单位向量:长度为一个单位长度的向量叫做单位向量(与AB共线的单位向量是±AB/|AB|)。

6) 相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。

7) 平行向量(共线向量):方向相同或相反的非零向量。

如果a、b、c是非零向量且方向相同或相反(向量所在的直线平行或重合),则a∥b∥c。

任一组平行向量都可移动到同一条直线上,因此平行向量又叫共线向量,任一向量都与它自身是平行向量,并且规定,零向量与任一向量平行。

平行向量没有传递性。

相等向量一定是共线向量,但共线向量不一定相等。

8) 相反向量:与a长度相等方向相反的向量叫做a的相反向量,记作-a。

2.向量的加法运算1) 三角形法则:AB+BC=AC。

特征:首尾相接的几个向量相加,等于从首向量的起点指向末向量的终点的向量。

2) 平行四边形法则:ABCD为平行四边形,则AB+AD=AC。

特征:同起点的两个向量相加,等于以这两个向量为邻边的平行四边形的对角线所在向量(起点不变)。

3) 向量的加法性质:a+b=b+a,a+(-a)=0,(a+b)+c=a+(b+c),|a+b|≤|a|+|b|。

新教材 人教A版高中数学必修第二册 第六章 平面向量及其应用 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第六章 平面向量及其应用 知识点汇总及解题规律方法提炼

6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型例题1向量的相关概念给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型例题2向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型例题3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD→共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意]对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2.1向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 3.向量加法的运算律交换律 a +b =b +a 结合律 (a +b )+c =a +(b +c )典型例题1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC →=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点; ②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型例题2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A →=AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型例题3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.。

高中数学6-1平面向量的概念课后提能训练新人教A版必修第二册

高中数学6-1平面向量的概念课后提能训练新人教A版必修第二册

第六章 6.1A 级——基础过关练1.下列说法中,正确的个数是( ) ①时间、摩擦力、重力都是向量; ②向量的模是一个正实数; ③相等向量一定是平行向量;④向量a 与b 不共线,则a 与b 都是非零向量. A .1 B .2 C .3 D .4【答案】B【解析】对于①,时间没有方向,不是向量,摩擦力、重力都是向量,故①错误;对于②,零向量的模为0,故②错误;③正确,相等向量的方向相同,因此一定是平行向量;④显然正确.2.(多选)下列说法中,正确的是( ) A .向量AB →的长度与向量BA →的长度相等 B .任何一个非零向量都可以平行移动C .长度不相等而方向相反的两个向量一定是共线向量D .两个有共同起点且共线的向量其终点必相同 【答案】ABC【解析】很明显选项A ,B ,C 正确,共线向量只与方向有关,方向相同或相反的向量都是共线向量,所以选项D 不正确.3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A .AB →=OC → B .AB →∥DE → C .|AD →|=|BE →| D .AD →=FC →【答案】D【解析】由题图可知,|AD →|=|FC →|,但AD →,FC →的方向不同,故AD →≠FC →.故选D . 4.如图,在四边形ABCD 中,若AB →=DC →,则图中相等的向量是( )A .AD →与CB → B .OB →与OD →C .AC →与BD → D .AO →与OC →【答案】D【解析】∵AB →=DC →,∴四边形ABCD 是平行四边形,则AO =OC ,即AO →=OC →.5.如图所示,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________,与OA →相等的向量是________.【答案】 2 CO →【解析】易知|OA →|=12|CA →|=12×22=2,CO →与OA →的模相等,方向相同.6.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是________(填序号).【答案】①③④【解析】相等向量一定是共线向量,①能使a ∥b ;方向相同或相反的向量一定是共线向量,③能使a ∥b ;零向量与任一向量平行,④成立.7.把同一平面内所有模不小于1,不大于2的向量的起点,移到同一点O ,则这些向量的终点构成的图形的面积等于________.【答案】3π【解析】这些向量的终点构成的图形是一个圆环,其面积为π·22-π·12=3π. 8.如图所示,已知四边形ABCD 和四边形ABDE 都是平行四边形.(1)与AB →相等的向量有哪些? (2)与AB →共线的向量有哪些? (3)若|AB →|=1.5,求|CE →|的大小.解:(1)与AB →相等的向量即与AB →同向且等长的向量,有ED →,DC →.(2)与AB →共线的向量即与AB →方向相同或相反的向量,有BA →,ED →,DC →,EC →,DE →,CD →,CE →. (3)若|AB →|=1.5,则|CE →|=|EC →|=|ED →|+|DC →|=2|AB →|=3.9.如图所示,4×3的矩形(每个小方格都是单位正方形),在起点和终点都在小方格的顶点处的向量中,试问:(1)与AB →相等的向量共有几个?(2)与AB →平行且模为2的向量共有几个? (3)与AB →方向相同且模为32的向量共有几个? 解:(1)与向量AB →相等的向量共有5个(不包括AB →本身). (2)与向量AB →平行且模为2的向量共有24个. (3)与向量AB →方向相同且模为32的向量共有2个.B 级——能力提升练10.(2021年河南模拟)(多选)已知A ={与a 共线的向量},B ={与a 长度相等的向量},C ={与a 长度相等,方向相反的向量},其中a 为非零向量,下列关系中正确的是( )A .C ⊆AB .A ∩B ={a }C .C ⊆BD .(A ∩B )⊇{a }【答案】ACD【解析】因为A ∩B 中包含与a 长度相等且方向相反的向量,所以B 中的关系错误. 11.(多选)如图,在菱形ABCD 中,∠BAD =120°,则以下说法正确的是( )A .与AB →相等的向量只有一个(不含AB →) B .与AB →的模相等的向量有9个(不含AB →)C .BD →的模恰为DA →的模的3倍 D .CB →与DA →不共线 【答案】ABC【解析】由于AB →=DC →,因此与AB →相等的向量只有DC →,而与AB →的模相等的向量有DA →,DC →,AC →,CB →,AD →,CD →,CA →,BC →,BA →,因此选项A ,B 正确;在Rt △AOD 中,∠ADO =30°,∴|DO →|=32|DA →|,故|DB →|=3|DA →|,因此选项C 正确;由于CB →=DA →,因此CB →与DA →是共线的,故选项D 错误.12.在四边形ABCD 中,AB →∥CD →且|AB →|≠|CD →|,则四边形ABCD 的形状是________. 【答案】梯形【解析】∵AB →∥CD →且|AB →|≠|CD →|,∴AB ∥DC ,但AB ≠DC .∴四边形ABCD 是梯形. 13.(2021年哈尔滨月考)已知D 为平行四边形ABPC 两条对角线的交点,则|PD →||AD →|的值为________.【答案】1【解析】因为四边形ABPC 是平行四边形,D 为对角线BC 与AP 的交点,所以D 为PA 的中点,所以|PD →||AD →|的值为1.14.(2021年郑州模拟)当ME →与EF →是平行向量,且|ME →|=2|EF →|=2时,|MF →|=________. 【答案】3或1【解析】当ME →与EF →同向时,|MF →|=|ME →|+|EF →|=3;当ME →与EF →反向时,|MF →|=|ME →|-|EF →|=1.15.(2021年昆明月考)飞机从A 地按北偏西15°的方向飞行1 400 km 到达B 地,再从B 地按南偏东75°的方向飞行1 400 km 到达C 地,那么C 地在A 地的什么方向上?C 地距A地多远?解:如图所示,AB →表示飞机从A 地按北偏西15°方向飞行到B 地的位移,则|AB →|=1 400 km.BC →表示飞机从B 地按南偏东75°方向飞行到C 地的位移,则|BC →|=1 400 km.所以AC →为飞机从A 地到C 地的位移.在△ABC 中,AB =BC =1 400 km ,且∠ABC =75°-15°=60°, 故△ABC 为等边三角形,所以∠BAC =60°,AC =1 400 km.60°-15°=45°. 所以C 地在A 地北偏东45°方向上,距离A 地1 400 km.16.在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°; (2)AB →,使|AB →|=4,点B 在点A 正东; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°.解:(1)由于点A 在点O 北偏东45°处,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又因为|OA →|=42,小方格边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 位置可以确定,画出向量OA →如图所示.(2)由于点B 在点A 正东方向处,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 位置可以确定,画出向量AB →如图所示.(3)由于点C 在点B 北偏东30°处,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 位置可以确定,画出向量BC →如图所示.C 级——探索创新练17.如图是中国象棋的半个棋盘,“马走日”是象棋中马的走法.此图中,马可以从A 处跳到A 1处,用向量AA 1→表示马走了“一步”,也可以跳到A 2处,用向量AA 2→表示.请在图中画出马在B ,C 处走了“一步”的所有情况.解:如图,马在B 处只有3步可走,马在C 处有8步可走,人们常说的马有“八面威风”就是指马在中心处威力最大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量与解析几何交汇的综合问题苍南县龙港二高李丕贵设计立意及思路向量具有代数与几何形式的双重身份,故它是联系多项知识的媒介,成为中学数学知识的一个交汇点,数学高考重视能力立意,在知识网络的交汇点上设计试题,因此,解析几何与平面向量的融合交汇是新课程高考命题改革的发展方向和创新的必然趋势。

而学生普遍感到不适应,因此,我们在解析几何复习时应适时融合平面向量的基础,渗透平面向量的基本方法。

本专题就以下两方面对平面向量与圆锥曲线交汇综合的问题进行复习;1、以向量为载体,求轨迹方程为命题切入点,综合考查学生平面向量的加法与减法及其几何意义,平面向量的数量积及其几何意义,圆锥曲线的定义。

2、以向量作为工具考查圆锥曲线的标准方程和几何性质,直线与圆锥曲线位置关系,曲线和方程的关系等解析几何的基本思想方法和综合解题能力。

高考考点回顾近三年来平面向量与圆锥曲线交汇命题可以说经历了三个阶段:2002年天津卷21道只是数学符号上的混合;2003年江苏卷20道用平面向量的语言描述解析几何元素的关系,可谓是知识点层面上整合;2004年有6份卷(分别是全国卷理科(必修+选修I)21道;全国卷理科(选修Ⅱ)21道;辽宁19道;湖南文21道;江苏卷21道;天津卷22道)涉及平面向量与圆锥曲线交汇综合,可以说是应用层面上综合。

就应用层面上又有两个层次。

第一层次:考查学生对平面向量的概念、加减运算、坐标表示、数量积等基本概念、运算的掌握情况. 第二层次:考查学生对平面向量知识的简单运用,如平面向量共线定理、定比分点、加减运算几何意义(这三点已有所涉及)、数量积几何意义、射影定理(这两点挖掘不够,本专题着重讲述见例1变式)。

考查学生把向量作为工具的运用能力.这一层次的问题有一定的难度,而且是未来几年平面向量高考题的一个走向.基础知识梳理1.向量的概念、向量的几何表示、向量的加法和减法;2.实数与向量的积、两个向量共线的充要条件、向量的坐标运算;3.平面向量的数量积及其几何意义、平面两点间的距离公式、线段定比分点人坐标公式和向量的平衡移公式;4.椭圆、双曲线、抛物线的定义及简单几何性质的灵活运用;5.曲线方程(含指定圆锥曲线方程及轨迹方程);6.直线与圆锥曲线的位置关系问题(交点、弦长、中点弦与斜率、对称问题)确定参数的取值范围;7.平面向量作为工具综合处理有关长度、角度、垂直、射影等问题以及圆锥曲线中的典型问题。

例题讲解一、“减少运算量,提高思维量”是未来几年高考的一个方向,高考中对求轨迹的方程倾向于利用适当的转化再用定义法,以利于减少运算量,提高思维量。

而圆锥曲线的两种定义均可用向量的模及数量积几何意义、射影定理来表示,无疑为平面向量与圆锥曲线交汇命题开拓了广阔的空间。

在以向量为载体,求轨迹方程为命题切入点,可以综合考查学生平面向量的加法与减法及其几何意义,平面向量的数量积及其几何意义,圆锥曲线的定义。

例1.已知j i ,是x,y 轴正方向的单位向量,设a=j y i x +-)3(, b =j y i x ++)3(,且满足|a|+|b |=4.(1) 求点P(x,y)的轨迹C 的方程.(2) 如果过点Q(0,m)且方向向量为c=(1,1) 的直线l 与点P 的轨迹交于A ,B 两点,当∆AOB 的面积取到最大值时,求m 的值。

解:(1) a =j y i x +-)3(, |b |=j y i x ++)3(,且|a|+|b |=4.∴ 点P(x,y)到点(3,0),(-3,0)的距离这和为4,故点P 的轨迹方程为1422=+y x (2)设A(11,y x ),B(22,y x )依题意直线AB 的方程为y=x+m.代入椭圆方程,得0448522=-++m mx x ,则1x +2x =-58m, 1x ∙2x =)1(254-m 因此,225221)5(m m d AB S AOB -==∆当225m m =-时,即m=210±时,1max =S[题设变式I.1] 已知j i ,是x,y 轴正方向的单位向量,设a=j y i x +-)3(,b =j y i x ++)3(,且满足||a|-|b ||=2.求点P(x,y)的轨迹C 的方程.(轨迹为双曲线)[题设变式I.2] 已知j i,是x,y 轴正方向的单位向量,设a=j y i x+-)3(,b =j y i x++)3(,且满足b ∙i =|a |.求点P(x,y)的轨迹C 的方程.[提示:设K(-3,0),F (3,0),则b ∙i表示在x 轴上射影,即点P 到x= -3的距离,所以点P 到定点F 的距离与到定直线x= -3的距离比为1,故点P 的轨迹是以(3,0)为焦点以x= -3为准线抛物线][题设变式I.3] 已知j i ,是x,y 轴正方向的单位向量,设a=j y i x +-)3(,b =j y i x ++)3(,且满足b ∙i =λ|a|.求点P(x,y)的轨迹C 的方程.[提示:设K(-3,0),F (3,0),则b ∙i表示在x 轴上射影,即点P 到x= -3的距离,所以点P 到定点F 的距离与到定直线x= -3的距离比为λ1=∙i b a,当110<<λ时,点P 的轨迹是以(3,0)为焦点,以x= -3为相应准线的椭圆;当11>λ时,点P 的轨迹是以(3,0)为焦点,以x= -3为相应准线的双曲线的右支;若想得到双曲线的双支λ应满足什么条件?][题设变式I.4] 已知平面上两定点K 、F ,P 为一动点,满足,∙=.求点P(x,y)的轨迹C 的方程.(以F 焦点,过K 且垂直于KF 的直线为准线的抛物线)[题设变式I.5] 已知平面上两定点K 、F ,P 为一动点,满足,∙=.求点P(x,y)的轨迹C 的方程.(以F 焦点,过K 且垂直于KF 的直线为准线的圆锥曲线。

) [考题] 已知点A(22-,0),B(2-,0)动点P 满足||||2⋅=⋅(1)若动点P 的轨迹记作曲线C 1,求曲线C 1的方程. (2)已知曲线C 1交y 轴正半轴于点Q ,过点D (0,32-)作斜率为k 的直线交曲线 C 1于M 、N 点,求证:无论k 如何变化,以MN 为直径的圆过点Q.(解答见附页)[题设变式II.1] 已知j i,是x,y 轴正方向的单位向量,设a=j y i x+-)3(,b =j y i x ++)3(,且满足|a +b|=4..求点P(x,y)的轨迹C 的方程. (OP BP AP 2=+,点P 轨迹为圆,其中A (3,0),B (-3,0))[题设变式II.2] 已知j i,是x,y 轴正方向的单位向量,设a=j y i x+-)3(,b =j y i x ++)3(,且满足a ∙b=6.求点P(x,y)的轨迹C 的方程. (轨迹为圆)例2、已知两点M(-2,0),N(2,0),动点P 在y 轴上的射影是H ,如果⋅⋅, 分别是公比q=2的等比数列的第三、第四项. (1)求动点P 的轨迹C 的方程; (2)已知过点N 的直线l 交曲线C 于x 轴下方两个不同的点,A 、B ,设R 为AB 的中点,若过点R 与定点Q(0,-2)的直线交x 轴于点D(x 0,0),求x 0的取值范围.导析 (1)设P(x ,y),则H(0,y),),0,(x PH -=),,2(y x ---=).,2(y x --=.4)2)(2(,2222-+=+---=⋅=⋅y x y x x x 所以,2=⋅PHPH 所以有.24222=-+x y x 所以点P 的轨迹方程为y 2-x 2=4(x ≠0).(2)设AB :y=k(x -2),A(x 1y 1),B(x 2y 2),R(x 3y 3). ⎩⎨⎧=--=42)(22x y x k y 由 化简得(k2-1)x2-4k2x=4(k2-1)=0.⎪⎪⎩⎪⎪⎨⎧-=-===.12,1222322213k k y k k x x x 所以有 所以.133k x y =所以DQ 的方程为,2233x y x y +=+ 令y=0,得,21223330x k x y x +=+= 45)211(2212122220+--=-⋅+=k kk k x 所以 又由⎪⎩⎪⎨⎧〉⋅〈+〉-=--=∆.0,0,01632)1(161623212224y y y y k k k 可得k 2>21,由题意可知22<k <1, 所以1<k 1<2,所以12-<-(211-k )2+45<1, 所以2<x 0<2+22. 故所求的x 0的取值范围为(2,2+22).[题后反思]若改变q 的值能否构造出椭圆来呢?[当0<q <1时,点P 的轨迹为椭圆]例3、如图所示,点 F (a ,0)(a >0),点P 在y 轴上运动,M 在x 轴上,N为动点,且-==⋅,0(1)求点N 的轨迹C 的方程;(2)过点F(a ,0)的直线l(不与x 轴垂直)与曲线C 交于A 、B 两点,设点K(-a ,0),与KB 的夹角为θ,求证:0<θ<2π. [答案提示] (1)点N 的轨迹C 的方程为ax y 42=[变化]点F (a ,0)(a >0),点P 在y 轴上运动,M 在x 轴上,N 为动点,且PM PN PF PM λ==⋅,0(λ为常数)求点N 的轨迹仍为抛物线吗?;二、把向量作为工具去推导与探索圆锥曲线的标准方程和几何性质,曲线和方程的关系等解析几何的基本思想方法和综合解题能力。

例4、已知1F ,F 椭圆12622=+y x 的两个焦点,过点F 的直线BC 交椭圆于B 、C 两点, (1))(21OB OC OM +=,求点M 的轨迹方程. [答案13)1(22=+-y x ](2)若相应于焦点F 的准线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点.设λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明:FQ FM λ-=. 解:(1)略(2) 证明:),3(),,3(2211y x y x -=-=.由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ 注意1>λ,解得λλ2152-=x 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x -+-=--=λ ),21(),21(21y y λλλλ--=--=.而),21(),2(222y y x FQ λλ-=-=,所以FQ FM λ-=.[结论发散]设P(00,y x )为椭圆上一点, (1) 求PF PF ∙1的Min (2)的Max(3) 当PF PF ∙1<0时,0x 的取值范围。

相关文档
最新文档