高一数学同步测试(6)函数的单调性 (4)
高中数学人教A版必修一同步练习2.3 函数的简单性质(函数的单调性)
高中数学人教A 版必修一同步练习2.3 函数的简单性质(函数的单调性)例题2-3-1、判断下列函数的单调性:(1) y =|32|2-+x x ; (2) y =x 2-||2x -3; (3) y =|1|122---x xx .例题2-3-2、用单调性定义证明:f (x )=12+x x在[1,+∞)上是减函数.例题2-3-3、已知函数y =x +x1, (1)求定义域; (2)判断奇偶性;(3)求单调区间,并证明单调性.例题2-3-4、证明函数f (x )=111122+++-++x x x x 在R 上是奇函数.例题2-3-5、证明:函数f (x )=x 3在(-∞,]0上是增函数.例题2-3-6、求函数y =x x 20042-的单调递增区间.例题2-3-7、判断函数y =x 2+x1在(-∞,0)上的单调性.例题2-3-8、函数f (x ),x (-1,1)满足f (-x )=-f (x ),且f (1-a )+f (1-a 2)<0. 若f (x )是(-1,1)上的减函数,求实数a 的取值范围.例题2-3-9、已知y =f (x )是R 上的满足f (-x )=- f (x )的函数,它在(0,+∞)上是增函数,且f (x )<0,问)(1)(x f x F =在(-∞,0)上是增函数还是减函数? 证明你的结论.例题2-3-10、若函数f (x )=ax 2-2(a -2)x +1在区间[-1,3]上是单调函数,求实数a 的取值范围.高中数学人教A 版必修一同步练习2.3 函数的简单性质(函数的单调性)解析 例题2-3-1判断下列函数的单调性: (1) y =|32|2-+x x ; (2) y =x 2-||2x -3; (3) y =|1|122---x xx .1. 求函数单调性是基本问题,通过图像来解决非常直接.2. 本题涉及两个图像变换问题:(1) 把f (x )图像在x 轴下方的部分沿x 轴翻折到上方去得到)(x f 的图像. (2) 把 f (x )图像在y 轴左侧的部分抹去,并把在y 轴右侧的部分沿y 轴翻折到左边来,并保留y 轴右侧的部分,就可得到y =f (x )的图像(一定是偶函数,关于y 轴对称).3. 解决绝对值问题有时需要讨论,去掉绝对值后解析式可化简,这样再研究函数的性质就方便了. 解:(1) 因为 y =|4)1(|2-+x 则可以画出此函数的图像,如图,由图像可得 当x ∈(-∞,-3]时,函数单调递减; 当x ∈(-3,-1]时,函数单调递增; 当x ∈(-1,1]时,函数单调递减; 当x ∈(1,+∞)时,函数单调递增.(2) 因为y =4)1|(|3||2||22----x x x =,所以此函数为偶函数,可以画出函数图像如图.(或由y =⎪⎩⎪⎨⎧-+-+----)0 ( 4)1( 32)0 ( 4)1( 322222<==x x x x xx x x 同样可以画出如图所示的函数图像)则可知当x ∈(-∞,-1)时,f (x )单调递减; 当x ∈[-1,0]时,f (x )单调递增; 当x ∈[0,1]时,f (x )单调递减;当x ∈(1,+∞)时,f (x )单调递增.(3) 因为y=|1|122---x xx=⎪⎪⎩⎪⎪⎨⎧--+--+--)0 1( 2112)2 1 ( 11222x x x x x x x x x x xx 且<=且=此函数为分段函数,可以画出它的图像, 如图可知当x ∈(-∞,0)和x ∈(0,1)时,f (x )为增函数; 当x ∈(1,2)和x ∈(2,+∞)时,f (x )为减函数.例题2-3-2用单调性定义证明:f (x )=12+x x在[1,+∞)上是减函数.y-3 -1 1 3 O-3xy 1 2-2xO ≥ ≥ ≠ ≠y -3 -1 1 O 4x(1) 任取:在单调区间内任取两个自变量x 1,x 2,且x 1<x 2; (2) 作差:用x 1和x 2的函数值作差,即f (x 1)-f (x 2);(3) 变形:作差后可以因式分解变为乘积或商的形式,也可以凑配成完全平方式; (4) 比较:判断f (x 1)-f (x 2)的符号,从而比较f (x 1)与f (x 2)的大小. 此方法用到了不等式中的一个重要的比较方法:求差比较法. 解:任取x 1,x 2∈[1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=(*))1)(1()1)(()1)(1(1122212112222122121221222211++--++--++-+x x x x x x x x x x x x x x x x x x ==因为1≤x 1<x 2,x 2 -x 1>0且x 1x 2>1.又因为121+x >0,122+x >0,所以(*)>0,即f (x 1)>f (x 2). 所以f (x )在[1,+∞)上是减函数.例题2-3-3 已知函数y =x +x1, (1)求定义域; (2)判断奇偶性;(3)求单调区间,并证明单调性.此题所涉及的函数是高中数学经常要遇到的函数,经过此题的讨论,我们可清楚地知道其大致性质,因此也能画出其大致图像,不妨试试看. 解:(1) x ≠0.(2) 因为)(11)(x f x x x x x f -⎪⎭⎫ ⎝⎛+----===,所以f (x )为奇函数.(3) 任取x 1,x 2∈(-∞,0) (0,+∞) 且x 1<x 2, 则22112111)()(x x x x x f x f --+-==(*))1()()(212121211221x x x x x x x x x x x x ---+-=.因为x 1,x 2∈(-∞,0) (0,+∞)且x 1<x 2, ① 当x 1<x 2<-1时,x 1-x 2<0,x 1x 2-1>0,x 1x 2>0, 所以(*)<0,即f (x 1)<f (x 2). 所以f (x )在(-∞,-1)上是增函数. ② 当-1≤x 1<x 2<0时,x 1-x 2<0,x 1x 2-1<0,x 1x 2>0, 所以(*)>0,即f (x 1)>f (x 2). 所以f (x )在[-1,0]上是减函数. ③ 当0<x 1<x 2≤1时,x 1-x 2<0,x 1x 2-1<0,x 1x 2>0, 所以(*)>0,即f (x 1)>f (x 2). 所以f (x )在(0,1)上是减函数. ④ 当x 2>x 1>1时,x 1-x 2<0,x 1x 2-1>0,x 1x 2>0, 所以(*)<0,即f (x 1)<f (x 2).所以f (x )在(1,+∞)上是增函数.例题2-3-4证明函数f (x )=111122+++-++x x x x 在R 上是奇函数.此题考查用定义证明函数的奇偶性,注意有时采用变通的办法更灵活,如证明:(1) f (-x ) +f(x )=0⇒奇函数;(2) ⇒--1)()(=x f x f 奇函数.证明: 因为R ∈x 又f (-x )=111122+-+--+x x x x=)]1(1)][1(1)][1(1[)]1(1)][1(1)][1(1[222222+++-++--+-++++++-+x x x x x x x x x x x x=)11(2)11(222+++-++-x x x x x x=111122+++-++-x x x x=)(x f -.所以f (x )是R 上的奇函数.例题2-3-5证明:函数f (x )=x 3在(-∞,]0上是增函数.证明(判断)函数在指定区间A 上的单调性应严格遵循五个步骤: (1) 设元:设x 1,x 2∈A ,且x 1<x 2;(2) 作差:将函数值f (x 1)与f (x 2)作差;(3) 变形:对上述差值(因式分解,或配方等)变形;(4) 判号:对上述变形结果的正、负加以判断,从而看出f (x 1),f (x 2)的大小; (5) 定论:确定f (x )的单调性.证明: 设x 1,x 2∈(-∞,]0,且x 1<x 2, 则 f (x 1)-f (x 2)=x 13-x 23=(x 1-x 2)(x 12+x 1x 2+x 22)=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+-22221214321)(x x x x x .由x 1-x 2<0,22121⎪⎭⎫ ⎝⎛+x x >0,43x 22≥0,得⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+-22221214321)(x x x x x <0,所以f (x 1)- f (x 2)<0, 即f (x 1)<f (x 2).所以,函数f (x )=x 3在(-∞,]0上是增函数. 例题2-3-6求函数y =x x 20042-的单调递增区间.如果函数=f (u )和u =g (x )在公共区间A 上都是单调函数,那么函数y =f [g (x )]在A 上也是单调函数,并且,若y =f (u )和u =g (x )的单调性相同(反),则y =f [g (x )]是增(减)函数. 这一性质,我们简记为“同增异减”.解:首先,由x 2-2004x ≥0,得x ≤0,或x ≥2004.∴函数的定义域是(-∞,0] [2004,+∞). ①xy O1002 2004其次,由于函数y =u 在[0,+∞]上是增函数,所以,求函数y =x x 20042-的单调递增区间,只需求出函数u =x 2-2004x 的单调递增区间,且满足①.如图所示,函数u =x 2-2004x 的单调递增区间是[1002,+∞). ②由①、②知函数y =x x 20042-的单调递增区间是[2004,+∞).例题2-3-7 判断函数y =x 2+x1在(-∞,0)上的单调性. )、g (x )在区间A 上都是增(减)函数,则函数f (x )+g (x )在区间A 上也是增(减)函数. 应用这一性质解答数学问题时,易出错的地方是:忘记了A 是公共区间.将函数y =x 2+x 1拆成函数f (x )=x 2与xx g 1)(=,依据f (x )、g (x )的单调性确定f (x )+g (x )的单调性,见下图.解:∵ f (x )=x 2在(-∞,0)上是减函数,g (x )=x1在(-∞,0)上也是减函数, ∴ y =f (x )+ g (x )在(-∞,0)上是减函数,即y =x 2+x1在(-∞,0)上是减函数. 例题2-3-8函数f (x ),x ∈(-1,1)满足f (-x )=-f (x ),且f (1-a )+f (1-a 2)<0. 若f (x )是(-1,1)上的减函数,求实数a 的取值范围. 是增(减)函数,且f [g (a )]>f [)(a ϕ],则a 的取值范围是{a |g (a )>)(a ϕ},或{a |g (a )<)(a ϕ}. 解:首先,-1<1-a <1,-1<1-a 2<1.由f (1-a )+f (1-a 2)<0,得f (1-a )<-f (1-a 2). ∵ f (-x )=-f (x ),x ∈(-1,1),∴ f (1-a )<f (a 2-1).又∵ f (x )是(-1,1)上的减函数,∴⎪⎩⎪⎨⎧------,11,111,11122a a a a ><<<< 即 ⎪⎩⎪⎨⎧--12,22,20<<<<<<a a a 且a ≠0,解得0<a <1(参看右图). ∴实数a 的取值范围是(0,1).例题2-3-9已知y =f (x )是R 上的满足f (-x )=- f (x )的函数,它在(0,+∞)上是增函数,且f (x )<0,问)(1)(x f x F =在(-∞,0)上是增函数还是减函数? 证明你的结论.满足f (-x )=- f (x ) (或f (-x )=f (x ))的函数在对称区间(-∞,0)与(0,+∞)上的单调性相同(反). 可以通过两个特殊的函数的图象帮助我们记忆,如图所示. 解:F (x )在(-∞,0)上是减函数.1 2-2 -22 yxOy =x 3yxOy =x 2任取x 1,x 2∈(-∞,0),且x 1<x 2, 则-x 1>-x 2>0.∵ y =f (x )在(0,+∞)上是增函数,且f (x )<0, ∴ f (-x 2)<f (-x 1)<0. ① 又∵ f (-x )=- f (x ), ∴ f (-x 2)=- f (x 2), ② f (-x 1)=- f (x 1). ③ 由①、②、③,得f (x 2)>f (x 1)>0. 于是F (x 1)-F (x 2)=)()()()(2112x f x f x f x f ->0,即F (x 1)>F (x 2).∴ )(1)(x f x F =在(-∞,0)上是减函数.例题2-3-10若函数f (x )=ax 2-2(a -2)x +1在区间[-1,3]上是单调函数,求实数a 的取值范围. 对a 进行如下分类讨论: 解:① 当a =0,f (x )=4x +1在[-1,3]是单调函数;② 当a ≠0时,f (x )是二次函数,若函数在区间[-1,3]上是单调函数,则对称轴 ∉-a a x 2=(-1,3),(如图所示),即a a 2-≤-1,或aa 2-≥3, 解得-1≤a <0,或0<a ≤1.综上,由①、②可知a 的取值范围是[-1,1].xyO1 3-1xyO 13-1。
高一函数单调性奇偶性经典练习题
函数单调性奇偶性经典练习一、单调性题型高考中函数单调性在高中函数知识模块里面主要作为工具或条件使用,也有很多题会以判断单调性单独出题或有的题会要求先判断函数单调性才能进行下一步骤解答,另有部分以函数单调性质的运用为主. (一)函数单调性的判断 函数单调性判断常用方法:121212121212()()0()()()()0()()()()()()()()()()()()f x f x f x f x x x x x f x f x f x f x f x g x f x f x g x f x g x g x g x f x ->>⇒⎧<⎨-<<⇒⎩+⇒⎧-⎧⎪⇒-⇒⎨⎨-⎩⎪-⇒⎩即单调增函数定义法(重点):在其定义域内有任意,且即单调增函数复合函数快速判断:“同增异减”增为减函数基本初等函数加减(设为增函数,为减函数):增为增函数减互为反.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩函数的两个函数具有相同的单调性例1 证明函数23()4x f x x +=-在区间(4)+∞,上为减函数(定义法)解析:用定义法证明函数的单调性,按步骤“一假设、二作差、三判断(与零比较)”进行.解:设12(4)x x ∈+∞,,且12x x <,1221121212232311()()()44(4)(4)x x x x f x f x x x x x ++--=-=---- 214x x >>Q 210x x ∴->,1(4)0x ->,2(4)0x -> 12()()f x f x ∴> 故函数()f x 在区间(4)+∞,上为减函数. 练习1 证明函数21()3x f x x -=+在区间(3)-+∞,上为减函数(定义法)练习2证明函数2()f x x =2()3-∞,上为增函数(定义法、快速判断法)练习3 求函数3()2x f x x -=+定义域,并求函数的单调增区间(定义法)练习4求函数()f x x =定义域,并求函数的单调减区间(定义法)(复合函数,基本初等函数相加减问题,反函数问题在本章结束时再练习) (二) 函数单调性的应用⎧⎪⎨⎪⎩单独考查单调性:结合单调函数变量与其对应函数值的关系求参数定义域与单调性结合:结合定义域与变量函数值关系求参数值域与单调性结合:利用函数单调性求值域 例1 若函数()f x 是定义在R 上的增函数,且2(2)(3)f x x f a +>+恒成立,数a 的围。
高中数学中的函数单调性测试题
高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。
它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。
为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。
一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。
2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。
3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。
4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。
人教A版数学必修一新课标高一数学上:函数的单调性同步练习及答案解析
高中数学学习材料金戈铁骑整理制作1.3.1 单调性与最大(小)值建议用时实际用时满分实际得分45分钟100分一、选择题(本大题共5小题,每小题6分,共30分)1.下列函数中,在区间(0,+∞)上是增函数的是()A .y =B .y =3x 2+1C .y =2xD .y =|x|2.定义在R 上的函数f(x)满足f(-x)=-f(x +4),当x>2时,f(x)单调递增,如果x 1+x 2<4,且(x 1-2)(x 2-2)<0,则f (x 1)+f(x 2)的值()A .恒小于0B .恒大于0C .可能为0D .可正可负3.已知函数f(x)=x 2+4x ,x ≥0,4x -x 2,x<0.若f(2-a 2)>f(a),则实数a 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)4.如果函数2()3(,4]f x x ax 在区间上单调递减,则实数a 满足的条件是()A .(8,+∞)B .[8, +∞)C .(∞,8)D .(∞,8]5.函数y =x 2+2x -3的单调递减区间为() A .(-∞,-3] B .(-∞,-1]C .[1,+∞)D .[-3,-1]二、填空题(本大题共4小题,每小题6分,共24分) 6.函数f(x)=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当∈(-∞,2]时是减函数,则f(1)=________.7.已知函数2(1)21f x x x x ,[1,2],则()f x 是 (填序号). ①[1,2]上的增函数;。
高中数学函数的单调性练习题及其答案
函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,假如g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对随意实数t ,都有f (5+t )=f (5-t ),那么下列式子肯定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?假如具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试探讨函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对随意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x x x18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满意f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①推断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须探讨0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
高一数学函数的单调性练习题
高一数学函数的单调性练习题题型一:求函数的单调区间,常用以下四种方法。
1.定义法 【例1】 试用函数单调性的定义判断函数2()1x f x x =-在区间(0,1)上的单调性.【例2】 证明函数3y x =在定义域上是增函数.【例3】 根据函数单调性的定义,证明函数3()1f x x =-+在(,)-∞+∞上是减函数.【例4】证明函数()f x =【例5】 讨论函数2()1x f x x =-(11)x -<<的单调性.【例6】 求函数f (x)=x+1x的单调区间。
典例分析【例7】 求证:函数()(0)a f x x a x=+>在)+∞上是增函数.【例8】 (2001春季北京、安徽,12)设函数f (x )=bx a x ++(a >b >0),求f (x )的单调区间,并证明f (x )在其单调区间上的单调性。
【例9】 (2001天津,19)设0a >,()x xe af x a e =+是R 上的偶函数。
(1)求a 的值;(2)证明()f x 在(0,)+∞上为增函数。
【例10】 已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )= f (x )+)(1x f ,讨论F (x )的单调性,并证明你的结论。
【例11】 已知函数()f x 对任意实数x ,y 均有()()()f x y f x f y +=+.且当x >0时,()0f x >,试判断()f x 的单调性,并说明理由.【例12】 已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ·()f y ,且()f x ≠0,当1x >时,()1f x <.试判断()f x 在(0,)+∞上的单调性,并说明理由.2.图象法【例13】 如图是定义在区间[5,5]-上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【例14】 求函数122y x x =++-的单调减区间【例15】 求下列函数的单调区间:⑴ |1|y x =-;⑵ 1y x x=+(0x >).【例16】 求下列函数的单调区间:⑴|1||24|y x x =-++;⑵ 22||3y x x =-++【例17】 作出函数2||y x x =-的图象,并结合图象写出它的单调区间.【例18】 画出下列函数图象并写出函数的单调区间(1)22||1y x x =-++ (2)2|23|y x x =-++3.求复合函数的单调区间【例19】 函数21x y x =-(x ∈R ,1x ≠)的递增区间是( )A .2x ≥B .0x ≤或2x ≥C .0x ≤D .1x ≤x【例20】 已知()y f x =是偶数,且在[)0+∞,上是减函数,求()21f x -单调增区间。
高中数学必修1函数单调性和奇偶性专项练习(含答案)
高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。
证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。
因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。
因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。
因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。
高一数学函数的单调性试卷(有详细答案)
高一数学函数的单调性试卷一.选择题1.函数的单调递减区间为()要求函数2.函数的单调递减区间为(D)题先求出定义域为),从而得[,得:所以函数的定义域为﹣+,则是增函数,)的单调减区间为[,,所以函数的单调减区间为4.函数的单调增区间是()5.函数的递增区间为(D)y=y=),的抛物线,所以它在(在(在定义域内为减函数在(﹣∞,0)为减函数,,,为幂函数,易知在区间(,为反比例函数,易知在(﹣在区间(9.下列函数中,在区间(0,+∞)上是减函数的是()的导数23a解:由题意,本题可以转化为解得212.已知函数是R上的增函数,则a的取值范围是(),则可解:∵函数是(=2二.填空题15.函数y=﹣(x﹣3)|x|的递增区间是[0,].,]16.函数y=x|x﹣2|的单调递增区间是(﹣∞,1),(2,+∞).17.函数f(x)在[﹣3,3]上是减函数,且f(m﹣1)﹣f(2m﹣1)>0,则m的取值范围是(0,2].即18.已知函数f(x)=x+2ax+2,x∈[﹣5,5],若y=f(x)在区间[﹣5,5]上是单调函数.则实数a的取值范围(﹣∞,﹣5]∪[5,+∞).19.已知函数f(x)是定义在(﹣∞,+∞)上的单调递增函数,且f(2m+1)<f(m﹣3).则m的取值范围是m<﹣4.三;解答题20.已知函数f(x)=a﹣.(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.+2x﹣﹣)<,则21.已知函数f(x)对任意的a、b∈R都有f(a+b)=f(a)+f(b)﹣1,且当x>0时,f (x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2﹣m﹣2)<3.22.已知函数f(x)=x|x﹣2|.(Ⅰ)写出f(x)的单调区间;(Ⅱ)解不等式f(x)<3;(Ⅲ)设0<a≤2,求f(x)在[0,a]上的最大值.或23.设f(x)定义在R+上,对于任意a、b∈R+,有f(ab)=f(a)+f(b)求证:(1)f(1)=0;(2)f()=﹣f(x);(3)若x∈(1,+∞)时,f(x)<0,则f(x)在(1,+∞)上是减函数.代入b=))(((,∴24.判断函数f(x)=﹣x+1在(﹣∞,+∞)上的单调性;))25.已知函数.(1)求f(f(2))的值;(2)判断函数在(﹣1,+∞)上单调性,并用定义加以证明.)根据函数)∵函数=(﹣=26.用函数单调性定义证明,函数f(x)=x3+在[1,+∞)上是增函数.进行证明.>在。
高一数学同步测试(6)函数的单调性
高一数学同步测试(6)—函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___.15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1, ∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
2019—2020年苏教版高中数学必修一《函数的单调性》课堂同步练习课及解析.docx
(新课标)2018-2019学年度苏教版高中数学必修一习题课课时目标 1.提高学生对指数与指数幂的运算能力.2.进一步加深对指数函数及其性质的理解.3.提高对指数函数及其性质的应用能力.1.下列函数中,指数函数的个数是________. ①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3.2.设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x +b(b 为常数),则f(-1)=________.3.对于每一个实数x ,f(x)是y =2x 与y =-x +1这两个函数中的较小者,则f(x)的最大值是________. 4.将22化成指数式为________.5.已知a =40.2,b =80.1,c =(12)-0.5,则a ,b ,c 的大小顺序为________.6.已知12x +12x=3,求x +1x的值.一、填空题1.()1222-⎡⎤-⎢⎥⎣⎦的值为________. 2.化简3(a -b )3+(a -2b )2的结果是________. 3.若0<x<1,则2x ,(12)x,0.2x 之间的大小关系是________.4.若函数f(x)=⎩⎪⎨⎪⎧f (x +2), x<2,2-x , x ≥2,则f(-3)的值为________.5.函数f(x)=a x -b 的图象如图所示,其中a ,b 均为常数,则下列结论正确的是________.(填序号) ①a>1,b>0; ②a>1,b<0; ③0<a<1,b>0; ④0<a<1,b<0.6.函数f(x)=4x +12x的图象关于________对称.7.计算130.064--(-14)0+160.75+120.01=____________________________.8.已知10m =4,10n =9,则3210m n -=________.9.函数y =1-3x (x ∈[-1,2])的值域是________. 二、解答题10.比较下列各组中两个数的大小: (1)0.63.5和0.63.7; (2)(2)-1.2和(2)-1.4;(3)1332⎛⎫⎪⎝⎭和2332⎛⎫⎪⎝⎭; (4)π-2和(13)-1.3.11.函数f(x)=a x (a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a2,求a 的值.能力提升12.已知f(x)=aa2-1(a x-a-x)(a>0且a≠1),讨论f(x)的单调性.13.根据函数y=|2x-1|的图象,判断当实数m为何值时,方程|2x-1|=m无解?有一解?有两解?1.(1)根式的运算中,有开方和乘方并存的情况,此时要注意两种运算的顺序是否可换.如当a ≥0时,na m =(na)m ,而当a<0时,则不一定可换,应视m ,n 的情况而定.(2)分数指数幂不能对指数随意约分.(3)对分数指数幂的运算结果不能同时含有根号和分数指数,不能同时含有分母和负指数.2.指数函数的解析式y =a x 中,a x 的系数是1.有些函数貌似指数函数,实际上却不是,如y =a x +k (a>0且a ≠1,k ∈Z);有些函数看起来不像指数函数,实际上却是,如y =a -x (a>0且a ≠1),因为它可以化为y =(1a )x ,其中1a >0,且1a≠1. 3.学习指数函数要记住图象,理解图象,由图象能说出它的性质.关键在于弄清楚底数a 对于函数值变化的影响,对于a>1与0<a<1时函数值变化的情况不同,不能混淆,为此必须利用图象,数形结合.习题课双基演练 1.1解析 只有③中y =3x 是指数函数. 2.-3解析 因为f(x)为定义在R 上的奇函数,所以f(0)=0, 即1+b =0,b =-1.所以f(-1)=-f(1)=-(2+2-1)=-3. 3.1解析 当x ≤0时,f(x)=2x ; 当x>0时,f(x)=-x +1. 显然,其最大值是1. 4.342解析22=122×11222⎛⎫ ⎪⎝⎭=122×142=342.5.b<a<c解析 a =20.4,b =20.3,c =20.5. 又指数函数y =2x 在R 上是增函数, ∴b<a<c. 6.解 由12x +12x -=3得(12x +12x-)2=9,即x +21122x -+x -1=9,则x +x -1=7,即x +1x=7.作业设计1.22解析 原式=122-=12=22.2.b 或2a -3b解析 原式=(a -b)+|a -2b|=⎩⎪⎨⎪⎧b , a ≤2b ,2a -3b , a>2b.3.0.2x <(12)x <2x解析 当0<x<1时,2x >1,(12)x <1,对于(12)x,0.2x 不妨令x =12, 则有0.5>0.2,再根据指数函数f(x)=0.5x ,g(x)=0.2x 的图象判断可知0.2x <(12)x . 4.18解析 f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=f(1+2)=f(3)=2-3=18.5.④解析 f(x)=a x -b 的图象是由y =a x 的图象左右平移|b|个单位得到的,由图象可知f(x)在R 上是递减函数,所以0<a<1,由y =a x 过点(0,1)得知y =a x 的图象向左平移|b|个单位得f(x)的图象,所以b<0. 6.y 轴解析 ∵f(-x)=4-x +12-x =1+4x2x =f(x),∴f(x)是偶函数,图象关于y 轴对称. 7.485解析 原式=()1330.4--1+()3442+()1220.1=0.4-1-1+23+0.1=52-1+8+110=485. 8.83解析 因为10m =4,10n =9,所以3210m n-=103m -n =103m ÷10n =43÷9=83.9.[-8,23]解析 因为y =3x 是R 上的单调增函数,所以当x ∈[-1,2]时,3x ∈[3-1,32],即-3x ∈ [-9,-13],所以y =1-3x ∈[-8,23].10.解 (1)考察函数y =0.6x .因为0<0.6<1,所以函数y =0.6x 在实数集R 上是单调减函数.又因为3.5<3.7,所以0.63.5>0.63.7. (2)考察函数y =(2)x .因为2>1,所以函数y =(2)x 在实数集R 上是单调增函数.又因为-1.2>-1.4,所以(2)-1.2>(2)-1.4.(3)考察函数y =(32)x .因为32>1,所以函数y =(32)x 在实数集R 上是单调增函数.又因为13<23,所以1332⎛⎫ ⎪⎝⎭<2332⎛⎫ ⎪⎝⎭. (4)∵π-2=(1π)2<1,(13)-1.3=31.3>1,∴π-2<(13)-1.3.11.解 (1)若a>1,则f(x)在[1,2]上递增,∴a 2-a =a 2,即a =32或a =0(舍去).(2)若0<a<1,则f(x)在[1,2]上递减,∴a -a 2=a2,即a =12或a =0(舍去). 综上所述,所求a 的值为12或32.12.解 ∵f(x)=aa 2-1(a x -1a x),∴函数定义域为R ,设x 1,x 2∈(-∞,+∞)且x 1<x 2,f(x 1)-f(x 2)=aa 2-1(1xa -11x a -2xa +21x a ) =aa 2-1(1xa -2xa +21x a -11x a )=aa 2-1(1x a -2x a +1212x x x x a a a a ) =aa 2-1(1xa -2xa )(1+121x x a a ) ∵1+121x x a a >0, ∴当a>1时,1x a <2x a ,aa 2-1>0∴f(x 1)-f(x 2)<0,f(x 1)<f(x 2),f(x)为增函数,当0<a<1时,1x a>2x a,aa2-1<0∴f(x1)-f(x2)<0,f(x1)<f(x2),∴f(x)为增函数,综上,f(x)在R上为增函数.13.解函数y=|2x-1|的图象可由指数函数y=2x的图象先向下平移一个单位长度,然后再作x轴下方的部分关于x轴的对称图形,如图所示.函数y=m的图象是与x轴平行的直线,观察两图象的关系可知:当m<0时,两函数图象没有公共点,此时方程|2x-1|=m无解;当m=0或m≥1时,两函数图象只有一个公共点,此时方程|2x-1|=m有一解;当0<m<1时,两函数图象有两个公共点,此时方程|2x-1|=m有两解.。
函数的单调性练习题
函数的单调性练习题高一数学同步测试(6)—函数的单调性1.在区间(0.+∞)上不是增函数的函数是:B。
y=3x^2+1.2.函数f(x)=4x^2-mx+5在区间[-2.+∞]上是增函数,在区间(-∞。
-2)上是减函数,则f(1)等于:C。
17.3.函数f(x)在区间(-2.3)上是增函数,则y=f(x+5)的递增区间是:A。
(3.8)。
4.函数f(x)=(ax+1)/(x+2)在区间(-2.+∞)上单调递增,则实数a的取值范围是:B。
(0.+∞)。
5.已知函数f(x)在区间[a。
b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a。
b]内:A。
至少有一实根。
6.已知函数f(x)=8+2x-x^2,如果g(x)=f(2-x^2),那么函数g(x):B。
在区间(0.1)上是减函数。
7.已知函数f(x)是R上的增函数,A(0.-1)、B(3.1)是其图象上的两点,那么不等式|f(x+1)|<1的解集的补集是:D。
(-∞。
-1)∪[2.+∞)。
8.已知定义域为R的函数f(x)在区间(-∞。
5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是:C。
f(9)<f(-1)<f(13)。
9.函数f(x)=|x|和g(x)=x(2-x)的递增区间依次是:B。
(-∞。
]。
[1.+∞)。
10.已知函数f(x)=x^2+2(a-1)x+2在区间(-∞。
4]上是减函数,则实数a的取值范围是:C。
[-1.1]。
1.已知函数 $f(x)$ 在区间 $(-\infty,+\infty)$ 上是增函数,实数 $a,b\in \mathbb{R}$ 且 $a+b\leq 0$,则下列不等式中正确的是()A。
$f(a)+f(b)\leq -f(a)+f(b)$B。
$f(a)+f(b)\leq f(-a)+f(-b)$C。
$f(a)+f(b)\geq -f(a)+f(b)$D。
高一数学同步测试函数的单调性
高一数学同步测试(6)—函数的单调性、奇偶性一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。
1.下列函数中,在(),0-∞上为减函数的是 ( )A .11y x =- B .21y x =-C .2y x x =+D .11y x =+ 2.下列函数中,为偶函数的是 ( )A .()122f x x x=+B .()1f x x =+C .()22f x x x -=+D .()()222f x x x x =+-≤<3.函数()223f x x mx =-+当[)2,x ∈-+∞时为增函数,当(],2x ∈-∞-是减函数,则()1f 等于 ( ) A .1 B .9 C .3- D .134.函数()f x =( )A .[)1,+∞B .[]3,1-C .(],1-∞-D .(],3-∞-5.已知()19113x x f x x +-=-+,且()f a =,则()f a -的值为( )A .B .2C .2D .36.已知函数()y f x =在R 上为减函数,则()3y f x =-的单调减区间为( )A .(),-∞+∞B .[)3,+∞C .[)3,-+∞D .(],3-∞7.“()00f =”是“()f x 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件8.已知函数()y f x =在R 上为奇函数,且当0x ≥时,()22f x x x =-,则()y f x =在R 上的解析式为 ( )A .()()2f x x x =-B .()()2f x x x =-C .()()2f x x x =-D .()()2f x x x =-9.设()f x 为R 上的奇函数且()f x 不恒为零,那么x R ∈时,函数(3f ax bx +-是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数10.已知函数()(1f x x =+ ( )A .()f x 是偶函数,且在[]0,1上是增函数B .()f x 是偶函数,且在[]0,1上是减函数C .()f x 是非奇非偶函数,且在[]0,1上是增函数D .()f x 是非奇非偶函数,且在[]0,1上是减函数二、填空题:请把答案填在题中横线上。
高中数学函数的单调性练习题和答案
函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2 D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x )( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式|f (x +1)|<1的解集的补集是 ( ) A .(-1,2) B .(1,4) C .(-∞,-1)∪[4,+∞) D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 11.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性如果具有单调性,它在R 上是增函数还是减函数试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2) ∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞)设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。
高一数学北师大版必修1同步专练函数的单调性
同步专练(5)函数的单调性1、设函数()f x 是(),-∞+∞上的减函数,若R a ∈,则( )A. ()()2f a f a >B. ()()2f a f a < C. ()()2f a a f a +< D.()()21f a f a +<2、若函数()2f x x ax b =++在区间[]0,1上的最大值是M ,最小值是m ,则M m -的值( )A.与a 有关,且与b 有关B.与a 有关,但与b 无关C.与a 无关,且与b 无关D.与a 无关,但与b 有关3、已知()f x 是定义在R 上的增函数,若()y f x =的图象过点()2,1A --和()3,1B ,则满足()111f x -<+<的x 的取值范围是( ) A.(-2,3)B.(-3,2)C.(-1,4)D.(-1,1)4、函数y x =+A.有最小值12,无最大值 B.有最大值12,无最小值C.有最小值12,最大值2D.无最大值,也无最小值5、若函数()245f x x mx =-+在区间[)2,-+∞上是增函数,则()1f 的最小值是( )A.-7B.7C.-25D.25 6、若函数()()()2211,02,0b x b x f x x b x x -+->⎧⎪=⎨-+-≤⎪⎩,在R 上为增函数,则实数b 的取值范围为( ) A.[]1,2 B.1,22⎛⎤ ⎥⎝⎦C.(]1,2D.()1,2 7、()21y k x b =-+是R 上的减函数,则有( )A.12k >B.12k >-C.12k <D.12k <-8、若函数()f x 在区间(),a b 上是增函数,在区间(,)c d 上也是增函数.则函数()f x 在区间()(),,a b c d ⋃上()A.必是增函数B.必是减函数C.先增后减D.无法确定单调性9、函数y =( )A. (,3]-∞-B. (],1-∞-C. [)1,+∞D. []3,1--10、已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=( ) A.-2B.0C.1D.211、函数282y x x =-+的增区间是( ) A.(],4-∞- B.[)4,-+∞ C.(],4-∞ D.[)4,+∞12、函数252y x x=--的值域是。
高中数学函数的单调性 同步练习
函数的单调性 同步练习1.判断下列函数的增减性(1)121-=x y 答案:在x ∈R 上是单调递增函数. (2)y =|x |;答案:在x ∈(-∞,0)上是单调递减函数,在x ∈[0,+∞)上是单调递增函数.(3)y =-x 2+2x ;答案:在x ∈(-∞,1)上是单调递增函数,在x ∈[1,+∞]上是单调递减函数.(4)xk y =(k ≠0). 答案:当k >0时,函数x k y =在(-∞,0)上是单调递减函数,在(0,+∞)上也是单调递减函数,当k <0时,函数xk y =在(-∞,0)上是单调递增函数,在(0,+∞)上也是单调递增函数. 2.选择题 (1)已知函数f (x )在R 上是增函数,若a +b >0,则有( )A .f (a )+f (b )>f (-a )+f (-b )B .f (a )+f (b )>f (-a )-f (-b )C .f (a )+f (-a )>f (b )+f (-b )D .f (a )+f (-a )>f (b )-f (-b )答案:A(2)已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子成立的是( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)答案:C(3)已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上两点,那么|f (x +1)|<1的解集的补集是( )A .(-1,2)B .(1,4)C .(-∞,-1) [4,+∞]D .(-∞,-1) [2,+∞]答案:D。
反函数与函数的单调性
2005-2006学年度上学期高中学生学科素质训练高一数学同步测试(5)—反函数与函数的单调性说明:本试卷分第I 卷和第II 卷两部分,第I 卷60分,第II 卷90分,共150分;答题时间150分钟.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=2.已知函数)(x f y =有反函数,且)1(+=x f y 的图象经过点)2,0(,则下列函数中可能 是)(x f y =的反函数的一个函数是 ( )A .)20(42≤≤-=x x yB .)20(412≤≤-+=x x yC .)20(422≤≤--=x x yD .)22(412≤≤---=x x y3.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .54.函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是 ( )A .a ∈-∞(,]1B .a ∈+∞[,)2C .a ∈[,]12D .a ∈-∞⋃+∞(,][,)125.若f(x)=-x 2+2ax 与1)(+=x ax g 在区间[1,2]上都是减函数,则a 的值范围是 ( )A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .(0,1)D .]1,0(6.函数),1(,11ln+∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y x xB .),0(,11+∞∈-+=x e e y xx C .)0,(,11-∞∈+-=x e e y x x D .)0,(,11-∞∈-+=x e e y xx 7.已知函数()13ax f x x +=-的反函数就是()f x 本身,则a 的值为( )A .3-B .1C .3D .1-8.设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系 是( )A. f(π)>f(-3)>f(-2)B. f(π)>f(-2)>f(-3)C. f(π)<f(-3)<f(-2)D. f(π)<f(-2)<f(-3)9. 函数()f x 存在反函数,则方程()()f x c c =为常数( )A .有且只有一个实数根B .至少有一个实数根C .至多有一个实数根D .没有实数根10.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( )A .f (a )+f (b )≤-f (a )+f (b )B .f (a )+f (b )≤f (-a )+f (-b )C .f (a )+f (b )≥-f (a )+f (b )D .f (a )+f (b )≥f (-a )+f (-b )11.点(2,1)既在函数f (x )=abx a +1的图象上,又在它的反函数的图象上,则适合条件的数组(a ,b )有 ( )A .1组B .2组C .3组D .4组12.设)(1x f -是函数f(x)=x 的反函数,则下列不等式中恒成立的是( )A .12)(1-≤-x x f B .12)(1+≤-x x fC .12)(1-≥-x x fD .12)(1+≥-x x f第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题4分,共16分.把答案填在题中的横线上.13.已知函数)(x f y =是奇函数,当0≥x 时, 13)(+=x x f ,设)(x f 的反函数是y=g(x),则g(-8)=__ .14.函数f (x) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ .15.已知f (x) = 4x -2x +1 ,求f -1(0)的值___________________.16.若f(x)=-x 2+2ax 与1)(+=x ax g 在区间[1,2]上都是减函数,则a 的值范围是________. 三、解答题:本大题共6小题,共74分.解答应写出必要的文字说明、证明过程及演算步骤. 17.用定义证明:函数1()f x x x=+在[)1,x ∈+∞上是增函数. (12分)18.设f(x)是R 上的奇函数 ,且当x ∈[0,+ ∞)时,f(x)=x(1+3x ),求f(x)在(- ∞,0)上的表达式和在R 上的表达式.(12分)19. 讨论函数f(x)=)0(12≠-a x ax,在-1<x<1上的单调性. (12分)20.f(x)为偶函数,g(x)为奇函数且f(x)+g(x)=11-x ,求f(x),g(x). (12分)21.定义在(-1,1)上的奇函数f(x)是减函数且f(1-a)+f(1-a 2)<0,求实数a 的取值围. (12分)22.已知函数f (x )=xax x ++22,x ∈[1,+∞)(14分)(1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈1,+∞),f (x )>0恒成立,试求实数a 的取值范围.2005-2006学年度上学期高中学生学科素质训练高一数学同步测试(5)—反函数与函数的单调性答案一、选择题1.A 2.B 3.C 4.D 5.D 6.B 7.D 8.A 9.C 10.B 11.A 12.C 二、填空题13. 3- 14. 1,2⎛⎤-∞- ⎥⎝⎦ 15. 1. 16. ]1,0(.三、解答题 17.任给[)1,21,x x ∈+∞且12x x <, 则1111()f x x x =+2221()f x x x =+ 12()()f x f x -=121211x x x x +-- 2212212112x x x x x x x x +--==121212()(1)x x x x x x --.[)1,21,x x ∈+∞且12x x <,1121212,1,0,0x x x x x x ≥∴>>-<.121,x x ∴>即有1210x x ->, ∴121212()(1)x x x x x x --0<,12()()f x f x ∴<, 即1()f x x x=+在[)1,x ∈+∞上是增函数.18.设x ∈(-∞,0),则-x∈(0,+ ∞),∴f(-x)=-x(1-3x )。
2020-2021学年北师大版高中数学必修一《函数的单调性》课时同步练习及解析
最新(新课标)北师大版高中数学必修一§3 函数的单调性课时目标1.理解函数单调性的性质.2.掌握判断函数单调性的一般方法.1.函数的单调性(1)在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么就说函数y=f(x)在区间A上是____的,有时也称函数y=f(x)在区间A上是______的.(2)在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有f(x1)>f(x2),那么就说函数y=f(x)在区间A上是______的,有时也称函数y=f(x)在区间A上是______的.(3)如果函数y=f(x)在区间A上是__________或是__________,那么A称为__________.2.一般地,对于函数y=f(x)的定义域内的一个子集A,如果对于任意两数x1,x2∈A,当x1<x2时,都有__________,就称函数y=f(x)在数集A上是增加的.类似地,在函数y=f(x)的定义域内的一个子集A上,如果对于任意两数x1,x2∈A,当x1<x2时,都有__________,就称函数y=f(x)在数集A上是减少的.一、选择题1.定义在R 上的函数y =f(x +1)的图像如图所示. 给出如下命题:①f(0)=1;②f(-1)=1;③若x>0,则f(x)<0;④若x<0,则f(x)>0,其中正确的是( ) A .②③ B .①④ C .②④ D .①③2.若(a ,b)是函数y =f(x)的单调增区间,x 1,x 2∈(a ,b),且x 1<x 2,则有( ) A .f(x 1)<f(x 2) B .f(x 1)=f(x 2) C .f(x 1)>f(x 2) D .以上都可能3.f(x)在区间[a ,b]上单调,且f(a)·f(b)<0,则方程f(x)=0在区间[a ,b]上( ) A .至少有一个根 B .至多有一个根 C .无实根 D .必有唯一的实根4.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .先递增再递减5.如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),则下列结论中不正确的是( ) A.f (x 1)-f (x 2)x 1-x 2>0B .(x 1-x 2)[f(x 1)-f(x 2)]>0C .f(a)<f(x 1)<f(x 2)<f(b)D.x 1-x 2f (x 1)-f (x 2)>0 6.函数y =x 2+2x -3的单调递减区间为( )A .(-∞,-3]B .(-∞,-1]C .[1,+∞) 1]二、填空题 7.设函数f(x)是R 上的减函数,若f(m -1)>f(2m -1),则实数m 的取值范围是________.8.函数f(x)=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当x ∈(-∞,2]时是减函数,则f(1)=________.三、解答题9.画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.10.已知f(x),g(x)在(a,b)上是增函数,且a<g(x)<b,求证:f(g(x))在(a,b)上也是增函数.11.已知f(x)=x2-1,试判断f(x)在[1,+∞)上的单调性,并证明.能力提升12.定义在R上的函数f(x)满足:对任意实数m,n总有f(m+n)=f(m)·f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论.13.函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.(1)求f(2)的值;(2)解不等式f(m-2)≤3.§3 函数的单调性知识梳理1.(1)增加 递增 (2)减少 递减 (3) 增加的 减少的 单调区间 2.f(x 1)<f(x 2) f(x 1)>f(x 2) 作业设计 1.B2.A [由题意知y =f(x)在区间(a ,b)上是增函数,因为x 2>x 1,对应的f(x 2)>f(x 1).] 3.D [∵f(x)在[a ,b]上单调,且f(a)·f(b)<0, ∴①当f(x)在[a ,b]上单调递增,则f(a)<0,f(b)>0, ②当f(x)在[a ,b]上单调递减,则f(a)>0,f(b)<0,由①②知f(x)在区间[a ,b]上必有x 0使f(x 0)=0且x 0是唯一的.]4.C [如图所示,该函数的对称轴为x =3,根据图像可知函数在(2,4)上是先递减再递增的.]5.C [由函数单调性的定义可知,若函数y =f(x)在给定的区间上是增函数,则x 1-x 2与f(x 1)-f(x 2)同号,由此可知,选项A 、B 、D 正确;对于C ,若x 1<x 2时,可有x 1=a 或x 2=b ,即f(x 1)=f(a)或f(x 2)=f(b),故C 不成立.]6.A [该函数的定义域为(-∞,-3]∪[1,+∞),函数f(x)=x 2+2x -3的对称轴为x =-1,由函数的单调性可知该函数在区间(-∞,-3]上是减函数.] 7.m>0解析 由f(m -1)>f(2m -1)且f(x)是R 上的减函数得m -1<2m -1,∴m>0. 8.-3解析 f(x)=2(x -m 4)2+3-m 28,由题意m4=2,∴m =8.∴f(1)=2×12-8×1+3=-3. 9.解 y =-x 2+2|x|+3=⎩⎨⎧-x 2+2x +3 (x ≥0)-x 2-2x +3 (x<0)=⎩⎨⎧-(x -1)2+4 (x ≥0)-(x +1)2+4 (x<0). 函数图像如图所示.函数在(-∞,-1],[0,1]上是增函数,函数在[-1,0],[1,+∞)上是减函数.∴函数y=-x2+2|x|+3的单调增区间是(-∞,-1]和[0,1],单调减区间是[-1,0]和[1,+∞).10.证明设a<x1<x2<b,∵g(x)在(a,b)上是增函数,∴g(x1)<g(x2),且a<g(x1)<g(x2)<b,又∵f(x)在(a,b)上是增函数,∴f(g(x1))<f(g(x2)),∴f(g(x))在(a,b)上是增函数.11.解函数f(x)=x2-1在[1,+∞)上是增函数.证明如下:任取x1,x2∈[1,+∞),且x1<x2,则f(x2)-f(x1)=x22-1-x21-1=x22-x21x22-1+x21-1=(x2-x1)(x2+x1) x22-1+x21-1.∵1≤x1<x2,∴x2+x1>0,x2-x1>0,x22-1+x21-1>0. ∴f(x2)-f(x1)>0,即f(x2)>f(x1),故函数f(x)在[1,+∞)上是增函数.12.解(1)在f(m+n)=f(m)·f(n)中,令m=1,n=0,得f(1)=f(1)·f(0).因为f(1)≠0,所以f(0)=1.(2)函数f(x)在R上单调递减.任取x1,x2∈R,且设x1<x2.在已知条件f(m+n)=f(m)·f(n)中,若取m+n=x2,m=x1,则已知条件可化为f(x 2)=f(x 1)·f(x 2-x 1), 由于x 2-x 1>0,所以0<f(x 2-x 1)<1. 在f(m +n)=f(m)·f(n)中,令m =x ,n =-x ,则得f(x)·f(-x)=1. 当x>0时,0<f(x)<1,所以f(-x)=1f (x )>1>0,又f(0)=1,所以对于任意的x 1∈R 均有f(x 1)>0. 所以f(x 2)-f(x 1)=f(x 1)[f(x 2-x 1)-1]<0, 即f(x 2)<f(x 1).所以函数f(x)在R 上单调递减.13.解 (1)∵f(4)=f(2+2)=2f(2)-1=5, ∴f(2)=3.(2)由f(m -2)≤3,得f(m -2)≤f(2). ∵f(x)是(0,+∞)上的减函数,∴⎩⎨⎧m -2≥2m -2>0,解得m ≥4.∴不等式的解集为{m|m ≥4}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学同步测试(6)—函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( )A .(0,21)B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有唯一的实根 6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x ) ( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞)8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则 ( ) A .f (-1)<f (3) B .f (0)>f (3) C .f (-1)=f (-3) D .f (2)<f (3) 二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___. 15、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f 故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36), 又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2). 当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数. 20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212a a-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x )∵x 2>x 1≥1, ∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27. (2)在区间[1,+∞)上,f (x )=xax x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数, 当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。