实验三 微波波导魔T元件的设计与仿真
微波器件实验中的波导设计和信号传输分析方法
微波器件实验中的波导设计和信号传输分析方法微波器件是微波领域中的一类重要设备,广泛应用于通信、雷达、导航等领域。
在微波器件实验中,波导设计和信号传输分析是非常关键的一环。
本文将介绍常见的微波器件实验中的波导设计原理及信号传输分析方法。
一、波导设计原理微波器件中常用的波导设计有矩形波导、圆柱波导和同轴电缆等。
其中,矩形波导是最常见的一种。
矩形波导的设计原理基于电磁波在导体内传播的特性。
对于TE模式(横电模),电磁场只存在横向的磁场分量,而对于TM模式(横磁模),电磁场只存在横向的电场分量。
通过合理的波导尺寸设计,可以实现特定模式的传输。
波导的尺寸设计涉及到工作频率、工作模式以及波导材料的参数等。
通常,设计人员需要根据实际的工程需求,选择合适的工作频率和模式。
然后,通过波导的截面尺寸来满足相应的传输要求。
波导的截面尺寸包括宽度和高度,它们的比值被称为波导的宽高比。
不同的宽高比对应不同的截止频率、传输损耗和模式特性。
二、信号传输分析方法在微波器件实验中,信号传输分析是评估器件性能的重要手段。
常见的信号传输分析方法包括散射参数(S参数)分析和功率传输分析。
1. 散射参数(S参数)分析S参数是描述微波器件输入输出关系的一组参数。
对于两端口器件,例如功率放大器或滤波器,它们的输入和输出可以用S参数矩阵表示。
S参数矩阵具体包括S11、S12、S21、S22四个参数。
其中,S11表示从端口1发出的电磁波在端口1反向散射的比例;S12表示从端口2发出的电磁波在端口1反向散射的比例;S21表示从端口1发出的电磁波在端口2正向传输的比例;S22表示从端口2发出的电磁波在端口2反向散射的比例。
通过测量器件的S参数,可以分析器件的性能,例如传输损耗、反射损耗、带宽等。
同时,可以通过设计合适的匹配网络,来优化器件的性能,使其在设计频率范围内实现最佳传输。
2. 功率传输分析功率传输分析是评估微波器件输出功率的一种方法。
常见的功率传输分析方法有功率增益分析和功率波导分析。
利用高频结构仿真器分析波导魔T
研究与设计利用高频结构仿真器分析波导魔T屠秀平(山东德州科技职业学院,山东 德州 251200)Analysis of Waveguide Magic T Using HFSST U Xiu ping(Science and T echnology Prof essional Colle ge of Shandong Dez hou,Dez hou251200,China)Abstract:High Frequency Structure Simulator(H FSS)is used for microw ave components design,w hich has friendly interface and can reduce debugg ing workload through simulated calculation.In this paper,a w aveg uide m agic T is analy zed by using H FSS,its S parameters and distribution of dynamic and static field have been g ot.Base on them,the optimum design method is sugg ested.Key words:H FSS;Waveguide mag ic T;S parameters;Field distribution摘要:高频结构仿真器(HF SS)是一种微波器件设计软件,该软件界面友好,通过仿真计算减小了调试工作量,使得微波器件的设计变得简单易行。
本文利用HF SS对波导魔T进行了仿真分析,得到了该器件的S参数和动、静态场的分布情况,并对该器件进行了优化设计。
关键词:高频结构仿真器;波导魔T;S参数;场分布中图分类号:TN12 文献标识码:A 文章编号:1002-8935(2006)06-0009-03波导魔T是完全匹配的、对应臂互相隔离的3 dB定向耦合器,可用以组成微波阻抗电桥、平衡混频器、和差器、平衡天线收发开关、相移器等,是在微波技术中广泛使用的器件。
HFSS微波仿真实验,实验报告六合一
HFSS微波仿真实验,实验报告六合一肇庆学院12通信2班杨桐烁201224124202 实验一T形波导的内场分析和优化设计实验目的1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。
2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。
实验仪器1、装有windows 系统的PC 一台2、HFSS13.0 或更高版本软件3、截图软件T形波导的内场分析实验原理本实验所要分析的器件是下图所示的一个带有隔片的T形波导。
其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。
正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。
通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。
实验步骤1、新建工程设置:运行HFSS并新建工程、选择求解类型、设置长度单位2、创建T形波导模型:创建长方形模型、设置波端口源励、复制长方体、合并长方体、创建隔片3、分析求解设置:添加求解设置、添加扫频设置、设计检查4、运行仿真分析5、查看仿真分析计算结果内场分析结果1、图形化显示S参数计算结果图形化显示S参数幅度随频率变化的曲线2、查看表面电场分布表面场分布图3、动态演示场分布图T形波导的优化设计实验原理利用参数扫描分析功能。
分析在工作频率为10GHz时,T形波导3个端口的信号能量大小随着隔片位置变量Offset的变化关系。
利用HFSS的优化设计功能,找出隔片的准确位置,使得在10GHz工作频点,T形波导商品3的输出功率是端口2输出功率的两倍。
实验步骤1、新建一个优化设计工程2、参数扫描分析设置和仿真分析:添加参数扫描分析项、定义输出变量、运行参数扫描分析3、优化设计:添加优化变量、添加目标函数、设置优化变量的取值范围、运行优化分析。
实验结果1、创建功率分配随变量Offset变化的关系图输出变量随变量Offset变化的关系图分析:从上图所示的图可以看出,当变量Offset值逐渐变大时,即隔片位置向端口2移动时,端口2的输出功率逐渐减小,端口3的输出功率逐渐变大;当隔片位置变量Offset超过0.3英寸时,端口1的反射明显增大,端口3的输出功率开始减小。
魔T的设计课程设计报告
课程设计报告课程名称:微波技术与天线设计项目:魔T的设计设计地点:跨越机房专业班级:电信1001班学号:2010001193 学生姓名:指导教师:刘建霞2013年6月21 日相关知识:常用的波导分支器件有E 面T 型分支,H 面T 型分支和匹配双T ,匹配双T 也称魔T ,波导魔T 在微波技术中有着广泛的应用,可用来组成微波阻抗电桥、平衡混频器、功率分配器、移相器、天线双工器、平衡相位检波器、鉴频器、调制器、和差器等。
矩形波导魔T 受其频带较窄的影响,在使用中有一定的局限性,因此设计一种频带相对较宽的魔T 是有实用价值的,而现有的三维电磁仿真软件为优化设计提供了便利。
一、设计目的:通过学习和掌握HFSS 软件,加强对相关知识的理解和掌握,提高在射频领域的应用能力。
本设计基于微波元器件的理论级熟练掌握HFSS 仿真软件基础上,设计一个魔T ,查看魔T 的S 参数并分析场分布图。
二、设计原理:将E--T 分支和H--T 分支合并,并在接头内加匹配以消除各路的反射,则构成匹配双T,如右图所示,它有以下特征: 1.四个端口完全匹配. 2.端口“①、②”对称,即有 2211S S3.当端口“③”输入,端口“①、②”有等辐同相波输出,端口“④”隔离。
4.当端口“④”输入,端口“①、②”有等辐反相波输出。
端口“③”隔离。
5.当端口“①或②”输入时,端口“③、④”等分输出而对应端口“②”或“①”隔离。
6.当端口“①、②”同时加入信号时,端口“③”输出两信号相量和的1/倍,端口“④”输出两信号差的1/倍。
端口“③”称为魔T 的H 臂或和臂,端口“④”称为魔T 的E 臂或差臂。
三、设计过程:设计过程大致可分为以下几部分:(具体操作在此略)1、建立新工程2、设置求解类型3、设置模型单位4、设置模型的默认材料5、创建魔T6、为该问题设置求解频率及扫频范围7、保存工程8、求解该工程9、后处理操作最后得出的模型如下图所示:2.仿真结果S参数图:S参数图的说明:p1为激励口即图1中的④;p2,p3分别为图1中的①、②,两者的图像等幅反向,因而曲线重合;p4为激励口即图1中的③,为隔离端。
[VIP专享]魔T的设计
魔T的设计1 概述无论在那个频段工作的电子设备,都需要各种功能的元器件。
微波系统也有各种无源、有源元器件,它们的功能是对微波信号进行必要的处理或变换,是微波系统的重要组成部分。
微波元器件按照性质可分为线性互易元器件、线性非互易元器件以及线性元器件三类。
其中线性互易元器件只对微波信号进行线性变换而不改变频率特性,并满足互易定理,主要包括各种微波连接匹配元件、功率分配元器件、微波滤波器件及微波谐振器件等。
功率分配元器件可以将一路微波功率按比例分成几路,主要包括:定向耦合器、功率分配器及各种微波分支器。
2 波导分支器简介将微波能量从主波导中分路接出的元件成为波导分支器,它是微波功率分配器件的一种,常用的波导分支器有E面T型分支、H面T型分支和匹配双T。
E-T分支:E面T型分支器是在主波导宽边面上的分支,其轴线平行于主波导的模的电场方向。
E-T分支相当于分支波导与主波导串联。
TE10TE H-T分支是在主波导窄边面上的分支,其轴线平行于主波导模的磁10场方向。
H-T分支相当于并联于主波导的分支线。
匹配双T:将E-T分支和H-T分支合并,并在接头内加匹配以消除各路的反射,则构成匹配双T,也称为魔T。
3 整体设计3.1 设计目的(1) 学习设计波导分支器的方法;(2) 掌握魔T的设计方法及其S参数及场分布图的分析。
(3) 掌握HFSS10软件,加强对相关知识的理解,提高在射频领域的应用能力。
3.2 设计任务基于微波元器件的理论级,设计一个魔T,查看魔T放入S参数并分析场分布图。
3.3 设计原理将E-T分支和H-T分支合并,并在接头内加匹配以消除各路的反射,则构成匹配双T,如图1所示,它有以下特征:1.四个端口完全匹配.2.端口“①、②”对称,即有= 。
11S 22S 3.当端口“③”输入,端口“①、②”有等辐同相波输出,端口“④”隔离。
4.当端口“④”输入,端口“①、②”有等辐反相波输出。
端口“③”隔离。
5.当端口“①或②”输入时,端口“③、④”等分输出而对应端口“②”“①”隔离。
太原理工大学 微波课设 魔T的设计
本科课程设计报告课程名称:微波技术与天线设计项目:设计二:魔T的设计设计地点:跨越机房设计二、魔T的设计一、设计目的(1) 学习设计波导分支器的方法;(2) 掌握魔T的设计方法及其S参数及场分布图的分析。
(3) 掌握HFSS10软件,加强对相关知识的理解,提高在射频领域的应用能力。
二、设计原理将微波能量从主波导中分路接出的元件成为波导分支器,它是微波功率分配器件的一种,常用的波导分支器有E面T型分支、H面T型分支和匹配双T。
E-T分支: E面T型分支器是在主波导宽边面上的分支,其轴线平行于主波导的10TE模的电场方向。
E-T分支相当于分支波导与主波导串联。
H-T分支是在主波导窄边面上的分支,其轴线平行于主波导10TE模的磁场方向。
H-T分支相当于并联于主波导的分支线。
匹配双T:将E-T分支和H-T分支合并,并在接头内加匹配以消除各路的反射,则构成匹配双T,也称为魔T。
将E--T分支和H--T分支合并,并在接头内加匹配以消除各路的反射,则构成匹配双T,如右图所示,它有以下特征:①四个端口完全匹配.②端口“①、②”对称,即有③当端口“③”输入,端口“①、②”有等辐同相波输出,端口“④”隔离。
④当端口“④”输入,端口“①、②”有等辐反相波输出。
端口“③”隔离。
⑤当端口“①或②”输入时,端口“③、④”等分输出而对应端口“②”或“①”隔离。
⑥当端口“①、②”同时加入信号时,端口“③”输出两信号相量和的1/倍,端口“④”输出两信号差的1/倍。
端口“③”称为魔T的H臂或和臂,端口“④”称为魔T的E臂或差臂。
图1 魔T模型图三、设计步骤1 建立工程文件在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中,这样使得在复制模型时,所设置的边界一起复制。
2 设置求解类型3 设置模型单位将创建模型中的单位设置为毫米。
4设置模型的默认材料在工具栏中设置模型的默认材料为真空。
微波波导实验报告
一、实验目的1. 了解微波在波导中的传播特点;2. 学习驻波法和共振吸收法测量波长;3. 掌握微波的基本测量方法;4. 熟悉微波波导的基本结构及其工作原理。
二、实验原理微波波导是一种用于传输微波的介质波导,其内部电磁波以一定的方式传播。
在矩形波导中,电磁波主要沿波导轴向传播,同时在横截面上存在一定的电场和磁场分布。
根据电磁波的传播特性,可以通过测量波导中的驻波和共振吸收来研究微波的传播。
三、实验仪器与设备1. 微波波导实验装置;2. 驻波测量仪;3. 频率计;4. 信号发生器;5. 连接线;6. 测量尺。
四、实验步骤1. 连接仪器:按照实验要求连接好微波波导实验装置、驻波测量仪、频率计、信号发生器等仪器。
2. 调节频率:调整信号发生器的输出频率,使其接近微波波导的谐振频率。
3. 测量驻波:打开驻波测量仪,记录驻波图,通过分析驻波图确定波导中的驻波波长。
4. 测量共振吸收:调整信号发生器的输出频率,使其在微波波导的共振频率附近,观察共振吸收现象。
5. 测量波导尺寸:使用测量尺测量波导的长度、宽度和高度。
6. 数据处理:根据实验数据,计算微波在波导中的传播速度、波长等参数。
五、实验结果与分析1. 驻波测量结果:通过驻波测量仪,成功测量出微波在波导中的驻波波长。
根据驻波波长和波导尺寸,计算出微波在波导中的传播速度。
2. 共振吸收测量结果:在微波波导的共振频率附近,观察到明显的共振吸收现象。
通过分析共振吸收曲线,确定微波波导的共振频率。
3. 数据处理结果:根据实验数据,计算出微波在波导中的传播速度、波长等参数,并与理论值进行比较。
六、实验结论1. 通过实验,成功了解了微波在波导中的传播特点,验证了驻波法和共振吸收法测量波长的可行性;2. 掌握了微波的基本测量方法,为后续的微波技术研究和应用奠定了基础;3. 通过实验结果分析,验证了微波波导的理论模型,为微波波导的设计和优化提供了参考。
七、实验总结本次实验通过测量微波在波导中的传播速度、波长等参数,验证了微波波导的理论模型,为微波波导的设计和优化提供了参考。
微波技术与天线仿真实验报告
微波技术与天线仿真实验报告姓名:柳立志学号:110250208ANSOFT HFSS软件的使用与魔T的仿真一、实验内容1、下载并且安装ANSOFT HFSS软件10.0版本;2、学习使用该软件;3、仿真魔T;4、写出仿真使用后的报告。
二、软件介绍与使用Ansoft HFSS软件设置步骤如下:1.打开Ansoft HFSS V10.0,点击TOLLS栏进行软件仿真设置;2.点击Options中的HFSS Options,在General选项卡中将"Use wizards for data inputwhen creating new boundary"和"Duplicate boundaries with geometry"前的复选框打钩,点击OK;3.点击Options中的3D Modeler Options,在Operation选项卡中将"Automaticallycover closed ployline"前的复选框打钩,在Drawing选项卡中将"Edit property of newprimitives"前的复选框打钩,点击OK;三、仿真魔T1、创建三维模型1.设置模型单位点击3D Modeler,选择Units,设置单位为"mm",点击OK;2.设置默认材料在3D Modeler Materials Tollbar中选择材料类型为vacuum;3.设置第一个模块参数点击Draw中Box,设置起始坐标为X:-25.0,Y:-10.0,Z:0.0,按下回车,接着输入相对坐标dX:50.0,dY:20.0,dZ:75.0,按下回车,按快捷键Ctrl+D,使模块以适当大小显示在屏幕内;4.设置波端口激励点击Edit栏Select中Faces,选择模块的顶面(Z=75.0),点击HFSS栏Excitations=>Assign中的Wave Port,打开Wave Port对话框,输入名称为p1,Next=>Next=>Finish,完成对波端口激励的设置;5.更改选择目标点击Edit栏Select中的Object,完成设置;6.创建第二个模块按下Ctrl+A选择全部可视,点击Edit栏Duplicate中Around Axis,使第一个模块按轴线旋转复制,选择Axis为X轴,设置角度为90度,点击OK;7.创建第三、四个模块点击Edit栏Select中Select By Name,选择第二个模块同样绕Z轴旋转90度复制,再以第三个模块绕绕Z轴旋转90度复制获得最终模型;8.组合所有模块按下Ctrl+A选择全部模块,点击3D Modeler栏Boolean中Unites,将所有模块合并,Ctrl+D使模块以适当大小显示在屏幕内,模型如下图所示;9.边界显示设置保存工程,点击HFSS栏中Boundary Display(Solve view),选择要显示的边界,outer为背景显示(图中蓝色边界),黑、红、绿、黄分别分边界p1、p2、p3、p4的边界显示;点击View栏Active View Visibility ...,将所有实体隐藏,只显示边界,如下图所示:2、分析设置1.创建一个分析设置点击HFSS栏Analysis Setup中Add Solution Setup...,在General选项卡中设置频率为4GHz,最大量程为5,最大增量为0.02,点击OK;2.添加频率扫描点击HFSS栏Analysis Setup中Add Sweep...,选择要设置项Setup1,点击OK进入Edit Sweep对话框,选择扫描类型为Fast,设置频率类型为Linear Setup,开始频率为3.4GHz,停止频率为4.0GHz,计数1001次(即设置Size约为600KHz),在Save Fields前的复选框打钩,点击OK;3.保存工程点击File栏Save As,更改工程名为hfss_magic_T,点击Save;3、分析4.模型验证点击HFSS栏Validation Check进行检查验证,没有错误时点击Close;5.分析点击HFSS栏Analysis All,进行分析;4、生成报告通过仿真得到如下两种不同结果:5、动态仿真最终进行动态仿真,由软件观察魔T的传输使用过程,静态图如下:软件使用体会:我使用的是ANSOFT HFSS14.0版本,软件操作语言为英文,它是三维电磁仿真软件。
微波与射频电路仿真报告
微波射频仿真实验报告一、实验室名称:微波、毫米波实验室二、实验项目名称:微波与射频电路仿真与设计实验三、实验学时:32学时四、实验原理:应用微波电路仿真软件ADS(Advanced Design System),完成给定的微波电路设计任务。
五、实验目的:掌握微波电路CAD的基本概念;了解现代微波电路CAD的基本组成;掌握ADS软件并进行微波电路的建模,仿真,优化和调试等任务。
六、实验内容:微波电路的基本概念;微波网络基本理论;ADS软件的使用方法。
上机操作:1.完成给定的微波器件设计;2.完成实验报告。
七、实验器材(设备、元器件):台式计算机70台;ADS 2009仿真软件;U盘(学生自备)。
八、实验步骤:Wilkinson功分器的设计本实验是利用εr=4.3,厚度h=0.8mm的介质基板,设计公分比是1:1的Wilkinson功分器,在中心频率处实现功率分配功能。
电路模型和参数均参考冯新宇编写的《ADS2009射频电路与仿真》。
之后进对电路行了优化仿真,并生成版图。
虽然带宽不作要求,但是通过不断优化后设计出来的功分器,其分配损耗、隔离度和输入输出端驻波比在较宽的频带内均有较好的特性。
a.设计指标设计一功分器,在f0=3GHz处实现最佳工作,带宽不作要求,并作出版图仿真。
注:本实验设计的是Wilkinson功分器,指标若用设计出来后的指标既是:通带2.9~3.1 GHz,公分比1:1,带内各端口反射系数S11、S22、S33小于-20dB,两端口隔离度S23小于-25dB,传输损耗S21小于3.1dB。
b.功分器简介在射频/微波电路中,为了将功率按一定比例分成两路或多路,需要使用功率分配器(简称功分器),在近代射频/微波大功率固态发射源的功率放大器中广泛的使用功分器,而且通常功分器是成对使用的,现将功率分成若干份,然后在分别放大,再合成输出。
Wilkinson功分器的结构如图1所示,对于功率平分的情况,输入和输出口间的分支线特性阻抗=Z0,线长为四分之一线上波长,在分支线末端跨接一个电阻R,其值为2。
微波滤波器设计与仿真实验报告公版
微波滤波器设计与仿真一、实验原理:二、实验步骤:一、低通滤波器设计与仿真:。
三、实验结果:m1m22.8 2.93.0 3.1 3.2 3.32.7 3.4-60-50-40-30-20-10-700f req, GHzd B (S (1,2))m2freq=dB(S(1,2))=-1.2173.050GHz 2.82.93.03.13.23.32.73.4-60-50-40-30-20-10-700f req, GHzd B (S (2,1))2.82.93.03.13.23.32.73.4-30-25-20-15-10-5-350f req, GHz d B (S (2,2))2.8 2.93.0 3.1 3.2 3.32.73.4-30-25-20-15-10-5-350f req, GHzd B (S (1,1))m1freq=dB(S(1,1))=-20.83.0GHz四、实验思考题:(1)如果仿真中发现微带带通滤波器通带的中心频率偏高50MHz ,则应当增加还是减小耦合线的长度,才能使通带移到正确的频率? 答:因为耦合线节的长L 约为四分之一波长。
如果测试中发现滤波器通带的中心频率偏高50MHz ,则说明波长变小,则耦合线节的长L 偏小。
所以应该增加耦合线节的长度,使波长变长,从而使频率降低。
(2)在优化仿真中加大S 参数仿真的频率范围,微带带通滤波器的寄生通带将会出现在什么频率上。
答:微带带通滤波器的寄生通带将会出现在12GHZ 附近。
(3)信号通过滤波器时产生的衰减可能来自哪几个方面?答:1、阻抗不匹配造成的反射,可通过匹配削弱2、导体损耗可选择合适的谐导体材料。
3、介质损耗选择损耗角正切小的介质。
五、实验心得:本次实验是设计集总参数微波滤波器和分布参数滤波器,个人觉得集总参数滤波器的设计过程简单,具体功能容易实现,分布参数所调配的参数相对较难,花了比较就久的时间才得了结果。
微波仿真作业07083003薛飞
微波仿真报告(魔T的仿真)07083003 薛飞一:微波结构性质应用波导魔T是匹配的双T,由双头T波导接头处加入匹配元件构成。
如图,具有以下性质。
1.四个端口完全匹配2.不仅E臂和H臂相互隔离,而且双侧臂(即2,3)也相互隔离3.进入一侧臂的信号,将由E臂和H臂等分输出,而且不进入另一侧臂4.进入H臂的信号,将由两侧臂等幅同相输出,而且不进入E臂5.进入E臂的信号,将由两侧臂等幅反相输出,而且不进入H臂6.若两侧臂同时加入信号,E臂输出的信号等于两出入信号相量差的1/根号2倍。
H臂输出的信号则等于两输入信号相量和的1/根号2倍由于特性6,所以魔T的E臂常称为差臂,H臂常称为和臂。
在了解了魔T的基本性质情况下我们将用ANSOFT公司的HFSS软件对魔T进行仿真。
二:建模第一步我们先进行建模利用HFSS软件可以很方便的完成各种模型元件的仿真。
步骤如下:1.打开HFSS软件,调试软件,在面板上画下如下的长方体长75宽50高25如下图:2.在建立好的长方体上加入激励。
如图所示注意这里TOOL中OPTIONS-HFSSOPTIONS中的duplicate boundaries/mesh operations with geometr要选中,方便加激励后的旋转。
在加入激励后如下图所示的规定出激励的积分方向。
3.对得到的立方体对轴进行旋转得到如下图所示的图形,设置长方体为一个物体。
到这里我们就将魔T的模型建立完毕了。
三:结果现在我们开始进行分析结果。
首先对分析进行设置。
选择菜单项; HFSS > Analysis Setup > Add Solution Setup设置频率;4.0GHZ ,设置最多步数:5 设置步长为0.02.选择菜单项:HFSS > Analysis Setup > Add Sweep选择设置:Setup1扫频类型: Fast 扫频设置类型:Linear Count。
北邮微波仿真实验报告
北邮微波仿真实验报告一、实验介绍本实验是北邮无线通信专业课程中的微波仿真实验,通过使用射线追踪软件CST Studio Suite对微波器件进行仿真,从而掌握基本的微波设计流程和仿真分析技术。
实验内容包括但不限于:•单模矩形波导五分之一波长变压器•微带线谐振器•微带线带阻滤波器二、实验步骤1. 单模矩形波导五分之一波长变压器仿真流程1.画出五分之一波长变压器的示意图,并确定所需参数。
2.使用CST Studio Suite建立仿真模型,设置仿真参数和求解器。
3.将波导的端口设置为微波源,并设置合适的激励条件。
4.运行仿真模拟,查看仿真结果并分析。
结果分析根据仿真结果,得出五分之一波长变压器的传输系数和反射系数,并将其绘制出来。
可以看出,在设计频率附近,反射系数小于-30dB,传输系数接近1,达到了较好的设计效果。
2. 微带线谐振器仿真流程1.画出微带线谐振器的示意图,并确定所需参数。
2.使用CST Studio Suite建立仿真模型,设置仿真参数和求解器。
3.将该谐振器的端口设置为微波源,并设置合适的激励条件。
4.运行仿真模拟,查看仿真结果并分析。
结果分析根据仿真结果,可得到该微带线谐振器的中心频率、带宽和功率传输系数。
在设计频率附近,此谐振器的功率传输系数接近1,带宽较窄,能够实现较好的谐振效果。
3. 微带线带阻滤波器仿真流程1.画出微带线带阻滤波器的示意图,并确定所需参数。
2.使用CST Studio Suite建立仿真模型,设置仿真参数和求解器。
3.将该带阻滤波器的端口设置为微波源,并设置合适的激励条件。
4.运行仿真模拟,查看仿真结果并分析。
结果分析根据仿真结果,得到该微带线带阻滤波器的中心频率、带宽和传输系数,并将其绘制出来。
可以看出,在设计频率处,该滤波器的传输系数小于-30dB,能够很好地实现带阻效果。
三、总结通过本次实验,我深入了解了微波电路设计的基本流程和仿真分析技术,在实践中提升了自己的设计能力和仿真模拟技能,对微波电路设计领域有了更深入的认识。
实验三 微波波导魔T元件的设计与仿真
实验三微波波导魔T元件的设计与仿真一、实验目的1.设计一个微波波导魔T元件2.查看魔T的S参数并分析场分布图二、实验设备装有HFSS 13.0软件的笔记本电脑一台三、实验原理TE模微波信号从p1端口输入时,不能在端口p3内激发电磁场,即端在魔T中,当10口p3隔离,信号由端口p2和p4反相等分输出(E面T特性);当信号从端口p3输入时,不能在端口p1内激发电磁场,即端口p1隔离,信号由端口p2和p4同相等分输出(H面T 特性)。
四、实验内容设计一个微波波导魔T元件,其指标要求如下:工作频率为4GHz。
此魔T元件设计仿真中采用波导结构实现。
最终获得S参数曲线和场分布图的仿真结果。
五、实验步骤1.建立新工程了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。
2.将求解类型设置为激励求解类型:(1)在菜单栏中点击HFSS>Solution Type。
(2)在弹出的Solution Type窗口中(a)选择Driven Modal。
(b)点击OK按钮。
3.设置模型单位(1)在菜单栏中点击3D Modeler>Units。
(2)在设置单位窗口中选择:mm。
4.设置模型的默认材料在工具栏中设置模型的默认材料为真空(vacuum)。
5.创建魔T(1)创建arm_1画一个长方体并命名为arm_1,其位置坐标为:X:-25,Y:-10,Z:0;dX:50,dY:20,dZ:75。
(2)设置激励端口(a)在菜单栏中点击Edit>Select>Faces,选择arm_1的最上面表面(b)在菜单栏中点击HFSS>Excitation>Assign>Wave Port(c)Wave Port:General窗口,将端口命名为p1,在宽边设置积分线,然后点击Next直到Finish结束。
微波技术与天线仿真实验报告
《微波技术与天线》HFSS仿真实验报告实验二H面T型波导分支器设计一.仿真实验内容和目的使用HFSS设计一个带有隔片的H面T型波导分支器,首先分析隔片位于T型波导正中央,在8~10GHz的工作频段内,波导输入输出端口的S参数随频率变化的关系曲线以及10GHz 时波导表面的电场分布;然后通过参数扫描分析以及优化设计功能分析在10GHz处输入输出端口的S参数随着隔片位置变化而变化的关系曲线;最后利用HFSS优化设计功能找出端口三输出功率是端口二输出功率两倍时隔片所在位置。
二.设计模型简介整个H面T型波导分为两个部分:T型波导模型,隔片。
见图1。
图1三.建模和仿真步骤1.运行HFSS并新建工程,把工程另存为Tee.hfss。
2.选择求解类型:主菜单HFSS→solution type→driven modal,设置求解类型为模式驱动。
3.设置长度单位:主菜单modeler→units→in,设置默认长度单位为英寸。
4.创建长方体模型1)从主菜单选择draw→box,进入创建长方体模型的工作状态,移动鼠标到HFSS工作界面的右下角状态栏,在状态栏输入长方体的起始点坐标为(0,-0.45,0),按下回车键确认之后在状态栏输入长方体的长宽高分别为2,0.9,0.4。
2)再次按下回车键之后,在新建长方体的属性对话框修改物体的位置,尺寸,名称,材料和透明度等属性。
在attribute选项卡中将长方体名称项(name)修改为Tee,材料属性(material)保持为真空(vacuum)不变,透明度(transparent)设置为0.4。
3)设置端口激励4)复制长方体第二个和第三个臂5)合并长方体5.创建隔片1)创建一个长方体并设置位置和尺寸2)执行相减操作上诉步骤完成后即可得到H面T型波导的三维仿真模型图如图2所示图26.分析求解设置1)添加求解设置:在工程管理窗口中展开工程并选中analyse节点,单击右键,在弹出的快捷菜单中选择add solution type并设置相关参数,完成后工程管理窗口的analyse节点下会添加一个名称为setup1的求解设置项2)添加扫频设置:在工程管理窗口中展开analysis节点,右键单击前面添加的setup1求解设置项,在弹出菜单中单击add frequency sweep,并设置sweep name,sweep type,等表13)设计检查7.运行仿真分析:HFSS→analyze all四.仿真结果分析1.图形化显示S参数计算结果图3为S11,S12,S13幅度随着频率变化的曲线。
HFSS软件实训魔 T 仿真
电脑+HFSS仿真软件
四、实验结果分析
五、实验心得与结论
在本次试验中我知道了魔T的概论它是将微波能量从主波导中分路接出的元件成为波导分
支器,它是微波功率分配器件的一种,常用的波导分支器有 E 面 T 型分支、H 面 T 型分支和匹配双 T。而且袁老师讲了魔 T 的性质:四个端口完全匹配、不仅端口 E 臂和 H 臂相互隔离,两侧壁也相互隔离、进入一侧臂的信号,将由 E 臂和 H 臂等分输出,而不进入另一侧壁。关于边界条件和端口激励的设置,是 HFSS 应用和学习的重点和难点;对于仿真设计中,矩形、端口边界条件等的设计注意事项及技巧也更加熟练,为后续的实验打下基础“边界条件决定场”,还有激励。最后就得到最终的结果和仿真图像,还有简单的设计流程,希望下次能和老师学习到更多 HFSS 知识。
通过 HFSS 软件 模块的参数扫描分析功能对印刷偶极子天线的一些重要结构参数进行参
数扫描分析,分析这些参数对天线性能的影响。
二、实验原理
在魔 T 中,当模微波信号从p1端口输入时,不能在端口p3内激发电磁场,即端口p3隔离,信号由端口p2和p4反相等分输出( E 面 T 特性);当信号从端口p3输入时,不能在端口p1内激发电磁场,即端口p1隔离,信号由端口p2和p4同相等分输出( H 面 T 特性)。
学生实验报告
院别
电子信息学院
课程名称
HFSS软件实训
班级
实验(二)
魔 T 仿真
姓名
实验时间
2023年9月12日
学号
指导教师
报 告 内 容
一、实验目的源电路仿真的方法,能够进行结果的分析
和优化。
实验任务:使用 HFSS 设计一个中心频率为 的采用微带巴伦馈线的印刷偶极子天线,并
魔T的设计
魔T的设计1 概述无论在那个频段工作的电子设备,都需要各种功能的元器件。
微波系统也有各种无源、有源元器件,它们的功能是对微波信号进行必要的处理或变换,是微波系统的重要组成部分。
微波元器件按照性质可分为线性互易元器件、线性非互易元器件以及线性元器件三类。
其中线性互易元器件只对微波信号进行线性变换而不改变频率特性,并满足互易定理,主要包括各种微波连接匹配元件、功率分配元器件、微波滤波器件及微波谐振器件等。
功率分配元器件可以将一路微波功率按比例分成几路,主要包括:定向耦合器、功率分配器及各种微波分支器。
2 波导分支器简介将微波能量从主波导中分路接出的元件成为波导分支器,它是微波功率分配器件的一种,常用的波导分支器有E面T型分支、H面T型分支和匹配双T。
E-T分支:E面T型分支器是在主波导宽边面上的分支,其轴线平行于主波导的模的电场方向。
E-T分支相当于分支波导与主波导串联。
TE10TE H-T分支是在主波导窄边面上的分支,其轴线平行于主波导模的磁10场方向。
H-T分支相当于并联于主波导的分支线。
匹配双T:将E-T分支和H-T分支合并,并在接头内加匹配以消除各路的反射,则构成匹配双T,也称为魔T。
3 整体设计3.1 设计目的(1) 学习设计波导分支器的方法;(2) 掌握魔T的设计方法及其S参数及场分布图的分析。
(3) 掌握HFSS10软件,加强对相关知识的理解,提高在射频领域的应用能力。
3.2 设计任务基于微波元器件的理论级,设计一个魔T,查看魔T放入S参数并分析场分布图。
3.3 设计原理将E-T分支和H-T分支合并,并在接头内加匹配以消除各路的反射,则构成匹配双T,如图1所示,它有以下特征:1.四个端口完全匹配.2.端口“①、②”对称,即有= 。
11S 22S3.当端口“③”输入,端口“①、②”有等辐同相波输出,端口“④”隔离。
4.当端口“④”输入,端口“①、②”有等辐反相波输出。
端口“③”隔离。
5.当端口“①或②”输入时,端口“③、④”等分输出而对应端口“②”“①”隔离。
无源器件设计仿真和优化
①隔离; ②③输入:①输出和信号,
④输出差信号;
(1)双T
“①④臂隔离”原因:
4臂输入的TE10 模式关于中 轴面T反对称,而1臂中TE10 模式关于中轴面T对称,故 相互不能激励。
1臂(4臂)输入的TE10 模 可以在4臂(1臂)中激励 起高次模,但高次模式不 能传输,不能输出。
信号1-信号2
3 2 信号2
T • 两信号分别从1、2臂输入,且到达分支波导中轴T面时
相位相同,则3臂输出两信号之差,称为差信号。
• 若两输入信号等幅,则3臂无输出。
2.波导E-T
求和功能:
信号1 1
信号1+信号2
3 2 信号2
T • 两信号分别从1、2臂输入,且到达分支波导中轴T面时
相位相反,则3臂输出两信号之和,称为和信号。
3. Set up and Solve the Parametric Analysis
Select Power 11, Power21, Power 31 Click Add Calculation
S
1
1
0
0 1
2 1 0 0 1
0
1
1
0
3 1(H)
(3)魔T的应用
单脉冲雷达
△β=(A+B)-(C+D)
和差网络:
Δ
接收机 ∑=A+B+C+D
Σ
Ⅳ
发射机
ΣⅠ
△α=(A+C)-(B+D)
Σ
C
Ⅱ
Σ
Ⅲ
Δ
D
A
Δ
B
和波束 差波束
A
C
波导仿真设计实验报告
一、实验背景与目的随着微波技术、通信技术和雷达技术的发展,波导作为一种重要的微波传输线,其设计优化对于提高微波系统的性能具有重要意义。
本实验旨在通过电磁场仿真软件HFSS,对矩形波导进行仿真设计,分析其传输特性,并对其进行优化,以达到提高传输效率和降低损耗的目的。
二、实验内容与方法1. 实验内容本实验主要包括以下内容:(1)建立矩形波导的几何模型;(2)设置仿真参数,包括介质材料、边界条件等;(3)进行仿真计算,得到波导的传输特性;(4)分析仿真结果,优化波导设计。
2. 实验方法(1)使用HFSS软件建立矩形波导的几何模型;(2)设置仿真参数,包括介质材料、边界条件等;(3)选择合适的仿真求解器,进行仿真计算;(4)分析仿真结果,包括传输线特性、损耗、阻抗匹配等;(5)根据仿真结果,对波导设计进行优化。
三、实验步骤1. 建立矩形波导的几何模型使用HFSS软件,根据设计要求,建立矩形波导的几何模型。
首先,设置波导的尺寸参数,包括内径、外径、高度等。
然后,定义波导的介质材料,如空气、介质板等。
2. 设置仿真参数设置仿真参数,包括介质材料、边界条件等。
例如,设置波导的介质材料为空气,边界条件为完美电导体(PEC)。
3. 进行仿真计算选择合适的仿真求解器,进行仿真计算。
本实验采用时域求解器,设置仿真频率范围为1GHz~20GHz。
4. 分析仿真结果分析仿真结果,包括传输线特性、损耗、阻抗匹配等。
通过分析仿真结果,了解波导的传输特性,并对波导设计进行优化。
5. 优化波导设计根据仿真结果,对波导设计进行优化。
例如,调整波导的尺寸参数、介质材料等,以降低损耗、提高传输效率。
四、实验结果与分析1. 传输特性仿真结果表明,矩形波导在1GHz~20GHz的频率范围内具有良好的传输特性。
在频率较低时,波导的传输损耗较小;在频率较高时,波导的传输损耗较大。
2. 损耗通过分析仿真结果,发现波导的损耗主要由介质损耗和辐射损耗组成。
微波技术与天线实验报告-利用HFSS仿真分析波导膜片2
HFSS 仿真分析波导膜片1. 实验原理矩形波导的结构(如图1),尺寸a×b, a>b ,在矩形波导内传播的电磁波可分为TE 模和TM 模。
图1 矩形波导1)TE 模,0=z E 。
cos cos zz mn m x n y H H e a bγππ-=2cos sin x mn c z n m x n y E H b a bj k e γπππωμ-=2sin cos z y mn c j m m x n y E H e k a a bγωμπππ-=-2sincos z x mn c m m x n y H H e k aa bγλπππ-=2cossin z y mn c n m x n y H H e k ba bγλπππ-=其中,c k 22m n a b ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+mn H 是与激励源有关的待定常数。
2)TM 模Z H =0,由Z E 的边界条件同样可得无穷多个TM 模。
注意:对于mn TM 和mnTE 模,m, n 不能同时为零,否则全部的场分量为零。
mn TM 和mn TE 模具有相同的截止波数计算公式,即c k (mn TM )=c k (mn TE )所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即c λ(mn TM )=c λ(mn TE )=222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛b n a mc f (mn TM )=c f (mn TE )对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ<c λ)的模式才能在波导中传播。
由公式可以看出矩形波导的c f ,c λ不仅与波导的尺寸a, b 有关,还和模指数m, n 有关。
当a, b 一定时,随着f 的改变,矩形波导可以多模传播,也可以单模传播,甚至也可以处于截止状态。
以a=23mm ,b=10mm 的空心矩形波导为例,由截止频率的计算公式22)()(21bna m f c +=με,可以计算GHz f cTE 52.610=,GHz f cTE 04.1320=,GHz f cTE 1501=,所以波导单模工作的频率范围为6.562-13.123GHz 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三微波波导魔T元件的设计与仿真
一、实验目的
1.设计一个微波波导魔T元件
2.查看魔T的S参数并分析场分布图
二、实验设备
装有HFSS 13.0软件的笔记本电脑一台
三、实验原理
TE模微波信号从p1端口输入时,不能在端口p3内激发电磁场,即端在魔T中,当
10
口p3隔离,信号由端口p2和p4反相等分输出(E面T特性);当信号从端口p3输入时,不能在端口p1内激发电磁场,即端口p1隔离,信号由端口p2和p4同相等分输出(H面T 特性)。
四、实验内容
设计一个微波波导魔T元件,其指标要求如下:
工作频率为4GHz。
此魔T元件设计仿真中采用波导结构实现。
最终获得S参数曲线和场分布图的仿真结果。
五、实验步骤
1.建立新工程
了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。
2.将求解类型设置为激励求解类型:
(1)在菜单栏中点击HFSS>Solution Type。
(2)在弹出的Solution Type窗口中
(a)选择Driven Modal。
(b)点击OK按钮。
3.设置模型单位
(1)在菜单栏中点击3D Modeler>Units。
(2)在设置单位窗口中选择:mm。
4.设置模型的默认材料
在工具栏中设置模型的默认材料为真空(vacuum)。
5.创建魔T
(1)创建arm_1
画一个长方体并命名为arm_1,其位置坐标为:X:-25,Y:-10,Z:0;dX:50,dY:20,dZ:75。
(2)设置激励端口
(a)在菜单栏中点击Edit>Select>Faces,选择arm_1的最上面表面
(b)在菜单栏中点击HFSS>Excitation>Assign>Wave Port
(c)Wave Port:General窗口,将端口命名为p1,在宽边设置积分线,然后点击Next直
到Finish结束。
(3)创建arm_2
借助arm_1的旋转来实现。
选中arm_1,点击Edit>Duplicate>Around Axis,设置:Axis:X,Angle:90(deg),Total number:2。
(4)创建arm_3和arm_4
借助arm_2的旋转来实现。
点击Edit>Select>By Name,选择arm_2,点击Edit>Duplicate>Around Axis,设置:Axis:Z,Angle:90(deg),Total number:3。
(5)组合模型
选中所有物体,点击Modeler>Boolean>Unite。
6.求解设置
(1)设置求解频率
(a)在菜单栏中点击HFSS>Analysis Setup>Add Solution Setup。
(b)在求解设置窗口中作如下设置:Solution Frequency:4GHz;Maximum Numbers of Passes:6;Maximum Delta S per Pass:0.02;点击OK按钮。
(2)设置扫频
(a)在菜单栏中点击HFSS>Analysis Setup >Add Sweep。
(b)选择Setup1,点击OK。
(c)在扫频设置窗口中作如下设置:Sweep Type:Fast;Frequency Setup Type :Linear Count;Start:3.4GHz;Stop:4GHz;Count:1001。
(d)将Save Field复选框选中,点击OK按钮。
7.保存工程
在菜单栏中点击File>Save As,在弹出的窗口中将该工程的命名为shiyan3,并选择路径保存。
8.求解该工程,点击HFSS>AnalyzeAll
9.后处理操作
(1)S参数
(a)点击HFSS>Result>Create Modal Solution Data Report
(b)选择Rectangle Plot
(c)在Trace窗口中设置:Solution:Setup1:Sweep1;Domain:Sweep;点击Y标签,选择:Category:S parameter;Quantity:S(p1,p1)、S(p2,p1)、S(p3,p1)、S(p4,p1);Function:dB。
(d)点击New Report按钮完成。
(2)S参数相位
(a)点击HFSS>Result>Create Modal Solution Data Report
(b)选择Rectangle Plot
(c)在Trace窗口中设置:Solution:Setup1:Sweep1;Domain:Sweep;点击Y标签,选择:Category:S parameter;Quantity:S(p2,p1)、S(p4,p1);Function:cang_deg。
(d)点击New Report按钮完成。
六、实验结果
仿真图如下:
魔T 的S 参数曲线如下:
魔T 的S 参数相位曲线如下:
由上图魔T 的S 参数曲线可知,S(p2,p1)和S(p4,p1)曲线基本重合,满足功率等分要求。
在中心频率4GHz 时,端口1的自反射11S 大约为-10.4611dB ,从端口1到端口2和从端口1到端口4的传输量(21S ,41S )为-3.4224dB ,接近-3dB 。
而端口1和端口3的传输量31S 为-54.1378dB ,得到充分的隔离。
而此时S(p2,p1)和S(p4,p1)在4GHz 时的相角分别为-277.9660°,-97.9892°,基本相差180°,从幅度和相位方面都满足E 面T 的特性。
魔T 的场分布图如下:
由上图魔T的场分布可知,在端口1被激励后,电磁波传输到端口2和端口4的过程中电场场强分布情况,而场分布图的动态显示更直观的演示了魔T元件中电磁波的传播过程。
需要注意的是当端口1被激励后,端口3附近几乎没有电磁波的存在,端口1和端口3是隔离的。
七、问题思考及小结
魔T的性质如下:
1.四个端口完全匹配。
2.不仅端口E臂和H臂相互隔离,两侧壁也相互隔离。
3.进入一侧臂的信号,将由E臂和H臂等分输出,而不进入另一侧壁。
4.进入H臂的信号,将由两侧壁等幅同相输出,而不进入E臂。
5.进入E臂的信号,将由两侧臂等幅反相输出,而不进入H臂。
6.若两侧臂同时加入信号,E臂输出的信号等于两输入信号向量差的1/2倍,H臂输出的信号则等于两输入信号向量和的1/2倍。
通过本次实验,我进一步熟练了HFSS软件的使用,掌握了微波波导魔T元件的性质,并通过仿真直观的查看了魔T的S参数及其场分布图,收获颇丰。