中考数学第一轮总复习实数专题1
2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)
2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
初中数学中考一轮复习专题1数与式重点、考点知识、方法总结及真题练习
在实数范围内,正数和零统称为非负数.我们已经学习过的非负数有如下三种形式:
(1)仸何一个实数 a 的绝对值是非负数,即| a |≥0; (2)仸何一个实数 a 的平方是非负数,即 a2 ≥0; (3)仸何非负数的算术平方根是非负数,即 a 0 ( a 0 ).
非负数具有以下性质: (1)非负数有最小值零; (2)有限个非负数乊和仍是非负数; (3)几个非负数乊和等于 0,则每个非负数都等于 0. 4.实数的运算
a a (a 0, b 0) bb
②.加减法
将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数丌变,
即合并同类二次根式.
【典例】
1.计算:5 +
﹣×+ ÷.
【答案】 【解析】解:原式= + ﹣
+3 ÷
=2 ﹣1+3
=2 +2.
x xy xy y
2.若 x 0 ,化简
注:单独一个字母戒一个数也是代数式.
2.代数式的分类:
3.代数式的书写规则: (1)数字不字母相乘戒字母不字母相乘,通常把乘号写作“ ”戒省略丌写,字母乊间的
顺序可以交换,但一般按字母表中的先后顺序写.数字应在字母乊前.如: 3b 丌要写成 b3 (2)在代数式中出现除法运算时,一般都变成分数和乘法来计算.如: 2a b 写成 2a
x
2
0
即
x
1 且x 2
2
.
【难度】易
【结束】
2.若
,则 ( )
A. b>3B. b<3C. b≥3D. b≤3
【答案】D.
【解析】
3 b = 3 b ,所以 3 b ≥0,即 b 3 .
中考数学一轮总复习 第1课时 实数(无答案) 苏科版
第1课时:实数【课前预习】 (一)知识梳理1、实数的概念:⎪⎪⎩⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧数无理数:无限不循环小数有限小数或无限循环小分数整数有理数 ⎪⎩⎪⎨⎧负数正数实数02、相关概念:数轴、相反数、绝对值、倒数.3、实数的大小比较.⎩⎨⎧作差法利用数轴进行比较4、实数的运算:运算法则、运算律、运算顺序、零指数幂和负整数指数幂、科学计数法、近似数. (二)课前练习1、-5的绝对值是 ,相反数是 ,倒数是 ,绝对值小于3的整数有 .2、数轴上点A 表示-5,点B 表示2,则A 、B 两点之间的距离是 .3、在实数-23,0-3.14,2π-0.1010010001…(每两个1之间依次多1个0),tan60°. 这8个实数中,无理数有 . 4、下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5、某市在一次扶贫助残活动中,共捐款25.8万元.将25.8万元用科学记数法表示为 .6、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 【解题指导】例1 下列各数中:-1,0,169,2π,1.101001…,0.6.,12-, 45cos ,- 60cos ,722,2,π-722.有理数集合{ …}; 正数集合{ …}; 整数集合{ …}; 自然数集合{ …}; 分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e(a+b )+12cd -2e °的值;(2)实数a 、b 、c 在数轴上的对应点如图所示,化简c a例3 计算:(-1)2009+ 3(tan 60︒)-1-︱1-3︱+(3.14-π)0.例4 已知(x-2)2=0,求xyz 的值.例5 用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1. 例如7☆4=42+1=17,那么-5☆3= ;当m 为实数时,m ☆(m ☆2)=【巩固练习】1、2的相反数是_____,1的绝对值是______,-23的倒数为_______= .2、绝对值大于1不大于4的所有整数的和为 .3、已知数2a -与23a -,若这两数的绝对值相等,则a 的倒数是 .4、下列各数中:-30,2,0.31,227,2π,2.161161161,(-2 005)0是无理数的5B 关于 点A 的对称点为C ,则点C 表示的数是 .6、实数a 、b 在数轴上的位置如图所示:化简2a +∣a -b ∣= .7、计算 03π316(2)20073⎛⎫-+÷-+- ⎪⎝⎭【课后作业】 姓名 一、必做题:1、32-= ;213-的倒数是 ;0(=_________;14-的相反数是_________.2、若()2240a c --=,则=+-c b a .3、绝对值最小的数是______;若 |a |<2,则a 的整数解为_______;已知|a +3|=1 ,那么a =______.4、计算:312-=_________,22131-⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=__________.5、定义2*a b a b =-,则(12)3**=______.6、地球上陆地面积约为149 100 000 km 2,用科学记数法可以表示为____________km 2(保留三个有效数字)7、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米 D .62.610⨯平方米8、在数轴上表示2-的点离开原点的距离等于( )A .2B .2-C .2±D .49、如果a <0,b >0,a +b <0,那么下列关系式中正确的是( ).A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a 10、若a,b 均为实数,下列说法正确的是( ). A .若a +b =0,则a 、b 互为相反数 B.a 的倒数是a1 C.a a =2D. b 2是一个正数 11、已知:3,2xy ==,且0xy <,则x y +的值等于( ). A.5或-5 B.1或-1 C.3或1 D.-5或-1 12、已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,求)21()(2122m m cd b a +-÷+--的值.13、计算:①︒-+--⎪⎭⎫ ⎝⎛--45sin )32(2102②||4+⎝ ⎛⎭⎪⎫12-1-(3-1)0-8cos45°.二、选做题1、在实数范围内定义运算“⊕”,其法则为:22a b ab ⊕=-,求方程(4⊕3)⊕24x =的解.2、我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3、将一根绳子对折1次从中间剪断,绳子变成3段;将一根绳子对折2次,从中间剪断,绳子变成5段;依此类推,将一根绳子对折n 次,从中间剪一刀全部剪断后,绳子变成 段.4、罗马数字共有7个:I (表示1),V (表示5),X (表示10),L (表示50),C (表示100),D (表示500),M (表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如:IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL= ,XI= .5、如图所示是标出长度单位和正方向的数轴,若点A 对应于实数a ,点B 对应于实数b ;a ,b 是整数,且2b a -=7,则图中数轴上的原点应是点,的算术平方根是 .6、设,a b为非零实数,则a a ).A. ±2B.±1或0C.±2或0D.±2或±1 7、计算:12345314,3110,3128,3182,31244,+=+=+=+=+=…归纳计算结果中的个位数字的规律,猜测200931+的个位数字是( )A. 0B. 2C. 4D. 8 8、已知:C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,….观察上面的计算过程,寻找规律并计算C 610=____________.........A B C D。
考点01 实数-备战2023届中考数学一轮复习考点梳理(原卷版)
考点01 实数实数这一考点在中考数学中属于较为简单的一类考点,数学中考中,有关实数的部分,通常以选择题、计算题题型考察,所考考点一般有:实数的相关概念,如相反数、绝对值、数轴、倒数、科学计算法等;实数的比较大小;实数的运算则多与二次根式、三角函数、负指数幂、绝对值等结合,以解答题形式考察;少数以填空题的形式出题。
对于实数的复习,需要学生熟练掌握实数相关概念及其性质的应用、实数运算法则和顺序等考点。
考向一、实数的相关概念;考向二、实数的分类;考向三、实数的比较大小;考向四、实数的运算;考向一:实数的相关概念1.2.,故绝对值是它本身的数是3.若,则没有倒数;如果一个数的平方等于a,那么这算术平方根为1.(2022•淮安)2022年十三届全国人大五次会议审议通过的政府工作报告中提出,今年城镇新增就业目标为11000000人以上.数据11000000用科学记数法表示应为( )A .0.11×108B .1.1×107C .11×106D .1.1×1062.(2022•黄石)的绝对值是( )A .1﹣B .﹣1C .1+D .±(﹣1)3.(2022•攀枝花)2的平方根是( )A .2B .±2C .D.4.(2022•淄博)若实数a的相反数是﹣1,则a+1等于( )A .2B .﹣2C .0D .5.(2022•资阳)如图,M 、N 、P 、Q 是数轴上的点,那么在数轴上对应的点可能是( )A .点MB .点NC .点PD .点Q考向二:实数的分类☆ 按定义分类:☆ 按正负分类:【易错警示】实数范围内,所有的分数都是指的有理数;但不是说所有带分数线的数都是分数,如:;π、等;②开方开不尽的数的方根,如等;°、tan60°;0.1010010001……(每两个1.(2022•铜仁市)在实数,,,中,有理数是( )A.B.C.D.2.(2022秋•漳州期中)下列实数是无理数的是( )A.B.C.D.3.(2022•巴中)下列各数是负数的是( )A.(﹣1)2B.|﹣3|C.﹣(﹣5)D.4.(2022•福建)如图,数轴上的点P表示下列四个无理数中的一个,这个无理数是( )A .B .C .D .π考向三:实数的大小比较若要比较任意两个实数a 、b 的大小,可以先比较他们的平方,由平方倒≈≈≈1.(2022•安顺)下列实数中,比﹣5小的数是( )A .﹣6B .﹣C .0D .2.(2022•北京)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a <﹣2B .b <1C .a >bD .﹣a >b3.(2022•泰州)下列判断正确的是( )A.0<<1B.1<<2C.2<<3D.3<<44.(2022•台州)无理数的大小在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间5.(2022•绵阳)正整数a、b分别满足<a<、<b<,则b a=( )A.4B.8C.9D.16考向四:实数的运算一、实数的运算种类:包括加、减、乘、除、乘方、开方,其中,减法转化为加法运算;除法、乘方都转化为乘法运算;二、零指数幂和负整数指数幂公式:;;特别地:;三、实数的运算顺序:先算乘方、开方,再算乘除,最后算加减;如果有括号,就先算括号内的;同级运算,按照从左到右的顺序进行,能用运算律的可用运算律简化计算。
中考数学复习第1课时《实数及其运算》说课稿
中考数学复习第1课时《实数及其运算》说课稿一. 教材分析《实数及其运算》是中考数学复习的第1课时,主要内容包括实数的定义、分类、性质以及实数的运算规则。
这部分内容是初中数学的基础,对于学生后续的学习具有重要意义。
在教材中,实数分为有理数和无理数两大类,有理数包括整数和分数,无理数主要包括π和开方开不尽的数。
实数的运算包括加减乘除和乘方等,运算规则遵循数学的基本规律。
二. 学情分析学生在学习《实数及其运算》时,已经掌握了有理数的运算规则,对无理数的概念和性质有一定的了解。
但部分学生对无理数的理解不够深入,容易与有理数混淆。
此外,学生在实数的运算方面容易出错,如不熟悉运算顺序、忽视运算律等。
因此,在教学过程中,需要帮助学生巩固实数的定义和性质,提高运算能力,培养学生严谨的数学思维。
三. 说教学目标1.知识与技能:使学生掌握实数的定义、分类和性质,了解实数的运算规则,提高实数运算能力。
2.过程与方法:通过自主学习、合作探讨和教师引导,培养学生独立解决问题的能力,提高学生的数学思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气,使学生认识到数学在生活中的重要性。
四. 说教学重难点1.教学重点:实数的定义、分类、性质和运算规则。
2.教学难点:无理数的概念和性质,实数的运算顺序和运算律的应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作探讨和教师引导相结合的方法,充分发挥学生的主体作用,提高学生的学习兴趣和参与度。
2.教学手段:利用多媒体课件、黑板和教学道具等,直观展示实数及其运算的过程,帮助学生形象地理解实数的概念和性质。
六. 说教学过程1.导入新课:通过复习有理数的运算规则,引出实数的概念,激发学生的学习兴趣。
2.自主学习:让学生自主探究实数的定义、分类和性质,培养学生独立解决问题的能力。
3.合作探讨:分组讨论实数的运算规则,让学生在合作中思考,提高学生的团队协作能力。
专题一 实数(助考课件)——2023届中考数学一轮复习学考全掌握
典型例题
【解析】
根据在有理数中,零不仅仅表示没有,也可以表示具体的量,比如 0℃,因此 A 选 项错误, 根据有理数按照性质分类可以分为:正有理数,负有理数,0,因此 B 选项错误, 因为 0.5 可以转化为分数,因此 C 选项错误, 根据有理数的分类,0 既不是正数,也不是负数,因此 D 选项正确.
C.3 个
D.4 个
【解析】
在实数 2 , x0 (x 0) 1, cos30 3 , 3 8 2 中,有理数是 3 8 , 2
x0 (x 0),所以,有理数的个数是 2,故选 B.
D 3.下列说法正确的是( )
A.在有理数中,零的意义仅仅表示没有 B.正有理数和负有理数组成全体有理数 C.0.5 既不是整数,也不是分数,因而它不是有理数 D.零既不是正数,也不是负数
专题一 实数
考情分析
考情分析
实数是初中数学的基础内容,中考重点 考察实数基本运算。中考中此部分知识 的考察多以选择、填空为主,题目简单, 属于基本问题。另外出现了趣味性考题 考察有理数,估计无理数大小等.
讲解一:实数及其分类
知识梳理
一、有理数的定义:整数和分数统称为有理数
1.整数:正整数、0、负整数统称为整数,如 5,8等. 2.分数:正分数、负分数统称为分数,如 3 ,0.25等.
讲解二:数轴、相反数、绝 对值和倒数
知识梳理
一、数轴:如图,规定了原点、正方向和单位长度的直线叫做数轴. 1.正方向:从原点向右(向上)的方向. 2.原点、正方向和单位长度为数轴的三要素,三者缺一不可. 3.数轴上两个点表示的数,右边(上边)的数总比左边(下边)的数大, 即正数>0>负数. 4.实数与数轴上的点是一一对应关系,任意一个实数都可以用数轴上的 点表示;反之,数轴上的任意一个点都表示一个实数. 5.数轴上两点间的距离: AB =b a(b a)
初三数学总复习——实数及其运算 (1)
D )
4.-23×(-2)2+2 的结果是( B ) A.18 B.-30 C.0
D.34
5.下列计算正确的是(
B
)
3 A. -27 =3 B.(π-3.14)0= 1 1- C.( ) 1=-2 D. 16 =± 4 2
注:常用倒数实例
n 1 n n 1 n 1
(α为锐角)
(n≥0)
tanα·tan(90°-α)=1
2.实数中的几个重要概念:
④.绝对值
去绝对值符号 (即化简绝对 几何意义:数轴上表示数 a的点到原点的距离叫做 值 )的方法 :首先确定绝对值符号 数a的绝对值 ,用 ︱a︱表示 代数意义 :一个正数的绝对值是它本身 ;一个负数 里代数式值的正负 ,然后按绝对 的绝对值等于它的相反数 ;0的绝对值是 值的代数意义进行化简 .0
. . ...
1 2
2
0
3 4 5
例题讲解
, 2 , 3 将 sin 30 到大的顺序排列,正确的结果是
0 2
0
3
这三个实数按从小 ( C )
3
2 3 B. sin 30 3 2 C. 3 2 sin 30 0 3 0 2 D. 2 3 sin 30
3 1)数a的绝对值记作 ︱a ︱;
若a>0,则︱a︱= a ; 2) 若 a<– 0,则 ︱a ︱ = -a1 ; -3 2 –1 0 若a =0,则︱a︱= 0 ;
中考数学一轮复习专题 实数知识点、对应习题及答案
实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.分析:比较3-2与2-1的大小,可先将各数的近似值求出来, 即3-2≈1.732-1.414=0.318,2-1≈1.414-1=0.414,再比较大小例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8 答:2-1,A 利用数轴考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨··· (2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。
如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23 ,0 3.14 )A .1个B .2个C .3个D .4个答:B ,A考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A. 5-2B. 2-5C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b的值为 分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。
中考数学第一轮复习精品课件第一章 第1讲实数
C.4.5×105
D.0.45×106
2.数轴上的点 A 到原点的距离是 3,则点 A 表示的数为 ( A ) A.3 或-3 C.-3
B.3
D.6 或-6
3.如果规定收入为正,支出为负.收入 500 元记作+500 元,那么支出 237 元应记作( B ) A.-500 元 C.237 元 B.-237 元 D.500 元
第一章
数与式
第1讲 实数
1.了解无理数和实数的概念,理解实数的意义,能用数轴 上的点表示实数,会比较实数的大小.知道实数与数轴上的点 一一对应. 2.借助数轴理解相反数和绝对值的意义,会求实数的相反 数与绝对值(绝对值符号内不含字母). 3.理解乘方的意义,会用科学记数法表示数,掌握实数的 加、减、乘、除、乘方及简单的混合运算(以三步为主).
4.0 的特殊性.
0 (1)0 的相反数是__________ .
0 (2)0 的绝对值是__________ .
倒 (3)0 没有________ 数.
【学有奇招】 1.对于实数的概念,关键记住无理数的概念.在实数中只 有无限不循环小数是无理数,其他都是有理数.常见的无理数 有三种:①有规律但不循环的数,例如:0.101 001 000 100
π 001…;②π 及其衍生出来的数,例如:3π,2等;③含有根号 2 但开不尽方的数,例如: 2, 5, 2 等. 3
2.有理数的加法运算口诀:同号相加一边倒;异号相加 “大”减“小”,符号跟着大的跑;绝对值相等“零”正好. 注意:“大”减“小”是指绝对值的大小.
1.5 月的某一天,参观上海世博会的人数达到 450 000, 用科学记数法表示这个数为( C ) A.45×104 B. 4.5×106
中考数学专题复习一实数及其运算
专题01有理数考点一:有理数之正数和负数◎基础巩固1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。
0既不是正数也不是负数。
2.正数和负数的意义:表示具有相反意义的两个量。
3.正负号的化简:同号为正,异号为负。
◎同步练习1.下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣52.下列各数为负数的是()A .﹣2B .0C .3D .53.四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .314.在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .35.若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃6.如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元7.在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2km B .﹣1km C .1km D .+2km8.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃9.(如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.10.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.考点二:有理数之相反数◎基础巩固1.相反数的定义:只有符号不同的两个数互为相反数。
我们说其中一个数是另一个数的相反数。
0的相反数还是0。
2.相反数的性质:互为相反数的两个数和为0。
即a 与b 互为相反数⇔0=+b a ⇔()a b b a -=-=◎同步练习11.实数9的相反数等于()A .﹣9B .+9C .91D .﹣9112.下列各数中,﹣1的相反数是()A .﹣1B .0C .1D .213.﹣2022的相反数是.14.如图,数轴上点A 表示的数的相反数是()A .﹣2B .﹣21C .2D .3考点三:有理数之绝对值◎基础巩固1.绝对值的定义:数轴上表示数a 的点到原点的距离用数a 的绝对值来表示。
中考数学 专题01 实数的有关概念及运算(原卷版)
归纳 4:科学记数法与近似数 基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为 a×10n,其中 1≤|a|<10,n 为整数, 表示时关键要正确确定 a 的值以及 n 的值. 基本方法归纳:利用科学记数法表示一个数,在确定 n 的值时,看该数是大于或等于 1 还是小于 1.当该 数大于或等于 1 时,n 为它的整数位数减 1;当该数小于 1 时,-n 为它第一个有效数字前 0 的个数(含小
中考数学复习资料
的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是 ( )A.B.Fra bibliotek C.D.
3.(2019 内蒙古通辽市,第 1 题,3 分) 1 的相反数是( ) 2019
A.2019 B. 1 C.﹣2019 D. 1
( )
A.5×106 B.107 C.5×107 D.108 14.(2019 重庆 A,第 8 题,4 分)按如图所示的运算程序,能使输出 y 值为 1 的是( )
A.m=1,n=1 B.m=1,n=0 C.m=1,n=2 D.m=2,n=1
归纳 5:实数的混合运算 基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运 算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算 中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行 基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化 简、二次根式等内容,要熟练掌握这些知识. 注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错 的地方,在解答此类问题时要注意基本性质和运算的顺序.
【鲁教版】山东省中考数学一轮复习一《实数的有关概念》教学设计
【鲁教版】山东省中考数学一轮复习一《实数的有关概念》教学设计一. 教材分析山东省中考数学一轮复习一《实数的有关概念》教学设计以鲁教版教材为依据,主要涵盖实数的概念、性质和运算等方面的知识。
本节课是实数部分的第一节复习课,旨在帮助学生巩固实数的基本概念,为后续实数运算和应用打下坚实基础。
教材内容主要包括实数的定义、分类、表示方法以及实数的运算规则等。
二. 学情分析学生在之前的学习过程中,已经掌握了实数的基本概念和部分性质,但部分学生对实数的理解和运用仍有困难。
针对这一情况,教师在教学过程中要关注学生的个体差异,针对不同学生的学习需求进行有针对性的辅导,提高学生的实数素养。
三. 教学目标1.知识与技能:使学生掌握实数的基本概念、性质和运算规则,提高实数运算能力。
2.过程与方法:通过复习和练习,培养学生独立思考、合作交流的能力。
3.情感态度与价值观:激发学生学习实数的兴趣,培养学生的数学思维和解决问题的能力。
四. 教学重难点1.实数的基本概念和分类。
2.实数的表示方法和运算规则。
3.实数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究实数的基本概念和性质。
2.运用案例分析法,让学生通过具体实例理解实数的运算规则。
3.采用小组讨论法,培养学生的合作交流能力和解决问题的能力。
4.运用激励评价法,激发学生的学习兴趣和自信心。
六. 教学准备1.准备相关实数的教学案例和实例。
2.准备实数运算的练习题和测试题。
3.准备教学多媒体课件和教学素材。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾实数的基本概念,如实数的定义、分类等。
同时,让学生思考实数在实际生活中的应用,激发学生的学习兴趣。
呈现(10分钟)教师通过多媒体课件呈现实数的基本概念和性质,如实数的定义、分类、表示方法等。
同时,结合具体实例讲解实数的运算规则,如加减乘除、乘方等。
操练(10分钟)教师布置实数运算的练习题,让学生独立完成。
专题01 实数(课件)-2023年中考数学一轮复习(全国通用)
①掌握实数的加、减、乘、
除、乘方及简单的混合运算( 运算法则、运算顺序的理解、运用
实数的混合 以三步为主);②理解实数的 和计算的准确性、迅速性.
5
运算
运算律,能运用运算律简化 以选择题、填空题为主,有时也以
运算,并能运用实数的运算 简单解答题的形式命题.
解决简单的问题.
思维导图
知识点1 :实数的有关概念
2
2
故选:A.
知识点1 :实数的有关概念
典型例题
【例6】(3分)(2021•天津6/25)估计 17 的值在( ) A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
【考点】估算无理数的大小 【分析】本题需先根据 17 的整数部分是多少,即可求出它的范围. 【解答】解:∵ 17 4.12 , ∴ 17 的值在4和5之间. 故选:C. 【点评】本题主要考查了估算无理数的大小,在解题时确定无理数的整数部分即 可解决问题.
a<b .
知识点梳理
知识点1 :实数的有关概念
7.非负数:
非负数:正数和 0 统称非负数. 若几个非负数的和等于0,则这几个非负数都等于 0 , 即若A≥0,B≥0,C≥0,A+B+C=0, 则A=B=C=0.
典型例题
知识点1 :实数的有关概念
【例1】(2022•桂林)在东西向的马路上,把出发点记为0,向东与向西意义
知识点梳理
知识点1 :实数的有关概念
4.绝对值:
数轴上表示数a的点与原点的距离,记作|a|,离原点越远的数的绝对值越大.
|a|=
a , a ,
a≥0 , a 0.
5.倒数:
当a≠0时,a与
1 a
互为倒数,即a、b互为倒数⇔ab=1.
2024年中考数学总复习专题01实数命题1实数的有关概念
中考·数学
答案:C 解析:由数轴可知,点 C 离原点最近,所以 在|a|,|b|,|c|,|d|中,值最小的是|c|.故选 C.
第6页
返回目录
C
中考命题1 实数的有关概念
中考·数学
答案:C 解析:x≤2 在数轴上表示为:
第7页
返回目录
中考命题1 实数的有关概念
中考·数学
B 6.[2023 聊城,1,3 分](-2__023)0 的值为( )
又∵|x-4|=2,∴x1=6,x2=2,
第18页
返回目录
中考命题1 实数的有关概念
中考·数学
∵a 为方程|x-4|=2 的解且 a,b,c 为△ABC 的三边 长, ∴a=2, ∴△ABC 是等腰三角形.
第19页
返回目录
第11页
返回目录
中考命题1 实数的有关概念
B 将 140 000 000 用科学记数法表示应为( )
A.14×107
B.1.4×108
C.0.14×109
D.1.4×109
中考·数学
答案:B 解析:140 000 000=1.4×108.故选 B.
第12页
返回目录
中考命题1 实数的有关概念
中考·数学
答案:-5 解析:∵“正”和“负”相对,∴进货 10 件 记作+10,那么出货 5 件应记作-5.故答案为-5.
第15页
返回目录
பைடு நூலகம்
中考命题1 实数的有关概念
中考·数学
11.[2021 江西,2,3 分]国务院第七次全国人口普查领 导小组办公室 5 月 11 日公布人口普查结果,其中江西人 口数约为 45 100 000 人,将 45 100 000 用科学记数法表 示为__4._5_1_×___1.07
中考数学总复习第一章数与式第1课时实数pptx课件新人教版
(2)a-b=0⇔a=b;
(3)a-b<0⇔a<b.
4.倒数比较法
若
1
a>0,b>0,
>
1
,则
a<b.
5.平方法
因为由 a>b>0,可得
> ,所以我们可以把 与 的大小问题转
化成比较 a 和 b 的大小问题.
自主测试
1.如果60 m表示“向北走60 m”,那么“向南走40 m”可以表示为(
(2)一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;
负数没有平方根.
2.算术平方根
(1)如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 叫做 a 的算
术平方根,a 的算术平方根记作 .0 的算术平方根是 0,即 0=0.
(2)算术平方根都是非负数,即 ≥0(a≥0).
1.科学记数法
把一个数N表示成 a×10n (1≤|a|<10,n是整数)的形式叫科学记数法.当
|N|>10时,n等于原数N的整数位数减1;当0<|N|<1时,n是一个负整数,它的
绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).
2.近似数与精确度
一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时,用精
A.-20 mB.-40 m
C.20 m D.40 m
答案:B
)
1
2.- 的绝对值是(
5
)
A.5
B.-5
1
C. 5
1
D.-5
答案:C
3
3.-4的倒数是(
中考数学第一轮复习教案(实数、整式、分式、根式)
中考总习1 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。
a 的算术平方根记作a ,读作“根号a ”,a 叫做被开方数。
即a x =。
规定:0的算术平方根是0。
定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。
即如果x 2=a ,那么x 叫做a 的平方根。
即a x ±=。
定义3:求一个数a 的平方根的运算,叫做开平方。
因为一个非零实数的平分肯定是正数,所以,正数有两个平方根,它们互为相反数;例如:4的平分根为±2,是互为相反数的;0的平方根是0;负数没有平方根。
2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
即如果x 3=a ,那么x 叫做a 的立方根,记作3a 。
即3a x =。
求一个数的立方根的运算,叫做开立方。
正数的立方根是正数;负数的立方根是负数;0的立方根是0。
3、无理数无限不循环小数又叫做无理数。
初中常见的无理数有:带有根号开不出来的式子,例如:、、等等;带有的式子,例如: ,等等;无限不循环小数,例如:1.325…,-0.2587…等等4、实数有理数和无理数统称实数。
即实数包括有理数和无理数。
备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。
有理数关于相反数和绝对值的意义同样适合于实数。
例如:3-的相反数为3,倒数为3331-=-,3-的绝对值为。
5、实数的分类分法一:负有理数 0 无理数 实数有理数正有理数负无理数 正无理数 有限小数或 无限循环小数无限不循环小数 知识要点分法二:实数 0由上可知,一个数要是分数,前提必须是有理数,所以,不是所有的a/b 这样的数,都是分数。
例如:不是分数,是无理数。
6、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。
备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。
2023中考数学一轮复习专题1
专题1.2 实 数(真题专练)一、单选题1.(2021·湖北宜昌·中考真题)在六张卡片上分别写有6,227-,3.1415,π,0数,从中随机抽取一张,卡片上的数为无理数的概率是( ) A .23B .12C .13D .162.(2021·山东青岛·中考真题)2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( ) A .4557510⨯B .555.7510⨯C .75.57510⨯D .80.557510⨯3.(2021·江苏徐州·中考真题)下列无理数,与3最接近的是( )ABC D 4.(2021·山东日照·中考真题)在下列四个实数中,最大的实数是( ) A.-2BC .12D .05.(2021·山东潍坊·中考真题)第七次全国人口普查数据显示,山东省常住人口约为10152.7万人,将101 527 000用科学记数法(精确到十万位)( ) A .1.02×108B .0.102×109C .1.015×108D .0.1015×1096.(2021·湖北随州·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p 的值为( )A .100B .121C .144D .1697.(2020·内蒙古呼伦贝尔·中考真题)已知实数a 在数轴上的对应点位置如图所示,则化简|1|a - )A .32a -B .1-C .1D .23a -8.(2015·新疆·中考真题)下列运算结果,错误的是( )A .11()22--=B .0(1)1-=C .(1)(3)4-+-=D9.(2021·吉林长春·中考真题)()2--的值为( ) A .2-B .2C .12-D .1210.(2016·贵州安顺·中考真题)已知有理数x ,y 满足4x -,则以x ,y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20 C .16 D .以上都不对二、填空题11.(2021·甘肃兰州·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .12.(2021·青海西宁·中考真题)在平面直角坐标系xOy 中,点A 的坐标是(–2)1-,,若//AB y轴,且9AB =,则点B 的坐标是________.13.(2012·山东德州·中考真题)﹣1,0,0.2,17,3中正数一共有 _____个.14.(2019·福建·中考真题)如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 是线段AB 的中点,则点C 所表示的数是_______.15.(2020·青海·中考真题)(-3+8)的相反数是________________. 16.(2019·四川成都·中考真题)若1m +与2-互为相反数,则m 的值为_______. 17.(2021·山东潍坊·中考真题)若x <2,且12102x x x +-+-=-,则x =_______. 18.(2017·江苏镇江·中考真题)若实数a 满足1322a -=,则a 对应于图中数轴上的点可以是A 、B 、C 三点中的点__________.19.(2020·湖北荆州·中考真题)若()112020,,32a b c π-⎛⎫=-=-=- ⎪⎝⎭,则a ,b ,c 的大小关系是_______.(用<号连接)20.(2021·辽宁盘锦·中考真题)建党100周年期间,我市人社系统不断提升服务能力和水平,让我市约1 300 000参保人员获得更高质量的社会保障福祉.数据1 300 000用科学记数法表示为________21.(2021·内蒙古鄂尔多斯·中考真题)下列说法不正确的是___________ (只填序号)①724.①外角为60︒且边长为2①把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-. ①新定义运算:2*21m n mn n =--,则方程1*0x -=有两个不相等的实数根.22.(2021·内蒙古呼和浩特·中考真题)若把第n 个位置上的数记为n x ,则称1x ,2x ,3x ,…,n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ﹐2y ,3y …n y 其中n y 是这个数列中第n 个位置上的数,1n =,2,…k 且111101n n n n n x x y x x -+-+=⎧=⎨≠⎩并规定0n x x =,11n x x +=.如果数列A 只有四个数,且1x ,2x ,3x ,4x 依次为3,1,2,1,则其“伴生数列”B是__________.三、解答题23.(2006·江苏无锡·中考真题)计算:0(tan 45π-+º24.(2012·广东梅州·中考真题)计算:1160+3-⎛⎫⎪⎝⎭.25.(2021·山西·中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭.(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步 510x ->-第四步2x >第五步 任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的; ①第__________步开始出现错误,这一步错误的原因是________________; 任务二:请直接写出该不等式的正确解集.26.(2020·四川自贡·中考真题)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以1x +的几何意义就是数轴上x 所对应的点与1-所对应的点之间的距离. ①. 发现问题:代数式12x x ++-的最小值是多少?①. 探究问题:如图,点,,A B P 分别表示的是-1,2,x ,3AB =.①12x x ++-的几何意义是线段PA 与PB 的长度之和①当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时 +>PA PB 3 ①12x x ++-的最小值是3. ①.解决问题:①.-++x 4x 2的最小值是 ;①.利用上述思想方法解不等式:314x x ++->①.当a 为何值时,代数式++-x a x 3的最小值是2.27.(2021·湖南张家界·中考真题)阅读下面的材料:如果函数()y f x =满足:对于自变量x 取值范围内的任意1x ,2x , (1)若12x x <,都有12()()f x f x <,则称()f x 是增函数; (2)若12x x <,都有12()()f x f x >,则称()f x 是减函数. 例题:证明函数2()(0)f x x x =>是增函数. 证明:任取12x x <,且1>0x ,20x >则2212121212()()()()f x f x x x x x x x -=-=+-①12x x <且1>0x ,20x > ①120x x +>,120x x -<①1212()()0x x x x +-<,即12())0(f x f x -<,12()()f x f x < ①函数2()(0)f x x x =>是增函数. 根据以上材料解答下列问题:(1)函数1()(0)f x x x =>,1(1)11f ==,1(2)2f =,(3)f =_______,(4)f =_______;(2)猜想1()(0)f x x x=>是函数_________(填“增”或“减”),并证明你的猜想.28.(2021·江苏盐城·中考真题)如图,点A 是数轴上表示实数a 的点.(1的点P ;(保留作图痕迹,不写作法)(2和a 的大小,并说明理由.29.(2021·重庆·中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”.例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .参考答案1.C【分析】首先根据无理数定义确定哪些是无理数,再根据概率的公式计算即可.解:在6,227-,3.1415,π,0π2个, ①从中随机抽取一张,卡片上的数为无理数的概率是2163=, 故选:C .【点拨】此题考查概率的计算公式,正确掌握无理数的定义会判断无理数是解题的关键. 2.C【分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫做科学记数法”进行解答即可得. 解:755750000 5.57510=⨯, 故选C .【点拨】本题考查了科学记数法,解题的关键是熟记科学记数法的定义. 3.C【分析】先比较各个数平方后的结果,进而即可得到答案.解:①32=9,2=6,)2=7,2=10,)2=11,①与3, 故选C .【点拨】本题主要考查无理数的估计,理解算术平方根与平方的关系,是解题的关键. 4.B【分析】根据实数的大小比较方法进行比较即可. 解:正数大于0,负数小于0,正数大于负数,∴1022>>-, 故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.【分析】先用四舍五入法精确到十万位,再按科学记数法的形式和要求改写即可. 解:8101527000101500000 1.01510≈=⨯. 故选:C【点拨】本题考查了近似数和科学记数法的知识点,取近似数是本题的基础,熟知科学记数法的形式和要求是解题的关键. 6.B【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可. 解:根据图中数据可知: 1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-, ①第n 个图中的143q =, ①2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去) ①2=121p n =, 故选:B .【点拨】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键. 7.D【分析】根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.解:由图知:1<a <2, ①a−1>0,a−2<0,原式=a−1-2a =a−1+(a−2)=2a−3. 故选D .【点拨】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.解:试题分析:A .11()22--=,正确,不合题意;B .0(1)1-=,正确,不合题意;C .(1)(3)4-+-=-,错误,符合题意;D = 故选C .考点:1.二次根式的乘除法;2.相反数;3.有理数的加法;4.零指数幂. 9.B【分析】根据相反数概念求解即可.解:化简多重负号,就看负号的个数,此时有两个符号,偶数个则为正, 故选:B .【点拨】本题考查了多重负号的化简问题,掌握基本法则是解题关键. 10.B【分析】根据绝对值和二次根式的非负性求出x ,y ,再根据等腰三角形的性质和三角形三边关系判断即可;解:①4x -,①4080x y -=⎧⎨-=⎩,①4x =,8y =,设以4,8为两边长的等腰三角形的三边长分别为a ,b ,c ,且4a =,8b =,则有两种情况: 当a 为等腰三角形的腰时,有4c a ==,此时a c b +=,该等腰三角形不存在; 当b 为等腰三角形的腰时,有8c b ==,4a =,该等腰三角形存在,周长为48820a b c ++=++=.故答案选B .【点拨】本题主要考查了三角形三边关系,等腰三角形的定义,绝对值和二次根式的非负性,准确分析计算是解题的关键. 11.-2【分析】根据正负数的意义即可解答. 解:下降2m 记作-2m . 故答案为:-2【点拨】本题考查了正负数的意义,正确理解正负数的意义是解题的关键. 12.(2,8)-或(2,10)--【分析】由题意,设点B 的坐标为(-2,y ),则由AB =9可得(1)9y --=,解方程即可求得y 的值,从而可得点B 的坐标. 解:①//AB y 轴 ①设点B 的坐标为(-2,y ) ①AB =9 ①(1)9y --= 解得:y =8或y =-10①点B 的坐标为(2,8)-或(2,10)-- 故答案为:(2,8)-或(2,10)--【点拨】本题考查了平面直角坐标系求点的坐标,解含绝对值方程,关键是抓住平行于坐标轴的线段长度只与两点的横坐标或纵坐标有关,易错点则是考虑不周,忽略其中一种情况. 13.3.解:根据正、负数的定义对各数分析判断即可:﹣1,0,0.2,17,3中正数有0.2,17,3,共有3个. 14.-1【分析】根据A 、B 两点所表示的数分别为−4和2,利用中点公式求出线段AB 的中点所表示的数即可.解:①数轴上A ,B 两点所表示的数分别是−4和2, ①线段AB 的中点所表示的数=12(−4+2)=−1. 即点C 所表示的数是−1. 故答案为−1【点拨】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键. 15.5- 2±【分析】第1空:先计算-3+8的值,根据相反数的定义写出其相反数;第2解:第1空:①385-+=,则其相反数为:5-第2空:4,则其平方根为:2±故答案为:5-,2±.【点拨】本题考查了相反数,平方根,熟知相反数,平方根的知识是解题的关键.16.1.【分析】根据相反数的性质即可求解.解:m+1+(-2)=0,所以m=1.【点拨】此题主要考查相反数的应用,解题的关键是熟知相反数的性质.17.1【分析】先去掉绝对值符号,整理后方程两边都乘以x﹣2,求出方程的解,再进行检验即可.解:12x+-|x﹣2|+x﹣1=0,①x<2,①方程为12x+-2﹣x+x﹣1=0,即12x=--1,方程两边都乘以x﹣2,得1=﹣(x﹣2),解得:x=1,经检验x=1是原方程的解,故答案为:1.【点拨】本题考查了解分式方程和绝对值,能把分式方程转化成整式方程是解此题的关键.18.B【分析】由|a-12|=32求出a的值,对应数轴上的点即可得出结论.解:①|a-12|=32①a=-1或a=2.故选B.【点拨】考查了实数与数轴以及解含绝对值符号的一元一次方程,解方程求出a 值是解题的关键.19.b a c <<【分析】分别计算零次幂,负整数指数幂,绝对值,再比较大小即可.解:()020201,a π=-= 112,2b -⎛⎫=-=- ⎪⎝⎭ 33,c =-=∴ b a c <<.故答案为:b a c <<.【点拨】本题考查的是零次幂,负整数指数幂,绝对值的运算,有理数的大小比较,掌握以上知识是解题的关键.20.1.3×106【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.解: 1300000=61.310⨯故答案为:61.310⨯.【点拨】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义. 21.①①①①;先判断出正多边形为正六边形,再求出其内切圆半径即可判断①;根据直线的平移规律可判断①;根据新定义运算列出方程即可判断①. 解:①①161725<<,①45<< ①54-<-①273<①72,小数部分为5①错误;①外角为60︒的正多边形的边数为:36060=6︒÷︒①这个正多边形是正六边形,设这个正六边形为ABCDEF ,如图,O 为正六边形的中心,连接OA ,过O 作OG ①AB 于点G ,①AB =2,①BAF =120°①AG =1,①GAO =60°①OG =即外角为60︒且边长为2①正确; ①把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-,故①错误;①①新定义运算:2*21m n mn n =--,①方程21*(1)210x x x -=-⨯--=,即2210x x ++=,①2=24110∆-⨯⨯=①方程1*0x -=有两个相等的实数根,故①错误,①错误的结论是①①①帮答案为①①①.【点拨】此题主要考查了无理数的估算,正多边形和圆,直线的平移以及根的判别式,熟练掌握以上相关知识是解答此题的关键.22.0,1,0,1【分析】根据定义先确定x 0=x 4=1与x 5=x 1=3,可得x 0,1x ,2x ,3x ,4x , x 5依次为1,3,1,2,1,3,根据定义其“伴生数列”B 是y 1, y 2, y 3, y 4;依次为0, 1, 0, 1即可. 解:①1x ,2x ,3x ,4x 依次为3,1,2,1,①x 0=x 4=1,x 5=x 1=3,①x 0,1x ,2x ,3x ,4x , x 5依次为1,3,1,2,1,3,①x 0=2x =1,y 1=0;x 1≠x 3,y 2=1;2x =4x =1,y 3=0;3x ≠x 5,y 4=1;①其“伴生数列”B 是y 1, y 2, y 3, y 4;依次为0, 1, 0, 1.故答案为:0, 1, 0, 1.【点拨】本题考查新定义数列与伴生数列,仔细阅读题目,理解定义,抓住“伴生数列”中y n 与数列A 中11,n n x x -+关系是解题关键.23【分析】特殊角的三角函数值:tan45°=1;任何除零以外的数0次方等于1,负数的绝对值等于它的相反数.解:原式11+【点拨】本题比较简单,只要掌握零指数幂,绝对值的概念以及熟记特殊角的三角函数值即可.24.解:原式. 解:实数的运算,绝对值,算术平方根,特殊角的三角函数值,负整数指数幂.针对绝对值,算术平方根,特殊角的三角函数值,负整数指数幂4个解析分别进行计算,然后根据实数的运算法则求得计算结果.25.(1)6;(2)任务一:①乘法分配律(或分配律);①五;不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3);任务二:2x <【分析】(1)根据实数的运算法则计算即可;(2)根据不等式的性质3判断并计算即可.解:(1)解:原式118(8)4=⨯+-⨯ ()826=+-=.(2)①乘法分配律(或分配律)①五 不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3); 任务二:不等式两边都除以-5,改变不等号的方向得:2x <.【点拨】本题主要考查实数的运算,不等式的性质等知识点,熟练掌握实数的运算法则以及不等式的性质是解题关键.26.①6;①3x <-或1x >;①1a =-或5a =-【分析】(3)①根据绝对值的几何意义可知,变成数轴上的点到-2的距离和到4的距离之和的最小值;①根据题意画出相应的图形,确定出所求不等式的解集即可;①根据原式的最小值为2,得到3左边和右边,且到3距离为2的点即可.解:(3)①设A 表示的数为4,B 表示的数为-2,P 表示的数为x ,①|4|x -表示数轴上的点P 到4的距离,用线段PA 表示,|2||(2)|+=--x x 表示数轴上的点P 到-2的距离,用线段PB 表示,①|4||2|x x -++的几何意义表示为PA+PB ,当P 在线段AB 上时取得最小值为AB , 且线段AB 的长度为6,①|4||2|x x -++的最小值为6.故答案为:6.①设A 表示-3,B 表示1,P 表示x ,①线段AB 的长度为4,则,|3||1|x x ++-的几何意义表示为PA+PB ,①不等式的几何意义是PA+PB >AB ,①P 不能在线段AB 上,应该在A 的左侧或者B 的右侧,即不等式的解集为3x <-或1x >.故答案为:3x <-或1x >.①设A 表示-a ,B 表示3,P 表示x ,则线段AB 的长度为3a --,++-x a x 3的几何意义表示为PA+PB ,当P 在线段AB 上时PA+PB 取得最小值, ①32a --=①32a +=或32a +=-,即1a =-或5a =-;故答案为:1a =-或5a =-.【点拨】此题考查了解一元一次不等式,数轴,绝对值,以及数学常识,掌握绝对值的几何意义,学会分类讨论是解决本题的关键.27.(1)13,14;(2)减,证明见解析【分析】(1)根据题目中函数解析式可以解答本题;(2)根据题目中例子的证明方法可以证明(1) 中的猜想成立.解:(1)1(3)3f =,1(4)4f = (2)猜想:1()(0)f x x x=>是减函数; 证明:任取12x x <,1>0x ,20x >,则2112121211()()x x f x f x x x x x --=-= ①12x x <且1>0x ,20x >①210x x ->,120x x > ①2112x x x x ->0,即12())0(f x f x -> ①函数1()(0)f x x x=>是减函数. 【点拨】本题考查反比例函数图象上的坐标特征、反比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.28.(1)见解析;(2)a >【分析】(1P .(2)在数轴上比较,越靠右边的数越大.解:(1)如图所示,点P 即为所求.(2)如图所示,点A 在点P的右侧,所以a >【点拨】本题考查无理数与数轴上一一对应的关系、勾股定理、尺规作图法、熟练掌握无理数在数轴上的表示是关键.29.(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616.【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .解:(1) 168不是“合和数”,621是“合和数”.1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=,621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-. ①()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-.①()()21054()2105P M m m G M k Q M n n ++====--(k 是整数). 39m ≤≤,8514m ∴≤+≤, k 是整数,58m ∴+=或512m +=,①当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.①当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616.【点拨】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。
2014-2015中考数学总复习-第一轮-第一章 第1讲 实数的相关概念
思路分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法 保留有效数字,要在标准形式 a × 10n中 a 的部分保留,从左边第一个不为 0 的 数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.
答案:B。 39 360=3.936×104≈3.94×104
方法指导:用科学记数法表示的数必须满足a×10n(1≤|a|<10,n为整数,表示时 关键要正确确定a的值以及n的值。)的形式;求近似数时注意看清题目要求和单位 的换算;查有效数字时,要从左边第一个不是0的数开始数起,到精确到的数位 为止,所有的数字都叫做这个数的有效数字。
)
D. -a-2.5
思路分析: ( 1 )因为绝对值符号里面的 a - 2.5 是负 数,去掉绝对值之后,结果为它的相反数, 所以答案为 2.5 - a ,故答案选 B . ( 2 )由题中的图可知, |a - 2.5| 表示的意义是数 a 与数 2.5 所表示的两点 之间的距离,而这两点之间的距离为 2.5 - a ,故答案选 B . 答案: B. 方法指导:解决绝对值的问题通常有两种思路,一是根据绝对值的计算法则去掉 绝对值;二是根据绝对值的几何意义直接计算.
4.绝对值:数轴上表示数 a的点与 原点 的距离叫做数a 的绝对值。即一个正数的
绝对值是它 本身 ;0的绝对值是 0 ;一个负数的绝对值是它的 相反数 。
a ( a>0 ) 即│a│= 0 ( a=0 ) -a ( a<0 )
n a 10 5.科学记数法:把一个数表示成 的形式,其中1≤ │a│ <10的数,n是
考点即时练 3.如图,数轴上表示数-2的相反数的点是( A.点P B.点Q C.点M D.点N )
答案: A 4.(2013张家界)﹣2013的绝对值是( A.﹣2013 B. 2013 C. ) D.﹣
初中中考数学专题01 实数(原卷版)
2024年中考数学真题专题分类精选汇编(2025年中考复习全国通用)专题01 实数一、选择题1. (2024湖北省)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( ) A. 10+元B. 10-元C. 20+元D. 20-元2. (2024广西)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( ) A.B.C.D.3. (2024河北省)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A.B. C.D.4. (2024四川达州)有理数2024的相反数是( ) A. 2024B. 2024-C.12024D. 12024-5. (2024黑龙江齐齐哈尔)实数-5相反数是( ) A. 5B. 5-C.15D. 15-6. (2024山东枣庄)下列实数中,平方最大的数是( ) A. 3B.12C. 1-D. 2-7. (2024贵州省)下列有理数中最小的数是( ) A. 2-B. 0C. 2D. 48. (2024甘肃威武)下列各数中,比-2小的数是( ) A. 1-B. 4-C. 4D. 19. (2024山东威海)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( ) A. 7+B. 5-C. 3-D. 1010. (2024福建省)下列实数中,无理数是( ) A. 3-B. 0C.23D.511. (2024天津市)计算3-(-3)的结果是( ) A. 6B. 3C. 0D. -612. (2024吉林省)若(﹣3)×口的运算结果为正数,则口内的数字可以为( ) A. 2B. 1C. 0D. 1-13. (2024四川内江)16的平方根是( ) A. 4-B. 4C. 2D. 4±14. (2024天津市)估算 10的值在( ) A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间15. (2024北京市)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( ) A.16810⨯B. 17210⨯C. 17510⨯D. 18210⨯16. (2024福建省)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( ) A. 696110⨯B. 2696.110⨯C. 46.96110⨯D. 50.696110⨯17. (2024山东威海)据央视网2023年10月11日消息,中国科学技术大学中国科学院量子创新研究院与上海微系统所、国家并行计算机工程技术研究中心合作,成功构建了255个光子的量子计算原型机“九章三号”,再度刷新了光量子信息的技术水平和量子计算优越性的世界纪录.“九章三号”处理高斯玻色取样的速度比上一代“九章二号”提升一百万倍,在百万分之一秒时间内所处理的最高复杂度的样本,需要当前最强的超级计算机花费超过二百亿年的时间.将“百万分之一”用科学记数法表示为( ) A. 5110-⨯B. 6110-⨯C. 7110-⨯D. 8110-⨯18. (2024河南省)如图,数轴上点P 表示的数是( )A. 1-B. 0C. 1D. 219. (2024四川南充)如图,数轴上表示2的点是( )A. 点AB. 点BC. 点CD. 点D20. (2024深圳)如图,实数a ,b ,c ,d 在数轴上表示如下,则最小的实数为( )A. aB. bC. cD. d21. (2024北京市)实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 1b >-B. 2b >C. 0a b +>D. 0ab >22. (2024江苏扬州)实数2的倒数是( ) A. 2-B. 2C. 12-D.1223. (2024陕西省)-3的倒数是( ) A. 3 B.13C. 13-D. 3-二、填空题1. (2024武汉市)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2℃记作_________℃.2. (2024江苏连云港)如果公元前121年记作121-年,那么公元后2024年应记作__________年.3. (2024安徽省)10,祖冲之给出圆周率的一种分数形式的近似值为22710______227(填“>”或“<”). 4. (2024黑龙江齐齐哈尔)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为______. 5. (2024湖北省)写一个比1-大的数______. 6. (2024重庆市B )计算:023-+=______. 7. (2024四川广安)39=______. 8. (2024广西)3__.9. (2024内蒙古赤峰)请写出一个比5小的整数_____________10. (2024四川成都市)若m ,n 为实数,且()2450m n ++-=,则()2m n +的值为______. 11. (2024河北省)已知a ,b ,n 均为正整数. (1)若101n n <<+,则n =______; (2)若1,1n a n n b n -<<<<+,则满足条件的a 的个数总比b 的个数少______个.12. (2024北京市)联欢会有A ,B ,C ,D 四个节目需要彩排.所有演员到场后节目彩排开始。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年数学--中考复习导学案
专题1:实数 序号:1 制案人:
【教学目标】
1,系统复习初中数学实数知识,构建知识网络
2,掌握中考数学中关于实数知识的命题趋势 【考点链接】1.实数的意义
⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = . ⑷ 绝对值⎪⎩
⎪
⎨
⎧
<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数. ⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,
从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方
⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫_______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶ =2
a
⎩
⎨
⎧
<≥=)
0( )0( a a a .
3. 实数的分类 和 统称实数.
4. 数的乘方 =n
a
,其中a 叫做 ,n 叫做 .
5. =0
a (其中a 0 且a 是 )=-p
a (其中a 0)
6. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算
里面的,同一级运算按照从 到 的顺序依次进行. 7. 实数大小的比较
⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的.
小结:(通过上面的学习,你觉得哪些知识在理解上比较困难或在运用上容易出错) 【典例精析】 例1 在“
()
5,3.14 ,
()
3
3,
()
2
3-,cos 600 sin 450 ”这6个数中,无理数的
个数是( )
A .2个
B .3个
C .4个
D .5个
例2 ⑴2--的倒数是( ) A .2 B.
12
C.12
-
D.-2
⑵若2
3(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4
⑶如图,数轴上点P 表示的数可能是( )
A.7
B. 7-
C. 3.2-
D. 10-
例3 下列说法正确的是( )
A .近似数3.9×103精确到十分位
B .按科学计数法表示的数8.04×105
其原数是80400 C .把数50430保留2个有效数字得5.0×104.
D .用四舍五入得到的近似数8.1780精确到0.001
例4 计算:⑴)20080+|-1|-3cos30°+ (
2
1)3; ⑵
232(2)2sin 60---+
.
例5 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求
2
||4321
a b m cd
m ++-+的值.
例6. 如图所示,数轴上表示25,的对应点分别为C 、B ,点C 是
AB 的中点,则点A 表示的数是( )
A .5-
B .25-
C .45-
D .52-
【中考演练】
1.-3的相反数是______,-1
2
的绝对值是_____,2-1=______,2008
(1)
-= .
2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零
件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”)
3-
2-
-
O
1 2 3
P
A C B
2
5
输入x 输出y
平方 乘以2 减去4
若结果大于否则
3. 下列各数中:-3,
14
,0,
32
,364,0.31,
227
,2π,2.161 161 161…,
(-2 005)0是无理数的是___________________________.
4.全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,
用科学记数法表示捐款数约为__________元.(保留两个有效数字) 5.若0)1(32=++-n m ,则m n +的值为 . 6. 2.40万精确到__________位,有效数字有__________个. 7,下列各组数中,互为相反数的是( ) A .2和
2
1 B .-2和-
2
1 C .-2和|-2| D .2和
2
1
8.16的算术平方根是( )
A.4
B.-4
C.±4
D.16 9.实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )
A .a > b
B . a = b
C . a < b
D .不能判断
10若x 的相反数是3,│y│=5,则x +y 的值为( ) A .-8 B .2 C .8或-2 D .-8或2
11若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4! =4×3×2×1,…,则
100!98!
的值为( ) A.
5049
B. 99!
C. 9900
D. 2!
12.根据如图所示的程序计算,
若输入x 的值为1,则输出y 的值为
. 13.
比较大小:73
_____10
10
--
.
14.设,则下列结论正确的是( )
A.
B.
C.
D.
15..图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( )
o
b a
A 、1
B 、1.4
C 、
D 、
16.如图,数轴上表示1,的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点
C 表示的数是( ).
A .-1
B .1-
C .2-
D .-2
17.若20072008
a =
,20082009
b =
,试不用..
将分数化小数的方法比较a 、b 的大小. 18. 计算:⑴4245tan 2
1)1(1
+-︒+
--;
(2)01)2008(260cos π-++- . 19.已知
的整数部分为a ,小数部分为b ,求a 2
-b 2
的值.
﹡22. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是
正整数)来表示.有规律排列的一列数:12345678----,
,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示?
(2)它的第100个数是多少?
(3)2006是不是这列数中的数?如果是,是第几个数?
﹡23.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将
这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例
如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与 4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24, (1)_______________________,(2)_______________________, (3)_______________________.
另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.
学习反思:通过这部分的学习,你还有哪些想法与困惑呢?。