控制理论的其它分支:最优控制与自适应控制.ppt

合集下载

最优控制理论课件

最优控制理论课件

8
最优控制问题
1.1 两个例子
例1.1 飞船软着陆问题
软着陆 过程开 始时刻 t 为零
h& v
v& u g m
m& K u
m 飞船的质量 h 高度 v 垂直速度 g 月球重力加速度常数 M 飞船自身质量 F 燃料的质量 K 为常数
初始状态 h(0) h0 v(0) v0 m(0)MF
f(x(t),u(t),t) 为n维向量函数
22.03.2020
现代控制理论
24
最优控制问题
1.2 问题描述
(1) 状态方程 一般形式为
x&(t) f (x(t),u(t),t)
x(t) Rn
x(t)|tt0 x0
为n维状态向量
u(t) Rr
为r 维控制向量
f(x(t),u(t),t) 为n维向量函数
求解最优控制的变分方法
泛函与函数的几何解释
22.03.2020
现代控制理论
50
求解最优控制的变分方法
泛函与函数的几何解释
宗量的变分
x(t)x(t)x(t)
22.03.2020
现代控制理论
51
求解最优控制的变分方法
泛函与函数的几何解释
宗量的变分
x(t)x(t)x(t)
泛函的增量 J ( x ( g ) ) J ( x ( g ) x ) J ( x ( g ) ) L ( x , x ) r ( x , x )
J x ( T ) ,y ( T ) ,x & ( T ) ,y & ( T ) x & ( T )
控制
(t)
22.03.2020
现代控制理论

现代控制理论最优控制课件

现代控制理论最优控制课件

04 离散时间系统的最优控制
CHAPTER
离散时间系统的最优控制问题的描述
定义系统
离散时间系统通常由差分方程描述,包括状 态转移方程和输出方程。
确定初始状态
最优控制问题通常从一个给定的初始状态开 始,我们需要确定这个初始状态。
确定控制输入
在离散时间系统中,控制输入是离散的,我 们需要确定哪些控制输入是可行的。
工业生产领域
02 现代控制理论在工业生产领域中也得到了广泛的应用
,如过程控制、柔性制造等。
社会经济领域
03
现代控制理论在社会经济领域中也得到了广泛的应用
,如金融风险管理、能源调度等。
02 最优控制基本概念
CHAPTER
最优控制问题的描述
确定受控系统的状态和输入,以便在 给定条件下使系统的性能指标达到最 优。
LQR方法
利用LQR(线性二次调节器)设计最优控制 器。
线性二次最优控制的应用实例
经济巡航控制
在航空航天领域,通过线性二次最优控制实现燃料消 耗最小化。
电力系统控制
在电力系统中,利用线性二次最优控制实现稳定运行 和最小化损耗。
机器人控制
在机器人领域,通过线性二次最优控制实现轨迹跟踪 和避障等任务。
03
02
时变控制系统
04
非线性控制系统
如果系统的输出与输入之间存在 非线性关系,那么该系统就被称 为非线性控制系统。
这类系统的特点是系统的参数随 时间而变化。
静态控制系统
这类系统的特点是系统的输出与 输入之间没有时间上的依赖关系 。
发展历程
古典控制理论
这是最优控制理论的初级阶段,其研究的主 要对象是单输入单输出系统,主要方法是频 率分析法和根轨迹法。

《自适应控制》课件

《自适应控制》课件

软件实现
01
02
03
控制算法选择
根据被控对象的特性和控 制要求,选择合适的控制 算法,如PID控制、模糊 控制等。
软件开发环境
选择合适的软件开发环境 ,如MATLAB、Simulink 等,进行控制算法的实现 和仿真。
软件集成与调试
将各个软件模块集成在一 起,进行系统调试,确保 软件能够正常工作并满足 控制要求。
直接优化目标函数的自适应系统是一种通过直接优化系统目标函数,对系统参数 进行调整的自适应控制系统。
详细描述
直接优化目标函数的自适应系统根据系统目标函数和约束条件,通过优化算法寻 找最优的系统参数,以实现系统性能的最优。这种系统广泛应用于控制工程、航 空航天等领域。
自校正调节器
总结词
自校正调节器是一种通过实时校正系统参数,实现系统性能提升的自适应控制系统。
要点二
详细描述
在进行自适应控制系统设计时,首先需要对系统进行建模 ,即通过数学模型来描述系统的动态行为。这个模型可以 是线性或非线性的,取决于系统的复杂性和特性。在建立 模型后,需要对模型参数进行估计,这通常涉及到使用各 种算法和优化技术来不断调整和更新系统参数,以使系统 能够更好地适应外界环境的变化。
详细描述
最小均方误差算法基于最小化预测误差的平方和来调整控制参数,通过不断迭代计算,逐渐减小误差 ,使系统输出逐渐接近目标值。该算法具有较好的跟踪性能和鲁棒性,广泛应用于各种自适应控制系 统。
极点配置算法
总结词
极点配置算法是一种自适应控制算法,通过 调整系统参数使系统的极点配置在期望的位 置上,以达到系统稳定和性能优化的目的。
特点
自适应控制具有适应性、实时性和智 能性等特点,能够自动调整控制参数 和策略,以适应不同环境和条件下的 变化。

最优控制理论课件

最优控制理论课件

第一章绪论1.1 引言近50年来,科学技术的迅速发展,对许多被控对象如宇宙飞船、导弹、卫星和现代工业设备与生产过程的性能提出了更高的要求,在许多情况下要求系统的某种性能指标为最优。

这就要求人们对控制问题都必须从最优控制的角度进行研究分析和设计。

最优控制理论是现代控制理论的重要组成部分。

其形成与发展奠定了整个现代控制理论的基础。

早在20世纪50年代初九开始了对最短时间控制问题的研究。

随后,由于空间技术的发展,越来越多的学者和工程技术人员投身于这一领域的研究和开发,逐步形成了较为完整的最优控制理论体系。

最优化问题就是根据各种不同的研究对象以及人们预期要达到的目标,寻找一个最优控制规律,或设计出一个最优控制方案或最优控制系统。

最优控制理论研究的主要问题是:根据已建立的被控对象的时域数学模型或频域数学模型,选择一个容许的控制律,使得被控对象按预定要求运行,并使给定的某性能指标达到最优值。

从数学的观点来看,最优控制理论研究的问题是求解一类带有约束条件的泛函取值问题,属于变分学的理论范畴。

然而,经典变分学理论只能解决容许控制属于开机的一类,为适应工程实践的需要,20世纪50年代中期出现了现代变分理论。

在现代变分理论中最常用的两种分法是动态规划和极小值原理。

动态规划时美国学者R.E贝尔曼于1953-1957年为了解决多级决策问题的算法而逐步创立的。

最小值原理时前苏联科学院院士π.C.庞特里亚金与1956年-1958年间逐步创立的。

近年来,由于数字计算机的飞速发展和完善,逐步形成了最优控制理论中的数值计算法,参数优化方法。

当性能指标比较复杂或者不能用变量或函数表示时,可以采用直接搜索法,经过若干次迭代,都所到最优点。

常用的方法有邻近极值法、梯度法、共轭梯度法及单纯形法等。

同时由于可以把计算机作为控制系统的一个组成部分,以实现在线控制,从而使最优控制理论的工程实现成为现实。

因此,最优控制理论提出的求解方法,既是一种数学方法,又是一种计算机算法。

自适应控制 课件

自适应控制 课件

自适应控制与应用自适应控制与应用第一章自适应控制基本概念第二章模型参考自适应系统设计初步第三章用李亚普诺夫稳定性理论设计MRAC第四章用波波夫超稳定性理论设计MRAC第五章自校正技术及自校正控制器调节器的设计第六章极点配置的自校正技术第一章自适应控制的基本概念1-1 自适应控制的产生1-2自适应控制的定义1-3 自适应控制的基本原理1-4 自适应控制系统的主要类型1-5自适应控制的应用1-1 自适应控制的产生传统的控制系统设计方法,通常是首先建立被控对象的数学模型,然后根据所建数学模型的特性设计控制器(控制律),实施控制。

为了要成功的设计一个控制系统,无论是常规的反馈控制系统还是最优控制系统,都必须要设计者事先知道被控对象的所有特征,及其结构和参数。

1-1 自适应控制的产生设计都要求事先掌握被控对象或被控过程的数学模型。

然而有些数学模型是很难事先确知的,或者由于种种原因,一些系统的数学模型会在运行过程中发生较大范围的变化,这就是说,设计者对系统的特性并不是完全掌控的,或者说系统的特性是不肯定的。

在这些情况下,常规控制就往往达不到预定的控制要求。

引起被控对象特性发生变化的主要原因有:(1)由于系统所处环境的变化而引起的被控对象的参数值的变化。

1-1 自适应控制的产生许多控制对象的数学模型随着时间或工作环境的改变而发生变化,而变化规律往往事先不知道。

例如:引起被控对象特性发生变化的主要原因有:(1)由于系统所处环境的变化而引起的被控对象的参数值的变化。

1-1 自适应控制的产生许多控制对象的数学模型随着时间或工作环境的改变而发生变化,而变化规律往往事先不知道。

(2)系统本身由于工作情况的变化而引起自身参数值的改变.1-1 自适应控制的产生当被控对象的数学模型参数在小范围内变化时,可用一般的反馈控制、最优控制或补偿控制等方法使得系统对外部的扰动或内部参数的小范围变动不很敏感,以达到预期性能。

而当被控对象的数学模型参数在大范围内变化时,上述方法就不能圆满解决问题了,为了使控制对象的参数在大范围变化时,系统仍能自动的工作于最优或次优状态,因而提出了自适应控制的问题。

现代控制理论ppt

现代控制理论ppt

求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入

动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。

现代控制工程最优控制课件

现代控制工程最优控制课件

03
优化目标
最小化损失函数,即达到最优控制效果。
线性调节器问题的解法
01
极点配置法
通过选择控制器的极点位置, 使得系统的传递函数在频率域
上具有理想的性能指标。
02
最优反馈增益
通过求解 Riccati 方程,得到 最优反馈增益,使得系统的性
能达到最优。
03
LQR 设计步骤
确定系统的状态空间模型、选 择适当的参考信号、设计控制
定义
非线性最优控制问题可以定 义为在给定初始状态和初始 时刻,寻找一个控制输入, 使得系统在结束时刻的状态
和性能指标达到最优。
特点
非线性最优控制问题具有复 杂性,其解决方案通常需要
借助数学工具和算法。
应用
非线性最优控制问题在许多 领域都有广泛的应用,如航 空航天、机器人、车辆控制 等。
利用梯度下降法求解非线性最优控制问题
移方程。
利用动态规划法求解非线性最优控制问题
3. 定义性能指标函数
根据问题的要求,定义性能 指标函数。
4. 求解最优子问题
利用动态规划法,依次求解 每个子问题,得到每个时刻 的最优控制输入。
5. 得到最优解
通过逆向递推,得到初始时 刻的最优控制输入和最优状 态。
04
动态规划基础上的最优控 制
多阶段决策过程的动态规划
利用动态规划法求解非线性最优控制问题
• 基本思想:动态规划法是一种通过将原问题分解为一 系列子问题,并逐个求解子问题,最终得到原问题最 优解的方法。
利用动态规划法求解非线性最优控制问题
01
步骤
02
1. 初始化:选择一个初始状 态和初始时刻。
03
2. 定义状态转移方程:根据 系统动态方程,定义状态转

最优控制理论PPT课件

最优控制理论PPT课件

生产计划与调度
在企业生产管理中,利用 最优控制理论对生产计划 和调度进行优化,提高生 产效率和降低成本。
08
总结与展望
最优控制理论的重要性和应用前景
总结
最优控制理论是现代控制理论的重要组成部分,它在解决复杂系统的优化和控制问题方面 具有显著的优势。该理论通过数学模型和算法,寻求在给定条件下实现系统性能最优化的 控制策略。
非线性最优控制理论
20世纪70年代,基于微分几何、非 线性分析和最优控制问题的研究。
智能优化算法与最优控制
20世纪80年代,考虑系统不确定性 ,引入概率论和随机过程理论。
03
最优控制问题的数学模型
状态方程与性能指标
状态方程
描述系统动态行为的数学方程,通常表示为状态变量对时间 的导数等于其函数。
性能指标
态。这种控制策略的关键在于如何根据当前状态信息快速、准确地计算出最优控制输入。
离散系统的最优输出反馈控制
总结词
离散系统的最优输出反馈控制是一种基 于系统输出的反馈控制策略,通过最优 控制算法计算出在当前输出下的最优控 制输入,使得系统状态在有限时间内达 到预期目标。
VS
详细描述
离散系统的最优输出反馈控制是一种有效 的最优控制策略,它根据系统的输出信息 ,通过最优控制算法计算出在当前输出下 的最优控制输入,使得系统状态在有限的 时间步内以最优的方式达到目标状态。这 种控制策略的关键在于如何根据输出信息 快速、准确地计算出最优控制输入。
控制问题分类
确定性和不确定性控制、线性与 非线性控制、连续和离散控制等 。
重要性及应用领域
重要性
在实际工程和科学问题中,许多问题 都需要通过最优控制理论来解决,如 航天器轨道控制、机器人运动控制、 电力系统优化等。

最优控制和自适应控制及其智能控制

最优控制和自适应控制及其智能控制

第四十一章最优控制和自适应控制及其智能控制第一节最优控制[!、"]一、基于变分法的最优控制问题求解最优控制是经典控制理论发展到现代控制理论的重要标志之一。

这里“最优”一词指的是相对于某一给定性能指标最优,如使控制过程的时间最短,燃料消耗最少,或者误差最小,而不是任何性能指标下都是最优的。

给定受控系统的状态方程!"##(",$,%)寻求不受约束的控制向量$,使系统从初始状态"(%$)#"$在时间间隔[%$,%%]内转移到"(%%)且满足等式约束&["(%%),%%]#$这里&为’维向量函数;并使指标&取极值(#)["(%%),%%]’!%%%$*(",$,%)(%利用变分法求解最优控制时,首先构造哈密尔顿函数+和增广泛函(,。

+#*(",$,%)’!)#(",$,%)#+(",$,!,%)(,#)["(%%),%%]’")&["(%%),%%]’!%%%$[+(",$,!,%)*!)!"](%式中,"为-维、.为’维拉格郎日乘子向量。

由变分#(,#$导出的极值必要条件为:伴随方程!!#*"+"!状态方程!"##(",$,%)#"+"!控制方程"+"$#$终端约束&["(%%),%%]#$横截条件!(%%)#")""(%%)’"&)""(%%).用计算机联立求解上面五个方程,可得到最优控制问题的数值解。

二、极小值原理与动态规划用变分法求解最优控制问题时,均假定控制!不受约束,并且存在惟一的偏导数!"#!!。

然而任何实际的控制量均限制在允许范围内变化,即!"!或!!$!#%&,$"#,…,’有些问题中!"#!!不存在,在这些情况下,可利用极小值原理求解。

最优控制全部PPT课件

最优控制全部PPT课件

给定一个线性系统,其平衡状态X(0)=0,设计的目的是保持系统处于平衡状态,即 这个系统应能从任何初始状态返回平衡状态。这种系统称为线性调节器。
线性调节器的性能指标为:
J
tf t0
n
xi 2 (t)dt
i 1
加权后的性能指标为:
J
tf t0
n
qi xi 2 (t)dt
i1
对u(t)有约束的性能指标为: J t f 1 [ X T (t)QX (t) uT (t)Ru(t)]dt
上述由控制约束所规定的点集称为控制域U,凡在t0-tf上有定义,且在控制域U 内取值的每一个控制函数u(t)均称为容许控制。
4:性能指标
通常情况下,最优控制问题的性能指标形如:
J
(x(t f ),t f)
tf t0
F(x(t),u(t),t)dt
其中第一项是接近目标集程度,即末态控制精度的度量,称为末值型性能指标。
第6页/共184页
从工程实际考虑,约束条件为 0 F(t) maxF(t)
如果我们既要求拦截过程的时间尽量短,又要求燃料消耗尽量少,则可取性能指标:
J
tf t0
[c1
F (t )]d t
为最小
综上所述,所谓最优防天拦截问题,即选择满足约束条件的控制F(t),驱使系统从初始 状态出发的解,在某个时刻满足终端条件,且使性能指标为极值(极小值)。
第14页/共184页
5:线性跟踪器
若要求状态X(t)跟踪或尽可能接近目标轨迹Xd(t),则这种系统称为状态跟踪器,其相 应的性能指标为:
J
tf t0
1 [ X (t) 2
Xd
(t )] T
Q[ X (t)

最优控制理论PPT课件-48页PPT精品文档

最优控制理论PPT课件-48页PPT精品文档

u t R p 为 控 制 向 量 , 且 u t 在 t 0 , t f 上 分 段 连 续 ;
f R n 为 连 续 向 量 函 数 , x t 连 续 可 微
2.初态和终态: xt0,xtf S目标集
3.容许控制 : ut — 控 制 域
§6-2 最优控制中的变分法

代 泛函变分的求法

制 理 论
定理: J x 的变 J J 分 x x | 0, (0 1 )
性质:1 .F 1 F 2 F 1 F 2
2 .F 1 F 2 F 1 F 2 F 2 F 1
理 论
L x t,x r x t,x
其L 中 xt,x— J的线性函数
rxt,x— J的高阶无穷小
则L 称 xt,x为泛 Jxt函 的一阶变 J 分
泛函变分是泛函增量的线性主部
Modern Control Theory
Page: 9
2 1 2a1ta2
ua1ta2
这里 a1、a2 为常数
由 x2 udt 得: x2t1 2a1t2a2ta3
Modern Control Theory
Page: 21
§ 6-4 有约束条件下的泛函数极值问题

代 控
由 x1 x2dt 得:x 1 t 1 6 a 1 t3 1 2 a 2 t2 a 3 t a 4

代 控
当 t0 和 tf给 定 时 , x t0 和 x tf 是 否 定 还 是 自 由 , 可 分 四 种
制 情 况 :
理 论 (1) 固定始端和终端
x(t)
即 x t 0 和 x t f 给 定 x t 0 0 ,x t f 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

迹xd,则J可以取为
J
1 2
tf t0
(x

xd
)T
(x

xd
)dt
除了特殊情况外,最优控制问题的解析解是比较复杂的,
以至必须求其数值解。当指标为二次性能指标时,可以给出
整齐的解析解。
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 12
最优控制问题有四个关键点: (1)受控对象为动态系统; (2)初始与终端条件(时间和状态); (3)性能指标; (4)容许控制。 而最优控制问题的实质就是要找出容许的控制作用或控 制规律,使动态系统(受控对象)从初始状态转移到某 种要求的终端状态,并且保证某种要求的性能指标达到 最小值或者是最大值。
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 11
针对不同的具体问题,J一般可以取为不同的具体形式,如:
①最短时间问题
J
tf t0
dt

tf
t0
②线性二次最优控制问题
J 1 t f (xTQx uT Ru)dt 2 t0
③线性伺服器问题
如果要求给定的系统状态x跟踪或者尽可能地接近目标轨
x f (x(t),u(t),t)
如果是线性时不变系统,则可以表示为
x Ax(t) Bu(t)
性能指标:尽管我们不能为各种各样的最优控制问题规定
一个性能指标的统一格式,但是通常情况下如下形式的性能指 标可以概括一般:
J
(x(t f ), t f )
tf t0
L(x(t), u(t), t)dt
dy Tp dt y K pu
两边从t1到t2积分,可得
Tp[ y(t1) y(t2)]
t2 t1
y(t)dt K p
t2 u(t)dt
t1
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 24
以采样周期h对u(t), y(t)采样,当h相对于Tp足够小时:
t2
t2
向。拦截火箭的最大推力是一有限值fmax,瞬时推力f(t)应满

0 f (t) fmax
至于单位向量u,它可以表示为
u 2 uTu 1
其中|u|表示向量u的长度,有 u u12 u22 u32 也就是说,u的幅值为1,其方向不受限制。
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 9
J
tf t0
C1
f (t) dt
(a)
问题归结为选择f(t)、u(t)和tf ,除实现拦截外还要使规定的
性能指标为最小,此即在性能指标(a)意义下的最优拦截问
题。
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 10
上面的具体实例可抽象为共同的数学模型,其中受控系统 数学模型一般可以表示为:
实际应用背景
v
例1:飞船的月球软着陆问题
飞船靠其发动机产生一与月球重力 方向相反的推力f,赖以控制飞船实现 软着陆(落到月球表面上时速度为零)。 要求选择一最好发动机推力程序f(t), 使燃料消耗最少。
h g
月球
设飞船质量为m,它的高度和垂直速度分别为h和v。 月球的重力加速度可视为常数g,飞船的自身质量及所带燃 料分别为M和F。
我国的探月计划:
绕月工程:2007年以前发射人造月球卫星“嫦娥一号” ;
落月工程:2012年发射携带月球车的登月软着陆器;
回月工程:2020年前完成采集月球样品工作。
最优控制问题研究的主要内容是:怎样选择控制规律 才能使控制系统的性能和品质在某种意义下为最优。
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 4
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 20
例:加热炉温度控制系统设计
1)常规控制器设计方法:
被控对象:
dy C dt q qs
其物理意义为:单位时间炉温升高所用的热量等于单位时间 内流入炉子热量与流出炉子热量之差。其中:
C 炉 子热 容量 ;
y 炉 温;
qs 单 位 时 间 内 流 出 炉 子 的热 量 ; a 散 热系 数;
于是,拦截器与目标的相对运动方程可写为
感谢你的观看
2019年8月18

北京大学系统与控制研究中心 8
x v

v

a(t)

f (t) m(t)
u
初始条件为
m


f (t) C
x(t0 ) x0, v(t0 ) v0, m(t0 ) m0
为实现拦截,既要控制拦截器的推力大小,又要改变推力方
北京大学系统与控制研究中心 22
于是控制系统的开环传函为
Go (s)

Gp (s)Gc (s)

K pK 1 Tis
Tis 1 Tps

取Ti
Tp,则
则闭环传函为
Go (s)

KpK Ti s
G(s) Go (s) 1 1
1 Go (s) 1 1 1 Tp s
Go (s)
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 5
自某t=0时刻开始飞船进入着陆过程。其运动方程为
其中k为一常数。
h v
v

f m

g
m kf
要求控制飞船从初始状态
h(0) h0, v(0) v0, m(0) M F
出发,于某一时刻tf实现软着陆,即
Tp[ y(t1) y(t2 )] h y(ih) K ph u(ih)
(1)
式中
i t1
i t1
t2
y(ih) 时刻t1至时刻t2所有输出采样数据之和;
i t1 t2
u(ih) 时刻t1至时刻t2所有控制量采样数据之和;
i t1
同理,用时刻t2至时刻t3区间的采样数据有
K pu
加热炉传递函数:
Gp (s)

Y (s) U (s)

Kp 1 Tps
如果对加热炉温度控制的设计目标是使理想的闭环传函为
Y (s) 1 Gm (s) U (s) 1 Tms ,Tm 0
选择PI(比例积分)控制器
Gc
(s)

K
1

1 Ti s

感谢你的观看
2019年8月18
J m(t f )
为最大的数学问题。
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 7
例2:防天拦截问题
所谓防天拦截是指发射火箭拦击对方洲际导弹或其它
航天武器。 设x(t)、v(t)分别表示拦截器L与目标M的相对位置和
相对速度向量。a(t)是包括空气动力与地心引力所引起的 加速度在内的相对加速度向量,它是x、v的函数,既然位 置和速度向量是由运动微分方程所确定的时间函数,因此 相对加速度也可以看成时间的函数。设m(t)是拦截器的质 量,f(t)是其推力的大小。用u表示拦截器推力方向的单位 向量。C是有效喷气速度,可视为常数。
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 17
在发生这些问题时,常规控制器不可能得到很好的控 制品质。为此,需要设计一种特殊的控制系统,它能够自 动地补偿在模型阶次、参数和输入信号方面非预知的变化, 这就是自适应控制。而自适应控制器的特点就是它能修正 自己的特性以响应过程和扰动的动力学特性变化。
h(t f ) 0, v(t f ) 0
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 6
控制过程中推力f(t)不能超过发动机所能提供的最大推力 fmax,即
0 f (t) fmax
满足上述限制,使飞船实现软着陆的推力程序f(t)不止一 种,其中消耗燃料最少者才是最佳推力程序,易见,问题可 归结为求
控制理论的其它分支:
最优控制与自适应控制
2019年8月18
感谢你的观看
1
2019年8月18
北京大学系统与控制研究中心 2
最优控制
Optimal Control
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 3
最优控制是从大量实际问题中提炼出来的,它尤其与 航空航天的制导、导航和控制技术密不可分。
要求控制拦截器从相对于目标的初始状态出发,于某末态
时刻tf与目标相遇(实现拦截),即
且应满足
x(t f ) 0
m(t f ) me
这里, me是燃料耗尽后拦截火箭的质量。 一般说来,达到上述控制目标的f(t)、u(t)和tf并非唯一。 为了实现快速拦截,并尽可能地节省燃料,可综合考虑
这两种要求,取性能指标为
q 单 位 时 间 内 流 入 炉 子 的热 量 ,q K1u u 控 制量 ( 如 电热 炉的 加热 功率 )
K1 系 数
感谢你的观看
2019年8月18
北京大学系统与控制研究中心 21
于是有:C
dy dt

K1u

ay,

Tp

C a
,Kp

K1 a
,

Tp
dy dt

y

控制量u(t)
输出量y(t)
控制器
被控对象
自适应器
自适应系统主要由控制器、被控对象、自适应器及反馈 控制回路和自适应回路组成。
感谢你的观看
相关文档
最新文档