5.2.2平行线的判定导学案
山西省阳泉市七年级数学下册5.2.2平行线的判定导学案(新版)新人教版
平行线的判定自主学习、课前诊断一、温故知新1. 在同一平面内,的两条直线叫做平行线。
2.如图有_____对同位角,分别是______________________.有___对内错角,分别是________.有___对同旁内角,分别是_______________.二、设问导读:1、问题解决阅读课本P12-14完成下列问题:问题1:结合课本图5.2-8,思考如何利用“同位角相等,两直线平行”去证明“内错角相等,两直线平行”和“同旁内角互补,两直线平行”?问题2:总结直线平行的条件:如图如果∠3=,理由是 __如果∠6=,那么,理由是____ ______如果∠2+ ∠4= ____ 或________,那么a∥b,理由是__ __________三、自学检测:1. 直线a,b被直线c所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( ) A.①② B.①③C.①④D.③④2.∠B=60_______.导入新课二、交流展示学用结合、提高能力一、巩固训练:1. 完成推理,填写推理依据:(1)∵∠1=∠A (已知)∴__________( )(2)∵∠1=∠D (已知)∴__________2(1)当∠2=_____时,a ∥b;(2)当∠3=_____时,a ∥b;(3)当∠4=_____时,a ∥b;3 如图判定AB ∥CE 的理由是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE4.如图,∵AC ⊥AB ,BD ⊥AB (已知)∴∠CAB =90°,∠______=90°( )∴∠CAB =∠______( )∵∠CAE =∠DBF (已知)∴∠BAE =∠______∴_____∥_____( )二、当堂检测1.如图所示,在下列条件中,不能判断L1∥L2的是().A .∠1=∠3B .∠2=∠3C .∠4+∠5=180°D.∠2+∠4=180°2.如图,由∠1=∠21 C DB A EF2 可确定____∥______.由∠3=∠4可确定____∥______.3.如图所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系?三、拓展延伸:如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,判断AB 与CD 是否平行,并请说明理由。
人教版七年级数学下册 第5章 5.2.2 平行线的判定 导学案
5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线(板书课题).2.学习目标:(1)学会并记住平行线的判定方法1、2、3.(2)能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:(1)自学内容:课本P12至P13的内容.(2)自学时间:10分钟.(3)自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.(4)自学参考提纲:①a.观察P12“思考”中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,若∠1=∠2,则a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?②a.在图1中,∠2与∠3是一对内错角.b.若∠3=∠2,能得到直线a∥b吗?分析:若能由∠3=∠2转化为∠1=∠2,那么由判定方法1,就可得a∥b,你能写出推理过程吗?c.由②可得到平行线的判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称为内错角相等,两直线平行.③a.在图1中,∠2与∠4是一对同旁内角.b.若∠2+∠4=180°,能得到直线a∥b吗?分析:若能由∠2+∠4=180°转化为∠1=∠2(或∠3=∠2),那么由判定方法1(或判定方法2),就可得a∥b,你能写出推理过程吗?c.由②可得到平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称为同旁内角互补,两直线平行.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,关注学生在自学中遇到的疑难问题.②差异指导:对个别学习有困难的学生进行点拨引导.(2)生助生:小组相互交流学习,纠正认知偏差.4.强化:(1)判定方法1、2、3及其几何表述.(2)练习:课本P15“复习巩固”的第1、2题.1.自学指导:(1)自学内容:课本P14例题.(2)自学时间:4分钟.(3)自学要求:阅读教材,重点处做好圈点,有疑点处做上记号.(4)自学参考提纲:①仔细体会,揣摩例题的几何推理过程,你能仿照它用别的方法说明b∥c 吗?②本例的结论也可作为平行线的一种判定方法,简述为:在同一平面内,垂直于同一条直线的两直线平行.③如图2,BE是AB的延长线.a.由∠CBE=∠A可以判定哪两条直线平行?根据是什么?答案:BC∥AD.根据是同位角相等,两直线平行.b.由∠CBE=∠C可以判定哪两条直线平行?根据是什么?答案:AB∥CD.根据是内错角相等,两直线平行.④如图3,这是小明同学自己制作的英语抄写纸的一部分,其中的横线互相平行吗?你有多少种判别方法?答案:平行.理由不唯一.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学生完成自学参考提纲的进度、存在的问题及疑点.②差异指导:对个别学习有困难或认知不足的学生进行点拨引导.(2)生助生:小组内学生相互交流,取长补短.4.强化:(1)判断两条直线平行的方法:①平行公理的推论:如果两条直线都与第三条直线平行,这两条直线也互相平行.②平行线判定方法1,即同位角相等,两直线平行.③平行线判定方法2,即内错角相等,两直线平行.④平行线判定方法3,即同旁内角互补,两直线平行.⑤在同一平面内,垂直于同一条直线的两条直线互相平行.(2)练习:课本P14“练习”第2题.三、评价1.学生学习的自我评价:各小组针对学习收获和存在的困惑进行总结交流.2.教师对学生的评价:(1)表现性评价:对学生在学习过程中的态度、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课通过“问题情境—合作探究—建立模型—求解—应用”的基本过程,使学生体会到了数学知识之间的内在联系;通过对问题的探究,获得了一些研究问题的方法和经验;发展了思维能力,加深了对相关知识的理解,通过获得成功的体验和克服困难的经历,增强了学生学习数学、应用数学的自信心.(时间:12分钟满分:100分)一、基础巩固(70分)1.(20分)如图,直线a,b,c被直线l所截,量得∠1=∠2=∠3.(1)若∠1=∠2,则a∥b,理由是同位角相等,两直线平行.(2)若∠1=∠3,则a∥c,理由是内错角相等,两直线平行.(3)直线a,b,c互相平行吗?为什么?解:平行,∵b∥a,c∥a,∴b∥c,∴a∥b∥c.第1题图第2题图第3题图第4题图2.(10分)如图,根据图中所给条件:(1)互相平行的直线有a∥b,c∥d;(2)互相垂直的直线有e⊥b,e⊥a.3.(10分)如图,如果∠3=∠7或∠4=∠8或∠2=∠6或∠1=∠5,那么a∥b,理由是同位角相等,两直线平行;如果∠5=∠3或∠2=∠8,那么a∥b,理由是内错角相等,两直线平行;如果∠2+∠5=180°或∠3+∠8=180°,那么a∥b,理由是同旁内角互补,两直线平行.4.(10分)如图,如果∠2=∠6,那么AD∥BC,如果∠3+∠4+∠5+∠6=180°, 那么AD∥BC;如果∠9 =∠DAB,那么AD∥BC;如果∠9=∠3+∠4,那么AB∥CD.5.(20分)如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠4=∠7;④∠2+∠3=180°.其中能说明a∥b的条件序号为(A)A.①②B.①③C.①④D.③④二、综合应用(20分)6.如图,当∠1=∠3时,直线a,b平行吗?当∠2+∠3=180°时,直线a,b 平行吗?为什么?解:∵∠1=∠3,∠3=∠4,∴∠1=∠4,∴a∥b(同位角相等,两直线平行).∵∠3=∠4,∠2=∠5,∠2+∠3=180°,∴∠4+∠5=180°,∴a∥b(同旁内角互补,两直线平行).三、拓展延伸(10分)7.如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?解:∵∠1=∠2,∴a∥b(内错角相等,两直线平行).∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行).又∵a∥b,∴a∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).。
七年级数学下册5.2.2 第1课时 平行线的判定导学案
第五章 相交线与平行线5.2 平行线及其判定5.2.2 平行线的判定 第1课时 平行线的判定学习目标:1.掌握平行线的三种判定方法,能运用平行线的判定方法解决问题.2.通过独立思考,小组探究,理解角与线的位置关系之间的联系,体会数形结合思想.3.激情投入,善于发现问题和提出问题,感受学习数学的乐趣. 重点:三种判定方法判定两直线平行.难点:根据平行线的判定方法进行简单的推理.一、知识链接1.在同一平面内, 的两条直线叫做平行线.2.过已知直线外一点能且只能画 条直线与这条直线垂直,能且只能画 条直线与这条直线平行.3.同位角、内错角、同旁内角的定义是怎样叙述的?4.怎样用三角板和直尺作已知直线的平行线?二、新知预习1.试利用三角板和直尺,经过直线外一点P 画出已知直线AB 的平行线CD ,由此你会发现什么?2.同位角 ,两直线平行. 三、自学自测1.如图,三角形ABC 中,∠A=70°,∠BED=70°,可以判断 ∥ .根据是 .由∠B=48°,∠FDC=48°,可以判断 ∥ .根据是 .第1题图 第2题图2.如图,用直尺和三角板作直线AB ,CD ,从图中可知,直线AB 与直线CD 的位置关系为 .四、我的疑惑___________________________________________________________________________自主学习教学备注【自学指导提示】学生在课前完成自主学习部分一、要点探究探究点1:利用同位角判定两条直线平行画一画:用三角尺和直尺画平行线的步骤有哪些?思考:(1)画图过程中,什么角始终保持相等? (2)直线a ,b 位置关系如何? (3)由上面的操作过程,你能发现判定两直线平行的方法吗? 总结归纳:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.应用格式: ∵∠1=∠2(已知)a ∥b (同位角相等,两直线平行)做一做:下图中若∠1=55°,∠2=55°,直线AB 、CD 平行吗?为什么?探究点2:利用内错角、同旁内角判定两条直线平行 问题1:如图,由∠3=∠2,可推出a//b 吗?如何推出?总结归纳:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.应用格式: ∵∠3=∠2(已知)a ∥b (内错角相等,两直线平行) 问题2:如图,如果∠1+∠2=180°,你能判定a//b 吗?总结归纳:判定方法3简单说成:同旁内角互补,两直线平行.课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片5-13)3.探究点2新知讲授(见幻灯片14-23)应用格式:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行)典例精析例1.根据条件完成填空.①∵∠2 = ∠6(已知)∴___∥___(___________________________)②∵∠3 = ∠5(已知)∴___∥___(___________________________)③∵∠4 +___=180°(已知)∴___∥___(___________________________)例2.如图,已知∠MCA= ∠A,∠DEC= ∠B,那么DE∥MN吗?为什么?针对训练1.根据条件完成填空.①∵∠1 =_____(已知)∴AB∥CE(___________________________)②∵∠1 +_____=180°(已知)∴CD∥BF( ___________________________)③∵∠1 +∠5 =180°(已知)∴_____∥_____(___________________________)④∵∠4 +_____=180°(已知)∴CE∥AB(___________________________)2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.二、课堂小结文字叙述符号语言图形相等,两直线平行∵ (已知),∴a∥b相等,∵ (已知),教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片14-23)两直线平行 ∴a ∥b互补, 两直线平行∵ (已知)∴a ∥b1.如图,可以确定AB ∥CE 的条件是( )A.∠2=∠BB. ∠1=∠AC. ∠3=∠BD. ∠3=∠A第1题图 第2题图2.如图,已知∠1=30°,∠2或∠3满足条件 ,则a//b.3.如图.(1)从∠1=∠4,可以推出 ∥ ,理由是 .(2)从∠ABC +∠ =180°,可以推出AB ∥CD ,理由是 .(3)从∠ =∠ ,可以推出AD ∥BC , 理由是 . (4)从∠5=∠ ,可以推出AB ∥CD ,理由是 .4.如图,已知∠1= ∠3,AC 平分∠DAB ,你能判断哪两条直线平行?请说明理由?当堂检测教学备注 配套PPT 讲授 4.课堂小结5.当堂检测 (见幻灯片24-28)。
2019-2020学年七年级数学下册《5.2.2 平行线的判定》导学案1(新版)新人教版.doc
2019-2020学年七年级数学下册《5.2.2 平行线的判定》导学案1(新版)新人教版学习目标掌握平行线的判定:“同位角相等,两直线平行”,并能用其解决实际问题。
(1)同一平面内,两条直线有几种位置关系?各是什么?(2)直线AB和直线CD被直线EF所截,指出图中的同位角,内错角,同旁内角。
二、探究新知画一画:如图,请你用一把直尺和一个三角板,作出过点P与直线l平行的直线b,试着画一画。
.Pl量一量:在上图中任选一对同位角,用量角器度量这两个角,并比较它们的大小。
试一试:用同样的方法另作平行线,在度量任意一对同位角,得到的结果一样吗?议一议:通过以上的操作,你能说出两条直线被第三条直线所截,如何判定这两条直线平行呢?平行线的判定1:简单说成:几何语言叙述为:如图,E三、学以致用1、如图,下列说法正确的是( )A 、若∠1=∠2,则c ︱︱ d ;B 、若∠1=∠3,则c ︱︱ d;C 、若∠1=∠4,则c ︱︱ d ;D 、若∠2=∠3,则c ︱︱ d.2、如图,已知直线321,,l l l 被直线l所截,,723,722,721︒=∠︒=∠︒=∠那么直线321,,l l l 有怎样的位置关系?为什么?(2题图) (1题图)3、如图,已知∠1=,60,120︒=∠︒C 判断直线AB 与CD 是否平行?请说出理由。
四、畅谈收获(1) 本节课你学到了什么?(2)下节课你想探究什么知识?A B CD F 1 2 311 12131 2 34 a bc d ABC D E1。
5.2.2 平行线的判定——导学案
5.2.2 平行线的判定——导学案(1案2课)班级:姓名:学号:学习目标:1.借助用直尺和三角板画平行线的过程,得出两直线平行的判定方法一“同位角相等,两直线平行”,进而推导出方法二“内错角相等,两直线平行”与方法三“同旁内角互补,两直线平行”。
2.理解掌握平行线的判定方法,并能运用它判定两直线的平行关系.3.培养识图能力,推理能力和有条理表达能力,发展空间观念。
学习重点:两直线平行的判定方法。
学习难点:运用判定方法来证明两直线的平行关系。
一、准备:1.如果a∥b ,b∥c ,那么__ ____,理由是________ _______________.2.如下图,已知四条直线AB、AC、DE、FG及所标示各角,请填空:①∠1与∠2是直线__ ___和直线_ ___被直线___ __所截而成的______角;②∠3与∠2是直线___ __和直线__ __被直线____ _所截而成的______角;③∠5与∠6是直线___ __和直线__ __被直线___ __所截而成的______角;④∠4与∠7是直线___ __和直线____ 被直线_____ 所截而成的______角;⑤∠8与∠2是直线_____ 和直线___ _被直线____ _所截而成的______角.3.仔细观察,下列图中有平行线吗?第2题图第3题图相信自己的眼睛吗?你该怎样说明这些直线是否平行呢?二、探究活动:1、思考·归纳①在实际生活中,都有哪些地方可以见到平行线?如: 铁轨、……(请同学们举出更多例子)[认识] :判定两条直线是否平行,在实际生活中具有极其重要的应用价值。
②什么是平行线?答:[我们可以利用这个定义来判定两条直线是否平行!]③还记得画平行线的方法吗?画画看[利用直尺和三角尺]任意画右边直线的平行线:C E 1 3 42 D F G④ 在作平行线的过程中,两种工具一静一动,这其中的道理你能明白吗?静的直尺是在固定一条直线;动的三角尺能确保一对_________相等.(图中的三线八角形成的条件是什么?P6)[归纳]既然这就是作平行线的方法,那由此作出来的就一定是平行线.因此,我们就得出一种判定平行线的方法:[判定方法1] 两条直线被第三条直线所截,若同位角相等,则这两条直线平行.简述为:_____________________________________2、例题·交流 例1、如图,直线AB 与CD 被直线EF 所截, ∠1=50°, ∠2=50°.问:AB 与CD 平行吗? 证明: 例1——数学走近生活:木工用右图中的角尺画CD 、EF ,CD 、EF 平行吗?为什么?答:三、初步训练:1.如右图,已知∠C=60°,则当∠ABE=________时,可判定__ _∥_ __(理由是: )2.根据下图填空:①例: ∵∠A=∠1∴AB ∥DC (同位角相等,两直线平行)②∵∠2=∠4 ∴____∥____( 同位角相等,两直线平行 ) ③∵∠3=______ ∴____∥BC( )④∵∠A=______ ∴____∥EF( )⑤∵AG ∥EF,BC ∥EF∴____∥____ ( )A B C DE1 2 CC E 1 3 4 2D FG 3.在第2题图中, ∠A 与∠3是一对__________,其形成条件是( ). 如果知道∠A=∠3,也能判定AB ∥DC.证明过程如下: ∵∠1=∠3( )∠A=∠3(已知)∴∠A=∠1(等量代换) ∴AB ∥DC( )[归纳]由此我们可以得出两直线平行的判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简述为:______________________________________4.(与第3题类似地) 在第2题图中, ∠A 与∠4是一对_____________,其形成条件是( ).如果知道∠A+∠4=180°,也能判定AB ∥DC.证明过程如下:∵∠1+∠4=180°( )∠A+∠4=180°(已知)∴∠A=∠1(等量代换)∴AB ∥DC( )[归纳]平行线的判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简述为:_______________________________________四、能力提升:1.如图,推理填空:① ∵∠1=∠2 ∴____∥____( ) ② ∵∠A=∠3∴____∥____( )③ ∵∠A+∠ABC=180° ∴____∥____( )2. 如图,已知∠1=030,∠B=060,AB ⊥AC.①求证:AD ∥BC② 由已知条件,你能证明AB ∥DC 吗? 答:____________③ 添加一个条件:_________________,结合已知条件,求证:AB ∥DC.321D C B A 1D CB A五、课堂小结:位置关系数量关系平行线判定示意图判定六、当堂检测:1如图⑦,∠D=∠EFC,那么()A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF2、如图⑧,判定AB∥EC的理由是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE 3、如图⑨,下列推理正确的是()A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥d D.∵∠1=∠5,∴c∥d4、已知,如图∠1+∠2=180°,填空。
七年级下册《5.2.2 平行线的判定》教案、导学案、同步练习
《5.2.2平行线的判定》教案一第一课时【教学目标】:经历探索两直线平行条件的过程,理解两直线平行的条件. 【重点】:探索两直线平行的条件【难点】:理解“同位角相等,两条直线平行” 【教学过程】 一、情景导入.装修工人正在向墙上钉木条,如果木条b 与墙壁边缘垂直,那么木条a 与墙壁边缘所夹角为多少度时,才能使木条a 与木条b 平行?要解决这个问题,就要弄清楚平行的判定。
二、直线平行的条件以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?三角板经过点P 的边与靠在直尺上的边所成的角没有变。
简化图5.2-5,得图3.图3∠1与∠2是三角板经过点P 的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单地说:同位角相等,两条直线平行. 符号语言:∵∠1=∠2∴AB ∥CD.如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线D C BA平行.”,可知这样画出的就是平行线。
如图,(1)如果∠2=∠3,能得出a ∥b 吗?(2)如果∠2+∠4=1800,能得出a ∥b 吗?你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单地说:内错角相等,两直线平行. 符号语言:∵∠2=∠3∴a ∥b.(2)∵∠4+∠2=180°,∠4+∠1=180°(已知) ∴∠2=∠1(同角的补角相等) ∴a ∥b.(同位角相等,两条直线平行) 你能用文字语言概括上面的结论吗?两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行. 简单地说:同旁内角互补,两直线平行. 符号语言:∵∠4+∠2=180°∴a ∥b. 四、课堂练习1、课本P15练习1,补充(3)由∠A+∠ABC =1800可以判断哪两条直线平行?依据是什么?2、课本P162题。
5.2.2平行线的判定导学案
c P ba4321c b a 21 5.2.2平行线的判定 学习目标:1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。
2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。
重点:在观察实验的基础上进行公理的概括与定理的推导 难点:定理形成过程中的逻辑推理及其书面表达。
预习案 1、预习疑难: 。
2、填空:经过直线外一点,_____ ___与这条直线平行. 探究案 (一)平行线判定方法1: 1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用?2、判定方法1应用格式: 1=∠2(已知) ∴AB ∥CD (同位角相等,两直线平行) 应用:木工师傅使用角尺画平行线,有什么道理? (二)平行线判定方法2、3: 1、 思考:教材判定方法2应用格式: 2=∠3(已知) ∴a ∥b (内错角相等,两直线平行) 2、将上题中条件改变为∠2+∠4=180°,能得到a ∥b 吗?(试写出推理过程) 判定方法应用格式:∵∠2+∠4=180°(已知)a ∥b (同旁内角互补,两直线平行) (三)数学思想:教材15页探究。
【反馈提高】(一)例 教材15页(二)练一练:教材15页练习1、2、3 (三)总结直线平行的条件 (1) (2)方法1:若a ∥b ,b ∥c ,则a ∥c 。
即两条直线都与第三条直线平行,这两条直线也互相平行。
方法2:如图1,若∠1=∠3,则a ∥c 。
即 。
方法3:如图1,若 。
方法4:如图1, 若 。
方法5:如图2,若a ⊥b ,a ⊥c,则b ∥c 。
即在同一平面内,垂直于同一条直线的两条直线互相平行。
训练案 (一)选择题:1.如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4) 2.如图2所示,如果∠D=∠EFC,那么( ) A.AD ∥BC B.EF ∥BC C.AB ∥DC D.AD ∥EF8765c b a 34123.下列说法错误的是( )A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠-5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( )(5) A.①② B.①③ C.①④ D.③④ (二)填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;如果∠5=∠3,或___ ____,那么________, 理由是____ __________;如果∠2+ ∠5= ______ 或者______,那么a ∥b,理由是___ _____.2.如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD.3.在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.4.如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.(2)由∠CBE=∠C 可以判断______∥______,根据是_________.本节课你的收获 。
5.2.2《平行线的判定》导学案
5.2.2 平行线的判定 导学案【学习目标】1、掌握由角得平行线判定的三种方法;2、掌握由平行和垂直得平行线判定的方法;3、能运用所学过的平行线的判定方法,进行简单的推理和计算。
【自学指导】 2.如图,请填空:①∠1与∠2是直线 和 直线 被直线 所截而成的 角; ②∠3与∠2是直线 和 直线 被直线 所截而成的 角;③∠2与∠4是直线 和直线 被直线 所截而成的 角。
一、由角判定线平行:如图1所示,为我们利用直尺和三角板画平行线的过程简图,1、探究1:由三角尺前后的移动位置知,∠1和∠2是同位角,且相等,则画出两条平行线。
归纳1:两条直线被第三条直线所截,如果同位角 ,那么这两条直线 ; 简单地说:同位角 ,两直线 ; 几何语言:∵∠1=∠2(已知)∴AB ∥CD (____________________________)2、探究2:若∠1=∠3,能否推出AB ∥CD 吗? 理由如下:∵∠1=∠3(已知),∠2=∠3( ) ∴∠1=∠2( )∴AB ∥CD ( )归纳2:两条直线被第三条直线所截,如果内错角 ,那么这两条直线 ; 简单地说:内错角 ,两直线 ; 几何语言:∵∠1=∠3(已知)∴AB ∥CD (____________________________)3、探究3:若∠1+∠4=180°,能得出AB ∥CD 吗? 方法一∵∠1+∠4=180°(已知),∠2+∠4=180°( ) ∴∠1=∠2( )∴AB ∥CD ( ) 方法二∵∠1+∠4=180°(已知),∠3+∠4=180°( ) ∴∠1=∠3( )∴AB ∥CD ( )归纳3:两条直线被第三条直线所截,如果同旁内角 ,那么这两条直线 ;简单地说:同旁内角 ,两直线 ; 几何语言:∵∠1+∠4=180°(已知)∴AB ∥CD (____________________________)4321图1G HCDABE F【练习1】1、如图4所示,可以判定直线a ∥b 的条件有 (至少写三个); 2.如图5所示,下列条件不能判定a ∥b 的是( )A.∠1=∠2B. ∠1=∠3C. ∠1+∠4=180°D. ∠2+∠4=180° 3.如图6所示,直线a 、b 都与直线c 相交,下列条件①∠1=∠2; ②∠3=∠6;③∠4+∠7=180°④∠5=∠8,其中能判断a ∥b 的条件有 。
《5.2.2 平行线的判定》教案、导学案、同步练习
《5.2.2 平行线的判定》教案第1课时平行线的判定【教学目标】1.掌握两直线平行的判定方法;(重点)2.了解两直线平行的判定方法的证明过程;3.灵活运用两直线平行的判定方法证明直线平行.(难点)【教学过程】一、情境导入怎样用一个三角板和一把直尺画平行线呢?动手画一画.二、合作探究探究点一:应用同位角相等,判断两直线平行如图,∠1=∠2=55°,∠3等于多少度?直线AB,CD平行吗?说明理由.解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,∴AB∥CD(同位角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.探究点二:应用内错角相等,判断两直线平行如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线平行”即可得到AB∥CD.解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.探究点三:应用同旁内角互补,判断两直线平行如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.探究点四:平行线的判定方法的运用【类型一】利用平行线判定方法的推理格式判断如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠4=180°,则a∥c解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a ∥c ,利用了平行公理,正确;B 选项中,若∠1=∠2,则a ∥c ,利用了“内错角相等,两直线平行”,正确;C 选项中,∠3=∠2,不能判断b ∥c ,错误;D 选项中,若∠3+∠4=180°,则a ∥c ,利用了“同旁内角互补,两直线平行”,正确.故选C.方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从而判断出哪两条直线是平行的.【类型二】 根据平行线的判定方法,添加合适的条件如图所示,要想判断AB 是否与CD 平行,我们可以测量哪些角?请你写出三种方案,并说明理由.解析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.解:(1)可以测量∠EAB 与∠D ,如果∠EAB =∠D ,那么根据“同位角相等,两直线平行”,得出AB 与CD 平行;(2)可以测量∠BAC 与∠C ,如果∠BAC =∠C ,那么根据“内错角相等,两直线平行”,得出AB 与CD 平行;(3)可以测量∠BAD 与∠D ,如果∠BAD +∠D =180°,那么根据“同旁内角互补,两直线平行”,得出AB 与CD 平行.方法总结:解决此类问题的关键是找准同位角、内错角和同旁内角.三、板书设计平行线的判定⎩⎨⎧⎭⎬⎫同位角相等内错角相等同旁内角互补两直线平行【教学反思】平行线的判定是平行线内容的进一步拓展,是进一步学习平行线的有力工具,为学习平行线的性质、三角形、四边形等知识打下基础,在整个初中几何中占有非常重要的地位.学生虽然已经学了平行线的定义、平行公理,具备了探究直线平行的基础,但学生在文字语言、符号语言和图形语言之间的转换能力比较薄弱,在逻辑思维和合作交流的意识方面发展不够均衡,还需逐渐提高第2课时平行线判定方法的综合运用【教学目标】1.灵活选用平行线的判定方法进行证明;(重点)2.掌握平行线的判定在实际生活中的应用.(难点)【教学过程】一、情境导入如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.二、合作探究探究点一:平行线判定方法的综合运用【类型一】灵活选用判定方法判定平行如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,其中能判定AB∥CD的条件有( )A.1个 B.2个 C.3个 D.4个解析:根据平行线的判定定理即可求得答案.①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD.∴能得到AB∥CD的条件是①③④.故选C.方法总结:要判定两直线是否平行,首先要将题目给出的角转化为这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角是否满足平行线的判定方法.【类型二】平行线的判定定理结合平行公理的推论进行证明如图,直线AB、CD、EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=180°.求证:(1)EF∥AB;(2)CD∥AB(补全横线及括号的内容).证明:(1)∵∠2+∠3=180°,∠2=110°(已知),∴∠3=70°( ).又∵∠1=70°(已知),∴∠1=∠3(),∴EF∥AB( ).(2)∵∠2+∠3=180°,∴______∥______().又∵EF∥AB(已证),∴______∥______().解析:(1)先将∠2=110°代入∠2+∠3=180°,求出∠3=70°,根据等量代换得到∠1=∠3,再由“内错角相等,两直线平行”即可得到EF∥AB;(2)先由“同旁内角互补,两直线平行”得出CD∥EF,再根据“两条直线都和第三条直线平行,那么这两条直线平行”即可得到CD∥AB.答案分别为:(1)等量代换;等量代换;内错角相等,两直线平行;(2)CD;EF;同旁内角互补,两直线平行;CD;AB;平行于同一条直线的两直线平行.方法总结:判定两条直线平行的方法除了利用平行线的判定定理外,有时需要结合运用“平行于同一条直线的两条直线平行”.【类型三】添加辅助线证明平行如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.解析:通过观察图可以猜想AB与CD互相平行.过点F向左作FQ,使∠MFQ =∠2=50°,则可得∠NFQ=40°,再运用两次平行线的判定定理可得出结果.解:过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.方法总结:在解决与平行线相关问题时,有时需作出适当的辅助线.探究点二:平行线判定的实际应用一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为( )A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°解析:汽车两次拐弯后,行驶的路线与原路线一定不在同一直线上,但方向相同,说明前后路线应该是平行的.如图,如果第一次向右拐,那么第二次应左拐,两次拐的方向是相反且角度相等的,两次拐的角度是同位角,所以前后路线平行且行驶方向不变.故选D.方法总结:利用数学知识解决实际问题,关键是将实际问题正确地转化为数学问题,即画出示意图或列式表示,然后再解决数学问题,最后回归实际.三、板书设计平行线的判定方法:1.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;2.平行于同一条直线的两直线平行.【教学反思】在教学设计中,突出学生是学习的主体,把问题尽量抛给学生解决,有意识地对学生渗透“转化”思想,并将数学学习与生活实际联系起来.本节课对七年级的学生而言,本是一个艰难的起步,应时时提醒学生应注意的地方,证明要严谨,步步有依据,并且依据只能是有关概念的定义、所规定的公理及已知证明的定理,防止学生不假思索地把以前学过的结论用来作为证明的依据《5.2.2 平行线的判定》导学案第1课时平行线的判定【学习目标】:1.掌握平行线的三种判定方法,能运用平行线的判定方法解决问题.2.通过独立思考,小组探究,理解角与线的位置关系之间的联系,体会数形结合思想.3.激情投入,善于发现问题和提出问题,感受学习数学的乐趣.【重点】:三种判定方法判定两直线平行.【难点】:根据平行线的判定方法进行简单的推理.【自主学习】一、知识链接1.在同一平面内,的两条直线叫做平行线.2.过已知直线外一点能且只能画条直线与这条直线垂直,能且只能画条直线与这条直线平行.3.同位角、内错角、同旁内角的定义是怎样叙述的?4.怎样用三角板和直尺作已知直线的平行线?二、新知预习1.试利用三角板和直尺,经过直线外一点P画出已知直线AB的平行线CD,由此你会发现什么?2.同位角,两直线平行.三、自学自测1.如图,三角形ABC中,∠A=70°,∠BED=70°,可以判断∥ .根据是 .由∠B=48°,∠FDC=48°,可以判断∥ .根据是 .第1题图第2题图2.如图,用直尺和三角板作直线AB,CD,从图中可知,直线AB与直线CD 的位置关系为 .【课堂探究】要点探究探究点1:利用同位角判定两条直线平行画一画:用三角尺和直尺画平行线的步骤有哪些?思考:(1)画图过程中,什么角始终保持相等?(2)直线a,b位置关系如何?(3)由上面的操作过程,你能发现判定两直线平行的方法吗?总结归纳:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.应用格式:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行)做一做:下图中若∠1=55°,∠2=55°,直线AB、CD平行吗?为什么?探究点2:利用内错角、同旁内角判定两条直线平行问题1:如图,由∠3=∠2,可推出a//b吗?如何推出?总结归纳:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.应用格式:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行)问题2:如图,如果∠1+∠2=180°,你能判定a//b吗?总结归纳:判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.应用格式:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行)典例精析例1.根据条件完成填空.①∵∠2 = ∠ 6(已知)∴ ___∥___(___________________________)②∵∠3 = ∠5(已知)∴ ___∥___(___________________________)③∵∠4 +___=180°(已知)∴ ___∥___(___________________________)例2.如图,已知∠MCA= ∠ A,∠ DEC= ∠ B,那么DE∥MN吗?为什么?针对训练1.根据条件完成填空.①∵∠1 =_____(已知)∴ AB∥CE(___________________________)②∵∠1 +_____=180°(已知)∴ CD∥BF( ___________________________)③∵∠1 +∠5 =180°(已知)∴ _____∥_____(___________________________)④∵∠4 +_____=180°(已知)∴ CE∥AB(___________________________)2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.二、课堂小结文字叙述符号语言图形相等,两直线平行∵ (已知), ∴a∥b相等,两直线平行∵ (已知), ∴a∥b互补,两直线平行∵ (已知) ∴a∥b【当堂检测】1.如图,可以确定AB∥CE的条件是( )A.∠2=∠BB. ∠1=∠AC. ∠3=∠BD. ∠3=∠A第1题图第2题图2.如图,已知∠1=30°,∠2或∠3满足条件,则a//b.3.如图.(1)从∠1=∠4,可以推出∥,理由是 .(2)从∠ABC +∠ =180°,可以推出AB∥CD ,理由是 .(3)从∠ =∠,可以推出AD∥BC,理由是 .(4)从∠5=∠,可以推出AB∥CD,理由是 .4.如图,已知∠1= ∠3,AC平分∠DAB,你能判断哪两条直线平行?请说明理由?第2课时平行线判定方法的综合运用【学习目标】:1.进一步掌握平行线的判定方法,并会运用平行线的判定解决问题.2.掌握垂直于同一条直线的两条直线互相平行.【重点】:平行线的判定方法.【难点】:熟练运用平行线的判定方法解决问题.【自主学习】一、知识链接什么叫平行线?平行线的判定方法有哪些?二、新知预习1.在铺设铁轨时,两条直轨必须是互相平行的,如何才能保证两条铁轨平行呢?2.要点归纳:垂直于同一条直线的两条直线 .三、自学自测1.如图,若∠1=∠2,则b c.第1题图第2题图2.如图,若∠1=∠2,则 // ;若∠ =∠,则AB//DC.四、我的疑惑_________________________________________________________________ _________________________________________________【课堂探究】一、要点探究探究点1:平行线的判定的综合运用例1.如图,E是AB上一点,F是DC上一点,G是BC延长线上一点.(1)如果∠B=∠DCG,可以判断哪两条直线平行?为什么?(2)如果∠D=∠DCG,可以判断哪两条直线平行?为什么?(3)如果∠D+∠DFE=180°,可以判断哪两条直线平行?为什么?例2.如图,已知∠1=75°, ∠2 =105°问:AB与CD平行吗?为什么?例3.如图,∠1=∠2,能判断AB∥DF吗?为什么?若不能判断AB∥DF,你认为还需要再添加的一个条件是什么呢?写出这个条件,并说明你的理由.探究点2:在同一平面内,垂直于同一条直线的两条直线平行问题:在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?为什么?猜想:垂直于同一条直线的两条直线平行.验证猜想:如图,在同一平面内,b⊥a,c⊥a,试说明:b∥c.解:例4.如图,为了说明示意图中的平安大街与长安街是互相平行的,在地图上量得∠1=90°,你能通过度量图中已标出的其他的角来验证这个结论吗?说出你的理由.【当堂检测】1.如图,直线AB,CD被直线EF所截 .(1)若∠1=120°,∠2=,则AB//CD.()(2)若∠1=120°,∠3=,即∠1+ ∠3=180°,则AB//CD. ()2.用两块相同的三角板按如图所示的方式作平行线,你能解释其中的道理吗?3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()A.第一次向右拐50º,第二次向左拐130ºB.第一次向左拐30º,第二次向右拐30ºC.第一次向右拐50º,第二次向右拐130ºD.第一次向左拐50º,第二次向左拐130º4.如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能判定AB∥CD的条件有( )A.1个B.2个C.3个D.4个5.如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.6.【拓展题】有一块木板,身边只有直尺和量角器,我们怎样才能知道它上下边缘是否平行?第五章相交线与平行线5.2.2《平行线的判定》同步练习一、填空题:1、在同一平面内,________的两条直线叫做平行线.若直线________与直线________平行,则记作________.2、在同一平面内,两条直线的位置关系只有________、________.3、平行公理是:________.4、平行公理的推论是如果两条直线都与________,那么这两条直线也________.即三条直线a,b,c,若a∥b,b∥c,则________.5、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.①∵ ∠B=∠3(已知),∴________∥________.(________,________)②∵∠1=∠D (已知),∴________∥________.(________,________)③∵∠2=∠A (已知),∴________∥________.(________,________)④∵∠B+∠BCE=180° (已知),∴________∥________.(________,________)6、如图(1)(1) 如果∠1=∠4,根据________,可得AB∥CD;(2) 如果∠1=∠2,根据________,可得AB∥CD;(3) 如果∠1+∠3=180º,根据________,可得AB∥CD .7、如图(2)(1) 如果∠1=∠D,那么________∥________;(2) 如果∠1=∠B,那么________∥________;(3) 如果∠A+∠B=18 0º,那么________∥________;(4) 如果∠A+∠D=180º,那么________∥________;8、已知:如图,∠1=∠2,求证:AB∥CD∵ ∠1=∠2,(已知)又∠3=∠2,________∴∠1=________.________∴ AB∥CD.(________,________)二、解答题9、如图:已知∠2+∠D=180°,∠1=∠B,试说明:AB∥EF.10、如图,∠1=∠3,∠1=∠2,那么DE与BC有怎样的位置关系?为什么?11、如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,问CE与DF的位置关系?试说明理由。
5.2.2平行线的判定.2.2平行线的判定》导学案
《522平行线的判定》导学案 一、平行线判定方法 1: 1.如图所示,是我们利用直尺和三角板画平行线的过程简图:E. t i \\4 J i 4 2. 由三角尺前后的移动位置知,/ 1和/ 2是同位角,且相等,则画出两条平行线。
3. 平行线判定方法 简单地说:同位角 4. 几何语言:••• 1:两条直线被第三条直线所截,如果同位角______ ,两直线 ________ ; ,那么这两条直线 二、平行线判定方法 1.如右图,已知/ 证明: 2:(可运用判定方法 1 = / 3,证明:AB// CD1证明) 2.由此可知,已知 ,能证明AB// CD3.平行线判定方法 2:两条直线被第三条直线所截, 如果内错角 简单地说:内错角 ,两直线4.几何语言:••• ( ) 三、平行线判定方法 3:(可运用判定方法 1和方法2证明)1.如右图,已知/ 1 + / 4=180°,证明:AB// CD方法一:(利用判定方法1证明) 方法二: (利用判定方法 2.由此可知,已知 , 能证明 AB// CD 3.平行线判定方法 3:两条直线被第三条直线所截, 如果同旁内角简单地说:同旁内角 ,两直线 ;几何语言:••• ・• ( )) ,那么这两条直线 2证明) ,那么这两条直线四、自我检测:1.判定两条直线平行的 3个方法:2.书15页习题5.2第1, 2题。
4.如图所示,下列条件不能判定a //b 的是(6. 如图,如果/ 1 = / 2,那么下面结论正确的是(A. AD// BC B . AB// CD C ./ 3=/ 4D ./ A=/ C7. 如图,/ 1 = / 2=/3,则直线l 1,l 2,l 3的关系是8. 例:垂直于同一条直线的两条直线有什么位置关系?请说明理由?已知:b丄a,c 丄a求证: b / c 1b €1 2 1 1 a结论:如果两条直线都垂直于同一条直线,那么这两条直线(2). (3). 3. (1)书 14页练习题1(2)书 15页习题5.2第4题(3)书 16页第7题A. / 1=/ 2B. / 1 = / 3C. / 1 + / 4=180D. / 2+/ 4=180 5. 如图6所示,直线a 、b 都与直线c 相交,下列条件①/1 = / 2;②/ 3=/ 6; ③/ 4+/ 7=180° ④/ 5=/ 8, 其中能判断a // b 的条件有 。
人教版七年级下册数学5.2.2平行线的判定导学案
5.2.2 平行线的判断一、课前准备及预习1、课前准备:1.假如 a∥b,b∥c,那么。
理由是。
2.如图,请填空:①∠1 与∠2 是直线和直线被直线所截而成的角;②∠3 与∠2 是直线和直线被直线所截而成的角;③∠ 2 与∠ 4 是直线和直线被直线所截而成的角。
3.填空:经过直线外一点,_____一条直线与这条直线平行.问题一:假如有a、b 两条直线,如何判断它们能否平行?问题二:按要求作图:用直尺点 P 做已知直线 AB 的平行线。
P●A B二、课内研究研究点一:平行线的判断方法一判断方法一:简单说成:。
几何语言:(如上图 4)展现点 1:以以下图 1 ∵∠ 1=∠2,∴_______∥________()。
∵∠ 2=∠3,∴_______∥________()。
图1图2研究点 2:平行线的判断方法二问题2:如上图2,直线a、b 被直线l 所截,已知∠1=115°,∠2=115°,直线 a、b 平行吗?为何?判断方法二:简和单说三。
成:角几板何语言:(如上图 2)过第1页/共6页展现点 2:如图 3 ∵∠ 1=∠2,∴_______∥________()∵∠ 3=∠4,∴_______∥________()图3图 4研究点 3:平行线的判断方法三问题 3:如上图 4,直线 a、b 被直线l 所截,已知∠ 1+∠2=180°,直线 a、b平行吗?为何?判断方法三:简单说成:。
几何语言:(如上图)展现点3:以以下图,在四边形ABCD中,已知∠ B=60°,∠C=120°,AB 与 CD 平行吗?AD 与 BC 平行吗?讲堂小结第2页/共6页文字表达符号语言图形∵察看内容的(已知)选择,我本着∴a∥b先静后动,由 ()近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的观察内容。
随机察看也是不可少的,是相当风趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边察看,一边发问,兴趣很浓。
§5.2.2平行线的判定导学案
§522平行线的判定(导学案)姓名学习目标掌握判定两条直线平行的方法,能运用判定方法对两条直线的位置关系进行判定.重点探索并掌握平行线的判定方法.难点探索平行线的判定方法.一,预习导航1.如图,直线 ______ 与 _____ 被直线______ 所截,则一⅛~Nl与N3是角,Nl与N4是角; ----- 弋"Nl与N2是角,N2与N3是角,N2与N4是角.2.在学习“平行线”时,已经学到了两条直线平行的判定方法是(1)定义法:平面内,两条的直线叫做平行线;λw(2)平行公理的推论:都与第三条直线平行的两条直线也\3.思考:上节课学过用直尺和三角尺画平行线(如图),在这个过程中, 三角尺起着什么样的作用?(阅读教材P12-13后再回答.)二,新知探究1.由“思考”可以看出,图中直线当一对同位角NI与N2满足Nl【判定方法11两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角,两直线.符号表达为:;,(已知)・・・. ()2.思考:两直线被第三条直线所截,能否通过内错角,或同旁内角来判定平行呢?(1)如图,如果N2=N3,能得出〃〃人吗?(把下面推理过程补CN 1 = N 3, ( ------------------- )--- ---------------- AZl=,(等量代换)充完整)飞∙.∙N2=N3,(已知)∖/.a∕∕b. ()(2)如图,如果N2+N4=180°,能得出。
〃b吗?(请写出推理过程)【判定方法21两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角,两直线.符号表达为:Y,(已知)・・・. ()【判定方法3】两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角,两直线.符号表达为:V,(已知)・・・. ()三,应用举例例1在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什/ c be么?例2如图,当N1 = N3时,直线α,匕平行吗?当N2+N3 = 180。
人教版数学七年级下册5.2.2 第1课时 平行线的判定 导学案
第五章 相交线与平行线5.2 平行线及其判定5.2.2 平行线的判定 第1课时 平行线的判定学习目标:1.掌握平行线的三种判定方法,能运用平行线的判定方法解决问题.2.通过独立思考,小组探究,理解角与线的位置关系之间的联系,体会数形结合思想.3.激情投入,善于发现问题和提出问题,感受学习数学的乐趣. 重点:三种判定方法判定两直线平行.难点:根据平行线的判定方法进展简单的推理.一、知识链接1.在同一平面内, 的两条直线叫做平行线.条直线与这条直线垂直,能且只能画 条直线与这条直线平行. 3.同位角、内错角、同旁内角的定义是怎样表达的?4.怎样用三角板和直尺作直线的平行线?二、新知预习1.试利用三角板和直尺,经过直线外一点P 画出直线AB 的平行线CD ,由此你会发现什么?,两直线平行. 三、自学自测1.如图,三角形ABC 中,∠A=70°,∠BED=70°,可以判断 ∥ .根据是 .由∠B=48°,∠FDC=48°,可以判断 ∥ .根据是 .第1题图 第2题图2.如图,用直尺和三角板作直线AB ,CD ,从图中可知,直线AB 与直线CD 的位置关系为 .四、我的疑惑___________________________________________________________________________自主学习教学备注【自学指导提示】学生在课前完成自主学习局部一、要点探究探究点1:利用同位角判定两条直线平行画一画:用三角尺和直尺画平行线的步骤有哪些?思考:〔1〕画图过程中,什么角始终保持相等? (2)直线a ,b 位置关系如何? 〔3〕由上面的操作过程,你能发现判定两直线平行的方法吗? 总结归纳:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.应用格式: ∵∠1=∠2(),∴a ∥〔同位角相等,两直线平行〕做一做:下列图中假设∠1=55°,∠2=55°,直线AB 、CD 平行吗?为什么?探究点2:利用内错角、同旁内角判定两条直线平行 问题1:如图,由∠3=∠2,可推出a//b 吗?如何推出?总结归纳:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.应用格式: ∵∠3=∠2(),∴a ∥〔内错角相等,两直线平行〕 问题2:如图,如果∠1+∠2=180°,你能判定a//b 吗?总结归纳:判定方法3简单说成:同旁内角互补,两直线平行.课堂探究教学备注 配套PPT 讲授〔见幻灯片3〕〔见幻灯片5-13〕〔见幻灯片14-23〕应用格式: ∵∠1+∠2=180°(),∴a ∥b 〔同旁内角互补,两直线平行〕 典例精析例1.根据条件完成填空. ① ∵ ∠2 = ∠ 6〔〕∴ ___∥___(___________________________) ② ∵ ∠3 = ∠5〔〕∴ ___∥___(___________________________) ③∵ ∠4 +___=180°〔〕∴ ___∥___(___________________________)例2.如图,∠MCA= ∠ A , ∠ DEC= ∠ B , 那么DE ∥MN 吗?为什么?针对训练1.根据条件完成填空. ① ∵ ∠1 =_____〔〕∴ AB ∥CE(___________________________) ② ∵ ∠1 +_____=180°〔〕∴ CD ∥BF( ___________________________) ③ ∵ ∠1 +∠5 =180°〔〕∴ _____∥_____(___________________________) ④ ∵ ∠4 +_____=180°〔〕∴ CE ∥AB(___________________________)2.如图,直线AB 、CD 、EF 、MN 相交,假设∠2=∠5,找出图中与∠2 互补的角.二、课堂小结文字表达符号语言 图形相等, 两直线平行 ∵ (),∴a ∥b相等,∵ (),教学备注 配套PPT 讲授〔见幻灯片14-23〕两直线平行 ∴a ∥b 互补, 两直线平行∵ ()∴a ∥b1.如图,可以确定AB ∥CE 的条件是( )A.∠2=∠BB. ∠1=∠AC. ∠3=∠BD. ∠3=∠A第1题图 第2题图2.如图,∠1=30°,∠2或∠3满足条件 ,那么a//b.3.如图.〔1〕从∠1=∠4,可以推出 ∥ ,理由是 .(2)从∠ABC +∠ =180°,可以推出AB ∥CD ,理由是 .(3)从∠ =∠ ,可以推出AD ∥BC , 理由是 . (4)从∠5=∠ ,可以推出AB ∥CD ,理由是 .4.如图,∠1= ∠3,AC 平分∠DAB ,你能判断哪两条直线平行?请说明理由?当堂检测教学备注 配套PPT 讲授〔见幻灯片24-28〕温馨提示:配套课件及全册导学案WORD 版见光盘或网站下载:(无须注册,直接下载)。
人教版七年级下册数学5.2.2 第1课时 平行线的判定导学案
第五章相交线与平行线...能且只能画AB的平行线CD,由此你会发现什么?2.同位角,两直线平行.三、自学自测1.如图,三角形ABC中,∠A=70°,∠BED=70°,可以判断∥ .根据是 .由∠B=48°,∠FDC=48°,可以判断∥ .根据是 .第1题图第2题图2.如图,用直尺和三角板作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为 .四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点1:利用同位角判定两条直线平行画一画:用三角尺和直尺画平行线的步骤有哪些?思考:(1)画图过程中,什么角始终保持相等(2)直线a,b位置关系如何?课堂探究教学备注配套PPT讲授1.情景引入(见幻灯片3)2.探究点1新知讲授(见幻灯片5-13)3.探究点2新知讲授(见幻灯片14-23)(3)由上面的操作过程,你能发现判定两直线平行的方法吗?总结归纳:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.应用格式:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).做一做:下图中若∠1=55°,∠2=55°,直线AB、CD平行吗?为什么?探究点2:利用内错角、同旁内角定两条直线平行问题1:如图,由∠3=∠2,可推出a//b吗?如何推出?总结归纳:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.应用格式:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行).问题2:如图,如果∠1+∠2=180°,你能判定a//b吗?总结归纳:判定方法3:两条直线被第三条直线所,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.应用格式:∵1+∠2=180°(知),∴a∥b(同旁内角互补,两直线平行).典例精析例1.根据条件完成填空.①∵∠2 = ∠ 6(已知),∴ ___∥___(___________________________).②∵∠3 = ∠5(已知),∴ ___∥__(__________________________).③∵∠4 +___=10°(已知),∴ ___∥___(___________________________).例2.如图,已知∠MCA= ∠ A,∠ DEC= ∠ B,那么DE∥MN吗?为什么?针对训练1.根据条件完成填空.①∵∠1 =_____(已知),AB∥CE(___________________________).②∵∠1 +_____=180°(已知),∴ CD∥BF( ___________________________).③∵∠1 +∠5 =180°(已知),∴ _____∥_____(___________________________).④∵∠4 +_____=180°(已知),∴ CE∥AB(___________________________).2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片14-23)二、课堂小结 文字叙述 符号语言 图形相等, 两直线平行∵ (已知), ∴a ∥b相等, 两直线平行∵ (已知), ∴a ∥b互补, 两直线平行∵ (已知), ∴a ∥b1.如图,可以确定AB ∥CE 的条件是( )A.∠2=∠BB. ∠1=∠AC. ∠3=∠BD. ∠3=∠A第1题图第2题图2.如图,已知∠1=30°,∠2或∠3满足条件 ,则a//b.当堂检测教学备注 配套PPT 讲授 4.课堂小结5.当堂检测 (见幻灯片24-28)3.如图.(1)从∠1=∠4,可以推出∥,理由是 .(2)从∠ABC +∠ =180°,可以推出AB∥CD ,理由是 .(3)从∠ =∠,可以推出AD∥BC,理由是 .(4)从∠5=∠,可以推出AB∥CD,理由是 .4.如图,已知∠1= ∠3,AC平分∠DAB,你能判断哪两条直线平行?请说明理由?1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。
人教版数学七年级下册5.2.2 第1课时 平行线的判定导学案.doc
第五章 相交线与平行线5.2 平行线及其判定5.2.2 平行线的判定 第1课时 平行线的判定学习目标:1.掌握平行线的三种判定方法,能运用平行线的判定方法解决问题.2.通过独立思考,小组探究,理解角与线的位置关系之间的联系,体会数形结合思想.3.激情投入,善于发现问题和提出问题,感受学习数学的乐趣. 重点:三种判定方法判定两直线平行.难点:根据平行线的判定方法进行简单的推理.一、知识链接1.在同一平面内, 的两条直线叫做平行线.2.过已知直线外一点能且只能画 条直线与这条直线垂直,能且只能画 条直线与这条直线平行.3.同位角、内错角、同旁内角的定义是怎样叙述的?4.怎样用三角板和直尺作已知直线的平行线?二、新知预习1.试利用三角板和直尺,经过直线外一点P 画出已知直线AB 的平行线CD ,由此你会发现什么?2.同位角 ,两直线平行. 三、自学自测1.如图,三角形ABC 中,∠A=70°,∠BED=70°,可以判断 ∥ .根据是 .由∠B=48°,∠FDC=48°,可以判断 ∥ .根据是 .第1题图 第2题图2.如图,用直尺和三角板作直线AB ,CD ,从图中可知,直线AB 与直线CD 的位置关系为 .四、我的疑惑___________________________________________________________________________自主学习教学备注【自学指导提示】学生在课前完成自主学习部分一、要点探究探究点1:利用同位角判定两条直线平行画一画:用三角尺和直尺画平行线的步骤有哪些?思考:(1)画图过程中,什么角始终保持相等? (2)直线a ,b 位置关系如何?(3)由上面的操作过程,你能发现判定两直线平行的方法吗? 总结归纳:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.应用格式: ∵∠1=∠2(已知),∴a ∥b (同位角相等,两直线平行)做一做:下图中若∠1=55°,∠2=55°,直线AB 、CD 平行吗?为什么?探究点2:利用内错角、同旁内角判定两条直线平行 问题1:如图,由∠3=∠2,可推出a//b 吗?如何推出?总结归纳:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.应用格式: ∵∠3=∠2(已知),∴a ∥b (内错角相等,两直线平行) 问题2:如图,如果∠1+∠2=180°,你能判定a//b 吗?总结归纳:简单说成:同旁内角互补,两直线平行.课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片5-13)3.探究点2新知讲授(见幻灯片14-23)应用格式:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行)典例精析例1.根据条件完成填空.①∵∠2 = ∠6(已知)∴___∥___(___________________________)②∵∠3 = ∠5(已知)∴___∥___(___________________________)③∵∠4 +___=180°(已知)∴___∥___(___________________________)例2.如图,已知∠MCA= ∠A,∠DEC= ∠B,那么DE∥MN吗?为什么?针对训练1.根据条件完成填空.①∵∠1 =_____(已知)∴AB∥CE(___________________________)②∵∠1 +_____=180°(已知)∴CD∥BF( ___________________________)③∵∠1 +∠5 =180°(已知)∴_____∥_____(___________________________)④∵∠4 +_____=180°(已知)∴CE∥AB(___________________________)2.如图,直线AB、CD、EF、MN相交,若∠2=∠5,找出图中与∠2 互补的角.二、课堂小结文字叙述符号语言图形相等,两直线平行∵ (已知),∴a∥b相等,∵ (已知),教学备注配套PPT讲授3.探究点2新知讲授(见幻灯片14-23)两直线平行 ∴a ∥b互补, 两直线平行∵ (已知)∴a ∥b1.如图,可以确定AB ∥CE 的条件是( )A.∠2=∠BB. ∠1=∠AC. ∠3=∠BD. ∠3=∠A第1题图 第2题图2.如图,已知∠1=30°,∠2或∠3满足条件 ,则a//b.3.如图.(1)从∠1=∠4,可以推出 ∥ ,理由是 .(2)从∠ABC +∠ =180°,可以推出AB ∥CD ,理由是 .(3)从∠ =∠ ,可以推出AD ∥BC , 理由是 . (4)从∠5=∠ ,可以推出AB ∥CD ,理由是 .4.如图,已知∠1= ∠3,AC 平分∠DAB ,你能判断哪两条直线平行?请说明理由?【本文档由书林工作坊整理发布,谢谢你的下载和关注!】当堂检测教学备注 配套PPT 讲授 4.课堂小结5.当堂检测 (见幻灯片24-28)。
新人教版七年数学下导学案(5.2.2 平行线的判定)
班 姓名 成绩: 优 良 差【学习目标】使学生掌握平行线的判定,并能应用这些知识判断两条直线是否平行,培养学生简单的推理能力.【学习重点】平行线的三种判定方法,并运用这三种方法判断两直线平行.【学习难点】运用平行线的判定方法进行简单的推理.【学习过程】一、学前准备还知道“三线八角”吗?请画一画,找出一组同位角、一组内错角、一组同旁内角.二、探索思考探索一:请同学们仔细阅读课本P13页“平行线判定的思考”,你知道在画平行线这一过程中,三角尺所起的作用吗? 由此我们可以得到平行线的判定方法,如图,将下列空白补充完整(填1种就可以) 判定方法1(判定公理)几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD由判定方法1,结合对顶角的性质,我们可以得到:判定方法2(判定定理)几何语言表述为:∵ ∠___=∠___ ∴ AB ∥CD由判定方法1,结合邻补角的性质,我们可以得到:判定方法3(判定定理)几何语言表述为:∵ ∠___+∠___=180° ∴ AB ∥CD练习一:(1题) (2题) (3题)1.如图1所示,若∠1=∠2,则_____∥______,根据是__ ____. 若∠1=∠3,则______∥______,根据是_____ ____.2.如图2所示,若∠1=62°,∠2=118°,则_____∥_____,根据是_____ ___3.根据图3完成下列填空(括号内填写定理或公理)(1)∵∠1=∠4(已知)∴ ∥ ( )(2)∵∠ABC +∠ =180°(已知)∴AB ∥CD ( )(3)∵∠ =∠ (已知)∴AD ∥BC ( )(4)∵∠5=∠ (已知)∴AB ∥CD ( )C 12 3 4 5 DAB探索二:木工师傅用角尺画出工件边缘的两条垂线,就可以再找出两条平行线,如图所示,a ∥b ,你能说明是什么道理吗?结论(判定推论):在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.简记为:在同一平面内,垂直于同一直线的两直线平行.如图,几何语言表述为:∵a ⊥2l ,b ⊥2l ∴练习二:1.如图所示,AB ⊥BC ,BC ⊥CD ,BF 和CE 是射线,并且∠1=∠2,试说明BF ∥CE .三、当堂反馈1.如图所示,在下列条件中,不能判断L 1∥L 2的是( ).A .∠1=∠3B .∠2=∠3C .∠4+∠5=180°D .∠2+∠4=180°2.如图所示,已知∠1=120°,∠2=60°.试说明a 与b 的关系?3.如图所示,已知∠OEB=130°,∠FOD=25°,OF 平分∠EOD ,试说明AB ∥CD .四、学习反思本节课我学会了: ; 我的困惑是: .1 2 ab 3 c。
人教版七年级数学下册 5.2.2 第1课时 平行线的判定 导学案设计
第五章相交线与平行线5.2 平行线及其判定5.2.2 平行线的判定第1课时平行线的判定学习目标:1.掌握平行线的三种判定方法,能运用平行线的判定方法解决问题.2.通过独立思考,小组探究,理解角与线的位置关系之间的联系,体会数形结合思想.3.激情投入,善于发现问题和提出问题,感受学习数学的乐趣.重点:三种判定方法判定两直线平行.难点:根据平行线的判定方法进行简单的推理.一、知识回顾1.在同一平面内,的两条直线叫做平行线.2.过已知直线外一点能且只能画条直线与这条直线垂直,能且只能画条直线与这条直线平行.二、新知预习1. 同位角,两直线平行.2. 内错角,两直线平行。
3. 同旁内角,两直线平行。
三、自学自测如图,三角形ABC中,∠A=70°,∠BDE=70°,可以判断∥ .根据是 .由∠B=48°,∠FEC=48°,可以判断∥ .根据是 .四、动手操作画一画:用三角尺和直尺画经过直线外一点与已知直线平行的线的步骤。
一放:将三角板斜边放在已知直线上二靠:将格尺靠在三角板直角边上三推:将三角板沿着格尺向上推,到达点四画:用笔沿三角板斜边画线思考:(1)画图过程中,什么角始终保持相等?(2)直线a,b位置关系如何?(3)由上面的操作过程,你能发现判定两直线平行的方法吗?总结归纳:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.应用格式:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行)做一做:下图中若∠1=55°,∠2=55°,直线AB、CD平行吗?为什么?五、知识点延伸(利用内错角、同旁内角判定两条直线平行)判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.应用格式:∵∠3=∠2(已知),∴a∥b(内错角相等,两直线平行)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单说成:同旁内角互补,两直线平行.应用格式:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行)六、经典例题例1.根据条件完成填空.①∵∠2 = ∠6(已知)∴___∥___(___________________________)②∵∠3 = ∠5(已知)∴___∥___(___________________________)③∵∠4 +___=180°(已知)∴___∥___(___________________________)例2.如图,已知∠MCA= ∠A,∠DEC= ∠B,那么DE∥MN吗?为什么?七、课堂小结文字叙述符号语言图形相等,两直线平行∵ (已知),∴a∥b相等,两直线平行∵ (已知),∴a∥b互补,两直线平行∵ (已知)∴a∥b八、巩固新知1.如图,可以确定AB∥CE的条件是( )A.∠2=∠BB. ∠1=∠AC. ∠3=∠BD. ∠3=∠A第1题图第2题图2.如图,已知∠1=30°,∠2或∠3满足条件,则a//b.3.如图.(1)从∠1=∠4,可以推出∥,理由是 .(2)从∠ABC +∠ =180°,可以推出AB∥CD ,理由是 .(3)从∠ =∠,可以推出AD∥BC,理由是 .(4)从∠5=∠,可以推出AB∥CD,理由是 .答案一、 1. 没有交点2.一;一二、 1. 相等 2. 相等 3. 互补三、 AC//DF ;同位角相等,两直线平行AB//EF ;同位角相等,两直线平行四、⑴. ∠1=∠2 ⑵. a//b ⑶. 同位角相等,两直线平行做一做、 AB//CD理由:因为∠1=55°∠2=55°所以∠1=∠2所以AB//CD (同位角相等,两直线平行)六、例1. ①. AB//CD ;同位角相等,两直线平行②. AB//CD ;内错角相等,两直线平行③. ∠5 ;AB//CD;同旁内角互补,两直线平行例2.DM//MN理由:因为∠MCA=∠A所以MN//AB (内错角相等,两直线平行)因为∠DEC=∠B所以AB//DE (同位角相等,两直线平行)所以MN//DE (如果两条直线都与第三条直线平行,那么这两条直线互相平行)七、同位角;∠1=∠2内错角;∠3=∠2同旁内角;∠4+∠2=180°八、1. C2. ∠3=30°3. ⑴. AB//CD ;内错角相等,两直线平行⑵. ∠BCD ;同旁内角互补,两直线平行⑶. ∠2=∠3 ;内错角相等,两直线平行⑷. ∠ABC ;同位角相等,两直线平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°,那么____∥_______,如果∠9=_____,那么AD∥BC,如果∠9=_____,那么AB∥CD。
5.如图3所示,下列条件中,不能判定AB∥CD的是( )
A. AB∥EF,CD∥EF
B.∠5=∠A
难点预设:直线平行的判定方法的应用。
学习过程
一、自学指导
认真阅读教材第14页思考到第15页的内容,完成下述问题。
1.判定方法2简称为_______ _______________________。
如图,符号语言描述:
∵∠1=∠2(已知)
∴AB∥CD()
2.判定方法3简称为__________ _____________________。
如图,符号语言描述:
∵∠1+∠2=180°(已知)
∴AB∥CD()
二、合作交流
针对“自学指导”部分的提问部分,请各小组讨论得出结论,并推选一名学生展示结果。对于仍然不理解的地方,再全班解决。
三、达标检测
1.继续完成教材15页例题(用符号语言描述)。
2.如图1,如果∠3=∠7,或____ __,那么______,理由是____;如果∠5=∠3,或________,那么________,理由是___ ___________;如果∠2+∠5= ______,或者_______,那么a∥b,理由是__________。
武汉市先锋中学初一数学导学案70522
主备人:授课人:授课时间:年月日第周
班级:姓名:检测评型
新授
学习目标
1、经历观察、想像、推理、交流等活动,发展空间观念、推理能力和表达能力;
2、经历探究直线平行条件的过程,掌握直线平行的条件,领悟数学思想方法。
重点难点
教学重点:探索并掌握直线平行的判定方法。
C.∠ABC+∠BCD=180°
D.∠2=∠3
图3
四、拓展延伸
如图,已知直线AB、BC、CD、DA相交于A、B、C、D四点,∠2+∠3=180°,求证:AB∥CD。
解:∵∠2=∠4,∠3=∠5()
∠2+∠3=180°(已知)
∴∠4+∠5=180°()
∴AB∥CD()
五、课堂收获与困惑点
备注(教师复备
或学生笔记)