(加提高)2019年中考数学模拟试题8

合集下载

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。

精品解析:北京市东城区2019届九年级中考一模数学试题(解析版)

精品解析:北京市东城区2019届九年级中考一模数学试题(解析版)

2019年北京市东城区中考数学一模试卷一、选择题(每小题2分,共16分)1.下列立体图形中,主视图是圆的是()A. B. C. D.【答案】D【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的主视图是矩形,故B不符合题意;C、圆台的主视图是梯形,故C不符合题意;D、球的主视图是圆,故D符合题意,故选D.【点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.2.2019年中国北京世界园艺博览会于4月29日在北京延庆举行,会期共162天,预计参观人数不少于16 000 000人次,将16 000 000用科学记数法表示应为()A. 16×104B. 1.6×107C. 16×108D. 1.6×108【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将16 000 000用科学记数法表示应 1.6×107,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n 的值.3.已知实数a ,b 在数轴上的位置如图所示,下列结论中正确的是( )A. a b >B. a b <C. 0ab >D. a b ->【答案】D 【解析】【分析】由数轴得出a <-1<0<b <1,根据a 、b 的范围,即可判断各选项的对错. 【详解】由数轴得出a <-1<0<b <1,则有A 、a <b ,故A 选项错误;B 、|a|>|b|,故B 选项错误;C 、ab <0,故C 选项错误;D 、-a >b ,故D 选项正确, 故选D.【点睛】本题考查了实数与数轴,解决本题的关键是结合数轴,灵活运用相关知识进行判断.4.如图,将一张矩形纸片折叠,若∠1=80°,则∠2的度数是( )A. 50°B. 60°C. 70°D. 80°【答案】A 【解析】 【分析】利用平行线的性质解决问题即可. 【详解】如图,∵a ∥b ,∴∠1=∠3=80°,由翻折不变性可知:∠2=∠4=12(180°﹣80°)=50°, 故选A .【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识.5.一个多边形的每个内角均为120°,则这个多边形是( ) A. 四边形 B. 五边形C. 六边形D. 七边形【答案】C 【解析】由题意得,180°(n -2)=120°n ⨯, 解得n =6.故选C.6.如果a 2+3a ﹣2=0,那么代数式(23139a a ++-)23a a-⋅ 的值为( ) A. 1 B.12 C.13D.14【答案】B 【解析】 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】原式=2231(3)(3)3a a a a a a a-⋅=+-+,由a 2+3a ﹣2=0,得到a 2+3a =2,则原式=12,故选B.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是()A. 22.5B. 25C. 27.5D. 30【答案】B【解析】【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=5时,代入函数解析式求值即可.【详解】设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,将(0.5,16)、(1.0,17)代入,得:0.51617k bk b+=⎧⎨+=⎩,解得:k2b15=⎧⎨=⎩,∴L与x之间的函数关系式为:L=2x+15;当x=5时,L=2×5+15=25(cm)故重物为5kg时弹簧总长L是25cm,故选B.【点睛】此题主要考查根据实际问题列一次函数关系式,解决本题的关键是得到弹簧长度的关系式,难点是得到x千克重物在原来基础上增加的长度.8.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A. 2017年第二季度环比有所提高B. 2017年第三季度环比有所提高C. 2018年第一季度同比有所提高D. 2018年第四季度同比有所提高【答案】C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.二、填空题(每小题2分,共16分)9.x的取值范围是.【答案】x2≥。

中考数学 专题03 一元一次方程(专题测试-提高)(解析版)

中考数学 专题03 一元一次方程(专题测试-提高)(解析版)

专题03 一元一次方程(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________一、选择题(共12小题,每小题4分,共48分)1.(2019·福建中考模拟)王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是( )A.B .C .D.【答案】C 【详解】A. 设最小的数是x .x +x +7+x +14=45,解得x =8,故本选项不合题意;B. 设最小的数是x .x +x +1+x +8=45,解得:x =12,故本选项不合题意;C. 设最小的数是x .x +x +6+x +14=45,解得:,故本选项错误,符合题意;253xD. 设最小的数是x .x +x +6+x +12=45,解得:x =9,故本选项不合题意.故选:C.2.(2019·四川中考模拟)下面是一个被墨水污染过的方程:2x﹣=3x+,答案显示此方程的解是x12=﹣1,被墨水遮盖的是一个常数,则这个常数是( )A .1B .﹣1C .﹣D .1212【答案】D 【详解】∵x=-1是方程的解,∴2×(-1)-=3×(-1)+,12-2-=-3+,12解得=.12故选D .3.(2017·内蒙古中考模拟)某商店有两个进价不同的台灯,都卖了64元,按成本计算,其中一个盈利60%,另一个亏本20%,在此次买卖中,这家商店( )A .亏了8元B .赚了32元C .不亏不赚D .赚了8元【答案】D 【详解】设两种台灯进价为x 、y ,则:①,解得:;6064x x =-%40x =②,解得:;2064y y -=-%80y =∴具体盈利情况为:=(元).2644080⨯--8∴这家商店赚了8元.所以答案为D 选项.4.(2017·广西中考模拟)已知三角形的三边长为连续整数,且周长为12cm ,则它的最短边长为( )A .2cm B .3cmC .4cmD .5cm【答案】B 【详解】设大小处于中间的边长是xcm ,则最大的边是(x +1)cm ,最小的边长是(x −1)cm .则(x +1)+x +(x −1)=12,解得:x =4,则最短的边长是:4−1=3cm .故选B.5.(2019·浙江中考模拟)小刚从家跑步到学校,每小时跑12km ,会迟到5分钟;若骑自行车,每小时骑15km ,则可早到10分钟.设他家到学校的路程是xkm ,则根据题意列出方程是( )A .B .10515601260x x -=+10515601260x x -=-C .D .1051512x x +=-10515601260x x +=-【答案】D 【详解】解:设他家到学校的路程是xkm ,依题意,得:.10515601260x x +=-故选:D .6.(2019·湖北中考真题)欣欣服装店某天用相同的价格卖出了两件服装,其中一件盈利,(0)a a >20%另一件亏损,那么该服装店卖出这两件服装的盈利情况是( )20%A .盈利B .亏损C .不盈不亏D .与售价有关a 【答案】B 【详解】设第一件衣服的进价为元,x 依题意得:,(120%)x a +=设第二件衣服的进价为元,y 依题意得:,(120%)y a -=,()()120%120%x y ∴+=-整理得:,32x y =该服装店卖出这两件服装的盈利情况为:,0.20.20.20.30.1x y x x x -=-=-即赔了元,0.1x 故选B .7.(2018·河北中考模拟)有两种饮料,种饮料的单价比种饮料的单价少元,小明同学买了盒饮料A B 1A 瓶,种饮料瓶,共花了元.若设种饮料单价为元/瓶,则下面所列方程正确的是( )2B 313A x A .2(x-1)+3x=13B .2x+3(x-1)=13C .2(x+1)+3x=13D .2x+3(x+1)=13【答案】D 【详解】设A 种饮料单价为x 元/瓶,则B 种饮料单价为(x +1)元,根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,可得方程为:2x +3(x +1)=13.故选:D .8.(2013·江苏中考真题)已知关于x 的方程2x+4=m﹣x 的解为负数,则m 的取值范围是A .B .C .m <4D .m >44m<34m>3【答案】C 【详解】试题分析:解2x+4=m﹣x 得,。

新疆乌鲁木齐市多校联合2019年中考数学模拟试卷(解析版)(5月份)

新疆乌鲁木齐市多校联合2019年中考数学模拟试卷(解析版)(5月份)

2019年新疆乌鲁木齐市多校联合中考数学模拟试卷(5月份)一、选择题(共9小题,每小题5分,共45分)每题的选项中只有一项符合题目要求1.(5分)3的相反数是(A. - 3B. D.1_~32.(5 分)如图,AB//CD,匕1 = 30° ,则匕2的度数是(3. A. 120° B.130°C.150°D.135°(5分)下列运算正确的是()a 2,2 4A. x +x =工D 3. 2 6B. x =x C.C 4 ・ 2_o 22x —x —2xD.(3x) 2 = 6*23)C ' 1)4. (5分)如图所示的几何体的主视图是)A.C. D.□5.(5分)小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是(A.平均数B.中位数C.众数D.方差)(5分)下列对一元二次方程 Ax -3=。

根的情况的判断,正确的是()6. A.有两个不相等实数根 B.有两个相等实数根C.有且只有一个实数根D.没有实数根7. (5 分)如图,AB 是的直径,弦 CD±AB 于点 E, OC=5cm, CD=8cm,则 AE=(cDA.8cmB.5cmC.3cmD.2cm8.(5分)学校有〃位师生乘坐m辆客车外出参观,若每辆客车坐45人,则还有28人没有上车;若每辆客车坐50人,则空出一辆客车,并且有一辆还可以坐12A.下列五个式子:@45/^+28=50(m-1)-12;②45m+28=50m-(12+50);②n+28_n+12@n-28n+(50+12)45~5045~50-⑤45m+28=50(m- 2)+38.其中正确的有()A.1个B.2个C.3个D.4个9.(5分)如图,在正方形ABCD中,E,F分别为AO,的中点,P为对角线位)上的一个动点,则下列线段的长等于AF+EP最小值的是()A.ABB.DEC.BDD.AF二、填空题(共6小题,每小题5分,共30分)请把答案填在答卷中的相应位置处.10.(5分)一个暗箱里装有10个黑球,8个白球,6个红球,每个球除颜色外都相同,从中任意摸出一个球,摸到白球的概率是.(2x-l>011.(5分)不等式组的解集是_______.3x>2x+212.(5分)直线y=kx与双曲线y=:Z交于点(a,1),则.x13.(5分)国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是.14.(5分)如图,在RtAABC中,ZC=90°,ZBAC=60°,将AABC绕点A逆时针旋转60°后得到若AC=l,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留It).15.(5分)如图,正方形ABCD的边长是2,点E是CD边的中点,点F是边BC上不与点B,C重合的一个动点,把ZC沿直线EF折叠,使点。

2019年最新初中数学练习100题试卷 中考模拟试题731141

2019年最新初中数学练习100题试卷 中考模拟试题731141

2019年初中数学中考练习100题试卷**科目模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列现象中,不属于旋转变换的是( )A .电梯的升降运动B .大风车转动C .方向盘的转动D .钟摆的运动2.已知ΔABC 中,∠A ∶∠B ∶∠C=3∶7∶8,则ΔABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .都有可能3.下列说法正确的是( )A .足球在草地上滚动,可看作足球在作平移变换B .我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向作平移变换”C .小明第一次乘观光电梯,随着电梯的上升,他高兴地对同伴说:太棒了,•我现在比大楼还高呢,我长高了D .在图形平移变换过程中,图形上可能会有不动点4.计算32)(x x ⋅-所得的结果是( )A .5xB .5x -C .6xD .6x - 5.若(x-y )2+N=(x+y )2,则N 为( )A .2y 2B . -2y 2C .2xyD .4xy 6.4a 2b 3-8a 4b 2+10a 3b 因式分解时,应提公因式( ) A .2a 2b B .2a 2b 2 C .4a 2b D .4ab 27.某城市一年漏掉的水相当于建一个自来水厂,据不完全统计,全市至少有5610⨯个水龙头,5210⨯个抽水马漏水. 如果一个关不紧的水龙头一个月漏a (m 3)水,一个抽水马桶一个月漏掉b (m 3)水,那么一个月造成的水流失量至少是( )A .( 62a b +) m 3B .56210a b +⨯ m 3C .5[(62)10]a b +⨯ m 3D .5[8()10]a b +⨯m 38.下列是二元一次方程的是( )A .36x x -=B .32x y =C .10x y -=D .23x y xy -=9.如图,已知点 B ,F ,C ,E 在同一直线上,若 AB=DE ,∠B=∠E ,且BF=CE ,则要使△ABC ≌△DEF 的理由是( )A .ASAB .SASC .SSSD .AAS10.如果把分式ba ab 2+中的a ,b 都扩大10倍,那么分式的值( ) A .扩大为原来的10倍 B .缩小为原来的110 C .不变 D .无法确定 11.如图,长方体的长为 15、为 10、高为 20,点B 离点 C 的距离为 5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .B .25C . 5D .3512.如图所示是一个风筝的图案,它是轴对称图形,量得∠B=30°,则∠E 的大小为( )A . 30°B . 35°C .40°D . 45°'13.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( )A .△OCDB .△OABC .△OAFD .△OEF。

中考数学模拟试题(附答案解析)

中考数学模拟试题(附答案解析)
5.下列运算正确的是()
A. B. C. D.
6.在平面直角坐标系中,将直线 先向左平移2个单位长度,再向上平移5个单位长度,则平移后的新直线为()
A. B. C. D.
7.如图,在 中,M,N 上两点, ,连接 , , , ,添加一个条件,使四边形 是菱形,这个条件是()
A. B. C. D.
8.如图, 是 的内接三角形,作 与 相交于点C,且 ,则 的大小为()
二、填空题(本大题共4个小题,每小题3分,共12分)
11.比较大小: ______ .(填“>”、“<”或“=”)
12.圆内接正六边形的边长为6,则该正六边形的边心距为_____.
13.如图, 的顶点O在坐标原点上, ,若点B在反比例函数 的图象上,点A在反比例函数 的图象上,则k的值为______.
22.小红和小兵进行摸球试验,在一个不透明的空布袋中放有4个小球.分别标号1,2,3,4,小球除数字不同外其他都相同.试验规则:摸球前先搅拌均匀,每次随机摸一个小球,记下数字后,称为摸球一次.
(1)若小兵随机摸球一次,摸到标号为奇数的概率为__________________;
(2)若小红从袋中不放回地随机摸两次,请用列表法或画树状图法求出两球标号均为偶数的概率.
(1)请将两幅统计图补充完整,所抽取学生最感兴趣的吉祥物是____________;
(2)在这次调查中,A、B、C、D哪项选择人数少于调查总人数的平均数?
(3)若本校一共有2000名学生,请估计“对B.熊熊最感兴趣”的人数.
20.在学习了相似三角形 应用知识点后,小丽为了测量某建筑 的高度,在地面上的点D与同学们一同竖直放了一根标杆 ,并在地面上放置一块平面镜E,已知建筑底端B、E、D点在同一条水平直线上,在标杆顶端点C恰好通过平面镜E观测到建筑顶点A,在点C观测建筑顶点A的仰角为 ,平面镜E的俯角为 ,其中标杆 的长度为1米,问建筑 的高度为多少米?(结果精确到0.1米,参考数据: )

中考数学模拟试题(含答案)

中考数学模拟试题(含答案)

中考数学模拟试题(含答案)中考数学模拟试题本试卷共8页,考试时间100分钟,满分120分。

选择题(共10小题,每小题3分,共30分)1.求-3的倒数。

()A。

-1/3 B。

-1/-3 C。

1/-3 D。

1/32.函数y=1/(x-8),x的取值范围是()。

A。

x8 D。

x≥83.国家游泳中心“水立方”的外层膜展开面积约为平方米,科学记数法表示为()。

A。

2.6×10^5 B。

26×10^4 C。

0.26×10^6 D。

2.6×10^64.下列简单几何体的左视图是()。

A。

B。

C。

D.5.某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数和众数分别是()。

A。

32、31 B。

31、32 C。

31、31 D。

32、356.下列命题中,错误的是()。

A。

矩形的对角线互相平分且相等 B。

对角线互相垂直的四边形是菱形 C。

等腰梯形的两条对角线相等 D。

等腰三角形两底角相等7.下列图形中,能肯定∠1>∠2的是()。

A。

B。

C。

D.8.下列各式计算结果正确的是()。

A。

2a+a=3a B。

(3a)^2=9a^2 C。

(a-1)^2=a^2-1 D。

a×a=a^2非选择题9.已知△ABC中,∠A=60°,AB=√3,AC=2.求BC的长度。

10.已知函数y=2x^2-x-3,求其对称轴的方程。

答案区:1.1/(-3)2.x>83.2.6×10^54.C5.31、316.A7.D8.a×a=a^29.BC=210.x=1/49、在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为12.10、圆柱底面直径为2cm,高为4cm,则圆柱的侧面积为8π cm²。

11、一对互为相反数的数为x和-x。

12、b²-2b可以分解为b(b-2)。

2019年中考数学模拟试题及答案分析118763

2019年中考数学模拟试题及答案分析118763

2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.下列说法中正确的是( )A .两个全等三角形一定成轴对称B .两个成轴对称的三角形一定是全等的C .三角形的一条中线把三角形分成以中线为对称轴的两个图形D .三角形的一条高把三角形分成以高线为对称轴的两个图形2.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A .1个B 2个C .3个D .4个3.如图所示,△ABC 中,AB=AC ,BE=CE ,则由“SSS”可直接判定( )A .△ABD ≌△ACDB .△ABE ≌△ACEC .△BED ≌△CED D .以上答案都不对4.如图所示,A ,B 是数轴上的两点,C 是AB 的中点,则0C 等于( )A .34OB B .1()2OB OA -C .1()2OA OB +D .以上都不对5.如图所示,△ABC 平移后得到△DEF ,若∠BNF=100°,则∠DEF 的度数是( )A .120°B .100°C .80°D .50°6.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积7.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤8.下列计算中,正确的是( )A .9338(4)2x x x ÷=B .23234(4)0a b a b ÷=C .2m 2m a a a ÷=D .2212()4c 2ab c ab ÷-=- 9.下面三种说法:①两个能够重合的三角形是全等三角形;②全等三角形的形状和大小相同;③全等三角形的面积相等.其中正确的个数有 ( )A .3个B .2个C .1个D .0个10. 一个三角形的三个内角中,至少有( )A . 一个锐角B . 两个锐角C . 一个钝角D .一个直角11.下列成语所描述的事件是必然发生的是( )A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖 12.如图1所示是一张画有小白兔的卡片,卡片正对一面镜子,这张卡片在镜子里的影像是下列各图中的( )图1 A . B . C . D .13.已知线段AB ,在BA 的延长线上取一点C ,使CA=3AB ,则线段CA 与线段CB 之比为( )A .3:4B .2:3C .3:5D .1:2 14.若关于x 的方程1011--=--m x x x 有增根,则m 的值是( )。

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。

2019届九年级数学 中考模拟试卷含解析

2019届九年级数学 中考模拟试卷含解析

2019届浙教版九年级中考数学模拟试卷含解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9C.10 D.113.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45D.475.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C.D.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣29.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4=.12.(4分)要使分式有意义,则字母x的取值X围是.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m=.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是,所对应的圆心角是度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)a、b、c为非零有理数,它们的积必为正数的是()A.a>0,b、c同号B.b>0,a、c异号C.c>0,a、b异号D.a、b、c同号【分析】根据题意,利用有理数的乘法法则判断即可.【解答】解:a,b,c为非零有理数,它们的积必为正数的是a>0,b与c同号.故选:A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,某居民楼由相同户型的若干个楼房组成,该楼的三视图如图所示,试问该楼最多能建楼房个数是()A.8 B.9 C.10 D.11【分析】根据已知中三视图,由正视图和侧视图可判断该楼的层数,进而解答即可.【解答】解:由主视图和左视图发现该楼一共有三层,房子的最多间数见俯视图:2+2+2+3+1=10,故选:C.【点评】此题考查了由三视图判断几何体的知识,解题的关键是根据主视图和左视图中小长方形的层数确定楼的层数.3.(3分)已知5+的整数部分为a,5﹣的小数部分为b,则a+b的值为()A.10 B.2C.﹣12 D.12﹣【分析】首先得出的取值X围,进而分别得出a,b的值进而得出答案.【解答】解:∵3<<4,∴8<5+<9,1<5﹣<2,∴5+的整数部分为a=8,5﹣的小数部分为b:5﹣﹣1=4﹣,∴a+b=12﹣.故选:D.【点评】此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.4.(3分)若7名同学的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的中位数是()A.43 B.44 C.45 D.47【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:把这些数从小到大排列为:40,42,43,45,47,47,58,最中间的数是45,故这组数据的中位数是45.故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)如图,PA,PB分别与⊙O相切于点A,B,连接OP,则下列判断错误的是()A.∠PAO=∠PBO=90° B.OP平分∠APBC.PA=PB D.∠AOB=【分析】根据切线的性质、切线长定理判断即可.【解答】解:∵PA,PB分别与⊙O相切于点A,B,∴∠PAO=∠PBO=90°,OP平分∠APB,PA=PB,则A、B、C正确,不符合题意;∠AOB的度数与的度数相等,D错误,符合题意;故选:D.【点评】本题考查的是切线的性质,掌握切线长定理是解题的关键.6.(3分)已知|b﹣4|+(a﹣1)2=0,则的平方根是()A.B.C. D.【分析】根据非负数的性质列式求出a、b的值,再代入代数式求出,然后根据平方根的定义解答即可.【解答】解:根据题意得,b﹣4=0,a﹣1=0,解得a=1,b=4,所以,=,∵(±)2=,∴的平方根是±.故选:A.【点评】本题考查了平方根的定义,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.7.(3分)已知△ABC(如图1),按图2所示的尺规作图痕迹不需借助三角形全等就能推出四边形ABCD是平行四边形的依据是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形【分析】根据平行四边形的判定和作图依据进行判断即可.【解答】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:D.【点评】本题考查了复杂的尺规作图,解题的关键是根据平行四边形的判定解答.8.(3分)如图,半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴交⊙A 于点B(点B在点A的右侧),当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为()A.y=(x﹣4)2﹣1 B.y=(x﹣3)2C.y=(x﹣2)2﹣1 D.y=(x﹣3)2﹣2【分析】根据题意和平移的特点,可以求得点BB随之运动得到的图象的函数表达式,从而可以解答本题.【解答】解:∵半径为1的⊙A的圆心A在抛物线y=(x﹣3)2﹣1上,AB∥x轴,∴当点A在抛物线上运动时,点B随之运动得到的图象的函数表达式为:y=(x﹣3﹣1)2﹣1=(x﹣4)2﹣1,故选:A.【点评】本题考查二次函数图象上点的坐标特征、平移的性质,解答本题的关键是明确点B 是点A向右平移一个单位长度的对应点.9.(3分)如图,E、F是正方形ABCD边AD上的两个动点且AE=DF,连接CF交BD于点G,连接BE交AG于点H.若正方形ABCD的边长为2,则线段DH长度的最小值为()A.﹣1 B.C.D.【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM ≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB 中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【解答】解:延长AG交CD于M,如图1∵ABCD是正方形∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC∵AD=CD,∠ADB=∠BDC,DG=DG∴△ADG≌△DGC∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC∴△ADM≌△CDF∴FD=DM且AE=DF∴AE=DM且AB=AD,∠ADM=∠BAD=90°∴△ABE≌△ADM∴∠DAM=∠ABE∵∠DAM+∠BAM=90°∴∠BAM+∠ABE=90°,即∠AHB=90°∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD==∵DH≥OD﹣OH∴DH≥﹣1∴DH的最小值为﹣1故选:A.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.10.(3分)如图,在平面直角坐标系中,过点O的直线AB交反比例函数y=的图象于点A,B,点C在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且cos∠CAB=时,k1k2应满足的数量关系是()A.k2=2k1B.k2=﹣2k1C.k2=4k1D.k2=﹣4k1【分析】如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.只要证明△AOH∽△OCJ,可得=()2,推出=,由此即可解决问题;【解答】解:如图连接OC,作AH⊥x轴于H,CJ⊥x轴于J.∵CA=CB,OA=OB,∴CO⊥AB,∵cos∠CAB==,设AO=k,AC=5k,则OC=2k,∴OC=2OA,∵∠AHO=∠CJO=∠AOC=90°,∴∠AOH+∠COJ=90°,∠COJ+∠OCJ=90°,∴∠AOH=∠OCJ,∴△AOH∽△OCJ,∴=()2,∴=,∴k2=﹣4k1,故选:D.【点评】本题考查反比例函数图象上的点的特征,解直角三角形、相似三角形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.二.填空题(共6小题,满分24分,每小题4分)11.(4分)分解因式:16m2﹣4= 4(2m+1)(2m﹣1).【分析】原式提取4,再利用平方差公式分解即可.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.12.(4分)要使分式有意义,则字母x的取值X围是x≠﹣3 .【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x+3≠0,解得x≠=﹣3,故答案为:x≠﹣3.【点评】本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.13.(4分)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵红灯亮30秒,黄灯亮3秒,绿灯亮42秒,∴P(红灯亮)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(4分)反比例函数y=(2m﹣1)x|m|﹣2,当x>0时,y随x的增大而增大,则m= ﹣1 .【分析】根据反比例函数的一般形式,可以得到x的次数是﹣1;根据当x>0时,y随x的增大而增大,可以得到比例系数是负数,即可求得.【解答】解:根据题意得:,解得:m=﹣1.故答案为﹣1【点评】本题考查了反比例函数的一般形式以及反比例函数的性质,正确理解函数的性质是关键.15.(4分)在平面直角坐标系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a ﹣4,a+3),C为该直角坐标系内的一点,连结AB,OC,若AB∥OC且AB=OC,则点C 的坐标为(﹣4,3)或(4,﹣3).【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标为(x,y),∵AB∥OC且AB=OC,∴或,解得:或,∴点C的坐标为(﹣4,3)或(4,﹣3).故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查了平行线的性质以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(4分)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= 3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A=90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH=DC=x+2,则AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x 2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为3+2.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.三.解答题(共8小题,满分66分)17.(6分)(1)解不等式组:并在数轴上表示其解集.(2)计算:++.【分析】(1)分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来;(2)根据分式的加减法的法则计算即可.【解答】解:(1)解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:,(2)++=﹣+==.【点评】本题考查的是分式的加减法,解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(6分)先化简,再求值:(x+y)(x﹣y)﹣(x﹣y)2﹣y(x﹣2y),其中x=2018,y=【分析】根据平方差公式、完全平方公式和单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:原式=x2﹣y2﹣(x2﹣2xy+y2)﹣xy+2y2=x2﹣y2﹣x2+2xy﹣y2﹣xy+2y2=xy,当x=2018,y=时,原式=2018×=1.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的方法.19.(6分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为一边的等腰△ABC,点C在小正方形的顶点上,且满足tan∠ACB=;(2)在图中画出平行四边形ABDE,使点D和点E均在小正方形的顶点上,且面积为8,连接CE,请直接写出线段CE的长.【分析】(1)根据等腰三角形的定义和正切函数的定义确定点C位置,据此连接三顶点即可得;(2)根据平行四边形的定义作图可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,▱ABCD即为所求,CE==.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握等腰三角形、平行四边形及正切函数的定义、勾股定理.20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.(1)求证:四边形DBEC是菱形;(2)若AD=3,DF=1,求四边形DBEC面积.【分析】(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;(2)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.【解答】(1)证明:∵CE∥DB,BE∥DC,∴四边形DBEC为平行四边形.又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,∴CD=BD=AC,∴平行四边形DBEC是菱形;(2)∵点D,F分别是AC,AB的中点,AD=3,DF=1,∴DF是△ABC的中位线,AC=2AD=6,S△BCD=S△ABC∴BC=2DF=2.又∵∠ABC=90°,∴AB===4.∵平行四边形DBEC是菱形,∴S 四边形DBEC=2S△BCD=S△ABC=AB•BC=×4×2=4.【点评】考查了菱形的判定与性质,三角形中位线定理,直角三角形斜边上的中线以及勾股定理,熟练掌握相关的定理与性质即可解题,难度中等.21.(8分)截止2016年第一季度末,微信每月活跃用户已达到5.49亿,用户覆盖200多个国家,超过20种语言,个品牌的微信公众号总数已经超过800万个,微信已成为中国电子革命的代表,并成为人们生活中不可或缺的日常使用工具,某评测中心进行了抽样调查,统计出如下两个统计图表:(1)在条形统计图中,“转发内容”的人数占到样本容量的15%,则样本容量是200 ;(2)补全条形统计图;(3)扇形统计图中“学生”所占比例是15% ,所对应的圆心角是54 度;(4)某市约有20万微信用户,请你估计其中喜欢“给别人点赞”的学生有多少人?【分析】(1)由30除以其所占的比例,即可求出样本容量;(2)用样本容量减去A、C、D、E的数据,即可求出喜欢给别人评论的人数,再补全条形统计图即可;(3)观察扇形统计图,用1减去其它各部分所占比例,即可求出“学生”所占比例,再用其乘360°即可得出结论;(4)利用总体×学生所占比例×喜欢给别人评论的人数÷样本容量,即可求出结论.【解答】解:(1)由题意可得:30÷15%=200.故答案为:200;(2)200﹣70﹣40﹣10=50(人),补全条形统计图,如图所示.(3)1﹣40%﹣32%﹣13%=15%,15%×360°=54°.故答案为:15%;54.(4)200000×15%×=10500(人).答:其中喜欢“给别人点赞”的学生大约有10500人.【点评】本题考查了条形统计图、全面调查和抽样调查、总体、个体、样本、样本容量、用样本估计总体以及扇形统计图,解题的关键是:(1)用喜欢“转发内容”的人数÷其所占样本容量的比例求出样本容量;(2)用样本容量减去A、C、D、E的数据,求出喜欢给别人评论的人数;(3)根据扇形统计图,列式计算;(4)根据数量关系,列式计算.22.(10分)如图,河流的两岸PQ、MN互相平行,河岸MN上有一排间隔为50米的电线杆C、D、E、…,某人在河岸PQ的A处测得∠DBQ=45°,求河流的宽度(结果精确到0.1米).参考值:;.【分析】应合理应用∠CAQ的度数,CD的长度,所以过点D作CA的平行线得到平行四边形.过点D向对边引垂线,得到直角三角形,进而利用三角函数值求得河宽.【解答】解:过D作DH∥CA交PQ于H,过D作DG⊥PQ,垂足为G,(4分)∵PQ∥MN,DH∥CA∴四边形CAHD是平行四边形.∴AH=CD=50,∠DHQ=∠CAQ=30°(5分)在Rt△DBG中,∵∠DBG=∠BDG=45°,∴BG=DG,设BG=DG=x,在Rt△DHG中,得HG=x,(6分)又BH=AB﹣AH=110﹣50=60,∴60+x=x,∴x=30+30≈82.0(米).答:河流的宽为82.0米.(7分)【点评】本题考查解直角三角形的应用.难点是作出辅助线,利用三角函数求解.23.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.【解答】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【点评】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.24.(12分)甲骑自行车从M地出发沿一条公路匀速前往N地,乙骑自行车从N地出发沿同一条公路匀速前往M地,已知乙比甲晚出发0.5小时且先到达目的地.设甲行驶的时间为t(h),甲乙两人之间的路程为y(km),y与t的函数关系如图1所示,请解决以下问题:(1)写出图1中点C表示的实际意义并求线段BC所在直线的函数表达式.(2)①求点D的纵坐标.②求M,N两地之间的距离.(3)设乙离M地的路程为s乙(km),请直接写出s乙与时间t(h)的函数表达式,并在图2所给的直角坐标系中画出它的图象.【分析】(1)根据图象坐标求出BC解析式;(2)①根据(1)中函数关系式,求点D坐标;②根据图象求出甲乙两车速度,计算MN距离;(3)由②中乙的速度列出s乙与时间t(h)的函数表达式,并画图象.【解答】解:(1)根据图象,点C表示甲行驶1.5小时时,甲乙两车相遇.设直线BC的函数解析式为:y=kt+b把B(0.5,60),D(1.5,0)解得∴BC解析式为:y=﹣60t+90(2)①把t=2.25代入y=﹣60t+90y=﹣60×2.25+90=45∴点D坐标为(2.25,45)②设甲的速度为akm/h,乙的速度为bkm/h由题意得∴∴MN之间距离为:3.5×20=70km(3)乙离M地的路程为s乙=70﹣40t【点评】本题为一次函数实际应用问题,考查一次函数图象的实际意义,待定系数法求函数关系式和二元一次方程组.。

2024年河南省中考数学模拟试题(八)

2024年河南省中考数学模拟试题(八)

2024年河南省中考数学模拟试题(八)一、单选题1.有理数27-的绝对值是( )A .27B .72C .27-D .72-2.2012年11月23日飞行员戴明盟驾驶国产第一代舰载机歼-15(绰号:飞鲨)在辽宁号航空母舰甲板上首降成功.小明想了解该机的翼展长度(指机翼左右翼尖之间的距离),可以选择以下哪些视图进行测量( )A .主(或左)视图B .主(或俯)视图C .左(或俯)视图D .左视图3.如图,AB CD P ,CF 平分ACD ∠,交AB 于点E ,若150AEF ∠=︒,则A ∠的度数为( )A .120︒B .130︒C .140︒D .150︒4.下列计算正确的是( ) A .22(3)9x x -=- B .27512x x x +=C .22(3)69x x x -=-+D .22(2)(2)4x y x y x y -+=+5.如图,AB ,AC 是O e 的弦,OB ,OC 是O e 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若70BAC ∠=︒,则BPC ∠的度数可能是( )A .70︒B .105︒C .125︒D .155︒6.宋·苏轼《赤壁赋》:“寄蜉蝣于天地,渺沧海之一粟.”比喻非常渺小,据测量,200粒粟的重量大约为1克,用科学记数法表示一粒粟的重量约为( ) A .2210⨯克B .2210-⨯克C .2510-⨯克D .3510-⨯克7.关于x 的方程2441x x -=-的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根D .无实数根8.春节是中华民族的传统节日,在春节期间,全国各地都会举行各种贺岁活动,有剪窗花、贴春联、挂灯笼放鞭炮包饺子等,种类丰富多样.今年春节临近,姐姐和妹妹计划在除夕这天帮爸爸妈妈一-起准备迎接新年的到来;姐姐在四张完全相同的纸条上分别写上剪窗花、贴春联、挂灯笼、包饺子,然后将四张纸条分别揉成团,装在一个不透明的袋子里,摇匀后,妹妹先从这四个纸团中随机抓取一个,不放回,再从剩下的三个纸团中随机抓取一个,妹妹抓取的纸团恰好是贴春联和包饺子的概率是( ) A .112 B .16C .14D .139.如图,在平面直角坐标系中,OAB V 的顶点为(0,0),(4,3),(3,0)O A B ,以点O 为位似中心,在第三象限内得到与OAB V的位似比为13的位似图形OCD V ,则点C 的坐标为( )A .()1,1--B .4,13⎛⎫-- ⎪⎝⎭C .41,3⎛⎫- ⎪⎝⎭D .()2,1--10.如图1,在矩形ABCD 中,点P 从点A 出发,沿折线A D C --向点C 匀速运动,过点P 作对角线AC 的垂线,交矩形ABCD 的边于点Q .设点P 运动的路程为x ,AQ 的长为y ,其中y 关于x 的函数图象大致如图2所示,则m 的值为( )A .4B .C .8D .二、填空题11.某地冬季一天的温差是15℃,这天最低气温是t ℃,则最高温度是℃.12.如图,数学课代表用折线统计图呈现了A 、B 两名同学最近5次的数学成绩,由统计图可知,同学的进步大.13.若关于x 的一元一次不等式组32(3)x x x a>+⎧⎨>⎩的解集为6x >,且关于y 的分式方程3133y a y y -=+--的解是非负整数,则所有满足条件的整数a 的值之和是. 14.如图,在Rt △ABC 中,∠A=90°,∠C=30°,AB=3,以点A 为圆心,AB 的长为半径画弧,分别交BC ,AC 于点E ,D ,则图中阴影部分的周长是.15.若一个三角形的三边长之比为3:4:5,则称这个三角形为“勾股三角形”,如图,在矩形ABCD 中,12AD =,点G 在边DC 上,将ADG △沿AG 所在直线折叠,得到AD G '△,再将AD G '△沿过点A 的直线折叠,使AD '与AG 重合,点D ¢的对应点为点E ,折痕与D G '交于点F ,若GEF △是“勾股三角形”,则AF 的长为.三、解答题16.(1)计算:(114cos3013-⎛⎫︒+ ⎪⎝⎭;(2)化简:21212a a a a a ++⎛⎫-÷ ⎪⎝⎭.17.跳绳是普及性很好的体育运动项目,在我国有着非常悠久的历史,这种运动唐朝称“透索”,宋称“跳索”,明称“跳百索”、“跳白索”、“跳马索”,清称“绳飞”,清末以后称作“跳绳”,某中学把跳绳作为学校特色体育运动项目之一.2023年4月份,为了了解八年级学生每分钟跳绳次数,该校随机抽取了八年级50名学生,进行一分钟跳绳测试,并将测试成绩(满分为10分)进行整理,绘制了如下统计表. 调查结果统计表①调查结果统计表②根据以上信息解答下列问题:(1)在这次测试中,成绩的众数是______分;(2)参与测试的学生中获得良好及以上等级的学生占测试人数的百分比是______; (3)王莉参加了这次跳绳测试,跳绳次数是155次,本次测试学生中比她的跳绳次数少的是_____人;(4)请对本次测试成绩进行合理的评价.18.某学校的教学楼选用一些简单大方的几何图案,对楼道拐角处墙壁进行了装饰,如图1就是一个简单案例.张老师对同学们说:图1中有一些有趣的几何关系.并在图1的基础上设计了如下的数学问题,请你完成作答:如图2,在Rt ABC △中,90ACB ∠=︒,点D 在边AC 上(不与点C 重合),以CD 为直径作O e ,交BD 于点E ,连接CE .(1)尺规作图:作边BC 的垂直平分线l ,交BC 于点F ;(要求:不写作法,保留作图痕迹,使用2B 铅笔)(2)连接EF EF ,是O e 的切线吗?请说明理由.19.鹤壁市玄天洞石塔,原名玲珑塔,始建于元朝,重建于明代,是河南省现存最大的一座楼阁式石塔,也是中原地区保存最完整的大型青石塔.此塔坐东朝西,为九级重檐平面四角楼阁式建筑,塔身自下而上逐层收敛.某数学社团打算运用“解直角三角形”的知识来计算玲珑塔的高度AB ,如图,先将无人机竖直上升至30m 高的点P 处,在点P 处测得玲珑塔顶端A 的俯角为25︒,将无人机沿水平方向继续飞行7.5m 到达点Q ,在点Q 处测得塔底端B 的俯角为45︒.求玲珑塔的高度AB .(结果保留一位小数.参考数据:1.41,sin250.42,cos250.91,tan250.47≈≈︒≈︒≈︒)20.如图,平行于y 轴的直尺(一部分)与双曲线()0ky x x=>交于点A 和C ,与x 轴交于点B和D ,点A 和B 的刻度分别为5cm 和2cm ,直尺的宽度为2cm ,2cm OB =(注:平面直角坐标系内一个单位长度为1cm ).(1)求反比例函数解析式;(2)若经过A ,C 两点的直线关系式为y mx b =+,请直接写出不等式0kmx b x+-<的解集; (3)求梯形ABCD 的面积.21.某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x 天的成本y (元/件)与x (天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第x 天该产品的销售量z (件)与x (天)满足关系式10z x =+.(1)第5天,该商家获得的利润是________元;第40天,该商家获得的利润是________元; (2)设第x 天该商家出售该产品的利润为w 元.①求w 与x 之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1125元的共有________天?(直接填写结果) 22.鹰眼技术助力杭州亚运,提升球迷观赛体验.如图分别为足球比赛中某一时刻的鹰眼系统预测画面(如图1)和截面示意图(如图2),攻球员位于点O ,守门员位于点A ,OA 的延长线与球门线交于点B ,且点A ,B 均在足球轨迹正下方,足球的飞行轨迹可看成抛物线.水平距离s 与离地高度h 的鹰眼数据如表:(1)根据表中数据预测足球落地时,s =______m ; (2)求h 关于s 的函数解析式;(3)当守门员位于足球正下方,足球离地高度不大于守门员的最大防守高度2.6m 时,视为防守成功,若一次防守中,守门员位于足球正下方时,24m s =,请问这次守门员能否防守成功?试通过计算说明. 23.综合与实践 【问题发现】在学习了“特殊的四边形”后,数学兴趣小组的同学发现了这样一个问题:如图1,已知正方形,ABCD E 为对角线AC 上一动点,过点C 作垂直于AC 的射线CG ,点F 在射线CG 上,且90EBF ∠=︒,连接EF .通过观察图形,数学兴趣小组的同学进行了如下猜想: 猜想①:BE BF =; 猜想②:AE CF =;猜想③:点E 在AC 上运动的过程中,四边形BECF 的面积不变. 根据上述猜想,兴趣小组的同学进行了证明,过程如下:Q 四边形ABCD 是正方形,,90,45AB CB ABC BAE BCE ∴=∠=︒∠=∠=︒,90EBF ∠=︒Q ,90ABC EBF ∴∠=∠=︒,即90ABE EBC EBC CBF ∠+∠=∠+∠=︒.ABE CBF ∴∠=∠.,90AC CG ECF ⊥∴∠=︒Q .又45BCE ∠=︒Q ,45BCF BAE ∴∠=︒=∠.ABE CBF ∴△≌△(依据:________). ……(1)上述证明过程中的依据是________,上述猜想中正确的有________(填序号). 【类比探究】(2)兴趣小组的同学在探究了正方形中的结论后,将正方形换成矩形继续探究. 如图2,已知矩形ABCD ,30BAC ∠=︒,E 为对角线AC 上一动点,过点C 作垂直于AC 的射线CG ,点F 在射线CG 上,且90EBF ∠=︒,连接EF . ①请判断线段AE 与CF 的数量关系,并说明理由.②点E 在AC 上运动时,四边形BECF 的面积是否改变?________.(填“不变”或“改变”) 【拓展应用】(3)在(2)的条件下,若6AB =,点E 在AC 上运动,当四边形BECF 为轴对称图形时,请直接写出线段BF 的长.。

北京市海淀区2019年中考数学模拟试卷(含答案)

北京市海淀区2019年中考数学模拟试卷(含答案)

北京市海淀区2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB2.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a+3b=5ab B.=±6C.a6÷a2=a4D.(2ab2)3=6a3b54.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:5 5.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是()A.(0,﹣2)B.(1,﹣2)C.(2,﹣1)D.(1,2)6.一个公园有A,B,C三个入口和D,E二个出口小明进入公园游玩,从“A口进D口出”的概率为()A.B.C.D.7.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.8.下列y关于x的函数中,当x>0时,函数值y随x的值增大而减小的是()A.y=x2B.y=C.y=D.y=9.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是(()A.1 B.2 C.3 D.410.(3分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二.填空题(满分18分,每小题3分)11.若使代数式有意义,则x的取值范围是.12.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆(填内、上或外)13.若m+n=1,mn=2,则的值为.14.潜水艇上浮记为正,下潜记为负,若潜水艇原来在距水面50米深处,后来两次活动记录的情况分别是﹣20米,+10米,那么现在潜水艇在距水面米深处.15.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF =0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为米.16.样本数据2,4,3,5,6的极差是.三.解答题(共13小题,满分72分)17.(5分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(5分)解不等式组19.(5分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC ≌△DEF.20.(5分)关于x的分式方程﹣=总无解,求a的值.21.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(5分)某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市此项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:A、从一个社区随机选取200名居民;B、从一个城镇的不同住宅楼中随机选取200名居民;C、从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是(填番号).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在这个调查中,这200名居民每天锻炼2小时的人数是多少?(3)若该市有100万人,请你利用(2)中的调查结果,估计该市每天锻炼2小时及以上的人数是多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.23.(5分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.24.(5分)老王的鱼塘里年初养了某种鱼2000条,到年底捕捞出售,为了估计鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:若老王放养这种鱼的成活率是95%,则:(1)鱼塘里这种鱼平均每条重约多少千克;(2)鱼塘里这种鱼的总产量多少千克?25.(5分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.26.(5分)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28.(7分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC 边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F (点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).29.(8分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.2.解:从上面看,是正方形右边有一条斜线,如图:故选:B.3.解:A、2a+3b,无法计算,故此选项错误;B、=6,故此选项错误;C、a6÷a2=a4,正确;D、(2ab2)3=8a3b6,故此选项错误;故选:C.4.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:7:2:7.故选:A.5.解:如图,黑棋②的坐标为(0,﹣2).故选:A.6.解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故选:D.7.解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,∴OP=,故选:B.8.解:A、二次函数y=x2的图象,开口向上,并向上无限延伸,在y轴右侧(x>0时),y 随x的增大而增大;故本选项错误;B、一次函数y=x+1的图象,y随x的增大而增大;故本选项错误;C、正比例函数y=x的图象在一、三象限内,y随x的增大而增大;故本选项错误;D、反比例函数y=中k=1>0,所以当x>0时,y随x的增大而减小;故本选项正确;故选:D.9.解:①﹣②,得3y=k+7,∴y=;①+2×②,得3x=13k﹣8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.10.解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.12.解:如图,∵点A(0,3),点B(4,0),∴AB=,点C(2,1.5),∴OC==CA,∴点O(0,0)在以AB为直径的圆上,故答案为:上13.解:∵m+n=1,mn=2,∴原式==.故答案为:14.解:﹣20+10=﹣10,所以,现在潜水艇在原来的位置下面10米,∵潜水艇原来在距水面50米深处,∴现在潜水艇在距水面60米深处.故答案为:60.15.解:由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则=,即=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5米;故答案为:11.5.16.解:样本数据2,4,3,5,6的极差是=6﹣2=4,故答案为:4.三.解答题(共13小题,满分72分)17.解:原式=3﹣+1﹣+=2+1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).20.解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.21.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.解:(1)A、B两种调查方式具有片面性,故C比较合理;(2)由条形图可得,每天锻炼2小时的人数是52人;(3)设100万人中有x万人锻炼时间在2小时及以上,则有=,解之,得x=53(万);(4)这个调查有不合理的地方.比如:在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.(只要说法正确即可)23.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作DH⊥BC于H,∵四边形EBGD为菱形ED=DG=2,∴∠ABC=30°,∠DGH=30°,∴DH=1,GH=,∵∠C=45°,∴DH=CH=1,∴CG=GH+CH=1+.24.解:(1)鱼的平均重量为:=1.84千克.答:鱼塘里这种鱼平均每条的质量约1.84千克;(2)鱼的总重量为2000×95%×1.84=3496千克.答:鱼塘里这种鱼的总质量估计是3496千克.25.解:∵PA切⊙O于A,AB是⊙O的直径,∴∠PAO=90°,∵∠P=30°,∴∠AOP=60°,∴∠B=∠AOP=30°.26.解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.27.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.28.(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),则C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.29.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).。

2019年上海市崇明区中考数学一模试卷(解析版)

2019年上海市崇明区中考数学一模试卷(解析版)

2019年上海市崇明区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.若2x=3y,则的值为()A.B.C.D.2.在Rt△ABC中,如果∠C=90°,那么表示∠A的()A.正弦B.正切C.余弦D.余切3.已知二次函数y=ax2+bx的图象如图所示,那么a、b的符号为()A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<0,b<04.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AED C.=D.=5.已知向量和都是单位向量,那么下列等式成立的是()A.B.C.D.6.如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径r>1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外离D.相交二、填空题:(本大题共12题,每题4分,满分48分)【请直接将结果填入答题纸的相应位置】7.化简:=.8.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=.9.在以O为坐标原点的直角坐标平面内有一点A(4,3),如果AO与y轴正半轴的夹角为α,那么cosα=.10.如果一个正六边形的半径为2,那么这个正六边形的周长为.11.如果两个相似三角形的周长比为4:9,那么它们的面积比是.12.已知线段AB的长为10cm,点C是线段AB的黄金分割点,且AC>BC,则AC=cm.(结果保留根号)13.已知抛物线y=(x﹣1)2﹣4,那么这条抛物线的顶点坐标为.14.已知二次函数y=﹣x2﹣2,那么它的图象在对称轴的部分是下降的(填“左侧”或“右侧”).15.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.16.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知BC =6,△ABC的高AH=3,则正方形DEFG的边长为.17.已知Rt△ABC中,∠ACB=90°,AB=10,AC=8.如果以点C为圆心的圆与斜边AB有唯一的公共点,那么⊙C的半径R的取值范围为.18.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90°,则点M为直角点.若点E、F 分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC=,则线段EF的长为.三、解答题:(本大题共7题,满分78分)19.(10分)计算:cos245°﹣+cot30°•sin60°.20.(10分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,求向量(用向量、表示).21.(10分)已知:如图,AO是⊙O的半径,AC为⊙O的弦,点F为的中点,OF交AC于点E,AC=8,EF=2.(1)求AO的长;(2)过点C作CD⊥AO,交AO延长线于点D,求sin∠ACD的值.22.(10分)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°≈,tan32°≈,tan40°≈)23.(12分)如图,△ABC中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,∠BGD=∠BAD=∠C.(1)求证:BD•BC=BG•BE;(2)如果∠BAC=90°,求证:AG⊥BE.24.(12分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+6(a、b都是常数,且a<0)的图象与x轴交于点A(﹣2,0)、B(6,0),顶点为点C.(1)求这个二次函数的解析式及点C的坐标;(2)过点B的直线y=﹣x+3交抛物线的对称轴于点D,联结BC,求∠CBD的余切值;(3)点P为抛物线上一个动点,当∠PBA=∠CBD时,求点P的坐标.25.(14分)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC,垂足为D,点P是边AB上的一个动点,过点P作PF∥AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.(1)用含x的代数式表示线段DG的长;(2)设△DEF的面积为y,求y与x之间的函数关系式,并写出定义域;(3)△PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.2019年上海市崇明区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.若2x=3y,则的值为()A.B.C.D.【分析】根据比例的基本性质:两内项的积等于两外项的积即可求解.【解答】解:∵2x=3y,∴=3,则=.故选:B.【点评】本题考查了比例的基本性质:两内项的积等于两内项的积.2.在Rt△ABC中,如果∠C=90°,那么表示∠A的()A.正弦B.正切C.余弦D.余切【分析】根据余切的定义求解可得.【解答】解:在Rt△ABC中,∵∠C=90°,∴cot A=,故选:D.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握正弦、余弦、正切、余切的定义.3.已知二次函数y=ax2+bx的图象如图所示,那么a、b的符号为()A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<0,b<0【分析】根据函数图象的特点:开口方向、对称轴等即可判断出a、b的符号.【解答】解:如图所示,抛物线开口向上,则a>0,又因为对称轴在y轴左侧,故﹣<0,因为a>0,所以b>0,故选:A.【点评】本题考查了二次函数的图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴确定.4.如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AED C.=D.=【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解答】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点评】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.5.已知向量和都是单位向量,那么下列等式成立的是()A.B.C.D.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:A、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.B、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.C、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.D、向量和都是单位向量,则||=||=1,故本选项正确.故选:D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.6.如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径r>1,那么这两个圆的位置关系不可能是()A.内含B.内切C.外离D.相交【分析】利用两圆之和一定大于两圆的圆心距可判断这两个圆不可能外离.【解答】解:∵r>1,∴2<3+r,∴这两个圆的位置关系不可能外离.故选:C.【点评】本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R﹣r<d<R+r(R≥r);④两圆内切⇔d=R﹣r(R>r);⑤两圆内含⇔d<R﹣r(R>r).二、填空题:(本大题共12题,每题4分,满分48分)【请直接将结果填入答题纸的相应位置】7.化简:=+.【分析】平面向量的加减计算法则与实数的加减计算法则相同.【解答】解:原式=﹣+=+.故答案是:+.【点评】考查了平面向量,解答此类题目时,直接去括号,然后计算加减法即可.8.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=2.【分析】根据比例中项的定义可得b2=ac,从而易求b.【解答】解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.【点评】本题考查了比例线段,解题的关键是理解比例中项的含义.9.在以O为坐标原点的直角坐标平面内有一点A(4,3),如果AO与y轴正半轴的夹角为α,那么cosα=.【分析】根据勾股定理以及锐角三角函数的定义即可求出答案.【解答】解:过点A作AB⊥x轴于点B,∵A(4,3),∴OB=4,AB=3,∴由勾股定理可知:OA=5,∴cosα==,故答案为:【点评】本题考查锐角三角函数,解题的关键是根据勾股定理求出OA的长度,本题属于基础题型.10.如果一个正六边形的半径为2,那么这个正六边形的周长为12.【分析】根据正六边形的半径等于边长进行解答即可.【解答】解:∵l正六边形的半径等于边长,∴正六边形的边长a=2,正六边形的周长=6a=12,故答案为:12.【点评】本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.11.如果两个相似三角形的周长比为4:9,那么它们的面积比是16:81.【分析】根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的周长比为4:9,∴两个相似三角形的相似比为4:9,∴两个相似三角形的面积比为16:81,故答案为:16:81.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.12.已知线段AB的长为10cm,点C是线段AB的黄金分割点,且AC>BC,则AC=5﹣5cm.(结果保留根号)【分析】根据黄金比值是列式计算即可.【解答】解:∵点C是线段AB的黄金分割点,AC>BC,∴AC=AB=(5﹣5)cm,故答案为:5﹣5.【点评】本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值叫做黄金比.13.已知抛物线y=(x﹣1)2﹣4,那么这条抛物线的顶点坐标为(1,﹣4).【分析】利用二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),顶点坐标是(h,k)进行解答.【解答】解:∵y=(x﹣1)2﹣4∴抛物线的顶点坐标是(1,﹣4)故填空答案:(1,﹣4).【点评】本题主要是对抛物线中顶点式的对称轴,顶点坐标的考查.14.已知二次函数y=﹣x2﹣2,那么它的图象在对称轴的右侧部分是下降的(填“左侧”或“右侧”).【分析】根据解析式判断开口方向,结合对称轴回答问题.【解答】解:∵二次函数y=﹣x2﹣2中,a=﹣1<0,抛物线开口向下,∴抛物线图象在对称轴右侧,y随x的增大而减小(下降).故答案为:右侧.【点评】本题考查了二次函数的性质,根据抛物线的开口方向和对称轴,可判断抛物线的增减性.15.已知△ABC中,∠ACB=90°,AC=6,BC=8,G为△ABC的重心,那么CG=.【分析】根据勾股定理求出AB,根据直角三角形的性质求出CD,根据三角形的重心的性质计算即可.【解答】解:△ABC中,∠ACB=90°,AC=6,BC=8,∴AB==10,∵G为△ABC的重心,∴CD是△ABC的中线,∴CD=AB=5,∵G为△ABC的重心,∴CG=CD=,故答案为:.【点评】本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.已知BC =6,△ABC的高AH=3,则正方形DEFG的边长为2.【分析】高AH交DG于M,如图,设正方形DEFG的边长为x,则DE=MH=x,所以AM=3﹣x,再证明△ADG∽△ABC,则利用相似比得到=,然后根据比例的性质求出x即可.【解答】解:高AH交DG于M,如图,设正方形DEFG的边长为x,则DE=MH=x,∴AM=AH﹣MH=3﹣x,∵DG∥BC,∴△ADG∽△ABC,∴=,即=,∴x=2,∴正方形DEFG的边长为2.答:正方形DEFG的边长和面积分别为2.故答案为:2.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.17.已知Rt△ABC中,∠ACB=90°,AB=10,AC=8.如果以点C为圆心的圆与斜边AB有唯一的公共点,那么⊙C的半径R的取值范围为r=4.8或6<r≤8.【分析】因为要使圆与斜边只有一个公共点,所以该圆和斜边相切或和斜边相交,但只有一个交点在斜边上.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.【解答】解:根据勾股定理求得BC==6,当圆和斜边相切时,则半径即是斜边上的高,等于;当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而小于长直角边,则6<r≤8.故半径r的取值范围是r=4.8或6<r≤8.故答案为:r=4.8或6<r≤8.【点评】此题考查了直线与圆的位置关系,此题注意考虑两种情况,只需保证圆和斜边只有一个公共点即可.18.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,∠AMB=90°,则点M为直角点.若点E、F 分别为矩形ABCD边AB、CD上的直角点,且AB=5,BC=,则线段EF的长为或.【分析】作FH⊥AB于点H,利用已知得出△ADF∽△FCB,进而得出=,求得构造的直角三角形的两条直角边即可得出答案.【解答】解:作FH⊥AB于点H,连接EF.∵∠AFB=90°,∴∠AFD+∠BFC=90°,∵∠AMD+∠DAM=90°,∴∠DAF=∠BFC又∵∠D=∠C,∴△ADF∽△FCB,∴=,即=,∴FC=2或3.∵点F,E分别为矩形ABCD边CD,AB上的直角点,∴AE=FC,∴当FC=2时,AE=2,EH=1,∴EF2=FH2+EH2=()2+12=7,∴EF=.当FC=3时,此时点E与点H重合,即EF=BC=,综上,EF=或.故答案为:或.【点评】此题考查了相似三角形的判定定理及性质和勾股定理,得出△ADF∽△FCB是解题关键.三、解答题:(本大题共7题,满分78分)19.(10分)计算:cos245°﹣+cot30°•sin60°.【分析】直接利用特殊角的三角函数值把相关数据代入进而得出答案.【解答】解:原式=()2﹣+×=﹣+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.(1)如果AC=6,求AE的长;(2)设=,=,求向量(用向量、表示).【分析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答.【解答】解:(1)如图,∵DE∥BC,且DE=BC,∴==.又AC=6,∴AE=4.(2)∵=,=,∴=﹣=﹣.又DE∥BC,DE=BC,∴==(﹣).【点评】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.21.(10分)已知:如图,AO是⊙O的半径,AC为⊙O的弦,点F为的中点,OF交AC于点E,AC=8,EF=2.(1)求AO的长;(2)过点C作CD⊥AO,交AO延长线于点D,求sin∠ACD的值.【分析】(1)由垂径定理得出AE=4,设圆的半径为r,知OE=OF﹣EF=r﹣2,根据OA2=AE2+OE2求解可得;(2)由∠OAE=∠CAD,∠AEO=∠ADC=90°知∠AOE=∠ACD,从而根据sin∠ACD=sin∠AOE=可得答案.【解答】解:(1)∵O是圆心,且点F为的中点,∴OF⊥AC,∵AC=8,∴AE=4,设圆的半径为r,即OA=OF=r,则OE=OF﹣EF=r﹣2,由OA2=AE2+OE2得r2=42+(r﹣2)2,解得:r=5,即AO=5;(2)∵∠OAE=∠CAD,∠AEO=∠ADC=90°,∴∠AOE=∠ACD,则sin∠ACD=sin∠AOE==.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理、垂径定理及其推论和勾股定理等知识点.22.(10分)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°≈,tan32°≈,tan40°≈)【分析】(1)然后在Rt△ABO中,根据tan∠OAB==tan32°,求出OB的长度,继而可求得BF;(2)根据∠AOD=40°,OD⊥AD,可得∠OAD=50°,继而可求得∠CAD的度数,以及AB 的坡度.【解答】解::(1)∵∠OAC=32°,OB⊥AD,∴tan∠OAB==tan32°,∵AB=2m,∴≈,∴OB=1.24m,∵⊙O的半径为0.2m,∴BF=1.04m;(2)∵∠AOD=40°,OD⊥AD,∴∠OAD=50°,∵∠OAC=32°∴∠CAD=18°,∴AB的坡度为tan18°=,【点评】本题主要考查了解直角三角形的应用,解答本题的关键是求出角的度数,利用三角函数的知识即可求解,难度一般.23.(12分)如图,△ABC中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,∠BGD=∠BAD=∠C.(1)求证:BD•BC=BG•BE;(2)如果∠BAC=90°,求证:AG⊥BE.【分析】(1)由△BDG∽△BEC,可得=,即可推出结论;(2)由△BAD∽△BCA,推出∠BDA=∠BAC=90°,由∠BAD=∠BGD,推出A,B,D,G四点共圆,推出∠AGB=∠ADB=90°;【解答】(1)证明:∵∠DBG=∠CBE,∠BGD=∠C,∴△BDG∽△BEC,∴=,∴BD•BC=BG•BE;(2)∵∠ABD=∠CBA,∠BAD=∠C,∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,∵∠BAD=∠BGD,∴A,B,D,G四点共圆,∴∠AGB=∠ADB=90°,∴AG⊥BE.【点评】本题考查相似三角形的判定和性质,四点共圆等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(12分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+6(a、b都是常数,且a<0)的图象与x轴交于点A(﹣2,0)、B(6,0),顶点为点C.(1)求这个二次函数的解析式及点C的坐标;(2)过点B的直线y=﹣x+3交抛物线的对称轴于点D,联结BC,求∠CBD的余切值;(3)点P为抛物线上一个动点,当∠PBA=∠CBD时,求点P的坐标.【分析】(1)由点A,B的坐标,利用待定系数法即可求出二次函数的解析式,再利用配发法即可求出顶点C的坐标;(2)利用一次函数图象上点的坐标特征可求出点D的坐标,过点D作DE⊥BC,垂足为点E,设抛物线对称轴与x轴的交点为点F,由点B,C,D,F的坐标可得出CD,DF,BF的长,利用勾股定理可得出BC的长,利用角的正切值不变可求出DE的长,进而可求出BE的长,再利用余切的定义即可求出∠CBD的余切值;(3)设直线PB与y轴交于点M,由∠PBA=∠CBD及∠CBD的余切值可求出OM的长,进而可得出点M的坐标,由点B,M的坐标,利用待定系数法即可求出直线BP的解析式,联立直线BP及二次函数解析式成方程组,通过解方程组可求出点P的坐标.【解答】解:(1)将A(﹣2,0),B(6,0)代入y=ax2+bx+6,得:,解得:,∴二次函数的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点C的坐标为(2,8).(2)当x=2时,y=﹣x+3=2,∴点D的坐标为(2,2).过点D作DE⊥BC,垂足为点E,设抛物线对称轴与x轴的交点为点F,如图1所示.∵抛物线的顶点坐标为(2,8),∴点F的坐标为(2,0).∵点B的坐标为(6,0),∴CF=8,CD=6,DF=2,BF=4,BC==4,BD==2.∴sin∠BCF==,即=,∴DE=,∴BE==,∴cot∠CBD===.(3)设直线PB与y轴交于点M,如图2所示.∵∠PBA=∠CBD,∴cot∠PBA==,即=,∴OM=,∴点M的坐标为(0,)或(0,﹣).设直线BP的解析式为y=mx+n(m≠0),将B(6,0),M(0,)代入y=mx+n,得:,解得:,∴直线BP的解析式为y=﹣x+.同理,当点M的坐标为(0,﹣)时,直线BP的解析式为y=x﹣.联立直线BP与抛物线的解析式成方程组,得:或,解得:,或,,∴点P的坐标为(﹣,)或(﹣,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、解直角三角形、余切的定义、待定系数法求一次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)由点的坐标,利用待定系数法求出二次函数解析式;(2)构造直角三角形,利用余切的定义求出∠CBD的余切值;(3)联立直线BP和抛物线的解析式成方程组,通过解方程组求出点P的坐标.25.(14分)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC,垂足为D,点P是边AB上的一个动点,过点P作PF∥AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.(1)用含x的代数式表示线段DG的长;(2)设△DEF的面积为y,求y与x之间的函数关系式,并写出定义域;(3)△PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.【分析】(1)根据等腰三角形的性质可得BD=3,通过证明△ABD∽△GBP,可得BG=BP=x,即可得DG的长度;(2)根据相似三角形的性质可得FD=BD﹣BF=3﹣x,DE=x﹣,根据三角形面积公式可求y与x之间的函数关系式;(3)分EF⊥PG,EF⊥PF两种情况讨论,根据相似三角形的性质可求BP的长.【解答】解:(1)∵AB=AC=5,BC=6,AD⊥BC,∴BD=CD=3,在Rt△ABD中,AD==4,∵∠B=∠B,∠ADB=∠BPG=90°,∴△ABD∽△GBP∴∴BG=BP=x,∴DG=BG﹣BD=x﹣3(2)∵PF∥AC∴△BFP∽△BCA∴即∴BF=x,∴FD=BD﹣BF=3﹣x,∵∠DGE+∠DEG=∠DGE+∠ABD,∴∠ABD=∠DEG,∠ADG=∠ADB=90°∴△DEG∽△DBA∴∴=∴DE=x﹣∴S=y=×DF×DE=×(3﹣x)×(x﹣)=﹣x2+x﹣(△DEF<x<)(3)若EF⊥PG时,∵EF⊥PG,ED⊥FG,∴∠FED+∠DEG=90°,∠FED+∠EFD=90°,∴∠EFD=∠DEG,且∠EDF=∠EDG,∴△EFD∽△GDE∴∴ED2=FD×DG∴(x﹣)2=(3﹣x)(x﹣3)∴5×57x2﹣1138x+225×5=0∴x=(不合题意舍去),x=若EF⊥PF,∴∠PFB+∠EFD=90°,且∠PFB=∠ACB,∠ACB+∠DAC=90°∴∠EFD=∠DAC,且∠EDF=∠ADC=90°,∴△EDF∽△CDA∴∴=∴x=综上所述:当BP为或时,△PEF为直角三角形.【点评】本题是三角形综合题,考查了等腰三角形的性质,相似三角形判定和性质,以及分类讨论思想,熟练运用相似三角形的判定和性质是本题的关键.。

2019年最新初中数学练习100题试卷 中考模拟试题417528

2019年最新初中数学练习100题试卷 中考模拟试题417528

2019年初中数学中考练习100题试卷**科目模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.一组数据中有a 个1x ,b 个2x ,c 个3x ,那么这组数据的平均数为( )A .1233x x x ++B .3a b c ++C .1233ax bx cx ++D .123ax bx cx a b c ++++ 2.如果5x y -=,5y z -=,那么z x -的值是( ) A .5 B .10 C .-5 D .-103.下列各式中,属于分式的是( )A . aB . 13C .3aD .3a4.下列现象中,属于平移变换的是( )A .前进中的汽车轮子B .沿直线飞行的飞机C .翻动的书D .正在走动中的钟表指针5.如图,∠BAC= 50°,AE ∥BC ,且∠B= 60°,则∠CAE=( )A .40°B .50°C .60°D .70.6.如图,a ∥b ,则∠1=∠2 的依据是( )A .两直线平行,同位角相等B .两直线平行,内错角相等C .同位角相等,两直线平行D . 内错角相等,两直线平行7.如图,AB∥CD,AC⊥BC于点C,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个8.下列图形:①线段;②角;③数字7;④圆;⑤等腰三角形;⑥直角三角形.其中轴对称图形是()A.①②③④B.①③④⑤⑥C.①②④⑤D.①②⑤9.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠l=2∠2 B.2∠1+∠2=180° C.∠l+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠B = 90°,DE∥AC,交AB边于点 D,交BC边于点E. 若∠C = 30°,则∠1 等于()A.40°B.50°C.60°D.70°11.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱12.与如图所示的三视图相对应的几何体是()A.B. C.D.。

2019年数学中考试题(附答案)

2019年数学中考试题(附答案)
C.(﹣1.5)8÷(﹣1.5)7=﹣1.5D.﹣1.58÷(﹣1.5)7=﹣1.5
9.如图,已知 ,那么下列结论正确的是( )
A. B. C. D.
10.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )
A.1B.0,1C.1,2D.1,2,3
11.二次函数 的图象如图所示,则一次函数 与反比例函数 在同一坐标系内的图象大致为( )
2019年数学中考试题(附答案)
一、选择题
1.下列命题中,其中正确命题的个数为( )个.
①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.
A.1B.2C.3D.4
2.不等式组 的解集在数轴上表示正确的是()
A. B. C. D.
∴∠DAB=90°,
∴∠DAM=30°,
∴AM= ,
故选:B.
【点睛】
本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,
4.A
解析:A
【解析】
试题分析:∵今后项目的数量﹣今年的数量=20,∴ .故选A.
考点:由实际问题抽象出分式方程.
5.C
解析:C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
(收集数据)
甲班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名学生测试成绩统计如下:(满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理数据)

2019年湖南郴州中考数学试题(解析版)

2019年湖南郴州中考数学试题(解析版)

{来源}2019 年郴州市初中学业水平考试数学试卷{适用范围:3.九年级}{标题}2019年湖南省郴州市中考数学试卷考试时间:120分钟满分:130分{题型:1-选择题}一、选择题:本大题共8小题,每小题8分,合计24分.{题目}1.(2019年郴州T1)如右图,数轴上表示-2 的相反数的点是A.MB.NC.PD.Q{答案}A{解析}本题考查了有理数与数轴间的关系,由于点M对应的有理数是-2,因此本题选A.{分值}3{章节:[1-1-2-2]数轴}{考点:数轴表示数}{类别:常考题}{难度:1-最简单}{题目}2.(2019年郴州T2)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是A.B.C.D.{答案}C{解析}本题考查了轴对称图形;中心对称图形,根据轴对称图形与中心对称图形的概念进行判断即可解答本题.中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;因此本题选C.{分值}3{章节:[1-23-2-2]中心对称图形}{考点:轴对称图形}{考点:中心对称图形}{类别:常考题}{难度:1-最简单}{题目}3.(2019年郴州T3)邓小平曾说:“中东有石油,中国有稀土”.稀土是加工制造国防、军工等工业品不可或缺的原料.据有关统计数据表明:至2017 年止,我国已探明稀土储量约4400 万吨,居世界第一位,请用科学记数法表示44 000 000 为A.44×106B.4.4×107C.4.4×108D.0.44×109{答案}B{解析}本题考查了科学计数法表示较大的数,将44 000 000用科学记数法表示为:4.4×107.因此本题选B.{分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4.(2019年郴州T)下列运算正确的是A.(x2)3=x5B C.x·x2·x4=x6D{答案}D{解析}本题考查了同底数幂的乘法以及二次根式的运算,利用相关运算法则进行计算,然后判断即可.(x2)3=x6,所以A=B错误;.x·x2·x4=x7,所以C,所以D正确,因此本题选D.{分值}3{章节:[1-16-3]二次根式的加减}{考点:同底数幂的乘法}{考点:幂的乘方}{考点:二次根式的除法法则}{考点:二次根式的加减法}{类别:常考题}{难度:2-简单}{题目}5.(2019年郴州T5)一元二次方程2 x2+3x−5 =0 的根的情况为A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根{答案}B{解析}本题考查了一元二次方程根的判别式,因为a=2,b=3,c=-5,所以Δ=b2-4ac=32-4×2×(-5)=49>0,所以方程2 x2+3x−5 =0有两个不相等的实数根,因此本题选B.{分值}3{章节:[1-21-2-2]公式法}{考点:根的判别式}{类别:常考题}{难度:2-简单}{题目}6.(2019年郴州T6)下列采用的调查方式中,合适的是A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式{答案}A{解析}本题考查了调查方法的选择,调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.了解东江湖的水质情况时,若进行一次全面的调查,费大量的人力物力是得不尝失,因此宜采用抽样调查的方式,故A选项是合适的;企业为了解所生产的产品的合格率,所采取的实验多带有破坏性,因此采取抽样调查即可,故B选项不合适;小型企业员工数量有限,因此给在职员工做工作服前对每个人进行尺寸大小进行测量即可,所以C选项不合适;在了解某市中小学生的视力情况时,若进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可,故D选项不合适.因此本题选A.{分值}3{章节:[1-19-4]课题学习选择方案}{考点:全面调查}{考点:抽样调查}{类别:思想方法}{难度:2-简单}{题目}7.(2019年郴州T7)如图,分别以线段A B 的两端点A,B 为圆心,大于12AB 长为半径画弧,在线段A B的两侧分别交于点E,F,作直线E F 交A B 于点O.在直线E F 上任取一点P(不与 O 重合),连接 P A ,PB ,则下列结论不一定成立的是A .P A =PB B .OA =OBC .OP =OFD .PO ⊥AB{答案}C{解析}本题考查了线段垂直平分线的性质;作图—复杂作图,由作图过程可知EF 是AB 的垂直平分线,所以PA =PB ,OA =OB ,PO ⊥AB ,一定成立,因此本题选C . {分值}3{章节:[1-13-1-2]垂直平分线} {考点:垂直平分线的性质}{考点:与垂直平分线有关的作图} {考点:垂直平分线的判定} {类别:北京作图} {难度:2-简单}{题目}8.(2019年郴州T 8)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对 全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,则正方形 ADOF 的边长是A .2B .2C .3D .4{答案}B{解析}本题考查了勾股定理和解一元二次方程,设正方形ADOF 的边长为x ,则AB =4+x ,AC =6+x ,BC =10,由于∠A =90°,所以BC 2=AB 2+AC 2,即100=16+8x +x 2+36+12x +x 2,解得x =2或x =-12(不合题意,舍去),因此本题选B . {分值}3{章节:[1-17-1]勾股定理} {考点:勾股定理}{考点:角平分线的性质} {类别:常考题} {难度:2-简单}(第7题图)OFE ABP(第8题图){题型:2-填空题}二、填空题:本大题共8小题,每小题3分,合计24分.{题目}9.(2019年郴州T9)二次根式2x-中,x 的取值范围是.{答案}x≥2{解析}本题考查了二次根式有意义的条件.直接利用二次根式有意义的条件分析得出答案.若2x-在实数范围内有意义,则x-2≥0,解得:x≥2.因此本题应填x≥2.{分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件}{类别:常考题}{难度:2-简单}{题目}10.(2019年郴州T10)若32x yx+=,则yx=.{答案}1 2{解析}本题考查了比例的性质,直接运用比例的性质化简计算即可,因为x yx+=1+yx=32,所以y x =31122-=,因此本题应填12.{分值}3{章节:[1-27-3]图形的相似}{考点:比例的性质}{类别:常考题}{难度:2-简单}{题目}11.(2019年郴州T11)如图,直线a,b被直线c,d所截.若a//b,∠1=130°,∠2=30°,则∠3 的度数为度.{答案}100{解析}本题考查了平行线的性质以及三角形外角的性质,∵a∥b,∴∠1=∠2+∠3,又∵∠2=30°,∴∠3=∠1-∠2=130°-30°=100°,因此本题应填100.{分值}3{章节:[1-11-2]与三角形有关的角}{考点:三角形的外角}{考点:两直线平行同位角相等}{类别:常考题}{难度:2-简单}{题目}12.(2019年郴州T12)某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是.{答案}8{解析}本题考查了中位数的概念,将一组数据从小到大(或从大到小)重新排列后,最中间的数(或最中间的两个数的平均数),叫做这组数据的中位数.将数据9,8,7,6,9,9,7,从小到大排列为:6,7,7,8,9,9,9,中间的数是8,即这组数据的中位数是8,因此本题应填8.(第11题图){分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:2-简单}{题目}13.(2019年郴州T 13)某商店今年 6 月初销售纯净水的数量如下表所示:日期 1 2 3 4数量(瓶) 120 125 130 135 观察此表,利用所学函数知识预测今年 6 月 7 日该商店销售纯净水的数量约为 瓶. {答案}150{解析}本题考查了函数的应用,由表格可知销售数量y 与日期x 之间的函数关系式为y =120+5(x -1)=5x +115,当x =7时,y =5×7+115=150,因此本题应填150. {分值}3{章节:[1-19-1-1]变量与函数} {考点:函数关系式} {考点:函数值} {类别:思想方法} {难度:2-简单}{题目}14.(2019年郴州T 14)如图是甲、乙两人 6 次投篮测试(每次投篮 10 个)成绩的统计图,甲、乙两人测试成绩的方差分别记作2甲S 、2乙S ,则 2甲S 2乙S (填“>”“=”或“<”){答案}<{解析}本题考查了方差的计算,因为甲x =16(8+7+8+6+9+8)=233,2甲S =16〔(8-233)2+(7-233)2+(8-233)2+(6-233)2+(9-233)2+(8-233)2〕=89,乙x =16(7+4+7+9+5+7)=132,2乙S =16〔(7-132)2+(4-132)2+(7-132)2+(9-132)2+(5-132)2+(7-132)2〕=3112,因为3112>89,所以2乙S >2甲S ,因此本题应填“<”.{分值}3{章节:[1-20-2-1]方差} {考点:算术平均数} {考点:方差} {类别:常考题} {难度:2-简单}测试次数测试成绩/个甲 乙(第14题图){题目}15.(2019年郴州T 15)已知某几何体的三视图如图,其中主视图和左视图都是腰长为 5,底边长为 4 的等腰三角形,则该几何体的侧面展开图的面积是 .(结果保留 π ){答案}10π{解析}本题考查了由三视图判断几何体,圆锥的计算.依题意,圆锥的地面周长为4π,圆锥的母线长为5,所以其侧面展开图为扇形,面积为12×4π×5=10π,因此本题应填10π. {分值}3{章节:[1-29-2]三视图} {考点:简单几何体的三视图}{考点:扇形的面积}{类别:常考题} {难度:2-简单}题目}16.(2019年郴州T 16)如图,点 A ,C 分别是正比例函数 y =x 的图象与反比例函数 y =4x的图象的交点,过 A 点作 AD ⊥ x 轴于点 D ,过 C 点作 CB ⊥ x 轴于点 B ,则四边形 ABCD 的面积为 .{答案}8{解析}本题考查了反比例函数与一次函数的交点问题,解方程组4y xy x =⎧⎪⎨=⎪⎩得22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩,所以A 的坐标为(2,2),C 的坐标为(-2,-2),又过 A 点作 AD ⊥ x 轴于点 D ,过 C 点作 CB ⊥ x 轴于点 B ,所以B (-2,0),D (2,0),所以BD =4,AD =2,所以ABCD 的面积=AD ·BD =0,因此本题应填8. {分值}3{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数与一次函数的综合} {考点:一次函数与几何图形综合} {考点:代数填空压轴} {考点:几何填空压轴} {类别:易错题}(第15题图)55 44(第16题图){难度:3-中等难度}{题型:4-解答题}三、解答题:本大题共10小题,合计82分.{题目}17.(2019年郴州T 17)计算:0011(3)2cos3013()2π---++{解析}本题考查了实数的运算,零指数幂,负整数指数幂,绝对值,特殊角的三角函数值.直接利用特殊角的三角函数值以及零指数幂的性质、绝对值的性质分别化简得出答案. {答案}解:原式=1-2331+2 =1331+2 =2{分值}6{章节:[1-28-3]锐角三角函数} {难度:2-简单} {类别:常考题} {考点:简单的实数运算} {考点:二次根式的混合运算} {考点:特殊角的三角函数值}{题目}18.(2019年郴州T 18)先化简,再求值:2211211a a a a a ----+-,其中a 3. {解析}本题考查了分式的化简求值,原式中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求值.{答案}解: 原式=21(1)a a ---1(1)(1)a a a -+-=22(1)(1)(1)(1)(1)a a a a a -+---+=1(1)(1)(1)a a a a +---+=221aa -. 当a 3223(3)1-233 {分值}6{章节:[1-15-2-2]分式的加减} {难度:2-简单} {类别:常考题}{考点:分式的混合运算} {考点:简单的实数运算} {题目}19.(2019年郴州T 19)如图,□ABCD 中,点 E 是边 AD 的中点,连接 CE 并延长交 BA 的延长线于点 F ,连接 AC ,DF .求证:四边形 A CDF 是平行四边形.{解析}本题考查了平行四边形、平行线的判定,全等三角形的性质,解题的关键是得到AF ∥CD ,且AF =C D . {答案}证明:∵ABCD 是平行四边形,∴AB ∥CD ,即AF ∥CD , ∴∠AFE =∠DCE∵点 E 是边 AD 的中点, ∴EF =EC ,又∵∠AEF=∠DEC,∴△AEF≌△DEC,∴AF=DC∴四边形A CDF 是平行四边形.{分值}6{章节:[1-18-1-2]平行四边形的判定}{难度:3-中等难度}{类别:常考题}{考点:平行四边形边的性质}{考点:两直线平行内错角相等}{考点:全等三角形的判定ASA,AAS}{考点:全等三角形的性质}{考点:一组对边平行且相等的四边形是平行四边形}{题目}20.(2019年郴州T20)我市去年成功举办2018 郴州国际休闲旅游文化节,获评“全国森林旅游示范市”.我市有A,B,C,D,E五个景区很受游客喜爱.一旅行社对某小区居民在暑假期间去以上五个景区旅游(只选一个景区)的意向做了一次随机调查统计,并根据这个统计结果制作了如下两幅不完整的统计图:(1)该小区居民在这次随机调查中被调查到的人数是人,m=,并补全条形统计图;(2)若该小区有居民1200 人,试估计去B地旅游的居民约有多少人?(3)小军同学已去过E地旅游,暑假期间计划与父母从A,B,C,D四个景区中,任选两个去旅游,求选到A,C两个景区的概率.(要求画树状图或列表求概率){解析}本题考查了扇形统计图;条形统计图;列表法与树状图法.(1)由D组人数及其所占百分比求得被调查人数,再用B组人数除以被调查人数所得的百分比求m,继而根据各组人数之和等于总人数求出C组的人数,从而补全条形统计图;(2)用样本估计总体,从而估计去B地旅游的居民人数;(3)依据树状图,可得共有12种等可能的情况,其中选中A、C的情况有2种,即可得选到A,C两个景区的概率.{答案}解:(1)有统计图可知:D组人数有20人,占调查人数的10%,所以被调查到的人数为20÷10%=200(人)又B组人数为70,所以占被调查人数的70÷200×100%=35%,所以m=35,C组人数为:200-20-70-20-50=40(人)补全的条形统计图为:(2)若该小区有居民1200 人,则去B地旅游的居民约有1200×70200=420(人);(3)画树状图如下:A B CA B DA C DB C DA B C D可见,共有12种等可能的情况,其中选中A、C的情况有2种,所以选到A,C两个景区的概率为21 126=.{分值}8{章节:[1-25-2]用列举法求概率}{难度:3-中等难度}{类别:常考题}{考点:两步事件不放回}{考点:扇形统计图}{考点:条形统计图}{题目}21.(2019年郴州T21)如图所示,巡逻船在A处测得灯塔C在北偏东45°方向上,距离 A 处30 km.在灯塔C的正南方向B处有一渔船发出求救信号,巡逻船接到指示后立即前往施救.已知B处在A处的北偏东60°方向上,这时巡逻船与渔船的距离是多少?(精确到0.01 km.参考数据:2≈1.414,3≈1.732,6≈2.449 ){解析}本题考查了解直角三角形的应用-方向角问题.延长CB交东西方向线于点D,则AD=AC·sin45°,AD=AB·sin60°,从而得到AC·sin45°=AB·sin60°,由于AC=30km,sin45°=22,sin60°=32,因此可求得AB,此即巡逻船与渔船的距离.{答案}解:延长CB交东西方向线于点D,则AD=AC·sin45°,AD=AB·sin60°,∴AC·sin45°=AB·sin60°,由于AC=30km,sin45°=22,sin60°=32,∴AB=sin45sin60AC︒︒=230232⨯=106≈24.49(km)答:巡逻船与渔船的距离是24.49km.{分值}8{章节:[1-28-1-2]解直角三角形}{难度:3-中等难度}{类别:常考题}{考点:解直角三角形-方位角}{考点:解直角三角形}{题目}22.(2019年郴州T22)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?{解析}本题考查了分式方程的应用;一元一次不等式组的应用.(1)设一台A型号机器每小时加工x(第21题图)个零件,则一台B型机器每小时加工(x-2)个零件,根据一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用两种机器每小时加工的零件不少于72件,不能超过76件,列方程组可得出结论.{答案}解:(1)设一台A型号机器每小时加工x个零件,则一台B型机器每小时加工(x-2)个零件,根据80602x x=-,解得x=8经检验x=8是原方程的解,所以A型机器每小时加工零件8个,B型机器每小时加工零件6个;(2)设A型号机器安排y台,则B型号机器安排(10-y)台,依题意,可得72≤8y+6(10-y)≤76解得6≤y≤8即y的可取值为:6,7,8所以A,B两种型号的机器可以作如下安排:①A型号机器6台,B型号机器4台;②A型号机器7台,B型号机器3台;③A型号机器8台,B型号机器2台.{分值}8{章节:[1-15-3]分式方程}{难度:3-中等难度}{类别:常考题}{考点:其他分式方程的应用}{考点:一元一次不等式的整数解}{考点:一元一次不等式的应用}{题目}23.(2019年郴州T23)如图,已知A B 是⊙O 的直径,CD 与⊙O 相切于点D,且A D//O C.(1)求证:BC 是⊙O 的切线;(2)延长C O 交⊙O 于点E.若∠CEB=30°,⊙O 的半径为2,求BD的长.(结果保留π ){解析}本题考查了切线的判定与性质、全等三角形的判定与性质以及平行线的性质和弧长的计算.注意掌握辅助线的作法,注意掌握数形结合思想的应用是解决问题的关键.{答案}解:(1)证明:连接OD,如答图所示.∵AD//OC,∴∠COD=∠ADO,∠COB=∠DAO,又∵OA=OD,∴∠ADO=∠DAO,∴∠COD=∠COB,在△COD和△COB中OD OBCOD COB OC OC=⎧⎪∠=∠⎨⎪=⎩,(23题答图)(第23题图)∴△COD ≌COB , ∴∠CDO =∠CBO , 又CD 与⊙O 相切于点 D , ∴∠CDO =90°, ∴∠CBO =90°, ∴BC 是⊙O 的切线;(2)∵∠CEB =30°,∴∠COB =60°,由(1)知,∠COD =∠COB , ∴∠COD =60°,∴∠DOB =∠COD +∠COB =120° ∵⊙O 的半径为 2,∴BD 的长=1202180π⨯⨯=43π.{分值}8{章节:[1-24-2-2]直线和圆的位置关系} {难度:3-中等难度} {类别:常考题}{考点:两直线平行同位角相等} {考点:两直线平行内错角相等} {考点:全等三角形的判定SAS } {考点:全等三角形的性质} {考点:切线的性质} {考点:切线的判定} {考点:弧长的计算}{题目}24.(2019年郴州T 24)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数 2111x y xx x ⎧-≤-⎪=⎨⎪->-⎩的图象与性质. x…-3 -52 -2 -32 -1 -12 0 12 1 32 2 523 … y … 23 45 1 43 2 32 1 12 0 12 1 322 … 图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象; (2)研究函数并结合图象与表格,回答下列问题:①点A (-5,y 1),B (-72,y 2),C (x 1,52),D (x 2,6)在函数图象上,则 y 1 y 2 , x 1 x 2 ;(填“>”、“=”或“<”)②当函数值y =2 时,求自变量 x 的值;③在直线x =-1的右侧的函数图象上有两个不同的点 P ( x 3,y 3 ),Q ( x 4,y 4 ) ,且y 3=y 4 ,求x 3+x 4的值; ④ 若直线 y =a 与函数图象有三个不同的交点,求 a 的取值范围.{解析}本题考查了函数图象的一般画法,分段函数的增减性,绝对值的性质等内容.{答案}解:(1)根据列表、描点,可以做出函数图像,如下图:(2)①由图象可知,当x ≤-1时,函数值随x 的增大而减小,因为A 、B 在函数图象上,且-5<-72<-1, 所以y 1<y 2.又因为52>2,6>2,C 、D 在函数图象上, 所以C 、D 在函数图象y =x -1(x >1)上,且函数值随x 的增大而增大, ∵52<6,∴x 1<x 2. 即这里的两空应填:<;<.②当y =2时,若x ≤-1,则有-2x=2,解得x =-1;若x >-1时,则有|x -1|=2,即x -1=±2,解得x =3或x =-1(不合题意,舍去)综上所述,y =2时,自变量x 的值为-1或3.③若点 P ( x 3,y 3 ),Q ( x 4,y 4 ) 是直线x =-1的右侧的函数图象上的两个不同的点,且y 3=y 4 ,则|x 3-1|=|x 4-1|,所以x 3-1=-(x 4-1),所以x 3+x 4=2. ④若直线 y =a 与函数图象有三个不同的交点, 通过观察函数图象可知:0<a <2.{分值}10{章节:[1-26-1]反比例函数的图像和性质} {难度:3-中等难度} {类别:高度原创} {考点:分段函数}{考点:函数图象上的点} {考点:一次函数的性质} {考点:反比例函数的性质}{题目}25.(2019年郴州T 25)如图1,矩形ABCD 中,点E 为AB 边上的动点(不与A ,B 重合),把△ADE 沿DE 翻折,点A 的对应点为A 1 ,延长EA 1交直线DC 于点F ,再把∠BEF 折叠,使点B 的对应点B 1落在EF 上,折痕EH 交直线BC 于点H . (1)求证:△A 1DE ∽△B 1EH ;(2)如图2,直线MN 是矩形ABCD 的对称轴,若点A 1恰好落在直线MN 上,试判断△DEF 的形状,并说明理由;(3)如图3,在(2)的条件下,点G 为△DEF 内一点,且∠DGF =150°,试探究DG ,EG ,FG 的数量关系.{解析}本题考查了相似三角形的判定,轴对称图形的性质,勾股定理等内容.{答案}解:(1)证明:由于△ADE 沿DE 翻折,点A 的对应点为A 1 , ∴∠AED =∠A 1ED再把∠BEF 折叠,使点B 的对应点B 1落在EF 上,折痕EH 交直线BC 于点H . ∴∠BEH =∠FEH ,又∠AED +∠A 1ED +∠BEH +∠FEH =180° ∴∠A 1ED +∠FEH =90°∵ABCD 是矩形,∴∠EDA 1+∠A 1ED =180°-90°=90° ∴∠∠EDA 1=∠FEH ,又∠DAE =∠DA 1E =∠HBE =∠HB 1E =90°, ∴△A 1DE ∽△B 1EH ;(2)△DEF 是等边三角形,理由如下:∵MN 是矩形的对称轴,点A 1恰好落在直线MN 上, ∴111EAA F,即EA 1=A 1F , 又∠DA 1E =90°∴DA 1是EF 的垂直平分线,∴DE =DF ,∠EDA 1=∠FDA 1,即△DEF 是等腰三角形. ∵△A 1DE 是△ADE 沿DE 翻折得到的,∴∠ADE =∠A 1DE =∠A 1DF =13∠ADC =30°,∴∠EDF =60°,即△DEF 是等边三角形.(3)DG ,EG ,FG 所满足的数量关系为:DG 2+FG 2=EG 2. 理由如下:将△EDG 绕点E 逆时针旋转60°,从而旋转后的ED 将会和EF 重合,同时G 点落在了 G 1的位置(如答图).由于△EFG 1是由△EDG 旋转过去得到的, 因此FG 1=DG ,EG =EG 1,∠GEG 1=60°. ∴GG 1=EG ,所以△GFG 1的三边长事实上分别等于GF 、GD 、GE 。

2019年中考数学模拟试卷含答案

2019年中考数学模拟试卷含答案

2019年中考数学模拟试卷含答案2019年九年级数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.-3的相反数是()A。

3 B。

-3 C。

1/3 D。

-1/32.计算2×3的结果是()A。

5 B。

6 C。

23 D。

33.某市棚户区改造项目总占地亩。

这个数用科学计数法表示为()A。

1.29×10^5 B。

1.129×10^1 C。

1.129×10^4 D。

1.129×10^34.下列命题中错误的是()A。

两组对边分别对应相等的四边形是平行四边形B。

两条对角线相等的平行四边形是矩形C。

两条对角线垂直的平行四边形是菱形D。

两条对角线垂直且相等的四边形是正方形5.某同学一周中每天体育运动所花时间(单位:分钟)分别为:35,40,45,40,55,40,48.这组数据的中位数是()A。

35 B。

40 C。

45 D。

486.如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:AD=2:1,△ABC的面积是18,则△DEC的面积是()A。

8 B。

9 C。

12 D。

157.若关于x的一元二次方程kx^2-2x-1=0没有实数根,则k的取值范围是()A。

k>-1 B。

k>-1且k≠0 C。

k<1 D。

k<-18.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2)。

设AE=x(0<x<2),则以下哪个选项是正确的?A。

当x=1时,点P是正方形ABCD的中心。

B。

当x=1/2时,EF+GH=AC。

C。

当0<x<2时,六边形AEFCHG面积的最大值是3.D。

当0<x<2时,六边形AEFCHG周长的值不变。

二、填空题(本大题共10小题,每小题3分,共30分,把答案填在相应的空格内)9.分解因式:2x^2-8=2(x+2)(x-2)10.二次根式1-x有意义的条件是x≤1.11.已知∠α=20°,则∠α的余角等于70°。

山东省2019年、2020年数学中考试题分类(8)——二次函数(含解析)

山东省2019年、2020年数学中考试题分类(8)——二次函数(含解析)

山东省2019年、2020年数学中考试题分类(8)——二次函数一.选择题(共13小题)1.(2020•东营)如图,已知抛物线2(0)y ax bx c a =++≠的图象与x 轴交于A 、B 两点,其对称轴与x 轴交于点C ,其中A 、C 两点的横坐标分别为1-和1,下列说法错误的是( )A .0abc <B .40a c +=C .1640a b c ++<D .当2x >时,y 随x 的增大而减小2.(2020•威海)如图,抛物线2(0)y ax bx c a =++≠交x 轴于点A ,B ,交y 轴于点C .若点A 坐标为(4,0)-,对称轴为直线1x =-,则下列结论错误的是( )A .二次函数的最大值为a b c -+B .0a b c ++>C .240b ac ->D .20a b +=3.(2020•菏泽)一次函数y acx b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .4.(2020•泰安)在同一平面直角坐标系内,二次函数2(0)y ax bx b a =++≠与一次函数y ax b =+的图象可能是( )A .B .C .D .5.(2020•枣庄)如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①0ac <;②240b ac ->;③20a b -=;④0a b c -+=.其中,正确的结论有( )A .1个B .2个C .3个D .4个6.(2020•滨州)对称轴为直线1x =的抛物线2(y ax bx c a =++、b 、c 为常数,且0)a ≠如图所示,小明同学得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④30a c +>,⑤()(a b m am b m ++为任意实数),⑥当1x <-时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .67.(2020•德州)二次函数2y ax bx c =++的部分图象如图所示,则下列选项错误的是( )A .若1(2,)y -,2(5,)y 是图象上的两点,则12y y >B .30a c +=C .方程22ax bx c ++=-有两个不相等的实数根D .当0x 时,y 随x 的增大而减小8.(2019•济南)关于x 的一元二次方程2102ax bx ++=有一个根是1-,若二次函数212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是( )A .1142t <<B .114t -< C .1122t -< D .112t -<< 9.(2019•莱芜区)将二次函数256y x x =--在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线2y x b =+与这个新图象有3个公共点,则b 的值为( )A .734-或12-B .734-或2C .12-或2D .694-或12- 10.(2019•日照)如图,是二次函数2y ax bx c =++图象的一部分,下列结论中: ①0abc >;②0a b c -+<;③210ax bx c +++=有两个相等的实数根;④42a b a -<<-.其中正确结论的序号为( )A .①②B .①③C .②③D .①④11.(2019•淄博)将二次函数24y x x a =-+的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线2y =有两个交点,则a 的取值范围是( )A .3a >B .3a <C .5a >D .5a <12.(2019•临沂)从地面竖直向上抛出一小球,小球的高度h (单位:)m 与小球运动时间t (单位:)s 之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m ;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度30h m =时, 1.5t s =.其中正确的是( )A .①④B .①②C .②③④D .②③13.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--二.填空题(共5小题)14.(2020•烟台)二次函数2y ax bx c =++的图象如图所示,下列结论:①0ab >;②10a b +-=;③1a >;④关于x 的一元二次方程20ax bx c ++=的一个根为1,另一个根为1a-.其中正确结论的序号是 .15.(2020•青岛)抛物线222(1)(y x k x k k =+--为常数)与x 轴交点的个数是 .16.(2020•泰安)已知二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠的y 与x 的部分对应值如下表: x 5- 4- 2- 0 2y 6 0 6- 4-6 下列结论:①0a >;②当2x =-时,函数最小值为6-;③若点1(8,)y -,点2(8,)y 在二次函数图象上,则12y y <;④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是 .(把所有正确结论的序号都填上)17.(2019•济宁)如图,抛物线2y ax c =+与直线y mx n =+交于(1,)A p -,(3,)B q 两点,则不等式2ax mx c n ++>的解集是 .18.(2019•泰安)若二次函数25y x bx =+-的对称轴为直线2x =,则关于x 的方程25213x bx x +-=-的解为 .三.解答题(共24小题)19.(2020•东营)如图,抛物线234y ax ax a =--的图象经过点(0,2)C ,交x 轴于点A 、B (点A 在点B 左侧),连接BC ,直线1(0)y kx k =+>与y 轴交于点D ,与BC 上方的抛物线交于点E ,与BC 交于点F .(1)求抛物线的解析式及点A 、B 的坐标;(2)EF DF是否存在最大值?若存在,请求出其最大值及此时点E 的坐标;若不存在,请说明理由.20.(2020•威海)已知,在平面直角坐标系中,抛物线22221y x mx m m =-++-的顶点为A .点B 的坐标为(3,5).(1)求抛物线过点B 时顶点A 的坐标;(2)点A 的坐标记为(,)x y ,求y 与x 的函数表达式;(3)已知C 点的坐标为(0,2),当m 取何值时,抛物线22221y x mx m m =-++-与线段BC 只有一个交点.21.(2020•潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y (桶)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价-进价)22.(2020•淄博)如图,在直角坐标系中,四边形OABC 是平行四边形,经过(2,0)A -,B ,C 三点的抛物线28(0)3y ax bx a =++<与x 轴的另一个交点为D ,其顶点为M ,对称轴与x 轴交于点E . (1)求这条抛物线对应的函数表达式;(2)已知R 是抛物线上的点,使得ADR ∆的面积是OABC 的面积的34,求点R 的坐标; (3)已知P 是抛物线对称轴上的点,满足在直线MD 上存在唯一的点Q ,使得45PQE ∠=︒,求点P 的坐标.23.(2020•青岛)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长4AD m =,宽3AB m =,抛物线的最高点E 到BC 的距离为4m .(1)按如图①所示的直角坐标系,抛物线可以用2(0)y kx m k =+≠表示.求该抛物线的函数表达式;(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元2/m .已知2GM m =,求每个B 型活动板房的成本是多少?(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本)(3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少?24.(2020•烟台)如图,抛物线22y ax bx =++与x 轴交于A ,B 两点,且2OA OB =,与y 轴交于点C ,连接BC ,抛物线对称轴为直线12x =,D 为第一象限内抛物线上一动点,过点D 作DE OA ⊥于点E ,与AC 交于点F ,设点D 的横坐标为m .(1)求抛物线的表达式;(2)当线段DF 的长度最大时,求D 点的坐标;(3)抛物线上是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC ∆相似?若存在,求出m 的值;若不存在,请说明理由.25.(2020•潍坊)如图,抛物线28(0)y ax bx a =++≠与x 轴交于点(2,0)A -和点(8,0)B ,与y 轴交于点C ,顶点为D ,连接AC ,BC ,BC 与抛物线的对称轴l 交于点E .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当35PBC ABC S S ∆∆=时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与OBC ∆相似?若存在,求点M 的坐标;若不存在,请说明理由.26.(2020•菏泽)如图,抛物线26y ax bx =+-与x 轴相交于A ,B 两点,与y 轴相交于点C ,2OA =,4OB =,直线l 是抛物线的对称轴,在直线l 右侧的抛物线上有一动点D ,连接AD ,BD ,BC ,CD .(1)求抛物线的函数表达式;(2)若点D 在x 轴的下方,当BCD ∆的面积是92时,求ABD ∆的面积; (3)在(2)的条件下,点M 是x 轴上一点,点N 是抛物线上一动点,是否存在点N ,使得以点B ,D ,M ,N 为顶点,以BD 为一边的四边形是平行四边形,若存在,求出点N 的坐标;若不存在,请说明理由.27.(2020•临沂)已知抛物线22232(0)y ax ax a a =--+≠.(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点1(,)P m y ,2(3,)Q y 在抛物线上,若12y y <,求m 的取值范围.28.(2020•泰安)若一次函数33y x =--的图象与x 轴,y 轴分别交于A ,C 两点,点B 的坐标为(3,0),二次函数2y ax bx c =++的图象过A ,B ,C 三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C 作//CD x 轴交抛物线于点D ,点E 在抛物线上(y 轴左侧),若BC 恰好平分DBE ∠.求直线BE 的表达式;(3)如图(2),若点P 在抛物线上(点P 在y 轴右侧),连接AP 交BC 于点F ,连接BP ,BFP BAF S mS ∆∆=.①当12m =时,求点P 的坐标; ②求m 的最大值.29.(2020•德州)如图1,在平面直角坐标系中,点A 的坐标是(0,2)-,在x 轴上任取一点M ,连接AM ,分别以点A 和点M 为圆心,大于12AM 的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,过点M 作x 轴的垂线l 交直线GH 于点P .根据以上操作,完成下列问题.探究:(1)线段PA 与PM 的数量关系为 ,其理由为: .的位置,按上述作图方法得到相应点 M 的坐标 ⋯ (2,0)- (0,0) (2,0) (4,0) ⋯ P 的坐标⋯ (0,1)- (2,2)- ⋯ (3)请根据上述表格中P 点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L ,猜想曲线L 的形状是 .验证:(4)设点P 的坐标是(,)x y ,根据图1中线段PA 与PM 的关系,求出y 关于x 的函数解析式.应用:(5)如图3,点(1,3)B -,(1,3)C ,点D 为曲线L 上任意一点,且30BDC ∠<︒,求点D 的纵坐标D y 的取值范围.30.(2020•枣庄)如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,连接AC ,BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .设M 点的坐标为(,0)M m ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.31.(2020•滨州)如图,抛物线的顶点为(,1)A h -,与y 轴交于点1(0,)2B -,点(2,1)F 为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l 是过点(0,3)C -且垂直于y 轴的定直线,若抛物线上的任意一点(,)P m n 到直线l 的距离为d ,求证:PF d =;(3)已知坐标平面内的点(4,3)D ,请在抛物线上找一点Q ,使DFQ ∆的周长最小,并求此时DFQ ∆周长的最小值及点Q 的坐标.32.(2020•济宁)我们把方程222()()x m y n r -+-=称为圆心为(,)m n 、半径长为r 的圆的标准方程.例如,圆心为(1,2)-、半径长为3的圆的标准方程是22(1)(2)9x y -++=.在平面直角坐标系中,C 与轴交于点A ,B ,且点B 的坐标为(8,0),与y 轴相切于点(0,4)D ,过点A ,B ,D 的抛物线的顶点为E .(1)求C 的标准方程;(2)试判断直线AE 与C 的位置关系,并说明理由.33.(2020•聊城)如图,二次函数24y ax bx =++的图象与x 轴交于点(1,0)A -,(4,0)B ,与y 轴交于点C ,抛物线的顶点为D ,其对称轴与线段BC 交于点E ,垂直于x 轴的动直线l 分别交抛物线和线段BC 于点P 和点F ,动直线l 在抛物线的对称轴的右侧(不含对称轴)沿x 轴正方向移动到B 点.(1)求出二次函数24y ax bx =++和BC 所在直线的表达式;(2)在动直线l 移动的过程中,试求使四边形DEFP 为平行四边形的点P 的坐标;(3)连接CP ,CD ,在动直线l 移动的过程中,抛物线上是否存在点P ,使得以点P ,C ,F 为顶点的三角形与DCE ∆相似?如果存在,求出点P 的坐标;如果不存在,请说明理由.34.(2020•滨州)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?35.(2019•济南)如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180︒,得到新的抛物线C '.(1)求抛物线C 的函数解析式及顶点G 的坐标;(2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为(2)m m <-,连接DO 并延长,交抛物线C '于点E ,交直线l 于点M ,若2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.36.(2019•莱芜区)如图,抛物线2y ax bx c =++经过(3,0)A -,(1,0)B ,(0,3)C 三点.(1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若PAC ∆面积为3,求点P 的坐标;(3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与ABC ∆相似?若存在,求点M 的坐标;若不存在,请说明理由.37.(2019•日照)如图1,在平面直角坐标系中,直线55y x =-+与x 轴,y 轴分别交于A ,C 两点,抛物线2y x bx c =++经过A ,C 两点,与x 轴的另一交点为B .(1)求抛物线解析式及B 点坐标;(2)若点M 为x 轴下方抛物线上一动点,连接MA 、MB 、BC ,当点M 运动到某一位置时,四边形AMBC 面积最大,求此时点M 的坐标及四边形AMBC 的面积;(3)如图2,若P 点是半径为2的B 上一动点,连接PC 、PA ,当点P 运动到某一位置时,12PC PA +的值最小,请求出这个最小值,并说明理由.38.(2019•烟台)如图,顶点为M 的抛物线23y ax bx =++与x 轴交于(1,0)A -,B 两点,与y 轴交于点C ,过点C 作CD y ⊥轴交抛物线于另一点D ,作DE x ⊥轴,垂足为点E ,双曲线6(0)y x x=>经过点D ,连接MD ,BD .(1)求抛物线的表达式;(2)点N ,F 分别是x 轴,y 轴上的两点,当以M ,D ,N ,F 为顶点的四边形周长最小时,求出点N ,F 的坐标;(3)动点P 从点O 出发,以每秒1个单位长度的速度沿OC 方向运动,运动时间为t 秒,当t 为何值时,BPD ∠的度数最大?(请直接写出结果)39.(2019•东营)已知抛物线24y ax bx =+-经过点(2,0)A 、(4,0)B -,与y 轴交于点C .(1)求这条抛物线的解析式;(2)如图1,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标;(3)如图2,线段AC 的垂直平分线交x 轴于点E ,垂足为D ,M 为抛物线的顶点,在直线DE 上是否存在一点G ,使CMG ∆的周长最小?若存在,求出点G 的坐标;若不存在,请说明理由.40.(2019•聊城)如图,在平面直角坐标系中,抛物线2y ax bx c=++与x轴交于点(2,0)A-,点(4,0)B,与y轴交于点(0,8)C,连接BC.又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B (不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得PEA∆和AOC∆相似的点P的坐标;(3)作PF BC⊥,垂足为F,当直线l运动时,求Rt PFD∆面积的最大值.41.(2019•菏泽)如图,抛物线与x轴交于A,B两点,与y轴交于点(0,2)C-,点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD x⊥轴于点D,交直线BC于点E,抛物线的对称轴是直线1x=-.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且14PE OD=,求PBE∆的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使BDM∆是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.42.(2019•潍坊)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10万元.(1)求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计算时,其它费用忽略不计.)山东省2019年、2020年数学中考试题分类(8)——二次函数一.选择题(共13小题)1.(2020•东营)如图,已知抛物线2(0)y ax bx c a =++≠的图象与x 轴交于A 、B 两点,其对称轴与x 轴交于点C ,其中A 、C 两点的横坐标分别为1-和1,下列说法错误的是( )A .0abc <B .40a c +=C .1640a b c ++<D .当2x >时,y 随x 的增大而减小【解答】解:抛物线开口向下,因此0a <,对称轴为1x =,即12b a-=,也就是20a b +=,0b >,抛物线与y 轴交于正半轴,于是0c >,0abc ∴<,因此选项A 不符合题意;由(1,0)A -、(1,0)C 对称轴为1x =,可得抛物线与x 轴的另一个交点(3,0)B ,0a b c ∴-+=,20a a c ∴++=,即30a c +=,因此选项B 符合题意;当4x =时,1640y a b c =++<,因此选项C 不符合题意;当1x >时,y 随x 的增大而减小,因此选项D 不符合题意;故选:B .2.(2020•威海)如图,抛物线2(0)y ax bx c a =++≠交x 轴于点A ,B ,交y 轴于点C .若点A 坐标为(4,0)-,对称轴为直线1x =-,则下列结论错误的是( )A .二次函数的最大值为a b c -+B .0a b c ++>C .240b ac ->D .20a b +=【解答】解:当1x =-时,y a b c =-+的值最大,选项A 不符合题意;抛物线与x 轴的另一个交点为(2,0),当1x =时,0y a b c =++>,因此选项B 不符合题意;抛物线与x 轴有两个不同交点,因此240b ac ->,故选项C 不符合题意;抛物线2y ax bx c =++过点(4,0)A -,对称轴为直线1x =-,因此有:12b x a=-=-,即20a b -=,因此选项D 符合题意; 故选:D .3.(2020•菏泽)一次函数y acx b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A.B.C.D.【解答】解:A、由抛物线可知,0b>,故本选ac>,0ac>,由直线可知,0b<,0c>,则0a>,0项不合题意;B、由抛物线可知,0ac>,0ac>,由直线可知,0b>,故本选项符合题意;c>,则0b>,0a>,0ac<,0b<,故本选项不合题意;ac<,由直线可知,0c>,则0C、由抛物线可知,0a<,0b>,0D、由抛物线可知,0ac>,0ac<,由直线可知,0b>,故本选项不合题意.a<,0b<,0c>,则0故选:B.4.(2020•泰安)在同一平面直角坐标系内,二次函数2(0)=++≠与一次函数y ax by ax bx b a=+的图象可能是()A.B.C.D.【解答】解:A、二次函数图象开口向上,对称轴在y轴右侧,b<,∴>,0a∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故A错误;B、二次函数图象开口向下,对称轴在y轴左侧,∴<,0b<,a∴一次函数图象应该过第二、三、四象限,且与二次函数交于y轴负半轴的同一点,故B错误;C、二次函数图象开口向上,对称轴在y轴右侧,b<,∴>,0a∴一次函数图象应该过第一、三、四象限,且与二次函数交于y轴负半轴的同一点,故C正确;D、二次函数图象开口向上,对称轴在y轴右侧,0a ∴>,0b <,∴一次函数图象应该过第一、三、四象限,且与二次函数交于y 轴负半轴的同一点, 故D 错误;故选:C .5.(2020•枣庄)如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论: ①0ac <;②240b ac ->; ③20a b -=;④0a b c -+=.其中,正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:抛物线开口向下,0a <,对称轴为12b x a=-=,因此0b >,与y 轴交于正半轴,因此0c >, 于是有:0ac <,因此①正确;由12b x a=-=,得20a b +=,因此③不正确, 抛物线与x 轴有两个不同交点,因此240b ac ->,②正确,由对称轴1x =,抛物线与x 轴的一个交点为(3,0),对称性可知另一个交点为(1,0)-,因此0a b c -+=,故④正确,综上所述,正确的结论有①②④,故选:C .6.(2020•滨州)对称轴为直线1x =的抛物线2(y ax bx c a =++、b 、c 为常数,且0)a ≠如图所示,小明同学得出了以下结论:①0abc <,②24b ac >,③420a b c ++>,④30a c +>,⑤()(a b m am b m ++为任意实数),⑥当1x <-时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .6【解答】解:①由图象可知:0a >,0c <,12b a-=, 20b a ∴=-<,0abc ∴>,故①错误;②抛物线与x 轴有两个交点,240b ac ∴->,24b ac ∴>,故②正确;③当2x =时,420y a b c =++<,故③错误;④当1x =-时,(2)0y a b c a a c =-+=--+>,30a c ∴+>,故④正确;⑤当1x =时,y 取到值最小,此时,y a b c =++,而当x m =时,2y am bm c =++,所以2a b c am bm c ++++,故2a b am bm ++,即()a b m am b ++,故⑤正确,⑥当1x <-时,y 随x 的增大而减小,故⑥错误,故选:A .7.(2020•德州)二次函数2y ax bx c =++的部分图象如图所示,则下列选项错误的是( )A .若1(2,)y -,2(5,)y 是图象上的两点,则12y y >B .30a c +=C .方程22ax bx c ++=-有两个不相等的实数根D .当0x 时,y 随x 的增大而减小【解答】解:抛物线的对称轴为直线1x =,0a <,∴点(1,0)-关于直线1x =的对称点为(3,0),则抛物线与x 轴的另一个交点坐标为(3,0),点1(2,)y -与1(4,)y 是对称点,当1x >时,函数y 随x 增大而减小,故A 选项不符合题意;把点(1,0)-,(3,0)代入2y ax bx c =++得:0a b c -+=①,930a b c ++=②,①3⨯+②得:1240a c +=,30a c ∴+=,故B 选项不符合题意;当2y =-时,22y ax bx c =++=-,由图象得:纵坐标为2-的点有2个, ∴方程22ax bx c ++=-有两个不相等的实数根,故C 选项不符合题意;二次函数图象的对称轴为1x =,0a <,∴当1x 时,y 随x 的增大而增大;当1x 时,y 随x 的增大而减小;故D 选项符合题意;故选:D .8.(2019•济南)关于x 的一元二次方程2102ax bx ++=有一个根是1-,若二次函数212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是( )A .1142t <<B .114t -< C .1122t -< D .112t -<< 【解答】解:关于x 的一元二次方程2102ax bx ++=有一个根是1-,∴二次函数212y ax bx =++的图象过点(1,0)-, 102a b ∴-+=, 12b a ∴=+, 而2t a b =+,则216t a -=,226t b +=, 二次函数212y ax bx =++的图象的顶点在第一象限, 02b a∴->,21024b a ->, 将216t a -=,226t b +=代入上式得: 22602126t t +->-⨯,解得:112t -<<, 222()1602124()6t t +->-,解得:12t ≠, 故:112t -<<, 故选:D .9.(2019•莱芜区)将二次函数256y x x =--在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新图象,若直线2y x b =+与这个新图象有3个公共点,则b 的值为( )A .734-或12-B .734-或2C .12-或2D .694-或12- 【解答】解:如图所示,过点B 的直线2y x b =+与新抛物线有三个公共点,将直线向下平移到恰在点C 处相切,此时与新抛物线也有三个公共点,令2560y x x =--=,解得:1x =-或6,即点B 坐标(6,0), 将一次函数与二次函数表达式联立得:2562x x x b --=+,整理得:2760x x b ---=,△494(6)0b =---=,解得:734b =-,当一次函数过点B 时,将点B 坐标代入:2y x b =+得:012b =+,解得:12b =-,综上,直线2y x b =+与这个新图象有3个公共点,则b 的值为12-或734-; 故选:A .10.(2019•日照)如图,是二次函数2y ax bx c =++图象的一部分,下列结论中: ①0abc >;②0a b c -+<;③210ax bx c +++=有两个相等的实数根;④42a b a -<<-.其中正确结论的序号为( )A .①②B .①③C .②③D .①④【解答】解:由抛物线的开口方向向上可推出0a >,与y 轴的交点为在y 轴的负半轴上可推出10c =-<,对称轴为102b x a=->>,0a >,得0b <, 故0abc >,故①正确;由对称轴为直线12b x a=->,抛物线与x 轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(1,0)-之间,所以当1x =-时,0y >,所以0a b c -+>,故②错误;抛物线与y 轴的交点为(0,1)-,由图象知二次函数2y ax bx c =++图象与直线1y =-有两个交点, 故210ax bx c +++=有两个不相等的实数根,故③错误;由对称轴为直线2b x a =-,由图象可知122b a<-<, 所以42a b a -<<-,故④正确.故选:D .11.(2019•淄博)将二次函数24y x x a =-+的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线2y =有两个交点,则a 的取值范围是( )A .3a >B .3a <C .5a >D .5a <【解答】解:224(2)4y x x a x a =-+=--+,∴将二次函数24y x x a =-+的图象向左平移1个单位,再向上平移1个单位,得到的函数解析式为2(21)41y x a =-+-++,即222y x x a =-+-,将2y =代入,得2222x x a =-+-,即2240x x a -+-=,由题意,得△44(4)0a =-->,解得5a <.故选:D .12.(2019•临沂)从地面竖直向上抛出一小球,小球的高度h (单位:)m 与小球运动时间t (单位:)s 之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m ;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度30h m =时, 1.5t s =.其中正确的是( )A .①④B .①②C .②③④D .②③【解答】解:①由图象知小球在空中达到的最大高度是40m ;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:2(3)40h a t =-+,把(0,0)O 代入得20(03)40a =-+,解得409a =-, ∴函数解析式为240(3)409h t =--+, 把30h =代入解析式得,24030(3)409t =--+, 解得: 4.5t =或 1.5t =,∴小球的高度30h m =时, 1.5t s =或4.5s ,故④错误;故选:D .13.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )A .2(4)6y x =--B .2(1)3y x =--C .2(2)2y x =--D .2(4)2y x =--【解答】解:2265(3)4y x x x =-+=--,即抛物线的顶点坐标为(3,4)-,把点(3,4)-向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,2)-, 所以平移后得到的抛物线解析式为2(4)2y x =--.故选:D .二.填空题(共5小题)14.(2020•烟台)二次函数2y ax bx c =++的图象如图所示,下列结论:①0ab >;②10a b +-=;③1a >;④关于x 的一元二次方程20ax bx c ++=的一个根为1,另一个根为1a-. 其中正确结论的序号是 ②③④ .【解答】解:①由二次函数的图象开口向上可得0a >,对称轴在y 轴的右侧,0b <,0ab ∴<,故①错误;②由图象可知抛物线与x 轴的交点为(1,0),与y 轴的交点为(0,1)-,1c ∴=-,10a b ∴+-=,故②正确;③10a b +-=,1a b ∴-=-,0b <,10a ∴->,1a ∴>,故③正确; ④抛物线与y 轴的交点为(0,1)-,∴抛物线为21y ax bx =+-,抛物线与x 轴的交点为(1,0),210ax bx ∴+-=的一个根为1,根据根与系数的关系,另一个根为1a-,故④正确; 故答案为②③④.15.(2020•青岛)抛物线222(1)(y x k x k k =+--为常数)与x 轴交点的个数是 2 .【解答】解:抛物线222(1)(y x k x k k =+--为常数),∴当0y =时,2022(1)x k x k =+--,∴△22[2(1)]42()440k k k =--⨯⨯-=+>,2022(1)x k x k ∴=+--有两个不相等的实数根,∴抛物线222(1)(y x k x k k =+--为常数)与x 轴有两个交点,故答案为:2.2(y ax bx c a =++,b ,c 是常数,0)a ≠的y 与x 的部分对应值如下表: ①0a >;②当2x =-时,函数最小值为6-;③若点1(8,)y -,点2(8,)y 在二次函数图象上,则12y y <;④方程25ax bx c ++=-有两个不相等的实数根.其中,正确结论的序号是 ①③④ .(把所有正确结论的序号都填上)【解答】解:将(4-,0)(0,4)(2-,6)代入2y ax bx c =++得,16404426a b c c a b c -+=⎧⎪=-⎨⎪++=⎩,解得,134a b c =⎧⎪=⎨⎪=-⎩, ∴抛物线的关系式为234y x x =+-, 10a =>,因此①正确;对称轴为32x =-,即当32x =-时,函数的值最小,因此②不正确; 把(8-,1)(8y ,2)y 代入关系式得,16424436y =--=,26424484y =+-=,因此③正确;方程25ax bx c ++=-,也就是2345x x +-=-,即方2310x x ++=,由249450b ac -=-=>可得2310x x ++=有两个不相等的实数根,因此④正确;正确的结论有:①③④,故答案为:①③④.17.(2019•济宁)如图,抛物线2y ax c =+与直线y mx n =+交于(1,)A p -,(3,)B q 两点,则不等式2ax mx c n ++>的解集是 3x <-或1x > .【解答】解:抛物线2y ax c =+与直线y mx n =+交于(1,)A p -,(3,)B q 两点,∴抛物线2y ax c =+与直线y mx n =-+交于(1,)p ,(3,)q -两点,观察函数图象可知:当3x <-或1x >时,直线y mx n =-+在抛物线2y ax c =+的下方,∴不等式2ax c mx n +>-+的解集为3x <-或1x >,即不等式2ax mx c n ++>的解集是3x <-或1x >.故答案为:3x <-或1x >.18.(2019•泰安)若二次函数25y x bx =+-的对称轴为直线2x =,则关于x 的方程25213x bx x +-=-的解为 12x =,24x = .【解答】解:二次函数25y x bx =+-的对称轴为直线2x =,∴22b -=, 得4b =-,则25213x bx x +-=-可化为:245213x x x --=-,解得,12x =,24x =.故答案为:12x =,24x =.三.解答题(共24小题)19.(2020•东营)如图,抛物线234y ax ax a =--的图象经过点(0,2)C ,交x 轴于点A 、B (点A 在点B 左侧),连接BC ,直线1(0)y kx k =+>与y 轴交于点D ,与BC 上方的抛物线交于点E ,与BC 交于点F .(1)求抛物线的解析式及点A 、B 的坐标;(2)EF DF是否存在最大值?若存在,请求出其最大值及此时点E 的坐标;若不存在,请说明理由.【解答】解:(1)把(0,2)C 代入234y ax ax a =--得:42a -=.解得12a =-. 则该抛物线解析式为213222y x x =-++. 由于21312(1)(4)222y x x x x =-++=-+-. 故(1,0)A -,(4,0)B ;(2)存在,理由如下:由题意知,点E 位于y 轴右侧,作//EG y 轴,交BC 于点G ,//CD EG ∴,∴EF EG DF CD=. 直线1(0)y kx k =+>与y 轴交于点D ,则(0,1)D .211CD ∴=-=.∴EF EG DF=. 设BC 所在直线的解析式为(0)y mx n m =+≠.将(4,0)B ,(0,2)C 代入,得402m n n +=⎧⎨=⎩. 解得122m n ⎧=-⎪⎨⎪=⎩.∴直线BC 的解析式是122y x =-+. 设213(,2)22E t t t -++,则1(,2)2G t t -+,其中04t <<. 221311(2)(2)(2)22222EG t t t t ∴=-++--+=--+. ∴21(2)22EF t DF =--+. 102-<, ∴当2t =时,EF DF存在最大值,最大值为2,此时点E 的坐标是(2,3).20.(2020•威海)已知,在平面直角坐标系中,抛物线22221y x mx m m =-++-的顶点为A .点B 的坐标为(3,5).(1)求抛物线过点B 时顶点A 的坐标;(2)点A 的坐标记为(,)x y ,求y 与x 的函数表达式;。

2019年最新中考数学高频考点重难点模拟试题训练汇总583850

2019年最新中考数学高频考点重难点模拟试题训练汇总583850

2019年最新中考数学高频考点重难点模拟试题训练汇总学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如果一个三角形有一个角是99°,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .钝角三角形或直角三角形2.已知22222()3()40a b a b +-+-=,则22a b +=( )A .-lB .4C .4或-lD .任意实数3.甲袋中装着2只红球、8只白球,乙袋中装着8只红球、2只白球.如果你想从两个口袋中取出一只白球,成功机会较大的是( )A .甲袋B .乙袋C .甲、乙两个口袋一样D .无法确定4.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是( )A .明天本市70%的时间下雨,30%的时间不下雨B .明天本市70%的地区下雨,30%的地区不下雨C .明天本市一定下雨D .明天本市下雨的可能性是70%5.用科学记数法表示0.000 302 5为( )A .3.025×10-4B .3025×10-4C .3.025×10-5D .3.025×10-6 6.已知ΔABC 中,∠A ∶∠B ∶∠C=3∶7∶8,则ΔABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .都有可能7.将一圆形纸片对折后再对折,得到右图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是 ( )8.四川5.12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是() A .4200049000x y x y +=⎧⎨+=⎩ B .4200069000x y x y +=⎧⎨+=⎩C .2000469000x y x y +=⎧⎨+=⎩D .2000649000x y x y +=⎧⎨+=⎩9.在下列的计算中,正确的是( )A .2x +3y =5xyB .(a +2)(a -2)=a 2+4C .a 2•ab =a 3bD .(x -3)2=x 2+6x +910.下列多项式中,能用公式法分解因式的是( )A .x 2-xyB . x 2+xyC . x 2-y 2D . x 2+y 211.已知方程组5354x y ax y +=⎧⎨+=⎩与方程组2551x y x by -=⎧⎨+=⎩有相同的解,则 a ,b 的值为( ) A .a = 1,b =2 B . a=-4 , b=-6 C .a=-6,b=2 D .a=14,b=212.如图,把图形沿BC 对折,点A 和点D 重合,那么图中共有全等三角形( )A . 1对B .2对C .3对D .4对13.用加减法解方程组232(1)523(2)x y x y -=⎧⎨+=-⎩ ,若消去 y ,下列正确的是( )A .①×3+②×2,得160x =B . ①×2+②×3,得195x =-C . ①×3+②×2,得161x =-D .①×2+②×3,得19 1.x =-14.下列各选项中,右边图形与左边图形成轴对称的图形是( )A .B .C .D .A B CD。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试题8
一、选择题 1.
9
1-
的倒数是( ) A .3- B .3 C .31
- D .31
2. 恩施州2012年末,全州普查登记常住人口约为40
3.25万人。

将403.25万用科学记数法表示正确的是
( )
A. 4.0325×10 4
B. 4.0325×10 6
C. 4.0325×10 8
D. 4.0325×10 7
3. 要使式子3
3
2---x x 有意义,字母x 的取值必须满足( )
A .x ≤
32 B .x ≥32- C .x ≥
3
2
且x ≠3 D .x ≥
32
4. 如图,直线AB ∥CD ,∠A =70° ,∠C =40° ,则∠E 等于 ( ) A .30° B .40° C .60° D .70°
5. 数据1,2,4,2,3,3,2, 5 的中位数是( ) A .1
B .2
C .3
D .2.5
6.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是( ) A .6 B .16 C .18 D .24
7. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的左视图是( )
8、 若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断
9.如图,y =ax +b 与y =ax 2
+bx +c 在同一直角坐标系中的图象大致是( )
10.如图,AB 为半圆的直径,且AB=4,半圆绕点B 顺时针旋转45º,
点A 旋转到A'的位置,则图中阴影部分的面积为( )
A . π
B .2π
C . 2
π
D .4π
二、填空题 11.分解因式:2
44xy xy x -+= .
12、在某一时刻,测得一根高为1m 的竹杆的影长为2m ,同时测得一栋高楼的影长为40m ,这栋高楼的高度是
______m.
第9题
A B C D
A
C
B
D E
题10
C
16
13、如图13,点A 在双曲线k
y x
=
上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k= . 14.方程
01
2=++x x
x 的根是_________________. 15.如图15,已知函数y=2x+b 与函数y=kx ﹣3的图象交于点P ,则不等式kx ﹣3>2x+b 的解集是 . 16. 如图16,已知, A 、B 、C 、D 、E 是反比例函数16
y x
=
(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则最大的橄榄形的面积是 (用含π的代数式表示)
三、解答题 17.计算:
11a ++22
1a -,其中a=2 18、计算: 2
31-⎪⎭
⎫ ⎝⎛0
232006⎪⎪⎭

⎝⎛-
-3-sin60°.
19. 如图方格中,有两个图形.
(1)画出图形(1)向右平移7个单位的图形a ;
(2)画出图形a 关于直线AB 轴对称的图形b ; (3)将图形b 与图形(2)看成一个整体图形,
请写出这个整体图形的对称轴的条数.
20.某校组织了部分同学在“城阳社区”开展了“你最支持哪种戒烟方式”的问卷调查,并将调查结果整理后分别制成了如图所示的扇形统计图和条形统计图,但均不完整. 你根据统计图解答下列问题:
(1)这次调查中同学们一共调查了多少人? (2)请你把两种统计图补充完整; (3)求以上五种戒烟方式人数的众数.
(1) (2)
A B
题13 题15
题16
21. 商场销售A ,B 两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件.为扩大衬衣的销售量,商场决定调整衬衣的价格,将A 种衬衣降价20%出售,B 种衬衣按原价出售.调整后,一周内A 种衬衣的销售量增加了20件,B 种衬衣销售量没有变,这周内销售额为12880元.求调整前两种品牌的衬衣一周内各销售多少件?
22.将分别标有数字1、2、3的3个质地和大小完全相同的小球装在一个不透明的口袋中。

(1)若从口袋中随机摸出一个球,其标号为奇数的概率为多少?
(2)若从口袋中随机摸出一个球,放回口袋中搅匀后再随机摸出一个球,试求所摸出的两个球上数字之和小于..4的概率(用树状图或列表法求解)。

23. 如图,已知⊙O 的直径8cm AB =,直线DM 与⊙O 相切于点E ,连结BE ,过点B 作BC DM ⊥于点C ,
BC 交⊙O 于点F ,6cm BC =.求:
(1)线段BE 的长; (2)图中阴影部分的面积.
第21题
24. 已知:如图,△ABC 和△ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB 边上一点. 求证:(1)△ACE ≌△BCD ; (2)2
2
2
DE AE AD =+.
25.如图1,已知Rt △ABC 中,∠C=90°,AC=8cm ,BC=6cm .点P 由B 出发沿BA 方向向点A 匀速运动,同时点
Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm/s .以AQ 、PQ 为边作平行四边形AQPD ,连接DQ ,交AB 于点E .设运动的时间为t (单位:s )(0≤t ≤4).解答下列问题: (1)用含有t 的代数式表示AE=______. (2)当t 为何值时,平行四边形AQPD 为矩形. (3)如图2,当t 为何值时,平行四边形AQPD 为菱形.
E
D
C
B
A
26、如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且∠ACB=∠DCE 。

(1)判断直线CE 与⊙O 的位置关系,并证明你的结论; (2)若tan ∠ACB=
2
2
,BC=2,求⊙O 的半径。

27、如图,在平面直角坐标系中,边长为4的正方形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,二次函数y=-
2
1x 2
+bx+c 的图象经过B 、C 两点.D 为抛物线的顶点,连接AC 、BD 、CD 。

(1)直接写出B 、C 两点的坐标;B____________,C____________. (2)求该二次函数的解析式;
(3)求出该抛物线与x 轴的两交点坐标,并回答:当y >0时x 的取值范围. (4)求此抛物线顶点D 的坐标和四边形ABDC 的面积
.。

相关文档
最新文档