广州市越秀区2016区九年级上期末考试数学试题含答案
九年级上册广州数学期末试卷测试与练习(word解析版)
九年级上册广州数学期末试卷测试与练习(word 解析版)一、选择题 1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.抛物线223y x x =++与y 轴的交点为( )A .(0,2)B .(2,0)C .(0,3)D .(3,0) 3.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( )A .2011B .2015C .2019D .20204.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .455.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π B .290cm π C .2130cm π D .2155cm π6.下列说法中,不正确的是( )A .圆既是轴对称图形又是中心对称图形B .圆有无数条对称轴C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心 7.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .8.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( )A .23x y =B .32=y xC .23x y =D .23=y x9.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°10.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103π D .π 11.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103)B .(163,45)C .(203,45)D .(163,43) 12.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2 B .2C .-3D .3 二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.15.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km.16.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.17.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.18.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.19.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为_____.20.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.21.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.22.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.23.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.24.如图,边长为2的正方形ABCD,以AB为直径作O,CF与O相切于点E,的面积为__________.与AD交于点F,则CDF三、解答题25.如图,在Rt △ABC 中,∠C =90°,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:△ADG ∽△FEB ;(2)若AD =2GD ,则△ADG 面积与△BEF 面积的比为 .26.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.(1)求证:BDE CAD ∆∆∽;(2)若13AB =,10BC =,求线段DE 的长.27.先化简,再求值:221a a -÷(1﹣11a +),其中a 是方程x 2+x ﹣2=0的解. 28.为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x (元)和游客居住房间数y (间)的信息,乐乐绘制出y 与x 的函数图象如图所示:(1)求y 与x 之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?29.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒). ①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.30.解方程:(1)x 2-8x +6=0(2)(x -1)2 -3(x -1) =031.如图,扇形OAB 的半径OA =4,圆心角∠AOB =90°,点C 是弧AB 上异于A 、B 的一点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连结DE ,过点C 作弧AB 所在圆的切线CG 交OA 的延长线于点G .(1)求证:∠CGO =∠CDE ;(2)若∠CGD =60°,求图中阴影部分的面积.32.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y 2x 80=-+.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用圆内接四边形的对角互补计算∠C的度数.【详解】∵四边形ABCD内接于⊙O,∠A=400,∴∠C=1800-400=1400,故选D.【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.3.C解析:C【解析】【分析】根据方程解的定义,求出a-b,利用作图代入的思想即可解决问题.【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1,∴a−b+4=0,∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019.故选C.【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.4.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是25. 故选B.考点:概率. 5.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.6.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C ,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C此题主要考察对称轴图形和中心对称图形,难度不大7.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B .【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8.D解析:D【解析】【分析】根据比例的性质,把等积式写成比例式即可得出结论.【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y =,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意, D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意; 故选:D .【点睛】 本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.9.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC =80°, ∴102ABC AOC 4.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 10.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为601010π⨯=.故选C.11.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(25∴5OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=453O'F2⋅⋅=,∴O′F=453.在Rt△O′FB中,由勾股定理可求22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(20453).【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.12.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.14.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.16.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;21cm,则=)故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=,难度一般.17.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.18.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.19.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB=90°是解此题的关键.20.50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.21.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=2或x+2=﹣1,解得x=0或x=﹣3.故答案为:x3=0,x4=﹣3.此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.22.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.23.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出.解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.24.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.三、解答题25.(1)证明见解析;(2)4.【解析】【分析】(1)易证∠AGD=∠B ,根据∠ADG=∠BEF=90°,即可证明△ADG ∽△FEB ;(2)相似三角形的性质解答即可.【详解】(1)证明:∵∠C=90°,∴∠A+∠B=90°,∵四边形DEFG 是矩形,∴∠GDE=∠FED=90°,∴∠GDA+∠FEB=90°,∴∠A+∠AGD=90°,∴∠B=∠AGD ,且∠GDA=∠FEB=90°,∴△ADG ∽△FEB .(2)解:∵△ADG ∽△FEB ,∴AD EF DG BE=, ∵AD =2GD, ∴2AD DG=, ∴224ADG FEB S S ==. 【点睛】本题考查了相似三角形的判定与性质,求证△ADG ∽△FEB 是解题的关键.26.(1)见解析;(2)6013DE =. 【解析】【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD =, 即51312DE =, ∴6013DE =. 【点睛】 此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.27.2a 1-, -23. 【解析】【分析】 先求出程x 2+x ﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x 2+x ﹣2=0,∴(x-1)(x+2)=0,∴x 1=1,x 2=-2,原式=()()211a a a +-•1a a +=2a 1-,∵a 是方程x 2+x ﹣2=0的解,∴a =1(没有意义舍去)或a =﹣2, 则原式=﹣23. 【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.28.(1)y=﹣0.5x+110;(2)房价定为120元时,合作社每天获利最大,最大利润是5000元.【解析】【分析】(1)根据题意和函数图象中的数据可以求得相应的函数解析式;(2)根据题意可以得到利润与x 之间的函数解析式,从而可以求得最大利润.【详解】(1)设y 与x 之间的函数关系式为y=kx+b , 70758070k b k b +=⎧⎨+=⎩,解得:0.5110k b =-⎧⎨=⎩, 即y 与x 之间的函数关系式是y=﹣0.5x+110;(2)设合作社每天获得的利润为w 元,w=x (﹣0.5x+110)﹣20(﹣0.5x+110)=﹣0.5x 2+120x ﹣2200=﹣0.5(x ﹣120)2+5000, ∵60≤x≤150,∴当x=120时,w 取得最大值,此时w=5000,答:房价定为120元时,合作社每天获利最大,最大利润是5000元.【点睛】本题考查了一次函数的应用、二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.29.(1)233384y x x =-++;(2)① 32t =;②1234531724,3,,,2617t t t t t ===== 【解析】【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A (0,3),C (4,0),∵抛物线经过A 、B 两点, ∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形,∴∠B =90O , ∴AC 2=AB 2+BC 2=5; 由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,∵∠FAQ =∠BAC , ∠QFA =∠CBA ,∴△QFA ∽△CBA . ∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32. ② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+. 三角形直角的位置不确定,需分情况讨论:当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;当PDG 90∠=︒时,同理用勾股定理得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 整理求解可得t 的值.由此可得出t 的值为:132t =,23t =,3176t =,42417t =,517145t -=.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.30.(1)x 1104,x 2104(2) x 1=1,x 2=4.【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x 2-8x +6=0x 2-8x +16=10(x-4)2=10x-4=10∴x 1104,x 2104(2)(x -1)2 - 3(x -1) =0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x 1=1,x 2=4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生 必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人;扇形统计图中,选“D 一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数(1)200;72(2)60(人),图见解析(3)1050人.【解析】【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得.【详解】(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);选“D一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°,故答案为:200、72;(2)C项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.31.(1)见解析;(2)图中阴影部分的面积为4233π-.【解析】【分析】(1)连接OC交DE于F,根据矩形的判定定理证出四边形CEOD是矩形,根据矩形的性质和等边对等角证出∠FCD=∠CDF,然后根据切线的性质可得∠OCG=90°,然后根据同角的余角相等即可证出结论;(2)根据题意,求出∠COD=30°,然后利用锐角三角函数求出CD和OD,然后根据扇形的面积公式和三角形的面积公式即可求出结论.【详解】证明:(1)连接OC交DE于F,∵CD⊥OA,CE⊥OB,∴∠CEO=∠AOB=∠CDO=90°,∴四边形CEOD是矩形,∴CF=DF=EF=OF,∠ECD=90°,∴∠FCD=∠CDF,∠ECF+∠FCD=90°,∵CG是⊙O的切线,∴∠OCG=90°,∴∠OCD+∠GCD=90°,∴∠ECF=∠GCD,∵∠DCG+∠CGD=90°,∴∠FCD=∠CGD,∴∠CGO=∠CDE;(2)由(1)知,∠CGD=∠CDE=60°,∴∠DCO=60°,∴∠COD=30°,∵OC=OA=4,∴CD=2,OD=3∴图中阴影部分的面积=2304360π⋅⨯﹣12⨯2×343π﹣3【点睛】此题考查的是矩形的判定及性质、切线的性质、锐角三角函数和求阴影部分的面积,掌握矩形的判定及性质、切线的性质、锐角三角函数和求阴影部分的面积是解决此题的关键.32.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.。
广东省广州市越秀区2016区九年级上期末考试数学试题含答案
2015-2016学年广州市越秀区九年级上期末数学卷一、选择题:每小题3分,共30分.1.抛物线()223y x =-+-的顶点坐标是( ) A .(2,3) B .(﹣2,3) C .(2,-3) D .(-2,﹣3)2.将两个全等的直角三角形纸片构成如图的四个图形,其中属于中心对称图形的是( )A .B .C .D .3. 如图,⊙O 是△ABC 的外接圆,若AB=OA=OB ,则∠C 等于( )A .30°B .40°C .60°D .80°4.方程2350x x --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定是否有实数根5.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,下列事件中,不可能事件是( )A .摸出的2个球有一个是白球B .摸出的2个球都是黑球C .摸出的2个球有一个黑球D .摸出的2个球都是白球 6.已知点1(1,)A y -,2(2,)B y 是反比例函数5y x=-的图像上的两点,下列结论正确的是( ) A .120y y << B .210y y <<C .120y y <<D .210y y <<7.已知点1(1,3)P ,它关于原点的对称点是点2P ,则点2P 的坐标是( )A .(3,1)B .(1,-3)C .(-1,-3)D .(-3,﹣1)8.如图所示,边长为2的正三角形ABO 的边OB 在x 轴上,将△ABO 绕原点O 逆时针旋转30°得到三角形OA 1B 1,则点A 1的坐标为( ) A .(3,1)B .(3,-1)C .(-1, 3-)D .(2,1)9.如图,在平面直角坐标系中,点A 、B 均在函数ky x=(k >0,x >0)的图象上,⊙A 与x 轴相切,⊙B 与y 轴相切.若点B 的坐标为(1,6),⊙A 的半径是⊙B 的半径的2倍,则点A 的坐标为( ) A .(2,2) B .(2,3) C .(3, 2) D .(4,32)10.已知函数244y x x m =-+的图像与x 轴的交点坐标为1(,0)x 2(,0)x 且()()212112458x x x x x +--=,则该函数的最小值是( ) A .2 B .-2 C .10 D .-10二、填空题:每小题3分,共18分.11.若函数2m y x-=,当0x >时,函数值y 随自变量x 的增大而减少,则m 的取值范围是_________.12.从点(2,4)A - (2,4)B -- (1,8)C -中任取一个点,则该点在8y x=-的图像上的概率是_________.13.半径是2的圆的内接正方形的面积是__________14.若将抛物线243y x x =--的图像向右平移3个单位,则所得抛物线的解析式是__________15.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是_________16.如图是二次函数2y ax bx c =++的部分图像 ,在下列四个结论中正确的是___________ ①不等式20ax bx c ++>的解集是15x -<<;②0a b c -+>;③240b ac ->;④40a b +<三、解答题:满分102分.解答题应写出必要的文字说明,演算步骤或证明过程. 17.(9分)解方程:2250x x +-=.18.(9分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=54°,求∠DEB的度数;(2)若OC=3,OA=5,求弦AB的长19. (10分)如图,正方形ABCD的边长为2,E是BC的中点,以点A为中心,把△ABE绕点A 顺时针旋转90°,设点E的对应点为F.(1)画出旋转后的三角形.(尺规作图,保留作图痕迹,不写作法)(2)求点E运动到点F所经过的路径的长20. (10分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.21. (12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x 的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.22. (12分)如图所示,AB为半圆O的直径,C为圆上一点,AD平分∠BAC交半圆于点D,过点D作DE⊥AC,DE交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若⊙O的半径为2,DE=3,求线段AC的长23.(12分)反比例函数kyx=在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数kyx=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数k yx =的图象上,求t的值EDCO B A24.(14分)如图1,已知矩形ABCD 的宽AD=8,点E 在边AB 上,P 为线段DE 上的一动点(点P 与点D ,E 不重合),∠MPN=90°,M ,N 分别在直线AB ,CD 上,过点P 作直线HK //AB ,作PF ⊥AB ,垂足为点F ,过点N 作NG ⊥HK ,垂足为点G (1)求证:∠MPF=∠GPN(2)在图1中,将直角∠MPN 绕点P 顺时针旋转,在这一过程中,试观察、猜想:当MF=NG 时,△MPN 是什么特殊三角形?在图2中用直尺画出图形,并证明你的猜想;(3)在(2)的条件下,当∠EDC=30°时,设EP =x,△MPN 的面积为S ,求出S 关于x的解析式,并说明S 是否存在最小值?若存在,求出此时x的值和△MPN 面积的最小值;若不存在,请说明理由。
广州市九年级(上)期末数学试卷含答案
九年级(上)期末数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.在1,0,2,-3这四个数中,最大的数是()A. 1B. 0C. 2D. -32.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 0025米,把0.000 0025用科学记数法表示为()A. 2.5×106B. 0.25×10-5C. 25×10-7D. 2.5×10-63.一个正多边形的每个外角都等于36°,那么它是( )A. 正六边形B. 正八边形C. 正十边形D. 正十二边形4.一元二次方程2x2+x-3=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法确定5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.6.如图,AB是⊙O的直径,点C在⊙O上,半径OD∥AC,如果∠BOD=130°,那么∠B的度数为()A. 30°B. 40°C. 50°D. 60°7.反比例函数y=的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A. k<2B. k≤2C. k>2D. k≥28.如果从-1,2,3三个数中任取一个数记作m,又从0,1,-2三个数中任取一个数记作n,那么点P(m,n)恰在第四象限的概率为()A. B. C. D.9.若△ABC与△DEF相似,且对应边的比为2:3,则△ABC与△DEF的周长比为()A. 2:5B. 2:3C. 4:9D. 4:2510.如图所示,△ABC是等腰直角三角形,∠ACB=90°,直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)11.分解因式:a2-a=______.12.如图所示,在▱ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为______.13.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为______ .14.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是______ .15.如图,半圆的直径AB=10,P为AB上一点,点C,D为半圆上的三等分点,则图中阴影部分的面积等于______ .16.用同样大小的黑色棋子按如图所示的规律摆放,则第2019个图共有______枚棋子.三、解答题(本大题共9小题,共66.0分)17.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率.18.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是______;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.19.已知x2-2x-7=0,求(x-2)2+(x+3)(x-3)的值.20.如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.(1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长.21.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,AB=8.(1)利用尺规作图作∠BAC的平分线,交⊙O于点D(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,若AC=CD,求∠B的度数.22.如图,已知直线y=x与双曲线y=交于A、B两点,点B的坐标为(-4,-2),C为第一象限内双曲线y=上一点,且点C在直线y=x的上方.(1)求双曲线的函数解析式;(2)若△AOC的面积为6,求点C的坐标.23.如图,抛物线y=ax2+bx+c与x轴的两个交点为B(1,0)和C,与y轴的交点坐标为(0,-1.5)且此抛物线过点A(3,6)(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标.24.如图,AB是⊙O的直径,C、G是⊙O上两点,且C是弧AG的中点,过点C的直线CD⊥BG的延长线于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线;(2)若=,求证:AE=AO;(3)连接AD,在(2)的条件下,若CD=2,求AD的长.25.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D 出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.答案和解析1.【答案】C【解析】解:-3<0<1<2,故选:C.根据正数大于0,0大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.【答案】D【解析】解:0.0000025=2.5×10-6,故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:360÷36=10.故选:C.利用多边形的外角和360°,除以外角的度数,即可求得边数.本题考查了多边形的外角和定理,理解任何多边形的外角和都是360度是关键.4.【答案】B【解析】解:在方程2x2+x-3=0中,△=12-4×2×(-3)=25>0,∴该方程有两个不相等的实数根.故选:B.根据方程的系数结合根的判别式△=b2-4ac,找出△的正负,由此即可得出结论.本题考查了根的判别式,找出根的判别式△=b2-4ac=25>0是解题的关键.5.【答案】D【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选:D.根据中心对称图形的概念求解即可.本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.【答案】B【解析】解:∵∠BOD=130°,∴∠AOD=50°,又∵AC∥OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°-50°=40°.故选:B.先求出∠AOD,利用平行线的性质得出∠A=40°,再由圆周角定理和直角三角形的性质求出∠B的度数即可.本题考查了圆周角定理、平行线的性质以及直角三角形的性质,熟练掌握圆周角定理和平行线的性质是解题关键.7.【答案】C【解析】解:∵反比例函数y=中,当x>0时,y随x的增大而减小,∴k-2>0,解得k>2.故选C.先根据当x>0时,y随x的增大而减小得出关于k的不等式,求出k的取值范围即可.本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小是解答此题的关键.8.【答案】A【解析】解:画树状图为:共有9种等可能的结果数,其中点P(m,n)恰在第四象限的结果数为2,所以点P(m,n)恰在第四象限的概率=.故选:A.画树状图展示所有9种等可能的结果数,再根据第四象限内点的坐标特征找出点P(m,n)恰在第四象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.【答案】B【解析】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,∴△ABC与△DEF的周长之比为2:3.故选:B.由△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,根据相似三角形的周长比等于相似比,即可求得答案.此题考查了相似三角形的性质.注意熟记定理是解此题的关键.10.【答案】B【解析】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y=×2×2-(2-x)×(2-x)=-x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2-(x-2)]×[2-(x-2)]=x2-4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.故选:B.此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.11.【答案】a(a-1)【解析】解:a2-a=a(a-1).这个多项式含有公因式a,分解因式时应先提取公因式.本题考查了提公因式法分解因式,比较简单,注意不要漏项.12.【答案】9:16【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.本题考查了平行四边形的性质以及相似三角形的判定和性质,注:相似三角形的面积之比等于相似比的平方.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故答案为:9:16.13.【答案】y=-(x+1)2+3【解析】解:根据题意,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,3),∴平移后抛物线解析式为:y=-(x+1)2+3.故答案为:y=-(x+1)2+3.抛物线的平移问题,实质上是顶点的平移,原抛物线y=-x2顶点坐标为(0,0),向左平移1个单位,然后向上平移3个单位后,顶点坐标为(-1,3),根据抛物线的顶点式可求平移后抛物线的解析式.本题考查了抛物线的平移与抛物线解析式的关系.关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式.14.【答案】y=【解析】解:∵B(8,4),∴OA=8,AB=OC=4,∴A′O=OA=8,A′B′=AB=4,tan∠COD==,即=,解得CD=2,∴点D的坐标为(2,4),设经过点D的反比例函数解析式为y=(k≠0),则=4,解得k=8,所以,经过点D的反比例函数解析式为y=.故答案为:y=.利用∠COD的正切值列式求出CD的长度,然后写出点D的坐标,再利用待定系数法求反比例函数解析式解答即可.本题考查了待定系数法求反比例函数解析式,利用三角函数求出CD的长度,从而得到点D的坐标是解题的关键,还考查了坐标与图形-旋转.15.【答案】【解析】解:连接CO,DO,∵C,D是以AB为直径的半圆上的三等分点,∴∠COD=60°,∵△PCD的面积等于△OCD的面积,∴都加上CD之间弓形的面积得出S阴影=S扇形OCD==,故答案为:.连接CO,DO,利用等底等高的三角形面积相等可知S阴影=S扇形COD,利用扇形的面积公式计算即可.本题考查了扇形面积的计算.根据图形推知图中阴影部分面积=扇形OCD的面积是解题的关键.16.【答案】6058【解析】解:观察图形知:第1个图形有3+1=4个棋子,第2个图形有3×2+1=7个棋子,第3个图形有3×3+1=10个棋子,第4个图形有3×4+1=13个棋子,…第n个图形有3n+1个棋子,当n=2019时,3×2019+1=6058个,故答案为:6058根据图形中点的个数得到有关棋子个数的通项公式,然后代入数值计算即可.本题考查了图形的变化类问题,能够根据图形得到通项公式是解决本题的关键.17.【答案】解:设该种药品平均每场降价的百分率是x,由题意得:200(1-x)2=98解得:x1=1.7(不合题意舍去),x2=0.3=30%.答:该种药品平均每场降价的百分率是30%.【解析】设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是200(1-x)2,据此列出方程求解即可.此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.判断所求的解是否符合题意,舍去不合题意的解.18.【答案】(1);(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:=.【解析】解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;故答案为:;(2)见答案.(1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.【答案】解:原式=x2-4x+4+x2-9=2x2-4x-5,∵x2-2x-7=0∴x2-2x=7.∴原式=2(x2-2x)-5=9.【解析】本题应先将原式去括号、合并同类项,将原式化为2x2-4x-5,再将已知x2-2x-7=0化为x2-2x=7,再整体代入即可.本题考查了整式的化简和整体代换的思想.20.【答案】(1)证明:如图1中,连接AH,由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAD=90°,在Rt△ABG中,AG=4,AB=2,∴cos∠BAG==,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的长为=π,即B点经过的路径长为.【解析】(1)欲证明BH=EH,只要证明Rt△ABH≌Rt△AEH即可;(2)想办法求出旋转角∠EAB即可解决问题;本题考查矩形的性质、旋转变换、全等三角形的判定和性质、锐角三角函数、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.【答案】解:(1)如图1所示,AD即为所求的∠CAB的平分线;(2)如图2所示:∵AC=CD,∴∠CAD=∠ADC,又∵∠ADC=∠B,∴∠CAD=∠B,∵AD平分∠CAB,∴∠CAD=∠DAB=∠B,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90°,∴∠B=30°.【解析】(1)由角平分线的基本作图即可得出结果;(2)由等腰三角形的性质和圆周角定理得出∠CAD=∠B,再由角平分线得出∠CAD=∠DAB=∠B,由圆周角定理得出∠ACB=90°,得出∠CAB+∠B=90°,即可求出∠B的度数.本题考查了作图-基本作图,圆周角定理、等腰三角形的性质、本题综合性强,有一定难度,熟练掌握圆周角定理是解决问题的关键.22.【答案】解:(1)∵点B(-4,-2)在双曲线y=上,∴=-2,∴k=8,∴双曲线的函数解析式为y=.(2)过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,∵正比例函数与反比例函数的交点A、B关于原点对称,∴A(4,2),∴OE=4,AE=2,设点C的坐标为(a,),则OF=a,CF=,则S△AOC=S△COF+S梯形ACFE-S△AOE,=×+(2+)(4-a)-×4×2=,∵△AOC的面积为6,∴=6,整理得a2+6a-16=0,解得a=2或-8(舍弃),∴点C的坐标为(2,4).【解析】(1)利用待定系数法即可解决.(2)过点A作AE⊥x轴于E,过点C作CF⊥x轴于F,根据S△AOC=S△COF+S梯形ACFE-S△AOE=6,列出方程即可解决.本题考查反比例函数与一次函数交点、解题的关键是熟练掌握待定系数法,学会利用分割法求四边形面积,学会用方程的思想思考问题,属于中考常考题型.23.【答案】解:(1)根据题意得,解得,∴抛物线解析式为y=x2+x-;(2)y=x2+x-=(x2+2x+1-1)-=(x+1)2-2,∴P点坐标为(-1,-2);当y=0时,x2+x-=0,解得x1=1,x2=-3,则C点坐标为(-3,0),设直线AC的解析式为y=mx+n,把A(3,6),C(-3,0)代入得,解得,∴直线AC的解析式为y=x+3,当x=-1时,y=x+3=2,∴Q点坐标为(-1,2).【解析】(1)把三个已知点的坐标代入y=ax2+bx+c得到关于a、b、c的方程组,然后解方程组即可得到抛物线解析式;(2)利用配方法把一般式配成顶点式,从而得到P点坐标为(-1,-2);再解方程x2+x-=0得C点坐标为(-3,0),接着利用待定系数法求出直线AC的解析式为y=x+3,然后求出自变量为-1对应的一次函数值得到Q点的坐标.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.24.【答案】(1)证明:如图1,连接OC,AC,CG,∵AC=CG,∴=,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;(2)解:如图1,∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴==,∴==,∵OA=OB,∴AE=OA;(3)解:如图2,过A作AH⊥DE于H,∵∠E=30°∴∠EBD=60°,∴∠CBD=∠EBD=30°,∵CD=2,∴BD=6,DE=6,BE=12,∴AE=BE=4,∴AH=2,∴EH=2,∴DH=4,在Rt△DAH中,AD==2.【解析】(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到==,==,即可得到结论;(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD=6,DE=6,BE=12,在Rt△DAH中,AD=,求出答案即可.本题考查了切线的判定和性质,锐角三角函数,勾股定理相似三角形的判定和性质,圆周角定理,正确的作出辅助线是解题的关键.25.【答案】解:(1)∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠A=∠C=90°,在Rt△ABD中,BD=10,∵E、F分别是AB、BD的中点,∴EF∥AD,EF=AD=4,BF=DF=5,∴∠BEF=∠A=90°=∠C,EF∥BC,∴∠BFE=∠DBC,∴△BEF∽△DCB;(2)如图1,过点Q作QM⊥EF于M,∴QM∥BE,∴△QMF∽△BEF,∴,∴,∴QM=(5-2t),∴S△PFQ=PF×QM=(4-t)×(5-2t)=0.6=,∴t=(舍)或t=2秒;(3)如图,∵△BGD∽△BAD,∴,∴,∵四边形EPQG是矩形,∴QG=PE=t,∴∴t=(4)当点Q在DF上时,如图2,PF=QF,∴4-t=5-2t,∴t=1当点Q在BF上时,PF=QF,如图3,∴4-t=2t-5,∴t=3PQ=FQ时,如图4,∴,∴t=,PQ=PF时,如图5,∴,∴t=,综上所述,t=1或3或或秒时,△PQF是等腰三角形.【解析】(1)先判断出EF∥AD,进而判断出∠EFB=∠CBD,即可得出结论;(2)先判断出△QMF∽△BEF,进而得出QM=(5-2t),再利用面积公式建立方程求解即可;(3)由△BGD∽△BAD,得出QG.再用矩形的对边相等即可得出结论;(4)分点Q在DF和BF上,利用相似三角形的性质建立方程求解即可得出结论.此题是相似形综合题,解题关键是掌握动点运动过程中的图形形状、图形面积的表示方法.所考查的知识点涉及到勾股定理、相似三角形的判定与性质、三角形中位线定理、解方程(包括一元一次方程和一元二次方程)等,有一定的难度.注意题中求时刻t的方法:最终都是转化为一元一次方程或一元二次方程求解.。
2016-2017广州越秀区初三数学九年级期末试题及答案
2016~2017广州越秀区初三数学九年级期末试题及答案一、精心选一选(本题共10个小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合要求的)1.用配方法解方程x 2+4x+1=0,配方后的方程是( )A .(x ﹣2)2=5B .(x+2)2=5C .(x+2)2=3D .(x ﹣2)2=32.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为( )A .B .C .D .3.如图,在⊙O 中,AD ,CD 是弦,连接OC 并延长,交过点A 的切线于点B ,若∠ADC=30°,则∠ABO 的度数为( )A .50°B .40°C .30°D .20°4.若反比例函数y=,当x <0时,y 随x 的增大而增大,则k 的取值范围是( )A .k >﹣2B .k <﹣2C .k >2D .k <2 5.如同,在△ABC 中,点D ,E 分别在边AB ,AC 上,下列条件中不能判断△ABC ∽△AED 的是( )A.=B.=C.∠ADE=∠C D.∠AED=∠B6.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.2 B.C. D.17.如图是一个“中”的几何体,则该几何体的俯视图为()A.B.C.D.8.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣19.如图,把直角△ABC的斜边AC放在定直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为()A.(+)πB.(+)πC.2πD.π10.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O 的半径为2,则MD的长度为()A.B.C.2 D.1二、细心填一填(本大题共8小题,每小题3分,共24分)11.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=x2+x(x>0),若该车某次的刹车距离为9m,则开始刹车时的速度为m/s.12.在一个不透明的口袋中装有12个白球、16个黄球、24个红球、28个绿球,除颜色其余都相同,小明通过多次摸球实验后发现,摸到某种颜色的球的频率稳定在0.3左右,则小明做实验时所摸到的球的颜色是.13.如图,圆锥体的高,底面半径r=2cm,则圆锥体的侧面积为cm2.14.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为.15.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PB切⊙O于点B,则PB的最小值是.16.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为.17.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x 轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)18.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是cm.三、解答题(本大题共6小题,70分)19.如图某超市举行“翻牌”抽奖活动,在一张木板上共有6个相同的牌,其分别对应价值为2元、5元、8元、10元、20元和50元的奖品.(1)小雷在该抽奖活动中随机翻一张牌,求抽中10元奖品的概率;(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求两次抽中的奖品的总价值大于14元的概率.20.如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CD⊥AB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=∠ACF.求证:直线BE是⊙O的切线.21.如图,在矩形ABCD中,AB=6,AD=11.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.请问:△CDP与△PAE相似吗?如果相似,请写出证明过程.22.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)23.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式.(2)请直接写出D点的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.2016-2017学年河北省廊坊市文安县九年级(上)期末数学试卷参考答案与试题解析一、精心选一选(本题共10个小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合要求的)1.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5 B.(x+2)2=5 C.(x+2)2=3 D.(x﹣2)2=3【考点】解一元二次方程-配方法.【分析】移项后两边配上一次项系数一半的平方即可.【解答】解:∵x2+4x=﹣1,∴x2+4x+4=﹣1+4,即(x+2)2=3,故选:C.2.小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数.则向上的一面的点数大于4的概率为()A.B.C.D.【考点】概率公式.【分析】让骰子中大于4的数个数除以数的总个数即为所求的概率.【解答】解:根据等可能条件下的概率的公式可得:小伟掷一个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则向上的一面的点数大于4的概率为.故选B.3.如图,在⊙O中,AD,CD是弦,连接OC并延长,交过点A的切线于点B,若∠ADC=30°,则∠ABO的度数为()A.50° B.40° C.30° D.20°【考点】切线的性质.【分析】先利用同弧所对的圆周角和圆心角的关系得出∠AOB,再判断出∠OAB=90°,最后用直角三角形的两锐角互余即可.【解答】解:如图,连接OA,∵∠ADC=30°,∴∠AOC=2∠ADC=60°,∵AB切⊙O于A,∴∠OAB=90°,∴∠ABO=90°﹣∠AOC=30°,故选:C4.若反比例函数y=,当x<0时,y随x的增大而增大,则k的取值范围是()A.k>﹣2 B.k<﹣2 C.k>2 D.k<2【考点】反比例函数的性质.【分析】根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数y=,当x<0时y随x的增大而增大,∴k+2<0,解得k<﹣2.故选:B.5.如同,在△ABC中,点D,E分别在边AB,AC上,下列条件中不能判断△ABC∽△AED的是()A.=B.=C.∠ADE=∠C D.∠AED=∠B【考点】相似三角形的判定.【分析】根据相似三角形的判定定理进行判定即可.【解答】解:∵∠DAE=∠CAB,∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;当=即=时,△ABC∽△AED.故选:A.6.在正方形网格中,△ABC的位置如图所示,则tanB的值为()A.2 B.C. D.1【考点】锐角三角函数的定义.【分析】观察图形判断出∠B=45°,再根据45°角的正切值求解即可.【解答】解:由图可知,∠B=45°,所以,tanB=tan45°=1.故选D.7.如图是一个“中”的几何体,则该几何体的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看的到的图形,可得答案.【解答】解:从上边看是由5个矩形组成得,左边矩形的右边是虚线,右边矩形的左边是虚线,故选:C.8.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【考点】二次函数的性质.【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.9.如图,把直角△ABC的斜边AC放在定直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为()A.(+)πB.(+)πC.2πD.π【考点】轨迹;勾股定理;旋转的性质.【分析】A点所经过的弧长有两段,①以C为圆心,CA长为半径,∠ACA1为圆心角的弧长;②以B1为圆心,AB长为半径,∠A1B1A2为圆心角的弧长.分别求出两端弧长,然后相加即可得到所求的结论.【解答】解:在Rt△ABC中,AB=,BC=1,则∠BAC=30°,∠ACB=60°,AC=2;由分析知:点A经过的路程是由两段弧长所构成的:①A~A1段的弧长:L1==,②A1~A2段的弧长:L2==,∴点A所经过的路线为(+)π,故选A.10.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O 的半径为2,则MD的长度为()A.B.C.2 D.1【考点】正多边形和圆.【分析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM ⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【解答】解:连接OM、OD、OF,如图所示:∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD===;故选:A.二、细心填一填(本大题共8小题,每小题3分,共24分)11.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=x2+x(x>0),若该车某次的刹车距离为9m,则开始刹车时的速度为90 m/s.【考点】一元二次方程的应用.【分析】将函数值y=9代入二次函数,然后解一元二次方程即可,注意舍去不合题意的根.【解答】解:当刹车距离为9m时,即y=9,代入二次函数解析式:9=x2+x.解得x=90或x=﹣100(舍),故开始刹车时的速度为90m/s.故答案为:90.12.在一个不透明的口袋中装有12个白球、16个黄球、24个红球、28个绿球,除颜色其余都相同,小明通过多次摸球实验后发现,摸到某种颜色的球的频率稳定在0.3左右,则小明做实验时所摸到的球的颜色是红色.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手解答即可.【解答】解:共有12+16+24+28=80个球,∵白球的概率为:=;黄球的概率为:=;红球的概率为:=≈0.3;绿球的概率为:=.∴小明做实验时所摸到的球的颜色是红色故答案为:红色.13.如图,圆锥体的高,底面半径r=2cm,则圆锥体的侧面积为8πcm2.【考点】圆锥的计算.【分析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8πcm2;故答案为:8π.14.如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为 6 .【考点】位似变换.【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AB:DE=2:3,∴DE=6.故答案为:6.15.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PB切⊙O于点B,则PB的最小值是.【考点】切线的性质.【分析】因为PB为切线,所以△OPB是Rt△.又OB为定值,所以当OP最小时,PB最小.根据垂线段最短,知OP=3时PB最小.根据勾股定理得出结论即可.【解答】解:∵PB切⊙O于点B,∴∠OBP=90°,∴PB2=OP2﹣OB2,而OB=2,∴PB2=OP2﹣4,即PB=,当OP最小时,PB最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PB的最小值为=.故答案为:.16.如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为(4,3).【考点】二次函数的性质.【分析】根据A和B关于x=2对称,求得(0,3)关于x=2的对称点是关键.【解答】解:点A的坐标为(0,3),关于x=2的对称点是(4,3).即点B的坐标为(4,3).故答案是(4,3).17.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x 轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1= S2.(填“>”或“<”或“=”)【考点】反比例函数系数k的几何意义.【分析】设p(a,b),Q(m,n),根据三角形的面积公式即可求出结果.【解答】解;设p(a,b),Q(m,n),则S△ABP=AP•AB=a(b﹣n)=ab﹣an,S△QMN=MN•QN=(m﹣a)n=mn﹣an,∵点P,Q在反比例函数的图象上,∴ab=mn=k,∴S1=S2.18.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是180 cm.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡度的定义求出AG,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:由题意得,FG=EF=30,∵EF∥BC,∴∠AFE=α,∴=,即=,解得,AG=75,∵EF∥BC,∴==,解得,AD=180,∴“人字梯”的顶端离地面的高度AD是180cm,故答案为:180.三、解答题(本大题共6小题,70分)19.如图某超市举行“翻牌”抽奖活动,在一张木板上共有6个相同的牌,其分别对应价值为2元、5元、8元、10元、20元和50元的奖品.(1)小雷在该抽奖活动中随机翻一张牌,求抽中10元奖品的概率;(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求两次抽中的奖品的总价值大于14元的概率.【考点】列表法与树状图法.【分析】(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用1除以6,即可得出结果.(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用两次抽中的奖品的总价值大于14元的情况的数量除以所有情况的数量即可.【解答】解:(1)共有6个可能的结果,抽中10元奖品的结果有1个,∴抽中10元奖品的概率为.(2)画树状图:共有30种可能的结果,两次抽中的奖品的总价值大于14元的结果有22个,∴两次抽中的奖品的总价值大于14元的概率==.20.如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CD⊥AB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=∠ACF.求证:直线BE是⊙O的切线.【考点】切线的判定;圆周角定理.【分析】先利用垂径定理得到=,则∠ACD=∠ADC,再证明CD∥BE,则利用平行线的性质得到AB⊥BE,然后根据切线的判定定理可判断直线BE是⊙O 的切线.【解答】证明:∵CD⊥AB,∴=,∴∠ACD=∠ADC,∵∠E=∠ACF,∴∠E=∠ADC,∴CD∥BE,∴AB⊥BE,∴直线BE是⊙O的切线.21.如图,在矩形ABCD中,AB=6,AD=11.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.请问:△CDP与△PAE相似吗?如果相似,请写出证明过程.【考点】相似三角形的判定.【分析】根据矩形的性质,推出∠D=∠A=90°,再由直角三角形的性质,得出∠PCD+∠DPC=90°,又因∠CPE=90°,推出∠EPA+∠DPC=90°,∠PCD=∠EPA,从而证明△CDP∽△PAE.【解答】解:△CDP∽△PAE.理由如下:∵四边形ABCD是矩形,∴∠D=∠A=90°,CD=AB=6,∴∠PCD+∠DPC=90°,又∵∠CPE=90°,∴∠EPA+∠DPC=90°,∴∠PCD=∠EPA,∴△CDP∽△PAE.22.如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)【考点】解直角三角形的应用.【分析】通过解Rt△BAD求得BD=AB•tan∠BAE,通过解Rt△CED求得CE=CD•cos∠BAE.然后把相关角度所对应的函数值和相关的线段长度代入进行求值即可.【解答】解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°,∴∠DCE=22°,又∵tan∠BAE=,∴BD=AB•tan∠BAE,又∵cos∠BAE=cos∠DCE=,∴CE=CD•cos∠BAE=(BD﹣BC)•cos∠BAE=(AB•tan∠BAE﹣BC)•cos∠BAE=(10×0.4040﹣0.5)×0.9272≈3.28(m).23.如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式.(2)请直接写出D点的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.【考点】二次函数与不等式(组);待定系数法求二次函数解析式;抛物线与x 轴的交点.【分析】(1)由于已知抛物线与x轴两交点,则设交点式y=a(x+3)(x﹣1),然后把C(0,3)代入求出a的值即可得到抛物线解析式;(2)通过解方程﹣x2﹣2x+3=3可得到D(﹣2,3);(3)观察函数图象,写出一次函数图象在抛物线上方所对应的自变量的范围即可.【解答】解;(1)设二次函数的解析式为y=a(x+3)(x﹣1),把C(0,3)代入得a×3×(﹣1)=3,解得a=﹣1.所以抛物线解析式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣2x+3;(2)当y=3时,﹣x2﹣2x+3=3,解得x1=0,x2=﹣2.则D(﹣2,3).(3)观察函数图象得使一次函数值大于二次函数值的x的取值范围是x<﹣2或x >1.24.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【考点】二次函数的应用.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.2017年2月20日Welcome To Download !!!欢迎您的下载,资料仅供参考!。
2016~2017学年广东广州白云初三上期末试卷(解析)
9.
抛物线y
=
2 x
−
x
−
1与x轴的一个交点为(m,
0),则代数式m2
−
m
+
2016的值为(
).
A. 2014
B. 2015
C. 2016
D. 2017
答案 D
解析
∵ , 2 m −m−1=0
∴ , 2 m −m=1
∴ , 2 m − m + 2016 = 2017
故选D.
10. 两个同心圆的半径分别是5和4,则长为6的大圆的弦一定和小圆( ).
2018/12/11
(1) 求抛物线的顶点坐标.
答 案 . (3, −4)
目录
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共9小题,共102分)
学生版
解 析 由图像可直接得到顶点坐标为(3, . −4)
教师版
2018/12/11
14.
如图,若AB是⊙O的直径,C 是⊙O上的一点,若∠ABC
=
,则 ∘
58
∠C AB
=
.
答案
∘ 32
解析
, ∘
∠ABC = 90
∘ ∠ABC = 58
则 . ∘
∘
∘
∠C AB = 90 − 58 = 32
15. 若点A(7, , y1) B(5, y2)均在双曲线y = 5 的图象上,则y1与y2的大小关系是
在⊙O中,∠AOB
=
, ∘
80
∠C OD
=
40∘,那么下列正确的是(
).
目录
选择题(本大题共10小题,每小题3分,… 填空题(本大题共6小题,每小题3分,… 解答题(本大题共9小题,共102分)
广东省广州市九年级(上)期末数学试卷
九年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10 小题,共30.0 分)1. 以下各点中在反比率函数 y=-2x 的图象上的点是()A. (-1,-2)B. (1,-2)C. (1,2)D. (2,1)2. 抛物线 y=( x-2)2-1 的对称轴是()A. x=2B. x=-2C. x=-1D. x=13.如图,点 A, B,C 都在⊙O 上,∠CAB=70 °,则∠COB 的度数为()A.70°B.80°C.120 °D.140 °4.如图,点 A、 B、 C、 D、 O 都在方格纸的格点上,若△COD是由△AOB 绕点 O 按逆时针方向旋转而得,则旋转的角度为()A. 30°B. 45°C. 90°D. 135°5. 若方程 3x2+6x-4=0 的两个根为 x1, x2,则()A. x1+x2=6B. x1+x2=-6C. x1+x2=2D. x1+x2=-26. “随意画一个三角形,其内角和是360 °”,这一事件是()A. 必定事件B. 不行能事件C. 随机事件D. 以上选项均不正确7.已知圆的直径为 10cm,圆心到某直线的距离为 4.5cm,则该直线与圆的地点关系是()A. 订交B. 相切C. 相离D. 以上都不对8. 在一个暗箱里放入除颜色外其他都同样的 3 个红球和11 个黄球,搅拌平均后随机任取一个球,取到是红球的概率是()A. 311B. 811C. 1114D. 3149. 函数 y=x2-x+12 的最小值是()A. 12B.-12C. 14D.- 1410. 一次函数y=-x+1 的图象与反比率函数y= kx 的图象交点的纵坐标为 2 ,当-3 x -1<<时,反比率函数y=kx 中 y 的取值范围是()A. -2<y<-23B. -1<y<-13C. 23<y<2D. -3<y<-1二、填空题(本大题共 6 小题,共18.0 分)11.点 P( -2, -3)对于原点对称的点的坐标是 ______.12. 从一副扑克牌中级抽取一张,① 抽到王牌;② 抽到Q;③ 抽到梅花.上述事件,概率最大的是 ______.13.一个扇形的圆心角是 120 °.它的半径是 3cm.则扇形的弧长为 ______cm.14.一个矩形的长比宽多 2,面积是 100,若设矩形的宽为 x,列出对于 x 的方程是 ______.15.如图,点 A、B、C、D、都在⊙ O 上, AB 是直径,弦 AC=6 ,CD 均分∠ACB,BD=5 2,则 BC 的长等于 ______.16. 如图,正方形ABCD 中,AB=3cm B 为圆心,1cm 为半径画圆,点P 是⊙B 上,以一个动点,连结AP,并将 AP 绕点 A 逆时针旋转90°至 AP ',连结 BP',在点 P 移动的过程中, BP'长度的取值范围是______cm.三、计算题(本大题共 1 小题,共9.0 分)17.解方程: x2+2x-3=0 (公式法)四、解答题(本大题共8 小题,共93.0 分)18.在网格图中,作出△ABC绕点B顺时针方向旋转90 °获得的△A′B′C′.19.如图,△ABC.(1)尺规作图:求作△ABC 的外接圆⊙ O;(2)点 D 在劣弧 AC 上,弧 AB=弧 DC ,连结 BD,CD,求证△ABC≌△DCB .20.二次函数 y=ax2+2x+c 的图象经过( -1, 0)( 3, 0)两点.(1)求该二次函数的分析式;(2)求该二次函数图象与 y 轴交点的坐标.21.某企业 25-30 岁的职工共 5 人,此中 25 岁的只有两人,现从 5 人中任抽两人参加长跑活动,求以下事件的概率:( 1)抽到的两人都是25 岁;( 2)抽到的两人至多 1 人是 25 岁的.22.已知反比率函数 y=w+3x 的图象的一支位于第一象限.( 1)判断该函数图象的另一支所在的象限,并求w的取值范围;( 2)点 A 在该反比率函数位于第一象限的图象上,点 B 与点 A 对于 x 轴对称,点 C 与点 A 对于原点O对称,若△ABC 的面积为4,求 w 的值.23.已知对于x 的一元二次方程(a+4)x2+( a2+2a+10 )x-6( a+1) =0 有一根为 -1.( 1)求 a 的值;2 2( 2)x1,x2是对于 x 的方程 x -( a+m+2)x+m +m+2a+1=0 的两个根,已知 x1x2=1,求 x12+x22的值.24.如图,在⊙O 中,半径 OC=6 ,D 为半径 OC 上异于 O,C 的点,过点 D 作 AB⊥OC,交⊙O 于 A,B,点 E 在线段 AB 上,AE =CE,点 P 在线段 EC 的延伸线上, PB=PE.(1)若 OD =2,求弦 AB 的长;(2)当点 D 在线段 OC(不含端点)上挪动时,直线 PB 与⊙O 有如何的地点关系?请说明原因;(3)点 Q 是⊙ O 上的一个动点,若点 D 为 OC 中点时,线段 PQ 的最小值为多少?请说明原因.25.已知抛物线 y=x2 -2mx+m2-3(m 是常数).( 1)证明:不论 m 取什么实数,该抛物线与 x 轴都有两个交点;( 2)设抛物线的极点为A,与 x 轴两个交点分别为B,D ,B 在 D 的右边,与 y 轴的交点为 C.①求证:当 m 取不一样值时,△ABD 都是等边三角形;② 当|m| ≤ m≠0ABC的面积能否有最大值,假如有,恳求出最大值,假如3,时,△没有,请说明原因.答案和分析1.【答案】B【分析】解:反比率函数 y=,中k=-2,四个答案中只有 B 的横纵坐标的积等于 -2,应选:B.依据反比率函数图象上点的坐标的关系,应当知足函数分析式,即点的横纵坐标的积等于比率系数 k.把各个点代入查验即可.本题主要考察反比率函数图象上点的坐标特点,所有在反比率函数上的点的横纵坐标的积应等于比率系数.【答案】 A2.【分析】解:∵抛物线 y= x-2 2()-1,∴该抛物线的对称轴是直线 x=2,应选:A.依据题目中抛物线的极点式,能够直接写出它的对称轴,本题得以解决.本题考察二次函数的性质,解答本题的重点是明确题意,利用二次函数的性质解答.3.【答案】D【分析】解:∵∠CAB=70°,∴∠COB=2∠CAB=140°.应选:D.依据圆周角定理即可得出∠COB 的度数.本题考察了圆周角定理,解题的重点是利用同弧的圆心角是圆周角的2倍解决问题.本题属于基础题,难度不大,解决该题型题目时,娴熟运用圆周角定理解决问题是重点.4.【答案】C【分析】解:如图,设小方格的 边长为 1,得,OC= = ,AO= =,AC=4 ,∵OC 2+AO 2=+=16,AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°.应选:C .△COD 是由 △AOB 绕点 O 按逆时针方向旋转而得,由图可知,∠AOC 为旋转角,可利用△AOC 的三边关系解答.本题考察了旋转的性质,旋转前后对应角相等,本题也可经过两角互余的性质解答.5.【答案】 D【分析】解:∵方程 3x 2+6x-4=0 的两个根 为 x 1,x 2,∴x 1+x 2=- =-2,x 1x 2==- ,应选:D .直接依据根与系数的关系求解.本题考察了根与系数的关系:若 x 1,x 2 是一元二次方程 ax 2+bx+c=0(a ≠0)的两根,则 x 1+x 2=- ,x 1x 2= .6.【答案】 B【分析】解:随意画一个三角形,其内角和是 360°”,这一事件是不行能事件.应选:B .直接利用三角形内 联合定理联合不行能事件的定 义剖析得出答案.本题主要考察了随机事件以及三角形内角和定理,正确各样事件的定义是解题重点.7.【答案】 A【分析】解:∵圆的直径为 10 cm,∴圆的半径为 5 cm,∵圆心到直线的距离 4.5cm,∴圆的半径>圆心到直线的距离,∴直线于圆订交,应选:A.欲求直线和圆的地点关系,重点是求出圆心到直线的距离 d,再与半径 r 进行比较.若 d<r,则直线与圆订交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.本题考察的是直线与圆的地点关系,解决此类问题可经过比较圆心到直线距离 d 与圆半径大小关系达成判断.8.【答案】D【分析】解:由于所有 14 个球,有 3 个黄球,因此搅拌平均后随机任取一个球,取到是红球的概率是.应选:D.让红球的个数除以球的总数即为摸到红球的概率.本题主要考察概率的意义及求法;用到的知识点为:概率=所讨状况数与总状况数之比.【答案】 C9.【分析】解: y=x 2 2 ( 2+ ,)∵-x+ =x -x+ + = x-∴可得二次函数的最小值为.应选:C.将二次函数化成极点式,即可直接求出二次函数的最小值.本题考察了二次函数的最值问题,用配方法是解此类问题的最简短的方法.10.【答案】C【分析】解:把一个交点的纵坐标是 2 代入 y=-x+1 求出横坐标为 -1,把(-1,2)代入y= ,解得:k=-2,故反比率函数为 y=-,当 x=-3 时,代入 y=- 得 y= ,故 x=-3 时反比率函数的值为:,当 x=-1 时,代入 y=- 得 y=2,又知反比率函数 y=- 在-3< x< -1 时,y 随 x 的增大而增大,即当 -3<x<-1 时反比率函数 y 的取值范围为:<y<2.应选:C.把一个交点的纵坐标是 2 代入 y=-x+1 求出横坐标为 -1,把(-1,2)代入y= 出k,令-3< x< -1,求出- 的取值范围,即可求出 y 的取值范围.本题考察了反比率函数与一次函数的交点及正比率函数与反比率函数的性质难键是掌握用待定系数法求解函数的分析式.,度不大,关2 3)11.【答案】(,【分析】解:依据两个点对于原点对称,∴点 P(-2,-3)对于原点对称的点的坐标是(2,3);故答案为(2,3).依据两个点对于原点对称时,它们的坐标符号相反,即点 P(-2,-3)对于原点O的对称点是 P′(2,3);本题考察了对于原点对称的点的坐标,运用时要娴熟掌握,能够不用图画和联合坐标系,只依据符号变化直接写出对应点的坐标.12.【答案】③抽到梅花【分析】解:∵一副扑克牌有 54 张,王牌有 2 张,抽到王牌的可能性是=;Q 牌有 4 张,抽到Q 牌的可能性是=;梅花有 13 张,抽到梅花牌的可能性是;∴概率最大的是抽到梅花;故答案为:③ 抽到梅花.依据概率公式先求出各自的概率,再进行比较,即可得出答案.本题考察了概率公式,用到的知识点为:概率=所讨状况数与总状况数之比.13.【答案】2π【分析】解:依据题意,扇形的弧长为=2π,故答案为:2π依据弧长公式可得结论.本题主要考察弧长的计算,娴熟掌握弧长公式是解题的重点.14.【答案】x(x+2)=100【分析】解:设矩形的宽为 x,则矩形的长为(x+2),依据题意得:x(x+2)=100.故答案为:x(x+2)=100.设矩形的宽为 x,则矩形的长为(x+2),利用矩形的面积公式,即可得出对于 x 的一元二次方程,此题得解.本题考察了由实质问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的重点.15.【答案】8【分析】解:以下图,连结 AD ,∵AB 是直径,∴∠ACB= ∠ADB=90°,∵CD 均分∠ACB ,∴∠ACD= ∠BCD=45°,∴∠BAD= ∠ABD=45°,∵BD=5,∴AB=BD=10,∵AC=6,∴BC=8,故答案为:8.连结 AD ,由AB 是直径知∠ACB= ∠ADB=90°,由CD 是∠ACB 均分线得∠ACD= ∠BCD=∠BAD= ∠ABD=45°,依据BD 的长度可得 AB=10 ,再依据勾股定理可得答案.本题主要考察圆周角定理,解题的重点是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角, 90°的圆周角所对的弦是直径.16.【答案】(32-1)cm≤BP≤(32+1)【分析】解:如图,当P′在对角线 BD 上时,BP′最小;当P′在对角线 BD 的延伸线上时,BP′最大.连结 BP,①当 P′在对角线 BD 上时,由旋转得:AP=AP′,∠PAP′=90°,∴∠PAB+∠BAP′ =90,°∵四边形 ABCD 为正方形,∴AB=AD ,∠BAD=90°,∴∠BAP′+∠DAP′ =90,°∴∠PAB=∠DAP′,第11 页,共 19页∴△PAB≌△P′ AD,∴P′ D=PB=1,在 Rt△ABD 中,∵AB=AD=3 ,由勾股定理得:BD= =3 ,∴BP′ =BD-P′ D=3 -1,即 BP′长度的最小值为(3 -1 )cm.②当 P′在对角线 BD 的延伸线上时,同理可得 BD= =3 ,∴BP′ =BD+P′ D=3+1,即 BP′长度的最大值为(3 +1 )cm.∴BP'长度的取值范围是(3 -1)cm≤ BP≤(3 +1)cm故答案为:(3 -1)cm≤BP≤(3 +1).经过绘图发现,点 P′的运动路线为以 D 为圆心,以 1cm 为半径的圆,可知:当P′在对角线 BD 上时,BP′最小;当P′在对角线 BD 的延伸线上时,BP′最大.先证明△PAB≌△P′AD,则 P′D=PB=1,再利用勾股定理求对角线 BD 的长,则得出 BP′的长.本题考察了正方形的性质、旋转的性质和最值问题,找寻点 P′的运动轨迹是本题的重点.217.【答案】解:△=2 -4×(-3)=16,因此 x1=1, x2=-3 .【分析】先计算鉴别式的值,而后利用求根公式解方程.本题考察认识一元二次方程 -公式法:用求根公式解一元二次方程的方法是公式法.18.【答案】解:如图,△A′B′C′即为所求.【分析】依据图形旋转的性质画出△A′ B′即C可′.第12 页,共 19页本题考察的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.19.【答案】解:(1)以下图,⊙O即为所求.(2)∵AB=CD,∴AB=CD,∠ACB=∠DBC ,又∵∠A=∠D ,∴△ABC≌△DCB( AAS).【分析】(1)分别作出 BC 和 AC 的中垂线,交于点 O,以O 为圆心、OB 长为半径作圆即可得;(2)由=知AB=CD,∠ACB=∠DBC,联合∠A=∠D可得答案.本题主要考察作图-复杂作图,解题的重点是掌握圆心角定理和圆周角定理及全等三角形的判断与性质,三角形外接圆的性质等知识点.y=ax2 +2x+c 的图象经过(-1, 0)( 3, 0)两点.20.【答案】解:(1)∵二次函数∴ a-2+c=09a+6+c=0,解得: a=-1c=3,∴抛物线的分析式是y=-x2+2x+3;(2)令 x=0,则 y=3,∴该二次函数图象与y 轴交点的坐标为(0, 3).【分析】(1)将已知A 与 B 坐标代入二次函数分析式求出a 与 c 的值,即可确立出二次函数分析式;(2)令x=0,即可求得.本题考察了待定系数法求二次函数分析式,以及二次函数的性质,娴熟掌握待定系数法是解本题的重点.21.【答案】解:设此中25 岁的只有两人为A,B ,其他 3 人分别为C ,D ,E , 画树状图,以下图: 所有等可能的状况有20 种,( 1)抽到的两人都是 25 岁的状况有 2 种,因此所抽到的两人都是 25 岁的概率 =220 =110 ; ( 2)抽到的两人至多 1 人是 25 岁的有 18 种, 因此到的两人至多1 人是 25 岁的概率 =1820 =910 .【分析】画出树状图,依据概率公式即可获得 结论.本题考察了列表法与 树状图法,正确的画出树状图是解题的重点.22.【答案】 解:( 1) ∵反比率函数 y=w+3x 的图象的一支位于第一象限.∴该函数图象的另一支所在的象限是第三象限, w+3> 0,w > -3,即 w 的取值范围是 w > -3;( 2)设点 A 的坐标为( a ,b ),∵点 A 在该反比率函数位于第一象限的图象上,点 B 与点 A 对于 x 轴对称,点 C 与点 A对于原点 O 对称,∴a > 0, b >0,点 B 的坐标是( a , -b ),点 C 的坐标是( -a ,-b ), ∴BC=a-( -a ) =2 a , AB=b+b=2b , ∵△ABC 的面积为 4, ∴12 × AB × BC=4, ∴12 × 2a × 2b=4 , 解得: ab=2,∵A 点在反比率函数 y=w+3x 位于第一象限的图象上, ∴w+3=2, 解得: w=-1.【分析】(1)依据反比率函数的图象和性质得出即可;(2)求出B 、C 的坐标,求出 AB 和 BC 的长,依据三角形的面积求出 ab=2,即可求出答案.本题考察了反比率函数 图象上点的坐 标特点、反比率函数的 图象和性质、反比率函数系数k 的几何意 义、三角形的面积、对于原点、对称轴的对称点的坐标等知识点,能熟记知识点的内容是解此 题的重点.23.【答案】 解:( 1)将 x=-1 代入方程,得: a+4- a 2-2a-10-6 a-6=0 ,2 整理,得: a+7a+12=0,解得: a=-3 或 a=-4 , 又 a+4≠0,即 a ≠-4,∴a=-3.第14 页,共 19页(2)将 a=-3 代入方程,得: x2-( m-1) x+m2+m-5=0 ,由题意知 x1+x2=m-1, x1x2=m2+m-5,x1 2∵ x =1,∴m2+m-5=1 ,即 m2+m-6=0,解得 m=2 或 m=-3 ,当 m=2 时,方程为 x2-x+1=0 ,此方程无解;当 m=3 时,方程为 x 2x1+x2=2,-2x+1=0 ,此方程有解,且则 x12+x22=( x1+x2)2-2x1x2=4-2=2 .【分析】(1)将x=-1 代入方程,求得 a 的值,再依据一元二次方程的定义弃取可得;2)将a 的值代入方程,依据x1x 2=1 可得 m 的值,再由方程有两根弃取可得 m(的正确数值,进而复原方程得出 x1+x2的值,由x 2 2 2可得1 +x2 =(x1 +x2)-2x1x2答案.本题主要考察根与系数的关系,解题的重点是掌握一元二次方程的解的观点,根与系数的关系等知识点.24.【答案】解:(1)如图1,连结OB,∵OB=OC=6, OD=2,∴BD =OB2-OD2 =62-22 =42,则 AB=2BD =82;( 2)如图 2,连结 OB, OA, OE,∵OB=OA=OC,∴∠OBA=∠OAB,第15 页,共 19页又∵OE=OE, AE=CE,∴△AOE≌△COE( SSS),∴∠OAE=∠OCE,∴∠OCE=∠OBA ,∵PB=PE,∴∠PBE=∠PEB,∵AB⊥CD ,∴∠OCE+∠PEB =90 °,∴∠OBA+∠PBE =90 °,即∠PBO=90 °,∴OB ⊥PB,又 OB 是⊙O 的半径,∴PB 与⊙ O 相切;(3)线段 PQ 的最小值为 221 -6,原因以下:∵D 为 OC 的中点,∴OD =12 OC=12 OB,在 Rt△OBD 中,∠OBD=30°,∴∠BOC=60 °,∵OB=OC,∴△BOC 是等边三角形,∵Q 为⊙O 随意一点,连结 PQ、 OQ,由于 OQ 为半径,是定值4,则 PQ+OQ 的值最小时, PQ 最小,当P、Q、 O 三点共线时, PQ 最小,∴Q 为 OP 与⊙ O 的交点时, PQ 最小,∠A=12 ∠COB=30 °,∴∠PEB=2∠A=60 °,∠ABP=90 °-30 °=60 °,∴△PBE 是等边三角形,Rt△OBD 中, BD =62-32=33 ,∴AB=2BD=63,设AE=x,则CE=x,ED=33 -x,Rt△CDE 中, x2=32+( 33 -x)2,解得: x=23,∴BE=PB=6 3-23 =43 ,Rt OPB中,OP=PB2+OB2=(43)2+62=221 ,△∴PQ=221 -6,则线段 PQ 的最小值是221 -6.【分析】第16 页,共 19页(1)连结 OB ,由OB=OC=6,OD=2 ,利用勾股定理可得 BD 的长,依据垂径定理可得答案;(2)连结 OB ,OA ,OE ,先证△AOE ≌△COE 得 ∠OAE=∠OCE ,联合 ∠OBA= ∠OAB 知∠OCE=∠OBA ,依据 PB=PE 知∠PBE=∠PEB ,依据∠OCE+∠PEB=90°得 ∠OBA+ ∠PBE=90°,由切线的判断可得答案;(3)先确立线段 PQ 的最小值时 Q 的地点:由于 OQ 为半径,是定值 4,则PQ+OQ 的值最小时,PQ 最小,当 P 、Q 、O 三点共线时,PQ 最小,先求 AE 的长,进而得 PB 的长,最后利用勾股定理求 OP 的长,与半径的差就是 PQ 的最小值.本题是圆的综合题,考察了三角形全等的性 质和判断、等腰三角形、等边三角形的性 质和判断、垂径定理、切线的性质、勾股定理等知识,第三问有难度,确立 PQ 最小值时 Q 的地点是关 键,依据两点之间线段最短,与勾股定理、方程相联合,解决问题.2225.【答案】 ( 1)证明:令 y=0,则有 x -2mx+m -3=0 .22∴对于 x 的一元二次方程 x -2mx+m -3=0 有两个不相等的实数根, ∴不论 m 取什么实数,该抛物线与 x 轴都有两个交点; ( 2)解: ∵y=x 2-2mx+m 2-3= (x-m ) 2-3, ∴极点 A 的坐标为( m , -3),设抛物线对称轴与x 轴的交点为 E ,则点 E 的坐标为( m , 0);当 x=0 时, y=x 2-2mx+m 2-3= m 2-3,∴点 C 的坐标为(0 m 2, -3);当 y=0 2 22时, x -2mx+m -3=0 ,即( x-m ) =3,解得: x 1=m-3, x 2=m+3 ,∴点 D 的坐标为( m- 0 B 的坐标为( m+ 0).3, ),点3, ① 证明:在 Rt △ABE 中, AE=3 , BE=m+3 -m=3, AB= =2 3 =2BE ,∴ AE2+BE2∴∠BAE=30 °.同理,可得出: ∠DAE =30°, ∴∠BAD=∠BAE +∠DAE=60 °.又 ∵AB=AD ,∴当 m 取不一样值时, △ABD 都是等边 三角形.② 分两种状况考虑: ( i )当 0< m ≤3 时,如 图 2所示.S △ABC =S 梯形OC+AE OCAE△ABE△OCB,= 12 OE?(+S -S2) +AE BE-OC OB=m12 12 , 12 ?( 3-m +3) ??第 172+12 ×3×( m+3-m) -12( 3-m )( m+3 ),2 2∵32 > 0,∴当 0< m≤3 时, S△ABC随 m 的增大而增大,∴当 m=3 时, S△ABC获得最大值,最大值为33 ;(ii - ≤m 0时,如图3所示.)当 3 <S△ABC=S 梯形EACO+S△OCB-S△ABE,=12 OE?(OC+AE)+12 OC?OB-12 AE?BE , =-12 m?(3-m2+3)+12( 3-m2)(m+3)-12(m+3 -m)( 3-m2)=-32 m,∵-32 < 0,∴当 -3≤m< 0 时, S△ABC随 m 的增大而减小,∴当 m=-3 时, S△ABC获得最大值,最大值为332 .∵33> 332 ,∴当 m=3 时,△ABC 的面积获得最大值,最大值为33 .【分析】(1)令y=0 可得出对于 x 的一元二次方程,由该方程的根的判别式△=12> 0,可证出:不论 m 取什么实数,该抛物线与 x 轴都有两个交点;(2)利用二次函数的性质及二次函数图象上点的坐标特点,可求出点 A ,B,C,D的坐标.①在 Rt △ABE 中,利用勾股定理可得出 AB=2BE 可得出∠BAE=30°,同理,可得出∠DAE=30°及∠BAD=60°,再联合 AB=AD 即可证出:当m 取不一样值时,△ABD 都是等边三角形;②分 0< m≤及-≤m<0两种状况找出S△ABC对于m的函数关系式,利用二次函数的性质或一次函数的性质求出 S△ABC的最大值,比较后即可得出结论.本题考察了根的判别式、二次函数的性质、二次函数图象上点的坐标特点、解含 30 度角的直角三角形、等边三角形的判断、三角形的面积、梯形的面积、二次函数的最值以及一次函数的最值,解题的关键是:(1)切记“当△>0,抛物线与 x 轴有两个不一样的交点”;(2)①经过解直角三角形找出∠BAE= ∠DAE=30°;② 分 0<m≤及-≤m<0两种状况找出S△ABC的最大值.第18 页,共 19页第19 页,共 19页。
九年级上册广州数学期末试卷测试与练习(word解析版)
九年级上册广州数学期末试卷测试与练习(word 解析版)一、选择题1.下列方程中,是关于x 的一元二次方程的为( )A .2210x x +=B .220x x --=C .2320x xy -=D .240y -=2.sin 30°的值为( )A .3B .3C .12D .2 3.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .244.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个 5.若将二次函数2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+ 6.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .67.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .8.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( )A .12B .13C .14D .159.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断10.下列方程中,关于x 的一元二次方程是( )A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x += 11.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点12.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x … ﹣1 ﹣120 12 1 32 2 52 3 … y … 2 m ﹣1 ﹣74 ﹣2 ﹣74 ﹣1 14 2 …可以推断m 的值为( )A .﹣2B .0C .14D .2二、填空题13.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.14.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.15.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.16.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.17.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.18.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;19.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.20.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.21.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)22.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.23.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.24.已知234x y z x z y+===,则_______ 三、解答题25.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t (件)与每件的销售价x (元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y (元)与每件售价x (元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?26.我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知O 的两条弦AB CD ⊥,则AB 、CD 互为“十字弦”,AB 是CD 的“十字弦”,CD 也是AB 的“十字弦”.(1)若O 的半径为5,一条弦8AB =,则弦AB 的“十字弦”CD 的最大值为______,最小值为______. (2)如图1,若O 的弦CD 恰好是O 的直径,弦AB 与CD 相交于H ,连接AC ,若12AC =,7DH =,9CH =,求证:AB 、CD 互为“十字弦”;(3)如图2,若O 的半径为5,一条弦8AB =,弦CD 是AB 的“十字弦”,连接AD ,若60ADC ∠=︒,求弦CD 的长.27.(1)解方程:2670x x +-=(2)计算:()04sin 45831tan 30︒-+--︒ 28.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.29.解方程:(1)x 2﹣2x ﹣1=0;(2)(2x ﹣1)2=4(2x ﹣1).30.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .31.如图,AB 是⊙O 的弦,AB =4,点P 在AmB 上运动(点P 不与点A 、B 重合),且∠APB =30°,设图中阴影部分的面积为y .(1)⊙O 的半径为 ;(2)若点P 到直线AB 的距离为x ,求y 关于x 的函数表达式,并直接写出自变量x 的取值范围.32.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.2210x x+=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=12故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键. 3.D解析:D【解析】【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案.【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=.故答案为:D.【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.4.C解析:C【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.5.C解析:C【解析】【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-.故选:C.【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键. 6.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.7.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.8.D解析:D【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D .【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键. 9.B解析:B【解析】【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦ ∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】 此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.11.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键. 12.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.二、填空题13.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD5,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.14.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.15.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.16.2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=解析:2或1.5【解析】【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.17.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45CECF .故答案为:45. 【点睛】 本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.18.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.19.2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.22.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.23.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据解析:2 3【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 24.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===,∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题25.(1)y= -3x 2+330x-8568;(2)每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【解析】【分析】(1)根据毛利润=销售价−进货价可得y 关于x 的函数解析式;(2)将(1)中函数关系式配方可得最值情况.【详解】(1)根据题意,y=(x-42)(204-3x)= -3x 2+330x-8568;(2)y=-3x 2+330x-8568= -3(x-55)2+507因为-3<0,所以x=55时,y 有最大值为507.答:每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【点睛】本题主要考查二次函数的应用,理解题意根据相等关系列出函数关系式,并熟练掌握二次函数的性质是解题的关键.26.(1)10,6;(2)见解析;(3)3.【解析】【分析】(1)根据“十字弦”定义可得弦AB 的“十字弦”CD 为直径时最大,当CD 过A 点或B 点时最小;(2)根据线段长度得出对应边成比例且有夹角相等,证明△ACH ∽△DCA,由其性质得出对应角相等,结合90°的圆周角证出AH ⊥CD ,根据“十字弦”定义可得;(3)过O 作OE ⊥AB 于点E ,作OF ⊥CD 于点F,利用垂径定理得出OE=3,由正切函数得出设DH=x ,在Rt △ODF 中,利用线段和差将边长用x 表示,根据勾股定理列方程求解.【详解】解:(1)当CD 为直径时,CD 最大,此时CD=10,∴弦AB 的“十字弦”CD 的最大值为10;当CD 过A 点时,CD 长最小,即AM 的长度,过O 点作ON ⊥AM,垂足为N,作OG ⊥AB ,垂足为G,则四边形AGON 为矩形,∴AN=OG,∵OG ⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON ⊥AM,∴AM=6,即弦AB 的“十字弦”CD 的最小值是6.(2)证明:如图,连接AD ,∵12AC =,7DH =,9CH =,∴AC CH CDAC, ∵∠C=∠C, ∴△ACH ∽△DCA,∴∠CAH=∠D,∵CD 是直径,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH ⊥CD,∴AB 、CD 互为“十字弦”.(3)如图,过O 作OE ⊥AB 于点E ,作OF ⊥CD 于点F ,连接OA ,OD ,则四边形OEHF 是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan ∠ADH=AH HD , ∴tan60°=3AHHD ,设DH=,则3∴3在Rt △ODF 中,由勾股定理得,OD 2=OF 2+FD 2,∴(3+x)232=52,解得,x=332 , ∴FD=332332322, ∵OF ⊥CD,∴CD=2DF=32234332即CD=433【点睛】本题考查圆的相关性质,利用垂径定理,相似三角形等知识是解决圆问题的常用手段,对结合学过的知识和方法的基础上,用新的方法和思路来解决新题型或新定义的能力是解答此题的关键.27.(1)17x =-,21x =;(2)31 【解析】【分析】(1)利用求根公式法解方程即可(2)第一、四项利用特殊角的三角函数值计算,第二项化为最简二次根式,第三项利用零指数幂法则计算,【详解】解:(1)()2641764=-⨯⨯-= ∴66468x 34212--±===-±⨯ ∴17x =-,21x =(2)原式23342211==【点睛】本题考查的知识点有解一元二次方程和实数的运算,熟记求根公式和特殊角的三角函数值是解此题的关键.28.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF ,∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12,∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】 考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.29.(1)x =22;(2)x =52或x =12. 【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x 2﹣2x ﹣1=0,∴x 2﹣2x +1=2,∴(x ﹣2)2=2,∴x =2.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0, ∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.30.(1)见解析;(2)-2【解析】【分析】(1)连接AO 并延长至1A ,使1AO 2AO =,同理作出点B ,C 的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可.【详解】(1)如图;(2)根据题意可得出()13,2A --,()12,0B -,()11,0C -, 设11A B 与x 轴的夹角为α,∴()111tan tan 180αtan α2A BC ∠=-=-=-.【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.31.(1)4;(2)y=2x +83π-3<34) 【解析】【分析】(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径;(2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH 的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴⊙O 的半径是4;(2)解:过点O 作OH ⊥AB ,垂足为H则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=12AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2∴OH=22AO AH=23∴y=16×16 π-12×4×23+12×4×x=2x+83π-43 (0<x≤23+4).【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.32.(1)见解析;(2)1 4【解析】【分析】(1)根据题意画树状图,求得所有等可能的结果;(2)由(1)可求得3次摸到的球颜色相同的结果数,再根据概率公式即可解答.【详解】(1)画树状图为:共有8种等可能的结果数;(2)3次摸到的球颜色相同的结果数为2,3次摸到的球颜色相同的概率=28=14.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.。
广州九年级数学学科期末试卷
②当 1 x 3 时, y 0 ;
C.①②④
2
D.③④
10. 实数 a ,b 分别满足 a 4a 2 0 ,b 4b 2 0 ,且 a b ,则 A. 2 B. 2 C. 6 D. 6
b a 的值是(※) a b
九年级数学试卷 第 2 页 共 5 页
第 4 题图
C.2
D. 3
6. 用半径为 3cm , 圆心角是 120 的扇形围成一个圆锥的侧面, 则这个圆锥的底面半径为 (※) A. 2
cm
2
B. 1.5 cm
C. cm
D. 1 cm
7. 将抛物线 y x 2 x 3 向上平移 2 个单位长度,再向右平移 3 个单位长度后,得到的抛 物线的解析式为(※) A. y ( x 4 ) 2 4 B. y ( x 1) 2 4 C . y ( x 2) 2 6 D. y ( x 4 ) 2 6 8. 有 x 支球队 参 加 篮 球 比 赛 ,每 两 队 之 间 都 比 赛 一 场 ,共 比 赛 了 45 场 ,则 下 列 方 程 中 符 合 题 意 的 是 (※) A.
25. (本题满分 14 分) 如图, 在平面直角坐标系中, 抛物线 y mx 8mx 3( m 0) 与 y 轴
2
(x1, 0) (x2, 0) 的交点为 A ,与 x 轴的交点分别为 B ,C ,且 x2 x1 4 ,在 x 轴上有一动点 E ( t ,0),过点 E 作平行于 y 轴的直线 l 与抛物线交于点 P .
第 16 题图
三、解答题(本题有 9 个小题,共 102 分,解答要求写出文字说明、证明过程或计算步骤) 17.(每小题 5 分,满分 10 分)解方程: (1) ( x 2) 36
2024届广东省广州市越秀区数学九年级第一学期期末综合测试模拟试题含解析
2024届广东省广州市越秀区数学九年级第一学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,则sinB 的值等于( )A .43B .34C .45D .352.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .193.如图,点A 在线段BD 上,在BD 的同侧作30角的直角三角形ABC 和30角的直角三角形ADE ,CD 与BE ,AE 分别交于点P ,M ,连接PA .对于下列结论:①BAE CAD ∆∆;②MP MD MA ME ⋅=⋅;③图中有5对相似三角形;④AP CD ⊥.其中结论正确的个数是( )A .1个B .2个C .4个D .3个4.如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD ﹣DF5.已知,如图,点C ,D 在⊙O 上,直径AB=6cm ,弦AC ,BD 相交于点E ,若CE=BC ,则阴影部分面积为( )A .934π-B .9942π-C .39324π-D .3922π- 6.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A .1:2B .1:4C .1:2D .2:17.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个8.如图,将AOB 绕点0按逆时针方向旋转45︒后得到A OB ''△,若15AOB ∠=︒,则AOB '∠的度数是( )A .30B .35︒C .40︒D .45︒ 9.如图是抛物线()21y x k =-++的部分图象,其顶点为M ,与y 轴交于点()0,3,与x 轴的一个交点为A ,连接,MO MA .以下结论:①3k =;②抛物线经过点(2,3)-;③4OMA S=;④当201832019x =-+时, 0y >.其中正确的是( )A .①③B .②③C .①④D .②④10.如图,在△ABC 中,点D 是在边BC 上,且BD =2CD ,=,=,那么等于( )A .=+B .=+C .=-D .=+11.若点A (﹣1,0)为抛物线y =﹣3(x ﹣1)2+c 图象上一点,则当y ≥0时,x 的取值范围是( )A .﹣1<x <3B .x <﹣1或x >3C .﹣1≤x ≤3D .x ≤﹣1或x ≥312.下列约分正确的是( )A .632x x x =B .0x y x y +=+C .222142xy x y =D .1()a b x a b x+=+ 二、填空题(每题4分,共24分)13.已知二次函数()20y ax bx c a =++≠的图象如图所示,并且关于x 的一元二次方:20ax bx c m ++-=有两个不相等的实数根,下列结论:①240b ac -<;②0a b c -+<;③0abc >;④2m ≥-,其中正确的有__________.14.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.15.已知点P 是正方形ABCD 内部一点,且△PAB 是正三角形,则∠CPD =_____度.16.△ABC 中,∠C =90°,tan A =43,则sin A +cos A =_____. 17.如图,⊙O 与抛物线212y x =交于A B 、两点,且2AB =,则⊙O 的半径等于_______.18.一元二次方程x 2﹣x ﹣14=0配方后可化为__________. 三、解答题(共78分) 19.(8分)已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?(2)当AB=3时,求□ABCD 的周长.20.(8分)如图,△ABC 的高AD 与中线BE 相交于点F ,过点C 作BE 的平行线、过点F 作AB 的平行线,两平行线相交于点G ,连接BG .(1)若AE =2.5,CD =3,BD =2,求AB 的长;(2)若∠CBE =30°,求证:CG =AD +EF .21.(8分)综合与实践背景阅读:旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中“旋”是过程,“转”是结果.旋转作为图形变换的一种,具备图形旋转前后对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形是全等图形等性质.所以充分运用这些性质是在解决有关旋转问题的关健.实践操作:如图1,在Rt △ABC 中,∠B =90°,BC =2AB =12,点D ,E 分别是边BC ,AC 的中点,连接DE ,将△EDC绕点C 按顺时针方向旋转,记旋转角为α.问题解决:(1)①当α=0°时,AE BD = ;②当α=180°时,AE BD= . (2)试判断:当0°≤a <360°时,AE BD 的大小有无变化?请仅就图2的情形给出证明.问题再探:(3)当△EDC旋转至A,D,E三点共线时,求得线段BD的长为.22.(10分)如图,反比例函数kyx=的图象与一次函数1y x=+的图象相交于点()2,3A和点B.(1)求反比例函数的解析式和点B的坐标;(2)连接OA,OB,求AOB∆的面积.(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量x的取值范围.23.(10分)如果一个直角三角形的两条直角边的长相差2cm,面积是242cm,那么这个三角形的两条直角边分别是多少?24.(10分)如图,以矩形ABCD的边CD为直径作⊙O,点E是AB的中点,连接CE交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为.25.(12分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O 的半径为3cm ,∠C =30°,求图中阴影部分的面积.26.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?参考答案一、选择题(每题4分,共48分)1、C【解题分析】∵∠C=90°,AC=4,BC=3,∴AB=5, ∴sinB=45AC AB = , 故选C.2、B【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【题目详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【题目点拨】本题考查了概率问题,掌握圆的面积公式是解题的关键.3、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到3cos302AB AEAC AD==︒=,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90︒,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【题目详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90︒,∠BAC=∠DAE=30︒,∴3cos30AB AEAC AD==︒=,∠BAE=30︒+∠CAE,∠CAD=30︒+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴PM ME MA MD=,∴MP•MD=MA•ME,故②正确;∴PM MA ME MD=,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90︒,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【题目点拨】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.4、B【解题分析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B错误;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正确;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正确;故选B.5、B【分析】连接OD、OC,根据CE=BC,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S阴影=S扇形-S△ODC 即可求得.【题目详解】连接OD、OC,∵AB是直径,∴∠ACB=90°,∵CE=BC,∴∠CBD=∠CEB=45°,∴∠COD =2∠DBC=90°,∴S阴影=S扇形−S△ODC=2903360π⋅⋅−12×3×3=94π−92.故答案选B.【题目点拨】本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.6、B【分析】直接根据相似三角形的性质即可得出结论.【题目详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:1.故选:B .【题目点拨】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键. 7、B【解题分析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B .8、A【分析】根据AOB 绕点0按逆时针方向旋转45︒后得到A OB ''△,可得45BOB '∠=︒,然后根据15AOB ∠=︒可以求出'AOB ∠的度数.【题目详解】∵AOB 绕点0按逆时针方向旋转45︒后得到''A OB∴45BOB '∠=︒又∵15AOB ∠=︒∴30AOB BOB AOB ''︒∠=∠-∠=【题目点拨】本题考查的是对于旋转角的理解,能利用定义从图形中准确的找出旋转角是关键.9、D【分析】根据抛物线与y 轴交于点(0,3),可得出k 的值为4,从而得出抛物线的解析式为()2y 14x =-++,将(-2,3)代入即可判断正确与否,抛物线与x 轴的交点A (1,0),因此得出三角形的面积为2,当x-3<x<1时,y>0.据此判断④正确.【题目详解】解:把(0,3)代入抛物线解析式求出k=4,选项①错误,由此得出抛物线解析式为:()2y 14x =-++,将(-2,3)代入解析式可得出选项②正确;抛物线与x轴的两交点分别为(1,0),(-3,0),∴OA=1,∵点M到x轴的距离为4,∴2OMAS=,选项③错误;∵当x-3<x<1时,y>0.∵2018 3312019-<-+<∴y>0,选项④正确,故答案为D.【题目点拨】本题考查的知识点是二次函数的图象与性质,根据题目找出抛物线的解析式是解题的关键,再利用其性质求解.10、D【解题分析】利用平面向量的加法即可解答.【题目详解】解:根据题意得=,+.故选D.【题目点拨】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.11、C【分析】根据点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,可以求得c的值,从而可以得到该抛物线的解析式,然后令y=0,求得抛物线与x轴的交点,然后根据二次函数的性质即可得到当y≥0时,x的取值范围.【题目详解】解:∵点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,∴0=﹣3(﹣1﹣1)2+c,得c=12,∴y=﹣3(x﹣1)2+12,当y=0时,﹣3(x﹣1)2+12=0,解得:x1=﹣1,x2=3,又∵-3<0,抛物线开口向下,∴当y≥0时,x的取值范围是﹣1≤x≤3,故选:C.【题目点拨】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.12、D【分析】根据约分的运算法则,以及分式的基本性质,分别进行判断,即可得到答案.【题目详解】解:A 、642x x x=,故A 错误; B 、1x y x y+=+,故B 错误; C 、22242=xy y x y x,故C 错误; D 、1()a b x a b x+=+,正确; 故选:D .【题目点拨】本题考查了分式的基本性质,以及约分的运算法则,解题的关键是熟练掌握分式的基本性质进行解题.二、填空题(每题4分,共24分)13、③【分析】① 利用24b ac ∆=-可以用来判定二次函数与x 轴交点个数,即可得出答案;② 根据图中当1x =-时y 的值得正负即可判断;③ 由函数开口方向可判断a 的正负,根据对称轴可判断b 的正负,再根据函数与y 轴交点可得出c 的正负,即可得出答案;④ 根据方程20ax bx c m ++-=可以看做函数2y ax bx c m =++-,就相当于函数2y ax bx c =++(a ≠ 0)向下平移m 个单位长度,且与x 有两个交点,即可得出答案.【题目详解】解:① ∵ 函数与x 轴有两个交点,∴240b ac ∆=->,所以① 错误;②∵ 当1x =-时,-y a b c =+,由图可知当1x =-,0y >,∴0a b c -+>,所以②错误;③∵ 函数开口向上,∴0a >, ∵对称轴x 02b a=->,0a >, ∴0b <,∵函数与y 轴交于负半轴,∴0c <,∴0abc >,所以③ 正确;④方程20ax bx c m ++-=可以看做函数2y ax bx c m =++-当y=0时也就是与x 轴交点,∵方程有两个不相等的实数根,∴函数2y ax bx c m =++-与x 轴有两个交点∵函数2y ax bx c m =++-就相当于函数()20y ax bx c a =++≠向下平移m 个单位长度∴由图可知当函数()20y ax bx c a =++≠向上平移大于2个单位长度时,交点不足2个,∴2m >-,所以④错误.正确答案为: ③【题目点拨】本题考查了二次函数与系数a b c 、、的关系:24b ac ∆=-可以用来判定二次函数与x 轴交点的个数,当>0∆时,函数与x 轴有2个交点;当0∆=时,函数与x 轴有1个交点;当∆<0时,函数与x 轴没有交点.;二次函数系数中a 决定开口方向,当0a >时,开口向上,当0a <时,开口向下;a b 、共同决定对称轴的位置,可以根据“左同右异”来判断;c 决定函数与y 轴交点.14、4个小支干.【分析】设每个支干长出x 个小支干,根据主干、支干和小分支的总数是21,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【题目详解】解:设每个支干长出x 个小支干,根据题意得:21x x 21++=,解得:1x 5(=-舍去),2x 4=.故答案为4个小支干.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15、1【解题分析】如图,先求出∠DAP =∠CBP =30°,由AP =AD =BP =BC ,就可以求出∠PDC =∠PCD =15°,进而得出∠CPD 的度数.【题目详解】解:如图,∵四边形ABCD 是正方形,∴AD =AB =BC ,∠DAB =∠ABC =90°,∵△ABP 是等边三角形,∴AP =BP =AB ,∠PAB =∠PBA =60°,∴AP =AD =BP =BC ,∠DAP =∠CBP =30°.∴∠BCP =∠BPC =∠APD =∠ADP =75°,∴∠PDC =∠PCD =15°,∴∠CPD =180°﹣∠PDC ﹣∠PCD =180°﹣15°﹣15°=1°.故答案为1.【题目点拨】本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时运用三角形内角和定理是关键.16、75【解题分析】∵在△ABC 中,∠C=90°,4tan 3A =, ∴可设BC=4k ,AC=3k ,∴由勾股定理可得AB=5k , ∴sinA=4455BC k AB k ==,cosA=3355AC k AB k ==, ∴sinA+cosA=437555+=. 故答案为75. 175 【分析】连接OA ,AB 与y 轴交于点C ,根据AB =2,可得出点A ,B 的横坐标分别为−1,1.再代入抛物线212y x =即可得出点A ,B 的坐标,再根据勾股定理得出⊙O 的半径.【题目详解】连接OA ,设AB 与y 轴交于点C ,∵AB =2,∴点A ,B 的横坐标分别为−1,1.∵⊙O 与抛物线212y x =交于A ,B 两点, ∴点A ,B 的坐标分别为(−1,12),(1,12), 在Rt △OAC 中,由勾股定理得OA 22OC AC +114+5, ∴⊙O 5. 5. 【题目点拨】本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A 的纵坐标是解题的关键.18、21122x ⎛⎫-= ⎪⎝⎭ 【分析】移项,配方,即可得出选项.【题目详解】x 2﹣x ﹣14=0 x 2﹣x =14x 2﹣x+14=14+14 21122x ⎛⎫-= ⎪⎝⎭ 故填:21122x ⎛⎫-= ⎪⎝⎭. 【题目点拨】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.三、解答题(共78分)19、(1)(2)1【分析】(1)由菱形的四边相等知方程有两个相等的实数根,据此利用根的判别式求解可得,注意验根;(2)由AB=3知方程的一个解为3,代入方程求出m的值,从而还原方程,再利用根与系数的关系得出AB+AD的值,从而得出答案.【题目详解】解:(1)若四边形ABCD是菱形,则AB=AD,所以方程有两个相等的实数根,则△=(-m)2-4×1×12=0,解得m=±,检验:当m=,x=符合题意;当m=,x=-,不符合题意,故舍去.综上所述,当m为,四边形ABCD是菱形.(2)∵AB=3,∴9-3m+12=0,解得m=7,∴方程为x2-7x+12=0,则AB+AD=7,∴平行四边形ABCD的周长为2(AB+AD)=1.【题目点拨】本题主要考查根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系,菱形和平行四边形的性质.20、(1)(2)见解析.【分析】(1)BE是△ABC的中线,则AC=5,由勾股定理求出AD的长,再由勾股定理求得AB的长;(2)过点E作EM∥FG,作EN∥AD,先得出EN=12AD,然后证明EN=12BE,从而有AD=BE.再证明△ABE≌△EMC,得出BE=MC,再推导出四边形EFGM是平行四边形,得出EF=GM,继而可得出结论.【题目详解】(1)解:∵BE是△ABC的中线,∴AE=EC=2.5,∴AC=5,∵AD是△ABC的高,∴AD⊥BC,4AD∴===,AB∴===(2)证明:如图,过点E作EM∥FG,作EN∥AD.∵BE是中线,即E为AC的中点,∴EN为△ACD的中位线,∴EN=12 AD.∵AD是高,∴EN⊥BC,∴∠ENB=90°.∵∠CBE=30°,∴EN=12 BE.∴AD=BE.∵FG∥AB,EM∥FG,∴EM∥AB,∴∠BAE=∠MEC.∵EB∥CG,∴∠AEB=∠ECM.在△ABE和△EMC中,∵BAE MEC AE ECAEB ECM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△EMC(ASA),∴BE=MC.∵EM∥FG,BE∥GC,∴四边形EFGM是平行四边形,∴EF=GM.∴GC=GM+MC=EF+BE=EF+AD.【题目点拨】本题考查了三角形中位线定理、平行线的性质、平行四边形的判定与性质、勾股定理、含30°角的直角三角形性质以及全等三角形的判定与性质等知识,通过作辅助线构建三角形中位线以及构造平行四边形是解题的关键.21、(155;(2)无变化,证明见解析;(2)51855.【分析】问题解决:(1)①根据三角形中位线定理可得:BD=CD12=BC=6,AE=CE12=AC5AEBD的值;②先求出BD,AE的长,即可求出AEBD的值;(2)证明△ECA∽△DCB,可得52 AE ECBD CD==;问题再探:(2)分两种情况讨论,由矩形的判定和性质以及相似三角形的性质可求BD的长.【题目详解】问题解决:(1)①当α=0°时.∵BC=2AB=3,∴AB=6,∴AC2222612AB BC=+=+=65,∵点D、E分别是边BC、AC的中点,∴BD=CD12=BC=6,AE=CE12=AC=25,DE12=AB,∴35562 AEBD==.故答案为:52;②如图1.,当α=180°时.∵将△EDC绕点C按顺时针方向旋转,∴CD=6,CE5∴AE=AC+CE5BD=BC+CD=18,∴955 AEBD==5.(2)如图2,,当0°≤α<260°时,AEBD的大小没有变化.证明如下:∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵52 EC ACCD BC==,∴△ECA∽△DCB,∴52 AE ECBD CD==.问题再探:(2)分两种情况讨论:①如图2..∵AC5CD=6,CD⊥AD,∴AD2222(65)6AC CD=-=-=3.∵AD=BC,AB=DC,∴四边形ABCD是平行四边形.∵∠B=90°,∴四边形ABCD是矩形,∴BD=AC5.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P.∵AC 5CD =6,CD ⊥AD ,∴AD 22AC CD =-=3.在Rt △CDE 中,DE 2222(35)6CE CD -=-=2,∴AE =AD ﹣DE =3﹣2=9,由(2)可得:5AE BD = ∴BD 18555==. 综上所述:BD 51855. 故答案为:5185 【题目点拨】 本题是几何变换综合题,考查了勾股定理,矩形的判定和性质,相似三角形判定和性质,正确作出辅助线,利用分类讨论思想解决问题是本题的关键.22、(1)6y x =,点B 的坐标为()3,2--;(2)52AOB S ∆=;(3)30x -<<或2x >. 【分析】(1)利用待定系数法求解析式,令y 值相等求点B 坐标;(2)数形结合求面积;(3)数形结合,利用图像解不等式【题目详解】解:(1)把()2,3A 代入k y x =得32k =,∴6k =. ∴反比例函数的解析式为6y x=.联立6,1.y x y x ⎧=⎪⎨⎪=+⎩解得112,3,x y =⎧⎨=⎩223,2.x y =-⎧⎨=-⎩ ∴点B 的坐标为()3,2--. (2)设直线AB 与y 轴交于点C .可知C 点的坐标为()0,1,∴1OC =.∴1151213222AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=. (3)当30x -<<或2x >时,反比例函数值小于一次函数值.【题目点拨】本题考查了反比例函数和一次函数的综合应用,数形结合思想是解题的关键23、一条直角边的长为 6cm ,则另一条直角边的长为8cm .【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【题目详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【题目点拨】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.24、(1)详见解析;(2)详见解析;(3)132【分析】(1)根据矩形的性质得到AE ∥OC ,AE =OC 即可证明;(2)根据平行四边形的性质得到∠AOD =∠OCF ,∠AOF =∠OFC ,再根据等腰三角形的性质得到∠OCF =∠OFC .故可得∠AOD =∠AOF ,利用SAS 证明△AOD ≌△AOF ,由ADO =90°得到AH ⊥OF ,即可证明;(3)根据切线长定理可得AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,再利用在Rt △ABH 中,AH2=AB2+BH2,代入即可求x,即可得到AH的长.【题目详解】(1)解:连接AO,四边形AECO是平行四边形.∵四边形ABCD是矩形,∴AB∥CD,AB=CD.∵E是AB的中点,∴AE=12 AB.∵CD是⊙O的直径,∴OC=12CD.∴AE∥OC,AE=OC.∴四边形AECO为平行四边形.(2)证明:由(1)得,四边形AECO为平行四边形,∴AO∥EC∴∠AOD=∠OCF,∠AOF=∠OFC.∵OF=OC∴∠OCF=∠OFC.∴∠AOD=∠AOF.∵在△AOD和△AOF中,AO=AO,∠AOD=∠AOF,OD=OF ∴△AOD≌△AOF.∴∠ADO=∠AFO.∵四边形ABCD是矩形,∴∠ADO=90°.∴∠AFO=90°,即AH⊥OF.∵点F在⊙O上,∴AH是⊙O的切线.(3)∵HC、FH为圆O的切线,AD、AF是圆O的切线∴AD=AF,CH=FH=2,设AD=x,则AF=x,AH=x+2,BH=x-2,在Rt△ABH中,AH2=AB2+BH2,即(x+2)2=62+(x-2)2,解得x=9 2∴AH=92+2=132.【题目点拨】此题主要考查直线与圆的关系,解题法的关键是熟知切线的判定定理与性质,及勾股定理的运用.25、(1)见解析;(1)(3πcm1【分析】(1)由等腰三角形的性质证出∠ODB=∠C.得出OD∥AC.由已知条件证出DE⊥OD,即可得出结论;(1)由垂径定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面积,再求出扇形BOD的面积,即可得出结果.【题目详解】(1)连接OD,如图1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.(1)过O作OF⊥BD于F,如图1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=12OD=32cm,∴DF =2200D F -=332cm , ∴BD =1DF =33cm ,∴S △BOD =12×BD ×OF =12×33×32=934cm 1, S 扇形BOD =21203360π⨯=3πcm 1, ∴S 阴=S 扇形BOD ﹣S △BOD ==(3π﹣934)cm 1.【题目点拨】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、勾股定理、三角形和扇形面积的计算等知识;熟练掌握切线的判定,由垂径定理和勾股定理求出OF 和DF 是解决问题(1)的关键.26、(1)该商品连续两次下降的百分率为10%;(2)售价为43元时,可获最大利润1352元【分析】(1)设每次降价的百分率为x ,2(1)x -为两次降价的百分率,根据题意列出方程求解即可; (2)设每天要想获得S 元的利润,则每件商品应降价m 元,由销售问题的数量关系建立函数解析式,由二次函数性质求出其解即可.【题目详解】解:(1)设每次降价的百分率为x .250140.5x ⨯-=()120.1, 1.9x x ==(不符合题意,舍去)答:该商品连续两次下降的百分率为10%;(2)设降价m 元,利润为S 元.则503048162m S m =--⎛⎫⨯ ⎪⎝+⎭() 28112960m m =-++()2871352m =--+ 7m ∴=,即售价为43元时,可获最大利润1352元【题目点拨】此题主要考查了一元二次方程和二次函数的应用,解(1)关键是根据题意找到等量关系,解(2)的关键是解决销量与价格变化关系,列出函数解析式,解答即可.。
2015-2016学年广东省广州市越秀区九上期末数学
2015-2016学年广东省广州市越秀区九上期末数学一、选择题(共10小题;共30分)1. 抛物线 的顶点坐标是 A. B. C.D.2. 将两个全等的直角三角形纸片构成如下的四个图形,其中是中心对称图形的是A. B. C. D.3. 如图,圆 是 的外接圆,若 ,则 等于A.B.C.D.4. 方程 的根的情况是A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定是否有实数根5. 在一个不透明的盒子里装有 个黑球和 个白球,每个球除颜色外都相同,从中任意摸出个球,下列事件中,不可能事件是 A. 摸出的 个球有一个是白球 B. 摸出的 个球都是黑球 C. 摸出的 个球有一个是黑球D. 摸出的 个球都是白球6. 已知点, , 是反比例函数的图象上的两点,下列结论正确的是A.B.C. D.7. 已知点 ,它关于原点对称点是 ,则点 的坐标是A. B. C.D.8. 如图所示,边长为 的正三角形 的边 在 轴上,将 绕原点 逆时针旋转 得到三角形 ,则点 的坐标是 A.B.C.D.9. 如图,在平面直角坐标系中,点 , 均在函数的图象上,圆 与 轴相切,圆 与 轴相切,若点 的坐标为 ,圆 的半径是圆 的半径的 倍,则点 的坐标是 A . B.C.D.10. 已知函数 的图象与 轴的交点坐标为 , ,且,则该函数的最小值是 A.B. C. D.二、填空题(共6小题;共18分) 11. 若函数当 时,函数值 随自变量 的增大而减小,则 的取值范围是 .12. 从点 , , 中任取一个点,则该点在的图象上的概率是 . 13. 半径为 的圆的内接正方形的面积是 .14. 若将抛物线 的图象向右平移 个单位,则所得抛物线的解析式是 .15. 一个圆锥的侧面展开图是半径为的半圆,则该圆锥的底面半径是.16. 如图是二次函数的部分图象,在下列四个结论中正确的是(写出所有正确结论的序号).①不等式的解集是;②;③;④.三、解答题(共9小题;共102分)17. 解方程:.18. 如图,是圆的一条弦,,垂足为,交圆于点,点在圆上.(1)若,求的度数;(2) 若,,求弦的长.19. 如图,正方形的边长为,是的中点,将绕点顺时针旋转,设点的对应点为.(1) 画出旋转后的三角形(尺规作图,保留作图痕迹,不写作法);(2) 求出点运动到点所经过的路径长.20. 甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,从中选出两位同学打第一场比赛.(1) 若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率;(2) 请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.21. 某工厂生产的某种产品按质量分为个档次,第档次(最低档次)的产品一天能生产件,每件利润元.每提高一个档次,每件利润增加元,但一天产量减少件.(1) 若提高档次后的产品一天的总利润为元(其中为正整数,且),求出关于的函数关系式;(2) 若提高档次后的产品一天的总利润为元,求该产品的质量档.22. 如图所示,为半圆的直径,是半圆上的一点,平分交半圆于点,过点作,交的延长线于点.求证:是圆的切线;(2) 若圆的半径为,,求线段的长.23. 已知反比例函数在第二象限的图象如图所示,过点作轴的垂线,交反比例函数的图象于点,的面积为.求反比例函数的解析式;(2) 设点的坐标为,其中.若以为一的图象上,求的值.边的正方形有一个顶点在反比例函数24. 如图1,已知矩形的宽,点在边上,为线段上一动点(点与点,不重合),,,分别在,上,过点作直线,作,垂足为点,过点作,垂足为点.(1) 求证:;(2) 在图1中,将直角绕点顺时针旋转,在这一过程中,试观察、猜想:当时,是什么特殊三角形?图2中用直尺画出图形,并证明你的猜想;(3) 在(2)的条件下,当时,设,的面积为,求出关于的解析式,并说明是否存在最小值?若存在,求出此时的值和面积的最小值;若不存在,请说明理由.25. 如图,已知抛物线与轴交于点,,与轴负半轴交于点且,点为抛物线上的一个动点,且点位于轴下方,点与点不重合.(1) 求该抛物线的解析式;(2) 若的面积为,求点的坐标;(3) 若以,,,为顶点的四边形面积记作,则取何值时,对应的点有且只有个?2015-2016学年广东省广州市越秀区九上期末数学答案第一部分1. D 2. D 3. A 4. A 5. D 6. B 7. C 8. B 9. C 10. D第二部分11. 12. 13. 14. 15. 16. ①③第三部分17. 解法一:,,,,,,.18. (1),,.(2),.为直角三角形,,,由勾股定理,可得..19. (1)如图所示为所求作图形.(2)点运动到点所经过的路径为弧形,旋转角为,.在中,,,,点运动到点所经过的路径是:.20. (1)一共有种等可能性的结果,其中恰好选中乙同学的种,恰好选中乙同学的概率为.(2)方法一:可画树状图如下:所有等可能性的结果有种,其中恰好选中甲、乙两位同学的结果有种,恰好选中甲、乙两位同学的概率为:.21. (1)(其中是正整数,且).(2)由题意得:化简得 . 解得:或舍去即提高个档次,该产品质量档次是第档.答:该产品的质量档次为第档.22. (1)连接.,.平分,,,,.,,,所以是圆的切线.(2)方法一:连接交于点.为直径,.又由(1)得,四边形为矩形,,,,.又,.23. (1)的面积为,而,,反比例函数解析式为.(2)①当以为一边的正方形的顶点在反比例函数的图象上,则点与点重合,即,把代入得.点坐标为,,.②当以为一边的正方形的顶点在反比例函数的图象上,则,,点的坐标为,,整理得,解得,(舍去)..综上所述,的值为或.24. (1)直线,,,则,.(2)以点,,为顶点的三角形是等腰直角三角形,画图如下:,,由(1)知,,,则三角形是等腰直角三角形.(3)面积存在最小值,此时,的最小值为.,,,.依题意得:,.由(2)知,,在中,,则.因为三角形的面积,所以,而,当时三角形面积的最小值为.25. (1)由题可知点的坐标为.抛物线与轴交于负半轴,即.,.又在抛物线上,,解得或.又,,.(2)设.由得,,.①点在,之间时即,设与轴交于点.,,直线的解析式:,,,.,,解得.,,.②点在,之间时即,过作轴平行线交于于点,由①得,,的解析式为:,,,,,,解得,.综上所述:符合条件的点有两个,分别是,.(3)设.①当点在之间时即,连接,则.由(2)得.,,,,.,,此时当时,对应的点有且只有个;当时,对应的点有且只有个.②当点在,之间时,即,连接,则,由(2)得,又.在第四象限,,,.,,此时当时,对应的点有且只有个,当时,对应的点有且只有个.由①②得:当时,对应的点有且只有个;当时,对应的点有且只有个;当时,对应的点有且只有个;当时,对应的点有且只有个.综上所述,当时,对应的点有且只有两个.。
九年级上册广州数学期末试卷测试与练习(word解析版)
九年级上册广州数学期末试卷测试与练习(word 解析版)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( )A .平均数B .方差C .中位数D .极差2.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( )A .5人B .6人C .4人D .8人 3.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( ) A .⊙O 上B .⊙O 外C .⊙O 内 4.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-2 5.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒6.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )A .甲、乙两队身高一样整齐B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐 7.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .48.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .43B .23C .33D .32 9.二次函数2(1)3y x =-+图象的顶点坐标是( )A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--10.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.511.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .12 12.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10 二、填空题13.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.14.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).15.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.16.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.17.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.18.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.19.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 20.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.21.若a b b -=23,则a b的值为________. 22.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.23.已知学校航模组设计制作的火箭的升空高度h (m )与飞行时间t (s )满足函数表达式21220h t t =-++,则火箭升空的最大高度是___m24.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题25.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26,请直接写出点P 的坐标.26.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)27.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.28.解下列一元二次方程.(1)x2+x-6=0;(2)2(x-1)2-8=0.29.如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.30.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.31.已知二次函数y=x2-2mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.32.如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.B解析:B【解析】【分析】根据圆周角定理可知当∠C=90°时,点C在圆上,由由题意∠C=88°,根据三角形外角的性质可知点C在圆外.【详解】解:∵以AB为直径作⊙O,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.4.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m ≥- ,故选:C .【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.5.C解析:C【解析】【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可.【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°,∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒.故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.6.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键7.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.8.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴13224ABC S =⨯=. 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.9.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 10.C解析:C【解析】【分析】 因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得.【详解】解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB , ∴OCP 和ODQ 为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP ⊥AB ,QD ⊥AB ,垂直于用一直线的两直线相互平行,∴CP //DQ ,且C 、D 连线交AB 于点E ,∴∠PCE=∠EDQ ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°, ∴CPE ∽DQE ,故CP DQ =PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.11.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.二、填空题13.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.15.【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时, 过点M 作MF⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2解析:2【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=12MD=1, ∴FM=DM×cos30°∴MC ==,∴A′C=MC ﹣MA′=2.故答案为2.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.16.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再 解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,=∴NC=ND -CD=4 根据勾股定理可得:NC 2+PN 2=CP 2即()22242r -+=解得:12r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.17.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=,解得203 EF ,故答案为:203.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.18.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.19.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m=5,经检验m=5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.20.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.21.【解析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.22.240m【解析】【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000c解析:240m【解析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm ,则:1:2000=12:x ,解得x =24000,24000cm =240m .故答案为240m .【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.23.56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵==,∵,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故解析:56【解析】【分析】将函数解析式配方,写成顶点式,按照二次函数的性质可得答案.【详解】解:∵21220h t t =-++=2(23636)120t t -+-+-=2(6)56t --+,∵10a =-<,∴抛物线开口向下,当x=6时,h 取得最大值,火箭能达到最大高度为56m .故答案为:56.【点睛】本题考查了二次函数的应用,熟练掌握配方法及二次函数的性质,是解题的关键.24.【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.解析:42【解析】【分析】设AB =x ,则AD =8﹣x ,由勾股定理可得BD 2=x 2+(8﹣x )2,由二次函数的性质可求出AB =AD =4时,BD 的值最小,根据条件可知A ,B ,C ,D 四点在以BD 为直径的圆上.则AC 为直径时最长,则最大值为42.【详解】解:设AB =x ,则AD =8﹣x ,∵∠BAD =∠BCD =90°,∴BD 2=x 2+(8﹣x )2=2(x ﹣4)2+32.∴当x =4时,BD 取得最小值为42.∵A ,B ,C ,D 四点在以BD 为直径的圆上.如图,∴AC 为直径时取得最大值.AC 的最大值为2.故答案为:2.【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题25.(1)0b =,1c =-;(2)()0,4M ;(3)()4,1P 或()4,1-或()0,1-【解析】【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b ,c 的二元一次方程组求解即可(2) 过点C 作CD l ⊥,过点A 作AE l ⊥.证明△CMD 相似于△AME ,再根据对应线段成比例求解即可(3)根据题意设点P 的纵坐标为y ,首先根据三角形面积得出EF 与y 的关系,再利用勾股定理得出EF 与y 的关系,从而得出y 的值,再代入抛物线解析式求出x 的值,得出点坐标.【详解】解:(1)把()4,1A和()0,1-代入218y x bx c=++得:1241b cc=++⎧⎨-=⎩解方程组得出:1bc=⎧⎨=-⎩所以,b=,1c=-(2)由已知条件得出C点坐标为2310,2C⎛⎫⎪⎝⎭,设()0,M n.过点C作CD l⊥,过点A作AE l⊥.两个直角三角形的三个角对应相等,∴CMD AME∆∆∽∴CD MDAE ME=∴2310214nn-=-∵解得:4n=∴()0,4M(3)设点P的纵坐标为y,由题意得出,1262EF y⨯⨯=46EFy=∵MP与PE都为圆的半径,∴MP=PE∴()2228y84()2EFy y++-=+整理得出,∴EF46=∵46EF=∴y=±1,∴当y=1时有,21118x=-,解得,x4=±;∴当y=-1时有,21118x -=-,此时,x=0 ∴综上所述得出P 的坐标为:()4,1P 或()4,1-或()0,1- 【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.26.(1)2m n;(2)见解析.【解析】 【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案. 【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n. (2)解:作∠DEQ =∠F, 如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键. 27.(1)见解析;(2)①当m =0时,存在1个矩形EFGH ;②当0<m <95时,存在2个矩形EFGH ;③当m =95时,存在1个矩形EFGH ;④当95<m ≤185时,存在2个矩形EFGH ;⑤当185<m <5时,存在1个矩形EFGH ;⑥当m =5时,不存在矩形EFGH . 【解析】 【分析】(1)以O 点为圆心,OE 长为半径画圆,与菱形产生交点,顺次连接圆O 与菱形每条边的同侧交点即可;(2)分别考虑以O 为圆心,OE 为半径的圆与每条边的线段有几个交点时的情形,共分五种情况. 【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O 与边BC 、CD 、AD 的另一个交点即可)(2)∵O到菱形边的距离为125,当⊙O与AB相切时AE=95,当过点A,C时,⊙O与AB交于A,E两点,此时AE=95×2=185,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<95时,如图,存在2个矩形EFGH;③当m=95时,如图,存在1个矩形EFGH;④当95<m≤185时,如图,存在2个矩形EFGH;⑤当185<m <5时,如图,存在1个矩形EFGH ;⑥当m =5时,不存在矩形EFGH . 【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O 与菱形的边的交点个数,综合性较强. 28.(1)123;2x x =-=;(2)123;1x x ==- 【解析】 【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程. 【详解】解:(1)x 2+x -6=0;(3)(2)0x x +-=∴123;2x x =-= (2)2(x -1)2-8=0.22(1)8x -= 2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.29.(1)30°;(2)33 【解析】 【分析】(1)由题意证明△CDE ≌△COE ,从而得到△OCD 是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解. 【详解】 解:连接OA,OC∵弦AC 垂直平分OD ∴DE=OE ,∠DEC=∠OEC=90° 又∵CE=CE ∴△CDE ≌△COE ∴CD=OC 又∵OC=OD ∴CD=OC=OD∴△OCD 是等边三角形 ∴∠DOC=60° ∴∠DAC =30°(2)∵弦AC 垂直平分OD ∴AE=12AC=3 又∵由(1)可知,在Rt △DAE 中,∠DAC =30° ∴tan 30DE AE =,即33DE =∴3 ∵弦AC 垂直平分OD∴∴直径∴-【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.30.(1)证明见解析;(2)2ACπ=【解析】【分析】【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴AC BD=,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC=7252 180ππ⨯=.点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.31.(1)证明见解析;(2)k≥3 4 .【解析】【分析】(1)根据判别式的值得到△=(2m-1)2+3>0,然后根据判别式的意义得到结论;(2)把(0,-2)带入平移后的解析式,利用配方法得到k= (m+12)²+34,即可得出结果.【详解】(1)证:当y=0时x2-mx+m2+m-1=0∵b2-4ac=(-m)2-4(m2+m-1)=8m2-4m2-4m+4=4m2-4m+4=(2m-1)2+3>0∴方程x 2-mx +m 2+m -1=0有两个不相等的实数根∴二次函数y =x 2-mx +m 2+m -1图像与x 轴有两个公共点(2)解:平移后的解析式为: y =x 2-mx +m 2+m -1-k,过(0,-2), ∴-2=0-0+m²+m-1-k, ∴k= m²+m+1=(m+12)²+34,∴k ≥34. 【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.32.(1)证明见解析;(2)证明见解析;(3). 【解析】 【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线; (2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似; (3)根据三角形相似得出AB ACAF EF=,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB ACAF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度. 【详解】解:(1)如答图1,连接CD , ∵AC 是⊙O 的直径,∴∠ADC=90° ∴∠ADB+∠EDC=90° ∵∠BAC=∠EDC ,∠EAB=∠ADB , ∴∠BAC=∠EAB+∠BAC=90° ∴EA 是⊙O 的切线; (2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90° ∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF ∴∠BAC=∠AFE ∴△EAF ∽△CBA . (3)∵△EAF ∽△CBA ,∴AB ACAF EF= ∵AF=4,CF=2, ∴AC=6,EF=2AB . ∴642AB AB=,解得∴EF=43∴AE=2222EF AF .-=(43)4=42【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.。
广东省广州市越秀区届九级上学期期末调研测试数学试题(有答案)
广州市越秀区 2018 届九年级第一学期期末调研测试数学试卷注意: 1.考试时间为120 分钟.满分150 分.2.试卷分为第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分.3.能够使用规定型号的计算器.4.全部试卷答案一定写在答题卷相应的地点上,不然不给分.第Ⅰ卷选择题(共 30 分)一、选择题(此题共有10 小题,每题 3 分,共 30 分)注意:每题有四个选项,此中有且仅有一项为哪一项切合题意的,选错、不选、多项选择或涂改不清的,均不给分 .1.以下图形中,既是中心对称又是轴对称的图形是(* ) .A B CD2.桌面上放有 6 张卡片(卡片除正面的颜色不一样外,其他均同样),此中卡片正面的颜色3 张是绿色, 2 张是红色, 1 张是黑色.现将这 6 张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是(* ) .A.1B.1C.1D.1 23463.两个圆的半径分别是2cm和 7cm,圆心距是 5cm,则这两个圆的地点关系是(* ) .A.外离B.内切C.订交D.外切4.抛物线y2x2向右平移2个单位,再向下平移 1 个单位,所获得的抛物线是(* ) .A. y2( x2) 21B. y2( x 1)2 2 C. y2( x 2) 2 1 D. y 2( x 2) 215.如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠BAC=20°,DAD=DC,则∠DAC的度数是( * ) .CA BOA. 30°B. 35°C. 45° D. 70°6.在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完整同样.小华经过多次实验后发现,从盒子中摸出红球的频次是15%,摸出白球的频次是45%,那么盒子中黄球的个数很可能是(* ) .A. 9B. 27C. 24D. 187.设a> 0,b> 0,则以下运算错误的选项是( * ) .A.ab=a·b B.a b = a + bC. ( a ) 2=a D. a =ab b8.如图,两个等圆⊙O和⊙ O的两条切线OA、 OB, A、 B 是切点,则∠AOB等于( * ) .A.30B.9 .已知方程x22x 50 ,有下列判断:①x1x22 ;②x1 x25;③方程有实数根;④方程没有实数根;则以下选项正确的选项是(* ) .A.①②B.①②③C.②③D.①②④10.已知二次函数y ax2bx c 的图象如下图,则以下结论正确10的是( *).5A. a 0B. c 0C. a b c 031020 D.b24ac05第Ⅱ卷非选择题(共 90 分)10二、填空题(此题共有 6 小题,每题 3 分,共 18 分)1511.当x知足 * 时,2x 6 存心义.ECDF12.如图,等边△ ADE由△ ABC绕点 A 逆时针旋转 40°获得,此中AD与BC订交于点 F,则∠ AFB=*°.A B13.已知圆锥底面半径是 3 厘 M,母线长 5 厘 M,则圆锥的侧面积是* 平方厘 M.14.二次函数 y x2bx c 的图象如下图,则其对称轴方程是* ,方程 x 2bx c0的解是*.15.对于x的一元二次方程( m 1)x2mx 1 0 有两个不相等的实数根,则实数m 的取值范围是 *16.已知 x 为实数,且知足( x23x)23( x23x) 18 0 ,则 x23x 的值为*.三. 解答题 ( 本大题有9 小题,满分102 分。
广州市九年级(上)期末数学试卷含答案
15. 如图,半圆的直径 AB=10,P 为 AB 上一点,点 C,D 为半圆 上的三等分点,则图中阴影部分的面积等于______ .
16. 用同样大小的黑色棋子按如图所示的规律摆放,则第 2019 个图共有______枚棋子.
三、解答题(本大题共 9 小题,共 66.0 分) 17. 随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过
九年级(上)期末数学试卷
题号 得分
一
二
三
总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. 在 1,0,2,-3 这四个数中,最大的数是( )
A. 1
B. 0
C. 2
D. -3
2. PM2.5 是指大气中直径小于或等于 2.5 微米的颗粒物,2.5 微米等于 0.000 0025 米, 把 0.000 0025 用科学记数法表示为( )
3.【答案】C
【解析】解:360÷36=10. 故选:C. 利用多边形的外角和 360°,除以外角的度数,即可求得边数. 本题考查了多边形的外角和定理,理解任何多边形的外角和都是 360 度是关键.
4.【答案】B
【解析】解:在方程 2x2+x-3=0 中,△=12-4×2×(-3)=25>0, ∴该方程有两个不相等的实数根. 故选:B. 根据方程的系数结合根的判别式△=b2-4ac,找出△的正负,由此即可得出结论. 本题考查了根的判别式,找出根的判别式△=b2-4ac=25>0 是解题的关键.
23. 如图,抛物线 y=ax2+bx+c 与 x 轴的两个交点为 B(1,0)和 C,与 y 轴的交点坐标 为(0,-1.5)且此抛物线过点 A(3,6) (1)求此二次函数的解析式; (2)设此抛物线的顶点为 P,对称轴与线段 AC 相交于点 Q,求点 P 和点 Q 的坐 标.
广州市越秀区九年级上期末数学模拟试卷含答案解析.doc
2018-2019 学年广东省广州市越秀区九年级(上)期末数学模拟试卷一.选择题(共 10 小题,满分 30 分,每小题 3 分)1.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=x2﹣6x+21 向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+33.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200 件产品中有 5 件次品,从中任意抽取 6 件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数4.已知x=3 是关于x的一元二次方程x2﹣2x﹣m=0 的根,则该方程的另一个根是()A.3 B.﹣3 C.1 D.﹣15.如图,在 Rt△ABC 中,∠ACB=90°,∠A=30°,AC=4,BC 的中点为D.将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC,EF 的中点为G,连接DG.在旋转过程中,DG 的最大值是()A.4 B.6 C.2+2 D.86.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm 和 9cm,另一个三角形的最短边长为 2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm7.下列关于抛物线y=3(x﹣1)2+1 的说法,正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(﹣1,1)D.有最小值y=18.关于x 的一元二次方程kx2+2x﹣1=0 有两个不相等实数根,则k 的取值范围是()A.k>﹣1 B.k≥﹣1 C.k≠0 D.k>﹣1 且k≠0 9.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m 个单位,再向上平移n个单位(m>0,n>0),得到正方形A'B'C'D'及其内部的点,其中点A、B的对应点分别为A',B'.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F'与点F 重合,则点F 的坐标是()A.(1,4)B.(1,5)C.(﹣1,4)D.(4,1)10.已知正六边形的边长为4,则它的内切圆的半径为()A.1 B.C.2 D.2二.填空题(共 6 小题,满分 18 分,每小题 3 分)11.若一平行四边形的3个顶点坐标分别为(0,0),(4,0),(2,4),则第4个顶点坐标是.12.在一个不透明的口袋中装有 5 个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在 0.25 附近,则估计口袋中白球大约有个.13.抛物线y=2(x+1)2﹣3 的顶点坐标为.14.如图,圆锥侧面展开得到扇形,此扇形半径C A=6,圆心角∠ACB=120°,则此圆锥高O C 的长度是.15.若矩形ABCD 的两邻边长分别为一元二次方程x2﹣6x+4=0 的两个实数根,则矩形ABCD的周长为.16.若△ABC∽△A′B′C′,且△ABC 与△A′B′C′的面积之比为1:3,则相似比为.三.解答题(共 9 小题,满分 102 分)17.解方程:x(x+4)=﹣3(x+4).18.在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)(1)画出△ABC 关于原点对称的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转 90°,画出旋转后得到的△A″B″C″,并直接写出此过程中线段C'A'扫过图形的面积.(结果保留π)19.如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字 1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.如图,AC 是▱ABCD 的对角线,在AD 边上取一点F,连接BF 交AC 于点E,并延长BF交CD 的延长线于点G.(1)若∠ABF=∠ACF,求证:CE2=EF•EG;(2)若DG=DC,BE=6,求EF 的长.21.某公司今年 1 月份的生产成本是 400 万元,由于改进技术,生产成本逐月下降,3 月份的生产成本是 361 万元.假设该公司 2、3、4 月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测 4 月份该公司的生产成本.22.如图,在△ABC 中,∠ACB=90°.(1)作出经过点B,圆心O 在斜边AB 上且与边AC 相切于点E 的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)设(1)中所作的⊙O 与边AB 交于异于点B 的另外一点D,若⊙O 的直径为 5,BC=4;求D E的长.(如果用尺规作图画不出图形,可画出草图完成(2)问)23.抛物线y=ax2+2ax+c(a>0,c<0),与x轴交于A、B两点(A在B左侧),与y轴交于点C,A点坐标为(﹣3,0),抛物线顶点为D,△ACD的面积为3.(1)求二次函数解析式;(2)点P(m,n)是抛物线第三象限内一点,P 关于原点的对称点Q 在第一象限内,当QB2取最小值时,求m 的值.24.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD 是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.25.已知AB 是⊙O 的直径,弦CD⊥AB 于H,过CD 延长线上一点E 作⊙O 的切线交AB的延长线于F,切点为G,连接AG 交CD 于K.(1)如图 1,求证:KE=GE;(2)如图2,连接C ABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接C G 交A B 于点N,若s in E=,AK=,求C N 的长.参考答案一.选择题(共 10 小题,满分 30 分,每小题 3 分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.2.【解答】解:=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.3.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200 件产品中有 5 件次品,从中任意抽取 6 件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.4.【解答】解:设方程的另一个根为x1,根据题意得:x1+3=2,解得:x1=﹣1.故选:D.5.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=AC÷cos30°=4 ÷=8,BC=AC•tan30°=4 ×=4,∵BC 的中点为D,∴CD=BC=×4=2,连接CG,∵△ABC 绕点C 顺时针旋转任意一个角度得到△FEC,EF 的中点为G,∴CG=EF=AB=×8=4,由三角形的三边关系得,CD+CG>DG,∴D、C、G 三点共线时DG 有最大值,此时DG=CD+CG=2+4=6.故选:B.6.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为 4.5cm,故选:C.7.【解答】解:抛物线y=3(x﹣1)2+1 中a=3>0,开口向上;对称轴为直线x=1;顶点坐标为(1,1);当x=1时取得最小值y=1;故选:D.8.【解答】解:根据题意得k≠0且△=22﹣4k×(﹣1)>0,所以k>﹣1 且k≠0.故选:D.9.【解答】解:由点A到A′,可得方程组;由B到B′,可得方程组,解得,设F点的坐标为(x,y),点F′点F重合得到方程组,解得,即F(1,4).故选:A.10【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF 是边长为 4 的正六边形,∴△OAB 是等边三角形,∴OA=AB=4,∴OG=OA•sin60°=4×=2 ,∴边长为4的正六边形的内切圆的半径为:2.故选:D.二.填空题(共 6 小题,满分 18 分,每小题 3 分)11.【解答】解:如图,第4个顶点坐标是(6,4)或(﹣2,4)或(2,﹣4).故答案为:(6,4)或(﹣2,4)或(2,﹣4).12【解答】解:设白球个数为:x 个,∵摸到红色球的频率稳定在 0.25 左右,∴口袋中得到红色球的概率为 0.25,∴=,解得:x=15,即白球的个数为 15 个,故答案为:15.13【解答】解:顶点坐标是(﹣1,﹣3).故答案为:(﹣1,﹣3).14【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴==2πr,∴r=2,即:OA=2,在R t△AOC 中,OA=2,AC=6,根据勾股定理得,OC==4 ,故答案为:4 .15【解答】解:∵设矩形ABCD 的两邻边长分别为α、β是一元二次方程x2﹣6x+4=0 的两个实数根,∴α+β=6,∴矩形ABCD 的周长为 6×2=12.故答案为:12.16【解答】解:∵△ABC∽△A′B′C′,△ABC 与△A′B′C′的面积之比为 1:3,∴△ABC 与△A′B′C′的相似比为1:.故答案为:1:.三.解答题(共 9 小题,满分 102 分)17.【解答】解:x(x+4)+3(x+4)=0,(x+4)(x+3)=0,x+4=0 或x+3=0,所以x1=﹣4,x2=﹣3.18【解答】解:(1)如图所示,△A'B'C'即为所求.(2)如图所示,△A″B″C″即为所求,∵A′C′==3 ,∠A′C′A″=90°,∴线段C'A'扫过图形的面积=π.19【解答】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为 9 种,其中这两个数字之和是 3 的倍数的有 3 种,所以这两个数字之和是3的倍数的概率为=.20【解答】解:(1)∵AB∥CG,∴∠ABF=∠G,又∵∠ABF=∠ACF,∴∠ECF=∠G,又∵∠CEF=∠CEG,∴△ECF∽△EGC,∴,即C E2=EF•EG;(2)∵平行四边形ABCD 中,AB=CD,又∵DG=DC,∴AB=CD=DG,∴AB:CG=1:2,∵AB∥CG,∴,即,∴EG=12,BG=18,∵AB∥DG,∴,∴BF=BG=9,∴EF=BF﹣BE=9﹣6=3.21【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为 5%.(2)361×(1﹣5%)=342.95(万元).答:预测 4 月份该公司的生产成本为 342.95 万元.22【解答】解:(1)⊙O如图所示;(2)作OH⊥BC 于H.∵AC 是⊙O 的切线,∴OE⊥AC,∴∠C=∠CEO=∠OHC=90°,∴四边形ECHO 是矩形,∴OE=CH=,BH=BC﹣CH=,在R t△OBH 中,OH==2,∴EC=OH=2,BE==2 ,∵∠EBC=∠EBD,∠BED=∠C=90°,∴△BCE∽△BED,∴=,∴=,∴DE=.23【解答】解:(1)把A(﹣3,0)代入y=ax2+2ax+c得到c=﹣3a,∴抛物线的解析式为y=ax2+2ax﹣3a=a(x+1)2﹣4a,∴D(﹣1,﹣4a),C(0,﹣3a),∵S△ACD=S△AOD+S△OCD﹣S△AOC,∴×3×4a + ×3a×1﹣×3×3a=15,解得a=1,∴抛物线的解析式为y=x2+2x﹣3.(2)由题意Q(﹣m,﹣n),B(1,0),∴QB2=(m+1)2+n2,∵n=(m+1)2﹣4,∴(m+1)2=n+4,∴QB2=n+4+n2=(n + )2+ ,∴n=﹣时,QB2 有最小值,此时﹣=(m+1)2﹣4,解得m=﹣1﹣或﹣1+(舍弃)..24.【解答】解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴当QB2 取最小值时,m 的值为﹣1﹣∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3 ,BD==2 ,∵CD2+BC2=()2+(3 )2=20,BD2=(2 )2=20,∴CD2+BC2=BD2,∴△BCD 是直角三角形;(3)存在.y=﹣x2+2x+3 对称轴为直线x=1.①若以CD 为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1 点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD 为一腰,∵点P2 在对称轴右侧的抛物线上,由抛物线对称性知,点P2 与点C 关于直线x=1 对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为25.【解答】(1)证明:连接O G.∵EF 切⊙O 于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB 于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB 是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC 于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH==,设A H=3a,AC=5a,则C H==4a,tan∠CAH==,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=a,tan∠AKH==3,AK==a,∵AK=,∴a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC 于P,∴∠APN=∠CPN=90°,在R t△APN 中,tan∠CAH==,设P N=12b,则A P=9b,在R t△CPN 中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN==4 b=.。
2016年广东广州越秀区初三一模数学试卷答案
x − 9 = 0
或x + 1 = 0 ,
jia
os
,
hi .iz
hi
ka ng
.c o
m
20
18
x
/1
2/
03
学生版
所以x1 = 9 ,x2 = −1 .
教师版 答案版
编辑
18. 已知:如图,在平行四边形ABC D中,O为对角线BD的中点,过点O的直线EF 分别交AD,BC 于E,F 两点,求证:
A.
2.6
B.
2.5
C.
2.4
D.
2.3
答案 解析
C 在△ABC 中, ∵AB = 5 ,BC ∴AC ∴∠C
2
= 3
2
,AC
+ 4
2
= 4
2
,
2
+ BC
∘
= 3
= 5
= AB
= 90
.
∴C D⊥AB. ∵S△ABC ∴AC
1 = 2 ⋅ BC = AB ⋅ C D AC ⋅ BC = 2 1
hi .iz
os h
答案
.
i.i
.
zh
ik
an
g. co m
20
18 /1
2/ 0
3
羽毛球
其他 篮球
乒乓球
答案 解析
60
校被调查的学生总人数为6 ÷ (40% − 30%) = 60 (人).
15. 如图,△ABC 中,DE是BC 的垂直平分线,DE交AC 于点E,连接BE,若BE = 5,BC
= 6
,则sin C
⎧ ∠OED = ∠OF B ⎪ ⎨ ∠ODE = ∠OBF ⎩ ⎪ OD = OB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年广州市越秀区九年级上期末数学卷
一、选择题:每小题3分,共30分.
1.抛物线的顶点坐标是()
A.(2,3)B.(﹣2,3)C.(2,-3)D.(-2,﹣3)
2.将两个全等的直角三角形纸片构成如图的四个图形,其中属于中心对称图形的是()
A.B.C.D.
3. 如图,⊙O是△ABC的外接圆,若AB=OA=OB,则∠C等于()
A.30°B.40°
C.60°D.80°
4.方程的根的情况是()
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定是否有实数根
5.在一个不透明的盒子里装有3个黑球和1个白球,每个球除颜色外都相同,从中任意摸出2个球,
下列事件中,不可能事件是()
A.摸出的2个球有一个是白球B.摸出的2个球都是黑球
C.摸出的2个球有一个黑球D.摸出的2个球都是白球
6.已知点,是反比例函数的图像上的两点,下列结论正确的是()
A.B.C.D.
7.已知点,它关于原点的对称点是点,则点的坐标是()
A.(3,1)B.(1,-3)C.(-1,-3)D.(-3,﹣1)
8.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA
1B1,则点A1的坐标为()
A.(,1)B.(,-1)
C.(-1,)D.(2,1)
9.如图,在平面直角坐标系中,点A、B均在函数(k>0,x>0)的图象上,⊙A与x轴相切,
⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为()A.(2,2)B.(2,3)
C.(3,2)D.(4,)
10.已知函数的图像与x轴的交点坐标为且,
则该函数的最小值是()
A.2 B.-2 C.10 D.-10
二、填空题:每小题3分,共18分.
11.若函数,当时,函数值y随自变量x的增大而减少,则m的取值范围是_________.
12.从点中任取一个点,则该点在的图像上的概率是_________.
13.半径是2的圆的内接正方形的面积是__________
14.若将抛物线的图像向右平移3个单位,则所得抛物线的解析式是__________
15.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是_________
16.如图是二次函数的部分图像,在下列四个结论中正确的是___________
①不等式的解集是;②;③;④
三、解答题:满分102分.解答题应写出必要的文字说明,演算步骤或证明过程.
17.(9分)解方程:.
18.(9分)如图,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若∠AOD=54°,求∠DEB的度数;
(2)若OC=3,OA=5,求弦AB的长
19. (10分)如图,正方形ABCD的边长为2,E是BC的中点,以点A为中心,把△ABE绕点A 顺时针旋转90°,设点E的对应点为F.
(1)画出旋转后的三角形.(尺规作图,保留作图痕迹,不写作法)
(2)求点E运动到点F所经过的路径的长
20. (10分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
21. (12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.
(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x 的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
22. (12分)如图所示,AB 为半圆O 的直径,C 为圆上一点,AD 平分∠BAC 交半圆于点D ,过
点D 作DE ⊥AC ,DE 交AC 的延长线于点E .
(1)求证:DE 是⊙O 的切线; (2)若⊙O 的半径为2,DE=,求线段AC 的长
23.(12分)反比例函数在第一象限的图象如图所示,过点A (1,0)作x 轴的垂线,交反比
例函数
的图象于点M ,△AOM 的面积为3.
(1)求反比例函数的解析式;
(2)设点B 的坐标为(t ,0),其中t >1.若以AB 为一边的正方形有一个顶点在反比例函数的图象上,求t 的值
E D
C
B
A
24.(14分)如图1,已知矩形ABCD 的宽AD=8,点E 在边AB 上,P 为线段DE 上的一动点(点P 与点D ,E 不重合),∠MPN=90°,M ,N 分别在直线AB ,CD 上,过点P 作直线HK AB ,作PF ⊥AB ,垂足为点F ,过点N 作NG ⊥HK ,垂足为点G (1)求证:∠MPF=∠GPN
(2)在图1中,将直角∠MPN 绕点P 顺时针旋转,在这一过程中,试观察、猜想:当MF=NG 时,△MPN 是什么特殊三角形?在图2中用直尺画出图形,并证明你的猜想;
(3)在(2)的条件下,当∠EDC=30°时,设EP =x,△MPN 的面积为S ,求出S 关于x的解析式,并说明S 是否存在最小值?若存在,求出此时x的值和△MPN 面积的最小值;若不存在,请说明理由。
G
F P
K C
A
D
B
E
H M
25.(14分)如图,已知抛物线
与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB=OC ,
点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合。
(1)求抛物线的解析式 (2)若△PAC 的面积为
,求点P 的坐标
(3)若以A 、B 、C 、P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?
P
C
D
B
H
参考答案。