浙江省舟山中学苏教版高中数学选修2-1课件:2.2为什么截口曲线是椭圆? (共14张PPT)

合集下载

高二数学苏教版选修2-1讲义:第1部分 第2章 2.2 2.2.1 椭圆的标准方程 Word版含解析

高二数学苏教版选修2-1讲义:第1部分 第2章 2.2 2.2.1 椭圆的标准方程 Word版含解析

2.2椭__圆2.2.1 椭圆的标准方程[对应学生用书P20]在平面直角坐标系中,已知A (-2,0),B (2,0),C (0,2),D (0,-2).问题1:若动点P 满足P A +PB =6,设P 的坐标为(x ,y ),则x ,y 满足的关系式是什么? 提示:由两点间距离公式得 (x +2)2+y 2+(x -2)2+y 2=6, 化简得x 29+y 25=1.问题2:若动点P 满足PC +PD =6,设P 的坐标为(x ,y ),则x 、y 满足什么关系? 提示:由两点间距离公式得 x 2+(y -2)2+x 2+(y +2)2=6, 化简得y 29+x 25=1.椭圆的标准方程1.标准方程中的两个参数a 和b ,确定了椭圆的形状和大小,是椭圆的定形条件.a ,b ,c 三者之间a 最大,b ,c 大小不确定,且满足a 2=b 2+c 2.2.两种形式的标准方程具有共同的特征:方程右边为1,左边是两个非负分式的和,并且分母为不相等的正值.当椭圆焦点在x 轴上时,含x 项的分母大;当椭圆焦点在y 轴上时,含y 项的分母大,已知椭圆的方程解题时,应特别注意a >b >0这个条件.[对应学生用书P20][例1] 求适合下列条件的椭圆的标准方程: (1)经过两点(2,-2),⎝⎛⎭⎫-1,142; (2)过点(3,-5),且与椭圆y 225+x 29=1有相同的焦点.[思路点拨] (1)由于椭圆焦点的位置不确定,故可分焦点在x 轴上和在y 轴上两种情况进行讨论.也可利用椭圆的一般方程Ax 2+By 2=1(其中A >0,B >0,A ≠B ),直接求A ,B .(2)求出焦点,然后设出相应方程,将点(3,-5)代入,即可求出a ,b ,则标准方程易得.[精解详析] (1)法一:若焦点在x 轴上,设椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0). 由已知条件得⎩⎨⎧ 4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧ 1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.若焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由已知条件得⎩⎨⎧4b 2+2a 2=1,1b 2+144a 2=1,解得⎩⎨⎧1b 2=18,1a 2=14.即a 2=4,b 2=8,则a 2<b 2,与题设中a >b >0矛盾,舍去. 综上,所求椭圆的标准方程为x 28+y 24=1.法二:设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ).将两点(2,-2),⎝⎛⎭⎫-1,142代入,得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎨⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.(2)因为所求椭圆与椭圆y 225+x 29=1的焦点相同,所以其焦点在y 轴上,且c 2=25-9=16. 设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).因为c 2=16,且c 2=a 2-b 2,故a 2-b 2=16.① 又点(3,-5)在椭圆上,所以()-52a 2+(3)2b2=1,即5a 2+3b2=1.② 由①②得b 2=4,a 2=20,所以所求椭圆的标准方程为y 220+x 24=1.[一点通] 求椭圆标准方程的一般步骤为:1.求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(-4,0),(4,0),且椭圆经过点(5,0); (2)经过两点P ⎝⎛⎭⎫13,13,Q ⎝⎛⎭⎫0,-12. 解:(1)由已知得:c =4,a =5. b 2=a 2-c 2=25-16=9. 故所求椭圆方程为x 225+y 29=1.(2)设椭圆方程为Ax 2+By 2=1.(A >0,B >0,A ≠B ) 由已知得,⎩⎨⎧19A +19B =1,14B =1,解得:⎩⎪⎨⎪⎧B =4,A =5,故所求椭圆方程为y 214+x 215=1.2.求适合下列条件的椭圆的方程. (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解:(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).∵椭圆经过点(2,0)和(0,1),∴⎩⎨⎧22a 2+0b 2=1,0a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4,b 2=1,故所求椭圆的标准方程为x 24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8, ∴b 2=a 2-c 2=36,∴所求椭圆的标准方程是y 2100+x 236=1.[例2] 已知方程x 2·sin α-y 2·cos α=1(0≤α≤2π)表示椭圆. (1)若椭圆的焦点在x 轴上,求α的取值范围. (2)若椭圆的焦点在y 轴上,求α的取值范围.[思路点拨] (1)已知的方程不是椭圆的标准形式,应先化成标准方程.(2)对于椭圆方程x 2m +y 2n =1(m >0,n >0,m ≠n )可由m ,n 的大小确定椭圆焦点的位置,列出三角不等式后求α的范围.[精解详析] 将椭圆方程x 2·sin α-y 2·cos α=1(0≤α≤2π)化为标准形式为x 21sin α+y 21-cos α=1(0≤α≤2π).(1)若方程表示焦点在x 轴上的椭圆,则1sin α>-1cos α>0,即⎩⎪⎨⎪⎧ α∈⎝⎛⎭⎫π2,π,tan α>-1,所以34π<α<π.即α的取值范围是⎝⎛⎭⎫3π4,2π. (2)若方程表示焦点在y 轴上的椭圆, 则-1cos α>1sin α>0,即⎩⎪⎨⎪⎧α∈⎝⎛⎭⎫π2,π,tan α<-1, 所以π2<α<3π4.即α的取值范围是⎝⎛⎭⎫π2,3π4. [一点通] 对于讨论椭圆方程中参数的取值范围问题,一般的解题方法是根据题设条件给出的焦点位置,结合对应的标准方程应满足的条件,建立一个含参数的不等式组,通过求解不等式组得到参数的取值范围.3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析:由于椭圆的焦点在x 轴上,所以⎩⎪⎨⎪⎧ a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0a >-6.解得a >3或-6<a <-2.答案:(3,+∞)∪(-6,-2)4.已知方程x 2k -5+y 23-k=-1表示椭圆,求k 的取值范围.解:方程x 2k -5+y 23-k =-1可化为x 25-k +y 2k -3=1,由椭圆的标准方程可得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,得3<k <5,且k ≠4.所以满足条件的k 的取值范围是{k |3<k <5,且k ≠4}.[例3] 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.[思路点拨] 根据椭圆的标准方程知PF 1+PF 2=4,结合面积公式和余弦定理找到PF 1和PF 2的关系求解.[精解详析] 由已知a =2,b =3, 所以c =a 2-b 2=4-3=1, F 1F 2=2c =2,在△PF 1F 2中, 由余弦定理,得PF 22=PF 21+F 1F 22-2PF 1·F 1F 2cos 120°, 即PF 22=PF 21+4+2PF 1.①由椭圆定义,得PF 1+PF 2=4, 即PF 2=4-PF 1.② ②代入①解得PF 1=65.∴S △PF 1F 2=12PF 1·F 1F 2·sin 120°=12×65×2×32=335, 即△PF 1F 2的面积是3 35.[一点通] 在椭圆中,由三条线段PF 1,PF 2,F 1F 2围成的三角形称为椭圆的焦点三角形.涉及椭圆的焦点三角形问题,可结合椭圆的定义列出PF 1+PF 2=2a ,利用这个关系式便可求出结果,因此回归定义是求解椭圆的焦点三角形问题的常用方法.5.已知两定点F 1(-1,0)、F 2(1,0),且F 1F 2是PF 1与PF 2的等差中项,则动点P 的轨迹方程是________.解析:∵F 1(-1,0),F 2(1,0),∴F 1F 2=2. ∵F 1F 2是PF 1与PF 2的等差中项, ∴2F 1F 2=PF 1+PF 2, 即PF 1+PF 2=4,∴点P 在以F 1,F 2为焦点的椭圆上, ∵2a =4,a =2,c =1,∴b 2=3. ∴椭圆的方程是x 24+y 23=1.答案:x 24+y 23=16.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,则△F 1PF 2的面积等于________.解析:由x 29+y 24=1,得a =3,b =2,∴c 2=a 2-b 2=5.∴c = 5.∴F 1F 2=2 5.由⎩⎪⎨⎪⎧ PF 1+PF 2=6,PF 1∶PF 2=2∶1,得⎩⎪⎨⎪⎧PF 1=4,PF 2=2.∴PF 21+PF 22=F 1F 22.∴△F 1PF 2为直角三角形. ∴S △F 1PF 2=12PF 1·PF 2=4.答案:47.如图,已知F 1,F 2是椭圆x 2100+y 236=1的两个焦点.(1)若椭圆上一点P 到焦点F 1的距离等于15,那么点P 到另一个焦点F 2的距离是多少? (2)过F 1作直线与椭圆交于A ,B 两点,试求△ABF 2的周长. 解:由椭圆的标准方程可知a 2=100,所以a =10.(1)由椭圆的定义得PF 1+PF 2=2a =20,又PF 1=15,所以PF 2=20-15=5,即点P 到焦点F 2的距离为5.(2)△ABF 2的周长为AB +AF 2+BF 2=(AF 1+BF 1)+AF 2+BF 2=(AF 1+AF 2)+(BF 1+BF 2).由椭圆的定义可知AF 1+AF 2=2a ,BF 1+BF 2=2a ,故AB +AF 2+BF 2=4a =40.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解;也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免了分类讨论,达到了简化运算的目的.[对应课时跟踪训练(八)]1.若椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为________.解析:由椭圆定义知,a =5,P 到两个焦点的距离之和为2a =10,因此,到另一个焦点的距离为5.答案:52.椭圆25x 2+16y 2=1的焦点坐标是________.解析:椭圆的标准方程为x 2125+y 2116=1,故焦点在y 轴上,其中a 2=116,b 2=125,所以c 2=a 2-b 2=116-125=9400,故c =320.所以该椭圆的焦点坐标为⎝⎛⎭⎫0,±320. 答案:⎝⎛⎭⎫0,±320 3.已知方程(k 2-1)x 2+3y 2=1是焦点在y 轴上的椭圆,则k 的取值范围是________. 解析:方程(k 2-1)x 2+3y 2=1可化为x 21k 2-1+y 213=1.由椭圆焦点在y 轴上,得⎩⎪⎨⎪⎧k 2-1>0,1k 2-1<13.解之得k >2或k <-2.答案:(-∞,-2)∪(2,+∞)4.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.解析:由题意,知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20,即|AB |=8.答案:85.已知P 为椭圆x 225+4y 275=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,则△F 1PF 2的面积为________.解析:在△F 1PF 2中,F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°, 即25=PF 21+PF 22-PF 1·PF 2.① 由椭圆的定义,得 10=PF 1+PF 2.②由①②,得PF 1·PF 2=25,∴S △F 1PF 2=12PF 1·PF 2sin 60°=25 34.答案:25 346.求适合下列条件的椭圆的标准方程:(1)以(0,5)和(0,-5)为焦点,且椭圆上一点P 到两焦点的距离之和为26; (2)以椭圆9x 2+5y 2=45的焦点为焦点,且经过M (2,6). 解:(1)∵椭圆的焦点在y 轴上, ∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).∵2a =26,2c =10,∴a =13,c =5. ∴b 2=a 2-c 2=144.∴所求椭圆的标准方程为y 2169+x 2144=1.(2)法一:由9x 2+5y 2=45, 得y 29+x 25=1,c 2=9-5=4, 所以其焦点坐标为F 1(0,2),F 2(0,-2). 设所求椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).由点M (2,6)在椭圆上,所以MF 1+MF 2=2a , 即2a =(2-0)2+(6-2)2+(2-0)2+(6+2)2=43, 所以a =23,又c =2,所以b 2=a 2-c 2=8, 所以所求椭圆的标准方程为y 212+x 28=1.法二:由法一知,椭圆9x 2+5y 2=45的焦点坐标为F 1(0,2),F 2(0,-2), 则设所求椭圆方程为y 2λ+4+x 2λ=1(λ>0),将M (2,6)代入,得6λ+4+4λ=1(λ>0),解得λ=8或λ=-2(舍去).所以所求椭圆的标准方程为y 212+x 28=1.7.如图,设点P 是圆x 2+y 2=25上的动点,点D 是点P 在x 轴上的投影,M 为PD 上一点,且MD =45PD ,当P 在圆上运动时,求点M 的轨迹C 的方程.解:设M 点的坐标为(x ,y ),P 点的坐标为(x P ,y P ), 由已知易得⎩⎪⎨⎪⎧x P=x ,y P =54y . ∵P 在圆上,∴x 2+(54y )2=25.即轨迹C 的方程为x 225+y 216=1.8.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.解:设动圆M 的半径为r , 则|MA |=r ,|MB |=8-r , ∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8, ∴a =4,c =3, ∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.。

高中数学苏教版选修2-1课件: 2.2.2 椭圆的几何性质 课件1

高中数学苏教版选修2-1课件: 2.2.2 椭圆的几何性质 课件1

B
D
F1 O F2 C A x
设椭圆方程为 x2 a2

y2 b2
1(a
b
0) .
由题意知 AC=439,BD=2384,F2C= F2D=6371.
a-c=OA-OF2= F2A=439+6371=6810,
a+c=OB-OF2= F2B=2384+6371=8755,
解得 a=7782.5,c=972.5.
需要构造一个“稳定”的量来表示偏心率,最后发现
(aቤተ መጻሕፍቲ ባይዱ(a

c) c)

(a (a

c) c)

c a
的值和椭圆大小无关却能很好地刻画椭圆的扁平程度,因此,大家就
c 选择了 a 表示离心率。
例 2.我国发射的第一颗人造卫星的运行轨道是以地球的
中心(简称“地心”) F2 为焦点的椭
y
圆.已知它的近地点 A (离地面最近
离心率跟天文学家有关,并且在天文学中广泛应用。
16世纪时天文学家发现太阳系的八大行星
都是绕着以太阳为焦点的椭圆形轨道运行,
这些轨道偏离太阳的程度称为“偏心率”,
a+c
A1
其中在近日点处离太阳最近,偏离距离为a-c,
P
a-c
F2
A2
在远日点处离太阳最远,偏离距离为a+c,这两
个值不仅和运行轨道的扁平程度有关,还受轨道大小的影响,人们
所以 b a2 c2 (a c)(a c) 7722.
因此,卫星运行的轨道方程是
x2 77832

y2 77222
1.
标准 方程
图形

苏教版高中数学选修(2-1)课件椭圆及其标准方程.pptx

苏教版高中数学选修(2-1)课件椭圆及其标准方程.pptx

1。画椭圆
1取一条一定长的细绳,把它的两端固定在画板的F1和F2两点, 当绳长大于F1和F2的距离时,用铅笔尖把绳子拉紧,使笔尖 在图板上慢慢移动,就可以画出一个椭圆。
若继续拉远两个端点的距离,直到把 绳子拉直,又会得到什么图形?
另外,如果将这两个点的距离拉大, 使其大于绳子的长度那又有怎样的结 果呢?
归纳总结: 当绳长大于两定点的距离时,
轨迹是椭圆; 当绳长等于两定点的距离时,
轨迹是以这两个定点为端点的线段; 当绳长小于两定点的距离时,
没有轨迹.
2椭圆的定义:
平面内与两个定点 F1 、F2 的距离的和
等于常数( 大于 新疆 王新敞 奎屯
) 的点的轨迹是椭圆.
F1F2
这两个定点叫做椭圆的焦点,两焦点
4
(2) 25x216 y2400 y轴上; 0,3
(3 )x2 y2 1(mn0)X轴上; mn ,0 mn
练习:
x2 y2 (1) 在椭圆 1中, a=_3__,b=_2__,
94
焦点位于__x__轴上,焦点坐标是(___5_,0_)_, (__5_,0_).
(2) 在椭圆16x2 7 y2 112 中,a=_4__, b=__7_,
间的距离叫做椭圆的焦距.
3.椭圆标准方程的推导
(1)复习回顾:求曲线方程的一般步骤是怎么样的?
建系设点 列式 坐标代换 化简 证明
(2)如何建系,使求出的方程最简呢?
有两种方案:
Y
Y
M
F1
M
F1
0 F2
X
0
X
方案一
F2 方案二
选定方案一:
(1)建系 如图所示,以F1, F2所在的直线为x轴,以线段F1F2的 中点为原点建立直角坐标系.

浙江省舟山中学苏教版高中数学选修2-1课件:2.2为什么截口曲线是椭圆? (共14张PPT)

浙江省舟山中学苏教版高中数学选修2-1课件:2.2为什么截口曲线是椭圆? (共14张PPT)

在没找到重新开始的理由前,别给自己太多退却的借口。就在那一瞬间,我仿佛听见了全世界崩溃的声音。因为穷人很多,并且穷人没有钱,所以,他们才会在网络上聊 了答应自己要做的事情,别忘了答应自己要去的地方,无论有多难,有多远。分手后不可以做朋友,因为彼此伤害过;不可以做敌人,因为彼此深爱过,所以只好成了最 只有站在足够的高度才有资格被仰望。渐渐淡忘那些过去,不要把自己弄的那么压抑。往往原谅的人比道歉的人还需要勇气。因为爱,割舍爱,这种静默才是最深情的告 时光已成过往,是我再也回不去的远方。不要把自己的伤口揭开给别人看,世界上多的不是医师,多的是撒盐的人。这世界,比你不幸的人远远多过比你幸运的人,路要 的那一步很激动人心,但大部分的脚步是平凡甚至枯燥的,但没有这些脚步,或者耐不住这些平凡枯燥,你终归是无法迎来最后的'那些激动人心。一个人害怕的事,往往 都会有乐观的心态,每个人也会有悲观的现状,可事实往往我们只能看到乐观的一面,却又无视于悲观的真实。从来没有人喜欢过悲观,也没有人能够忍受悲观,这就是 就会缅怀过去,无论是幸福或是悲伤,苍白或是绚烂,都会咀嚼出新的滋味。要让事情改变,先改变我自己;要让事情变得更好,先让自己变得更好。当日子成为照片当 背对背行走的路人,沿着不同的方向,固执的一步步远离,再也没有回去的路。想要别人尊重你,首先就要学会尊重别人。所有的胜利,与征服自己的胜利比起来,都是 与失去自己的失败比起来,更是微不足道。生命不在于活得长与短,而在于顿悟的早与晚。既不回头,何必不忘。既然无缘,何须誓言。感谢上天我所拥有的,感谢上天 千万条,成功的人生也有千万种,选对适合自己的那条路,走好自己的每段人生路,你一定会是下一个幸福宠儿。活在别人的掌声中,是禁不起考验的人。每一次轻易的 笔。什么时候也不要放弃希望,越是险恶的环境越要燃起希望的意志。现实会告诉你,没有比记忆中更好的风景,所以最好的不要故地重游。有些记忆就算是忘不掉,也 满,现实很骨感。我落日般的忧伤就像惆怅的飞鸟,惆怅的飞鸟飞成我落日般的忧伤。舞台上要尽情表演,赛场上要尽力拼搏,工作中要任劳任怨,事业上要尽职尽责。 乐,今天的抗争为了明天的收获!积德为产业,强胜于美宅良田。爱情永远比婚姻圣洁,婚姻永远比爱情实惠。爱有两种,一种是抓住,你紧张他也紧张;一种是轻松拖 人无忧,智者常乐。并不是因为所爱的一切他都拥有了,而是所拥有的一切他都爱。原来爱情不是看见才相信,而是相信才看得见。磨难是化了妆的幸福。如果你明明知 者选择说出来,或者装作不知道,万不要欲言又止。有时候留给别人的伤害,选择沉默比选择坦白要痛多了。我爱自己的内心,慢慢通过它,慢慢抵达世界,或者,抵达 我忘记一切,时间不会改变痛,只会让我适应痛。人生不容许你任性,接受现实,好好努力。曾经以为爱情是甜蜜,幸福的,不知道它也会伤人,而且伤的很痛,很痛。 出的代价却是好些年的失败。时间几乎会愈合所有事情,请给时间一点时间。蚁穴虽小,溃之千里。多少人要离开这个世间时,都会说出同一句话,这世界真是无奈与凄 孵出来的却是失败。太完美的爱情,我不相信,途中聚聚散散难舍难分,终有一天会雨过天晴。我分不清东南西北,却依然固执的喜欢乱走。若是得手,便是随手可丢; 爱情不是寻找共同点,而是学会尊重不同点。总有一天我会从你身边默默地走开,不带任何声响。我错过了狠多,我总是一个人难过,3、戏路如流水,从始至终,点滴不 未变,终归大海。一步一戏,一转身一变脸,扑朔迷离。真心自然流露,举手投足都是风流戏。一旦天幕拉开,地上再无演员。 相信自己有福气,但不要刻意拥有;相信

高中数学选修2-1精品课件1:2.2.2 椭圆的简单几何性质(一)

高中数学选修2-1精品课件1:2.2.2 椭圆的简单几何性质(一)
【提示】 不能相等.否则就表示圆而不是椭圆 了.可以根据 x2 与 y2 的分母的大小判定椭圆的焦点位 置.若 x2 项的分母大,则焦点在 x 轴上;若 y2 项的分母 较大,则焦点在 y 轴上.
焦点在 x 轴上
焦点在 y 轴上
标准 方程
xa22+by22=1(a>b>0) ya22+bx22=1(a>b>0)
【自主解答】由椭圆方程知,a2=25,b2=745,∴c2
=245,∴c=52,2c=5.
在△PF1F2 中,
|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°,
即 25=|PF1|2+|PF2|2-|PF1|·|PF2|.

由椭圆的定义得 10=|PF1|+|PF2|,
焦点
(-c,0)与(c,0) (0,-c)与 (0,c)
a,b,c 的关系
c2= a2-b2
互动探究
题型一:求椭圆的标准方程
例 1 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在 y 轴上,且经过两个点(0,2)和(1,0); (3)经过点 A( 3,-2)和点 B(-2 3,1).
第二章 圆锥曲线与方程 §2.2.1 椭圆的标准方程(一)
高中数学选修2-1·同步课件
自主导学
1.了解椭圆标准方程的推
导.
课标 解读
2.理解椭圆的定义和椭圆 的标准方程.(重点) 3.掌握用定义和待定系数
法求椭圆的标准方程.(重
点、难点)
知识点1:椭圆的定义
【问题导思】 1.取一条定长的细绳,把它的两端都固定在图板的 同一处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画 出的轨迹是一个什么图形?

2019-2020年高中数学苏教版选修2-1课件: 2.2.1 椭圆的标准方程 课件

2019-2020年高中数学苏教版选修2-1课件: 2.2.1 椭圆的标准方程 课件

答 案: x2 (1).

y2
1
(2) y 2 x 2 1
16 1
16 1
小 结:
y
M(x, y)
F1
O F2
x
y
F1
M
o
x
F2
1、椭圆的定义. 2、字母a,b,c之间的大小关系. 3、在求椭圆方程的关键是什么?
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
星系中的椭圆
——仙女座星系
青藏铁路昆仑山隧道
——“传说中的”飞碟
问题的提出:
若将一根细绳两端分开并且固定在平面内 的 F1、F2两点,当绳长大于F1和F2的距离时, 用铅笔尖M把绳子拉紧,使笔尖在平面内慢慢移 动,问笔尖画出的图形是什么呢?
思考
1.在椭圆形成的过程中,细绳思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/7/18
最新中小学教学课件
23
谢谢欣赏!
椭圆定义的符号表述:
MF1 MF2 2a
(2a>2c)
M
F2
F1
小结:椭圆的定义需要注意以下几点
1.平面上----这是大前提 2.动点M到两定点F1,F2的距离之和是常数2a 3.常数2a要大于焦距2C
思考:
1.当2a>2c时,轨迹是( 椭圆 ) 2.当2a=2c时,轨迹是一条线段, 是以F1、F2为端 点的线段.

优化方案数学精品课件(苏教版选修2-1)2.2.2 椭圆的几何性质

优化方案数学精品课件(苏教版选修2-1)2.2.2 椭圆的几何性质

y (2)当焦点在 y 轴上时, 设椭圆方程 2+ 4b x2 =1. b2 36 4 代入点 A(2,-6)坐标得: 2+ 2= 1, 4b b ∴b2=13,∴a2=52. y 2 x2 ∴椭圆的方程为: + =1. 52 13 x2 y 2 总之, 所求椭圆的标准方程为 + = 148 37 y2 x2 1 或 + =1. 52 13
接近于1 ,椭圆越扁; 2.椭圆的离心率越________
接近于0Байду номын сангаас,椭圆越接近于圆. 椭圆的离心率越________
问题探究
1.能否用a和b表示椭圆的离心率e?
c 提示:可以,由于 e=a,又 c= a2-b2,故 a2-b2 c e=a= a = b2 1- 2. a
2.如图所示椭圆中的△OF2B2,能否找出a ,b,c,e对应的线段或量?
【名师点评】 求椭圆的标准方程主要是围 绕椭圆几何性质中的几个量:a、b、c、e来 罗列条件,通过其联系从而求出标准方程.
自我挑战 1 (1) 已知椭圆的一个焦点 F(2 3,0),且过点 A(-2 3,1),求椭 圆的标准方程. (2)已知焦点在 x 轴上的椭圆的离心率 e 3 5 3 = ,经过点 A( ,-2),求椭圆的标 5 2 准方程. (3)已知椭圆中心在原点,坐标轴为对称 轴,过点 A(-4,0),B(0,5),求椭圆的标 准方程.
2
x2 y 2 法二:设椭圆方程为: + = 1(m>0, m n n>0,m≠n), 4 由已知椭圆过点 A(2,-6),所以有 + m 36 =1.① n 由题设知 a=2b,∴ m=2 n,② 或 n=2 m,③ 由①②可解得:n=37,∴m=148. 由①③可解得:m=13,∴n=52.

【精品】高中数学苏教版选修2-1课件:2.2.1椭圆的标准方程课件(25张)

【精品】高中数学苏教版选修2-1课件:2.2.1椭圆的标准方程课件(25张)

典例展示
例1判定下列椭圆标准方程焦点在哪个轴上,并写出焦点坐标。
x2 y2 ( 1 ) 1 25 16
答:在x轴。(-3,0)和(3,0) 答:在y轴。(0,-5)和(0,5)
x2 y2 (2 ) 1 144 169
2 2
x y ( 3 ) 2 2 1 答:在y轴。(0,-1)和(0,1) m m 1
2
2.2 椭圆
2.2.1 椭圆及其标准方程(1)
目标:
1 理解并掌握椭圆的定义, 明确焦点、焦距的概念。
2 掌握椭圆的标准方程.
数学实验
[1]取一条细绳, [2]把它的两端固定在板上 的两点F1、F2 [3]用铅笔尖(M)把细绳 拉紧,在板上慢慢移动观察 画出的图形
观察做图过程: [1]绳长应当大于F1、F2之间 的距离。 [2]由于绳长固定,所以 M 到两个定点的距离和也固定。 M
F1
F2
M
F
1
F
2
请思考:
1.视笔尖为动点,两个图钉为定点,动点到两定点距
离之和符合什么条件,其轨迹是椭圆? 2.改变两图钉之间的距离,使其与绳长相等,画出的 图形还是椭圆吗?
[一]椭圆的定义
椭圆定义的文字表述: 椭圆定义的符号表述:
• 平面上到两个定点的距 离的和(2a)等于定 长(大于|F1F2 |=2C) 的点的轨迹叫椭圆。
2 2 2 2 2 2 x + c + y = 4 aa 4 x c + y x c + y 2 2 2 2 a c x = a xc + y 设 P( x,y )是椭圆上任意一点 2 2
2 2 2 2 2 2 2 2 a c x + a ya = a c

高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质

高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质

y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
=1
b
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
y
· · F1
o F2
x
x2 + a2

x =a
o
x
y = -b
2、顶点: ①、称为椭圆的顶点:

【精品】高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质课件(15张)2

【精品】高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质课件(15张)2

x y 2 1(a b 0) 2 a2 b2 y x 2 1(a b 0) 2 a b
请同学们阅读课本P34,回答下列问题:
问题1:
上的任意一点,则 x,y能否取任意值?
2 2 x y 2 1 ( ab0 ) 2 问题2:椭圆 a 有何对称性? b
2 2 x y 2 1 ( ab0 ) 设 P( x, y) 是椭圆 a 2 b
y
B2
A1 F1
o
B1
F2

A2
x
3、椭圆的顶点: 2 2 x y 2 1 ( a b 0 ) 2 a b
y
B 2 0, b
a,0
A1 F1
a b
o
a c
a,0
F2
A2
x
B 1 0,b
问题4:
圆的形状都是相同的,而椭圆却有 些比较“扁”,有些比较“圆”,用什 么样的量来刻画椭圆“扁”的程度呢?
( a , 0 ), 0 , b
c,0
( 0 , a ), b , 0
0,c
同前 同前
长半轴长为 a , 短半轴长为b . a b
e
c a
a2=b2+c2
同前
例1、已知椭圆方程为4x2+9y2=36,
它的长轴长是: 6 焦距是:
2 5
.短轴长是: 离心率等于:
如何根据椭圆方程判断出曲线的对称性?
问题3:什么是椭圆的顶点、长轴、短轴、 长半轴长、短半轴长?椭圆有几个顶点?
1、范围:
a x a, b y b
椭圆落在 x 组成的矩形中. a , y b y
B2
A1 F1

【精品】高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质课件(16张)

【精品】高中数学苏教版选修2-1课件:2.2.2椭圆的几何性质课件(16张)

b
a ≤ x ≤ a
b ≤ y ≤ b
合作探究(二)
用什么样的量 来刻画椭圆的 “扁”的程度 呢?
再看椭圆
离心率(eccentricity)
B2
y
b
O
a c
F2
A2
x
c 越大, 椭圆越扁
a 不变
c 越小, 椭圆越接近于圆 焦距 2c c e 长轴长 2a a
离心率就是天文学 中的偏心率,它是 制约各类(不同高 度)空间飞行体轨 道寿命的关键因素 之一.
用代数方法研究几何性质
03
得到了什么结论?
范围、对称性、 顶点、离心率
课后作业
1、完成课本36页:练习2,3,4;
2、根据本节课的学习,结合你的体会, 写一篇题为《魅力无限的椭圆》的小
论文,格式不限.
谢谢观看!
谢谢热情指导,
敬请批评指正!
合作探究(一)
画椭圆
看椭圆
椭圆的几何性质
江苏省宜兴市第一 中学 平面解析几何
的主要任务就 是用代数的方 法研究几何问 题!
笛卡 尔
对称性
x y 2 1 ( a b 0 ) 2 a b y
2 2
F1
O
F2
x
关于x轴、 y轴成轴对称; 关于原点成中心对称
顶点(vertex ): 对称轴与椭圆的交点
3 3 2 2 y 25 x 25 x , 根据 将方程变形为 y 5 5
算出椭圆第一象限内的几个点坐标:
x y
0 1 2
2.75
y
3
2.4
4
5
3 2.94
1.8 0
B2
A1
O

苏教版数学选修2-1课件:第2章 2.2.1 椭圆的标准方程

苏教版数学选修2-1课件:第2章 2.2.1 椭圆的标准方程

上一页
返回首页
下一页
y2 x2 (2) 法一: 因为椭圆的焦点在 y 轴上,所以设它的标准方程为 2 + 2 = a b 1(a>b>0). 由椭圆的定义知 2a=
3 2 5 2 - + 2 + 2 2 + 3 2 5 2 - - 2 + 2 2 =2
上一页 返回首页 下一页
【自主解答】 1(a>b>0).
x2 y2 (1) ①若椭圆的焦点在 x 轴上,设其标准方程为 2+ 2 = a b
∵c=1,点 P(- 5,0)在椭圆上, 5 2 2 2 2=1, a =5, x y ∴a 解得 2 故椭圆的标准方程为 + =1. 5 4 2 2 b =4. a -b =1,
【答案】 (1)√ (2)√ (3)× (4)× (5)× (6)√
上一页
返回首页
下一页
[ 质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1:_______________________________________________________ 解惑:________________________________________________________ 疑问 2:_______________________________________________________ 解惑:________________________________________________________ 疑问 3:_______________________________________________________ 解惑:________________________________________________________

苏教版数学选修2-1讲义:第2章 2.2.2 椭圆的几何性质

苏教版数学选修2-1讲义:第2章 2.2.2 椭圆的几何性质

2.2.2椭圆的几何性质
1.掌握椭圆的简单几何性质.(重点)
2.掌握椭圆的离心率的求法,领会离心率是刻画椭圆“扁圆程度”的量.(难点)
3.会用椭圆及性质处理一些实际问题.(重点、难点)
[基础·初探]
教材整理1椭圆的简单几何性质
阅读教材P34,完成下列问题.
判断(正确的打“√”,错误的打“×”)
(1)椭圆x2
a2+
y2
b2=1(a>b>0)的长轴长等于a.()
(2)椭圆上的点到焦点的距离的最小值为a-c.()
(3)椭圆的长轴,短轴就是x轴和y轴.()
(4)椭圆x2
2+y
2=1中,变量x的范围是[-2,2].()
【解析】(1)x2
a2+
y2
b2=1(a>b>0)的长轴长等于2a,故错误;
(2)椭圆上的点到焦点的距离的最小值为a-c,最大值为a+c,故正确;
(3)椭圆的长轴和短轴是线段,而不是直线,故错误;
(4)椭圆x2
2+y
2=1中,a=2,故x的范围是[-2,2],故错误.
【答案】(1)×(2)√(3)×(4)×
教材整理2离心率
阅读教材P34~P35例1以上部分,完成下列问题.
1.定义:焦距与长轴长的比c
a叫做椭圆的离心率.
2.范围:e=c
a∈(0,1).
3.作用:
当椭圆的离心率越接近于1时,则椭圆越扁;
当椭圆的离心率越接近于0时,则椭圆越接近于圆.
填空:
(1)椭圆x2
4+
y2
3=1的离心率是________.。

苏教版最新的高二数学苏教版选修2-1讲义:第1部分 第2章 2.2 2.2.2 椭圆的几何性质 Word版含解析

苏教版最新的高二数学苏教版选修2-1讲义:第1部分 第2章 2.2 2.2.2 椭圆的几何性质 Word版含解析

2.2.2椭圆的几何性质[对应学生用书P22]建立了椭圆的标准方程后,我们就可以通过方程研究椭圆的几何性质.以方程x2a2+y2b2=1(a>b>0)为例,试着完成下列问题:问题1:方程中对x,y有限制的范围吗?提示:由y2b2=1-x2a2≥0,得-a≤x≤a.同理-b≤y≤b.问题2:在方程中,用-x代x,-y代y,方程的形式是否发生了变化?提示:不变.问题3:方程与坐标轴的交点坐标是什么?提示:令x=0,得y=±b;令y=0,得x=±a;与x轴的交点为(a,0),(-a,0),与y轴的交点为(0,b),(0,-b).椭圆的几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围-a≤x≤a,-b≤y≤b -a≤y≤a,-b≤x≤b 顶点(±a,0),(0,±b)(0,±a),(±b,0)轴长短轴长=2b,长轴长=2a焦点(±c,0)(0,±c)焦距F1F2=2c对称性对称轴x轴,y轴,对称中心(0,0)离心率e=ca∈(0,1)1.椭圆的对称性椭圆的图像关于x轴成轴对称,关于y轴成轴对称,关于原点成中心对称.2.椭圆的离心率与椭圆形状变化间的关系(1)0<e<1,e越趋近于1,越扁,越趋近于0,越圆(可以根据字体1很扁、0很圆进行记忆).(2)当e→0,c→0时,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在e=0时的特例.(3)当e→1,c→a,椭圆变扁,直至成为极限位置线段F1F2,此时也可认为F1F2为椭圆在e=1时的特例.[对应学生用书P23]已知椭圆方程求几何性质[例1]求椭圆81x2+y2=81的长轴和短轴的长及其焦点和顶点坐标,离心率.[思路点拨]本题中椭圆的方程不是标准形式,故先化为标准形式后求出a,b,c,再根据焦点位置写出相应的几何性质.[精解详析]椭圆的方程可化为x2+y281=1,∴a=9,b=1,∴c=81-1=80=4 5,∴椭圆的长轴和短轴长分别为18,2.∵椭圆的焦点在y轴上,故其焦点坐标为F1(0,-4 5),F2(0,4 5),顶点坐标为A1(0,-9),A2(0,9),B 1(-1,0),B 2(1,0),e =c a =4 59.[一点通] 求椭圆几何性质参数时,应把椭圆化成标准方程,注意分清焦点的位置,这样便于直观写出a ,b 的值,进而求出c ,写出椭圆的几何性质参数.1.若椭圆x 2m +y 24=1的离心率为13,则m 的值为________.解析:当m >4时,由c 2=a 2-b 2=m -4, 得m -4m=13.解得m =92. 当m <4时,由c 2=a 2-b 2=4-m , 得4-m 2=13,解得m =329. 答案:92或3292.求椭圆4x 2+9y 2=36的长轴长、焦距、焦点坐标、顶点坐标和离心率. 解:椭圆方程变形为x 29+y 24=1,∴a =3,b =2, ∴c =a 2-b 2=9-4= 5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.由椭圆的几何性质求标准方程[例2] 求适合下列条件的椭圆的标准方程: (1)长轴长为20,离心率等于45;(2)长轴长是短轴长的2倍,且过点(2,-6).[思路点拨] 先确定椭圆的焦点位置,不能确定的要分情况讨论,然后设出标准方程,再利用待定系数法求出a 、b 、c ,得到椭圆的标准方程.[精解详析] (1)∵2a =20,e =c a =45,∴a =10,c =8,b 2=a 2-c 2=36.由于椭圆的焦点可能在x 轴上,也可能在y 轴上,所以所求椭圆的标准方程为x 2100+y 236=1或y 2100+x 236=1.(2)设椭圆的标准方程为x 2a 2+y 2b 2=1或y 2a 2+x 2b 2=1(a >b >0).由已知a =2b ,①且椭圆过点(2,-6),从而有 22a 2+(-6)2b 2=1或(-6)2a 2+22b2=1.② 由①②得a 2=148,b 2=37或a 2=52,b 2=13. 故所求椭圆的标准方程为x 2148+y 237=1或y 252+x 213=1.[一点通] 在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式,若不能确定焦点所在的坐标轴,则应进行讨论.一般地,已知椭圆的焦点坐标时,可以确定焦点所在的坐标轴;而已知椭圆的离心率、长轴长、短轴长或焦距时,则不能确定焦点所在的坐标轴.3.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________________.解析:由题意得2a =12,c a =32,所以a =6,c =33,b =3.故椭圆方程为x 236+y 29=1.答案:x 236+y 29=14.求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)离心率为513,且椭圆上一点到两焦点的距离的和为26.解:(1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2). 由椭圆的定义知,2a =32+(2+2)2+32+(2-2)2=8,所以a =4,所以b 2=a 2-c 2=16-4=12.又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.(2)由题意知,2a =26,即a =13, 又e =c a =513,所以c =5,所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.与椭圆离心率有关的问题[例3] 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2.P 是椭圆M 上的任一点,且PF 1·PF 2的最大值的取值范围为⎣⎡⎦⎤12c 2,3c 2,其中c 2=a 2-b 2,求椭圆的离心率的取值范围.[思路点拨] 由P 是椭圆上一点,知PF 1+PF 2=2a ,进而设法求出PF 1·PF 2的最大值,再由已知的范围求出离心率e 的范围.[精解详析] ∵P 是椭圆上一点, ∴PF 1+PF 2=2a ,∴2a =PF 1+PF 2≥2 PF 1·PF 2, 即PF 1·PF 2≤a 2,当且仅当PF 1=PF 2时取等号. ∴12c 2≤a 2≤3c 2,∴13≤c 2a 2≤2, ∴13≤e 2≤2,∴33≤e ≤ 2. ∵0<e <1,∴33≤e <1, ∴椭圆的离心率的取值范围是⎣⎡⎭⎫33,1.[一点通]1.椭圆的离心率的求法: (1)直接求a ,c 后求e ,或利用e =1-b 2a 2,求出ba后求e . (2)将条件转化为关于a ,b ,c 的关系式,利用b 2=a 2-c 2消去b .等式两边同除以a 2或a 4构造关于ca(e )的方程求e .2.求离心率范围时,常需根据条件或椭圆的范围建立不等式关系,通过解不等式求解,注意最后要与区间(0,1)取交集.5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________.解析:设椭圆的长轴长为2a ,短轴长为2b ,焦距为2c , 则由已知得2a +2c =4b . 即a +c =2b , 又a 2=b 2+c 2,解得a =54b ,c =34b ,e =35.答案:356.椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且1PF u u u r ·2PF u u u r的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是________.解析:设P (x ,y )、F 1(-c,0)、F 2(c,0),则1PF u u u r =(-c -x ,-y ),2PF u u u r=(c -x ,-y ), 1PF u u u r ·2PF u u u r=x 2+y 2-c 2,又x 2+y 2可看作P (x ,y )到原点的距离的平方, 所以(x 2+y 2)max =a 2,(1PF u u u r ·2PF u u u r)max =b 2,所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12,所以12≤e ≤22.答案:⎣⎡⎦⎤12,22与椭圆相关的应用问题[例4] 某宇宙飞船的运行轨道是以地心为一个焦点的椭圆,设地球半径为R ,若其近地点、远地点离地面的距离分别大约是115R 、13R ,求此宇宙飞船运行的轨道方程.[思路点拨] 根据条件建立坐标系,设出椭圆方程,构造方程,求得宇宙飞船运行的轨道方程.[精解详析] 如图所示,以运行轨道的中心为原点,其与地心的连线为x 轴建立坐标系,且令地心F 2为椭圆的右焦点,则轨道方程为焦点在x 轴上的椭圆的标准方程,不妨设为x 2a 2+y 2b 2=1(a >b >0),则地心F 2的坐标为(c,0),其中a 2=b 2+c 2,则⎩⎨⎧a -c =R +R 15,a +c =R +R3,解得⎩⎨⎧a =65R ,c =215R .∴b 2=a 2-c 2=⎝⎛⎭⎫65R 2-⎝⎛⎭⎫215R 2=6445R 2. ∴此宇宙飞船运行的轨道方程为 x 23625R 2+y 26445R 2=1. [一点通] 解决此类问题,首先要根据条件建立平面直角坐标系,将实际问题转化为有关椭圆的问题,再将条件转化为a ,b ,c 的关系,进而求出椭圆方程,解决其它问题.注意:(1)椭圆方程中变量的范围对实际问题的限制;(2)最后要将数学模型还原回实际问题作答.7.某航天飞行控制中心对某卫星成功实施了第二次近月制动,卫星顺利进入周期为3.5 h 的环月小椭圆轨道(以月球球心为焦点).卫星远月点(距离月球表面最远的点)高度降至1 700 km ,近月点(距离月球表面最近的点)高度是200 km ,月球的半径约是1 800 km ,且近月点、远月点及月球的球心在同一直线上,此时小椭圆轨道的离心率是________.解析:可设小椭圆的长轴长为2a ,焦距为2c ,由已知得2a=1 700+2×1 800+200,∴a=2 750.又a+2c=1 700+1 800,∴c=375.∴e=ca =3752 750=322.答案:3 228.已知某荒漠上F1、F2两点相距2 km,现准备在荒漠上开垦出一片以F1、F2为一条对角线的平行四边形区域,建农艺园.按照规划,平行四边形区域边界总长为8 km.(1)试求平行四边形另两个顶点的轨迹方程;(2)问农艺园的最大面积能达到多少?解:(1)以F1F2所在直线为x轴,F1F2的中垂线为y轴建立如图所示的平面直角坐标系,则F1(-1,0),F2(1,0).设平行四边形的另两个顶点为P(x,y),Q(x′,y′),则由已知得PF1+PF2=4.由椭圆定义知点P在以F1、F2为焦点,以4为长轴长的椭圆上,此时a=2,c=1,则b= 3.∴P点的轨迹方程为x24+y23=1(y≠0),同理Q点轨迹方程同上.(2)S▱PF1QF2=F1F2·|y P|≤2c·b=23(km2),所以当P为椭圆短轴端点时,农艺园的面积最大为2 3 km2.1.椭圆的顶点、焦点、中心坐标等几何性质与坐标有关,它们反映了椭圆在平面内的位置.2.椭圆的长轴长、短轴长、焦距、离心率等几何性质与坐标无关,它们反映了椭圆的形状.3.讨论与坐标有关的几何性质应先由焦点确定出椭圆的类型,不能确定的应分焦点在x轴上、y轴上进行讨论.[对应课时跟踪训练(九)]1.(新课标全国卷Ⅱ改编)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.解析:法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33. 法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a ,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). 答案:332.(广东高考改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________________________________________________________________________.解析:依题意,设椭圆方程为x 2a 2+y2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =12,c 2=a 2-b 2,解得a 2=4,b 2=3.答案:x 24+y 23=13.曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的________相等.(填“长轴长”或“短轴长”或“离心率”或“焦距”)解析:c 2=25-k -(9-k )=16,c =4. 故两条曲线有相同的焦距. 答案:焦距4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为________.解析:设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 21=b 2-b 2x 21a2.所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 21x 2-x 21=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案:-135.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率是________.解析:设直线x =3a2与x 轴交于点M ,则∠PF 2M =60°.由题意知,F 1F 2=PF 2=2c ,F 2M =3a2-c .在Rt △PF 2M 中,F 2M =12PF 2,即3a2-c =c .∴e =c a =34.答案:346.已知焦点在x 轴上的椭圆的离心率e =35,经过点A (5 32,-2),求椭圆的标准方程.解:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则754a 2+4b 2=1.① 由已知e =35,∴c a =35,∴c =35a .∴b 2=a 2-c 2=a 2-(35a )2,即b 2=1625a 2.②把②代入①,得754a 2+4×2516a 2=1,解得a 2=25,∴b 2=16,∴所求方程为x 225+y 216=1. 7.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解:椭圆方程可化为x 2m +y 2mm +3=1, 由m >0,易知m >m m +3, ∴a 2=m ,b 2=m m +3. ∴c =a 2-b 2=m (m +2)m +3. 由e =32,得 m +2m +3=32,解得m =1, ∴椭圆的标准方程为x 2+y 214=1. ∴a =1,b =12,c =32. ∴椭圆的长轴长为2,短轴长为1,两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0, 顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 8.若椭圆的中心在原点,焦点在x 轴上,点P 是椭圆上的一点,P 在x 轴上的射影恰为椭圆的左焦点,P 与中心O 的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于10-5,试求椭圆的离心率及其方程. 解:令x =-c ,代入x 2a 2+y 2b2=1(a >b >0), 得y 2=b 2(1-c 2a 2)=b 4a 2,∴y =±b 2a . 设P (-c ,b 2a),椭圆的右顶点A (a,0),上顶点B (0,b ). ∵OP ∥AB ,∴k OP =k AB ,∴-b 2ac =-b a, ∴b =c .而a 2=b 2+c 2=2c 2,∴a =2c ,∴e =c a =22. 又∵a -c =10-5,解得a =10,c =5,∴b =5,∴所求椭圆的标准方程为x210+y25=1.。

高二数学选修2-1课件:2.2.2 椭圆的简单几何性质

高二数学选修2-1课件:2.2.2 椭圆的简单几何性质

典型例题
例3 已知椭圆中心在原点,焦点在x 轴上,点P为直线x=3与椭圆的一个交点, 若点P到椭圆两焦点的距离分别是6.5和 3.5,求椭圆的方程.
y
x 2 4y2 1 25 75
P
F1 O
F2
x
第二十二页,编辑于星期一:一点 二十一分。
典型例题
例4 已知点M与点F(4,0)的距离和它
到直线l:x 25的距离之比等于 4,
新知探究
若点F是定直线l外一定点,动点M到点F 的距离与它到直线l的距离之比等于常数
e(0<e<1),则点M的轨迹是椭圆.
l
M
H
F
动画
第八页,编辑于星期一:一点 二十一分。
新知探究
直线 x a2 叫做椭圆相应于焦 点F2(c,0)的c 准线,相应于焦点
F1(-c,0)的准线方程是 x a2
y
c
x
典型例题
例1 若椭圆 x2 y2 1上一点P到
100 36
椭圆左准线的距离为10,求点P到椭
圆右焦点的距离.
12
第二十页,编辑于星期一:一点 二十一分。
典型例题
例2 已知椭圆的两条准线方程为
y=±9,离心率为 1 ,求此椭圆的标准
方程.
3
x2 y2 1
89
第二十一页,编辑于星期一:一点 二十一分。
新知探究
椭圆上的点到椭圆一个焦点的距离 叫做椭圆的焦半径,上述结果就是椭圆
的焦半径公式.
|MF1|=a+ex0 |MF2|=a-ex0
第十八页,编辑于星期一:一点 二十一分。
新知探究
椭圆
y2 a2
x2 b2
1a
b
0的焦半径公式是

2018-2019学年高二数学苏教版选修2-1讲义: 第2章 2.2 2.2.2 椭圆的几何性质 Word版含解析

2018-2019学年高二数学苏教版选修2-1讲义: 第2章 2.2 2.2.2 椭圆的几何性质 Word版含解析

2.2.2椭圆的几何性质[对应学生用书P22]建立了椭圆的标准方程后,我们就可以通过方程研究椭圆的几何性质.以方程x2a2+y2b2=1(a>b>0)为例,试着完成下列问题:问题1:方程中对x,y有限制的范围吗?提示:由y2b2=1-x2a2≥0,得-a≤x≤a.同理-b≤y≤b.问题2:在方程中,用-x代x,-y代y,方程的形式是否发生了变化?提示:不变.问题3:方程与坐标轴的交点坐标是什么?提示:令x=0,得y=±b;令y=0,得x=±a;与x轴的交点为(a,0),(-a,0),与y轴的交点为(0,b),(0,-b).椭圆的几何性质1.椭圆的对称性椭圆的图像关于x轴成轴对称,关于y轴成轴对称,关于原点成中心对称.2.椭圆的离心率与椭圆形状变化间的关系(1)0<e<1,e越趋近于1,越扁,越趋近于0,越圆(可以根据字体1很扁、0很圆进行记忆).(2)当e→0,c→0时,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在e=0时的特例.(3)当e→1,c→a,椭圆变扁,直至成为极限位置线段F1F2,此时也可认为F1F2为椭圆在e=1时的特例.[对应学生用书P23][例1]求椭圆81x2+y2=81的长轴和短轴的长及其焦点和顶点坐标,离心率.[思路点拨]本题中椭圆的方程不是标准形式,故先化为标准形式后求出a,b,c,再根据焦点位置写出相应的几何性质.[精解详析]椭圆的方程可化为x2+y281=1,∴a=9,b=1,∴c=81-1=80=4 5,∴椭圆的长轴和短轴长分别为18,2.∵椭圆的焦点在y轴上,故其焦点坐标为F1(0,-4 5),F2(0,4 5),顶点坐标为A1(0,-9),A2(0,9),B1(-1,0),B2(1,0),e=ca=4 5 9.[一点通]求椭圆几何性质参数时,应把椭圆化成标准方程,注意分清焦点的位置,这样便于直观写出a,b的值,进而求出c,写出椭圆的几何性质参数.1.若椭圆x 2m +y 24=1的离心率为13,则m 的值为________.解析:当m >4时,由c 2=a 2-b 2=m -4, 得m -4m=13.解得m =92. 当m <4时,由c 2=a 2-b 2=4-m , 得4-m 2=13,解得m =329. 答案:92或3292.求椭圆4x 2+9y 2=36的长轴长、焦距、焦点坐标、顶点坐标和离心率. 解:椭圆方程变形为x 29+y 24=1,∴a =3,b =2,∴c =a 2-b 2=9-4= 5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2),离心率e =c a =53.[例2] 求适合下列条件的椭圆的标准方程: (1)长轴长为20,离心率等于45;(2)长轴长是短轴长的2倍,且过点(2,-6).[思路点拨] 先确定椭圆的焦点位置,不能确定的要分情况讨论,然后设出标准方程,再利用待定系数法求出a 、b 、c ,得到椭圆的标准方程.[精解详析] (1)∵2a =20,e =c a =45,∴a =10,c =8,b 2=a 2-c 2=36.由于椭圆的焦点可能在x 轴上,也可能在y 轴上,所以所求椭圆的标准方程为x 2100+y 236=1或y 2100+x 236=1.(2)设椭圆的标准方程为x 2a 2+y 2b 2=1或y 2a 2+x 2b2=1(a >b >0).由已知a =2b ,①且椭圆过点(2,-6),从而有22a 2+(-6)2b 2=1或(-6)2a 2+22b2=1.② 由①②得a 2=148,b 2=37或a 2=52,b 2=13. 故所求椭圆的标准方程为x 2148+y 237=1或y 252+x 213=1.[一点通] 在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式,若不能确定焦点所在的坐标轴,则应进行讨论.一般地,已知椭圆的焦点坐标时,可以确定焦点所在的坐标轴;而已知椭圆的离心率、长轴长、短轴长或焦距时,则不能确定焦点所在的坐标轴.3.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________________.解析:由题意得2a =12,c a =32,所以a =6,c =33,b =3.故椭圆方程为x 236+y 29=1.答案:x 236+y 29=14.求满足下列条件的椭圆的标准方程: (1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)离心率为513,且椭圆上一点到两焦点的距离的和为26.解:(1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2). 由椭圆的定义知,2a =32+(2+2)2+32+(2-2)2=8, 所以a =4,所以b 2=a 2-c 2=16-4=12.又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.(2)由题意知,2a =26,即a =13, 又e =c a =513,所以c =5,所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.[例3] 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2.P 是椭圆M 上的任一点,且PF 1·PF 2的最大值的取值范围为⎣⎡⎦⎤12c 2,3c 2,其中c 2=a 2-b 2,求椭圆的离心率的取值范围.[思路点拨] 由P 是椭圆上一点,知PF 1+PF 2=2a ,进而设法求出PF 1·PF 2的最大值,再由已知的范围求出离心率e 的范围.[精解详析] ∵P 是椭圆上一点, ∴PF 1+PF 2=2a ,∴2a =PF 1+PF 2≥2 PF 1·PF 2, 即PF 1·PF 2≤a 2,当且仅当PF 1=PF 2时取等号. ∴12c 2≤a 2≤3c 2,∴13≤c 2a 2≤2, ∴13≤e 2≤2,∴33≤e ≤ 2. ∵0<e <1,∴33≤e <1, ∴椭圆的离心率的取值范围是⎣⎡⎭⎫33,1.[一点通]1.椭圆的离心率的求法:(1)直接求a ,c 后求e ,或利用e =1-b 2a 2,求出ba后求e . (2)将条件转化为关于a ,b ,c 的关系式,利用b 2=a 2-c 2消去b .等式两边同除以a 2或a 4构造关于ca(e )的方程求e .2.求离心率范围时,常需根据条件或椭圆的范围建立不等式关系,通过解不等式求解,注意最后要与区间(0,1)取交集.5.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________.解析:设椭圆的长轴长为2a ,短轴长为2b ,焦距为2c , 则由已知得2a +2c =4b .即a +c =2b , 又a 2=b 2+c 2,解得a =54b ,c =34b ,e =35.答案:356.椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且1PF ·2PF 的最大值的取值范围是[c 2,3c 2],其中c =a 2-b 2,则椭圆M 的离心率e 的取值范围是________.解析:设P (x ,y )、F 1(-c,0)、F 2(c,0), 则1PF =(-c -x ,-y ),2PF =(c -x ,-y ),1PF ·2PF =x 2+y 2-c 2,又x 2+y 2可看作P (x ,y )到原点的距离的平方, 所以(x 2+y 2)max =a 2,(1PF ·2PF )max =b 2, 所以c 2≤b 2=a 2-c 2≤3c 2,即14≤e 2≤12,所以12≤e ≤22.答案:⎣⎡⎦⎤12,22[例4] 某宇宙飞船的运行轨道是以地心为一个焦点的椭圆,设地球半径为R ,若其近地点、远地点离地面的距离分别大约是115R 、13R ,求此宇宙飞船运行的轨道方程.[思路点拨] 根据条件建立坐标系,设出椭圆方程,构造方程,求得宇宙飞船运行的轨道方程.[精解详析] 如图所示,以运行轨道的中心为原点,其与地心的连线为x轴建立坐标系,且令地心F 2为椭圆的右焦点,则轨道方程为焦点在x 轴上的椭圆的标准方程,不妨设为x 2a 2+y 2b 2=1(a >b >0),则地心F 2的坐标为(c,0),其中a 2=b 2+c 2,则⎩⎨⎧a -c =R +R 15,a +c =R +R3,解得⎩⎨⎧a =65R ,c =215R .∴b 2=a 2-c 2=⎝⎛⎭⎫65R 2-⎝⎛⎭⎫215R 2=6445R 2. ∴此宇宙飞船运行的轨道方程为 x 23625R 2+y 26445R 2=1. [一点通] 解决此类问题,首先要根据条件建立平面直角坐标系,将实际问题转化为有关椭圆的问题,再将条件转化为a ,b ,c 的关系,进而求出椭圆方程,解决其它问题.注意:(1)椭圆方程中变量的范围对实际问题的限制;(2)最后要将数学模型还原回实际问题作答.7.某航天飞行控制中心对某卫星成功实施了第二次近月制动,卫星顺利进入周期为3.5 h 的环月小椭圆轨道(以月球球心为焦点).卫星远月点(距离月球表面最远的点)高度降至1 700 km ,近月点(距离月球表面最近的点)高度是200 km ,月球的半径约是1 800 km ,且近月点、远月点及月球的球心在同一直线上,此时小椭圆轨道的离心率是________.解析:可设小椭圆的长轴长为2a ,焦距为2c ,由已知得 2a =1 700+2×1 800+200, ∴a =2 750.又a +2c =1 700+1 800,∴c =375. ∴e =c a =3752 750=322.答案:3228.已知某荒漠上F 1、F 2两点相距2 km ,现准备在荒漠上开垦出一片以F 1、F 2为一条对角线的平行四边形区域,建农艺园.按照规划,平行四边形区域边界总长为8 km.(1)试求平行四边形另两个顶点的轨迹方程; (2)问农艺园的最大面积能达到多少?解:(1)以F 1F 2所在直线为x 轴,F 1F 2的中垂线为y 轴建立如图所示的平面直角坐标系,则F 1(-1,0),F 2(1,0).设平行四边形的另两个顶点为P (x ,y ),Q (x ′,y ′),则由已知得PF 1+PF 2=4.由椭圆定义知点P 在以F 1、F 2为焦点,以4为长轴长的椭圆上,此时a =2,c =1,则b = 3.∴P 点的轨迹方程为x 24+y 23=1(y ≠0),同理Q 点轨迹方程同上.(2)S ▱PF 1QF 2=F 1F 2·|y P |≤2c ·b =23(km 2),所以当P 为椭圆短轴端点时,农艺园的面积最大为2 3 km 2.1.椭圆的顶点、焦点、中心坐标等几何性质与坐标有关,它们反映了椭圆在平面内的位置.2.椭圆的长轴长、短轴长、焦距、离心率等几何性质与坐标无关,它们反映了椭圆的形状.3.讨论与坐标有关的几何性质应先由焦点确定出椭圆的类型,不能确定的应分焦点在x 轴上、y 轴上进行讨论.[对应课时跟踪训练(九)]1.(新课标全国卷Ⅱ改编)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.解析:法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33. 法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a ,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). 答案:332.(广东高考改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________________________________________________________________________.解析:依题意,设椭圆方程为x 2a 2+y2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =12,c 2=a 2-b 2,解得a 2=4,b 2=3.答案:x 24+y 23=13.曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的________相等.(填“长轴长”或“短轴长”或“离心率”或“焦距”)解析:c 2=25-k -(9-k )=16,c =4. 故两条曲线有相同的焦距. 答案:焦距4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为________.解析:设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 21=b 2-b 2x 21a2.所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 21x 2-x 21=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案:-135.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率是________.解析:设直线x =3a2与x 轴交于点M ,则∠PF 2M =60°.由题意知,F 1F 2=PF 2=2c ,F 2M =3a2-c .在Rt △PF 2M 中,F 2M =12PF 2,即3a2-c =c .∴e =c a =34.答案:346.已知焦点在x 轴上的椭圆的离心率e =35,经过点A (5 32,-2),求椭圆的标准方程.解:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),则754a 2+4b 2=1.①由已知e =35,∴c a =35,∴c =35a .∴b 2=a 2-c 2=a 2-(35a )2,即b 2=1625a 2.②把②代入①,得754a 2+4×2516a 2=1,解得a 2=25,∴b 2=16,∴所求方程为x 225+y 216=1.7.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解:椭圆方程可化为x 2m +y 2mm +3=1,由m >0,易知m >mm +3,∴a 2=m ,b 2=mm +3.∴c =a 2-b 2=m (m +2)m +3. 由e =32,得 m +2m +3=32,解得m =1, ∴椭圆的标准方程为x 2+y 214=1.∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1, 两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0,顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 8.若椭圆的中心在原点,焦点在x 轴上,点P 是椭圆上的一点,P 在x 轴上的射影恰为椭圆的左焦点,P 与中心O 的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于10-5,试求椭圆的离心率及其方程.解:令x =-c ,代入x 2a 2+y 2b 2=1(a >b >0),得y 2=b 2(1-c 2a 2)=b 4a 2,∴y =±b 2a.设P (-c ,b 2a),椭圆的右顶点A (a,0),上顶点B (0,b ).∵OP ∥AB ,∴k OP =k AB ,∴-b 2ac =-b a, ∴b =c .而a 2=b 2+c 2=2c 2,∴a =2c ,∴e =c a =22. 又∵a -c =10-5,解得a =10,c =5,∴b =5,∴所求椭圆的标准方程为x 210+y 25=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

30
活动四:应用拓展
教学过程
拓展:一个半径为2的球放在桌面上,桌面上 的一点 A 1 的正上方有一个光源 A,AA1 与球相 切,AA1 =6,问:球在桌面上的投影是什么 形状?则它的离心率等于________。
Байду номын сангаас
设计意图
A
B 11
A1
A2
B2
设 • 上好一堂课需要“厚积薄发”。 计 体 • 上好一堂课需要“善借于物”。 会 • 上好一堂课需要“理论联系实际”。

义的历史认知。

2、初步尝试从 生活现象中抽 象数学模型, 解决模型的数 学研究方法。
并在学习旦德林 双球法后,培养 学生举一反三的 能力。
3、激发学生学习
数学的兴趣。发 现数学源于生活 ,触手可及。同 时通过学习大师 的巧妙之作,体 验数学之美妙。
教学方法
采用“发生教学法”,并借助多媒体辅


当一个人用工作去迎接光明,光明很快就会来照耀着他。人在身处逆境时,适应环境的能力实在惊人。人可以忍受不幸,也可以战胜不幸,因为人有着惊人的 挥它,就一定能渡过难关。倘若你想达成目标,便得在心中描绘出目标达成后的景象;那么,梦想必会成真。心等待,就可以每一个人都具有特殊能力的电路, 知道,所以无法充分利用,就好像怀重宝而不知其在;只要能发掘出这项秘藏的能力,人类的能力将会完全大改观,也能展现出超乎常人的能力我这一生不曾 和伟大的著作都来自于求助潜意识心智无穷尽的宝藏。那些最能干的人,往往是那些即使在最绝望的环境里,仍不断传送成功意念的人。他们不但鼓舞自己, 成功,誓不休止。灵感并不是在逻辑思考的延长线上产生,而是在破除逻辑或常识的地方才有灵感。真正的强者,善于从顺境中找到阴影,从逆境中找到光亮 进的目标。每一种挫折或不利的突变,是带着同样或较大的有利的种子。什么叫做失败?失败是到达较佳境地的第一步。失败是坚忍的最后考验。对于不屈不 失败这回事。一次失败,只是证明我们成功的决心还够坚强。失败也是我需要的,它和成功对我一样有价值。我们关心的,不是你是否失败了,而是你对失败 失败?失败是到达较佳境地的第一步。没有人事先了解自己到底有多大的力量,直到他试过以后才知道。对于不屈不挠的人来说,没有失败这回事。要成功不 能,只要把你能做的小事做得好就行了。成功的唯一秘诀——坚持最后一分钟。只有胜利才能生存,只有成功才有代价,只有耕耘才有收获。只有把抱怨环境 的力量,才是成功的保证。不要为已消尽之年华叹息,必须正视匆匆溜走的时光。 当许多人在一条路上徘徊不前时,他们不得不让开一条大路,让那珍惜时间 面去。 敢于浪费哪怕一个钟头时间的人,说明他还不懂得珍惜生命的全部价值。成功=艰苦劳动+正确的方法+少说空话。合理安排时间,就等于节约时间。
为我敲已过去了的钟点。人的全部本领无非是耐心和时间的混合物。任何节约归根到底是时间的节约。时间就是能力等等发展的地盘。时间是世界上一切成就 想者痛苦,给创造者幸福。时间是伟大的导师。时间是一个伟大的作者,它会给每个人写出完美的结局来。时间最不偏私,给任何人都是二十四小时;时间也 都不是二十四小时。忘掉今天的人将被明天忘掉。辛勤的蜜蜂永没有时间的悲哀。在所有的批评中,最伟大、最正确、最天才的是时间。从不浪费时间的人, 不够。时间是我的财产,我的田亩是时间。集腋成裘,聚沙成塔。几秒钟虽然不长,却构成永恒长河中的伟大时代。春光不自留,莫怪东风恶。抛弃今天的人 昨天,不过是行去流水越努力,越幸运。人之所以能,是相信能。任何的限制,都是从自己的内心开始的不为失败找理由,只为成功找方法。一个人几乎可以 忱的事情上成功。一切失败都源于执行力太差!从你每天一睁眼开始起,你就要对自己说今天是美好的一天每一个成功者都有一个开始。勇于开始,才能找到 人想要改造这个世界,但却罕有人想改造自己。积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。世上没有绝望的处境, 人。性格决定命运,气度决定格局,细节决定成败,态度决定一切,思路决定出路,高度决定深度。未曾见过一个早起勤奋谨慎诚实的人抱怨命运不好。伟人 为他与别人共处逆境时,别人失去了信心,他却下决心实现自己的目标。一个有信念者所开发出的力量,大于99个只有兴趣者。只要有信心,人永远不会挫败 毅力以磨平高山。再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。一个人最大的破 资产是希望。喜欢追梦的人,切记不要被梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为 再升起;月亮不会因为你的抱怨,今晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!路再长也会有终点, 不管雨下得有多大,总会有停止的时候。乌云永远遮不住微笑的太阳!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿的脖子再长,总 人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认为太阳不可能从西边 到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放弃速度快。得到一件东西 样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环无穷。机遇孕育着挑战,挑战 是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选择决定命运,环境造就人生!懂得 胜过知道怎样解决问题的人。在这个世界��
1、通过让学生收集生活中椭 圆形象,学以致用,调动学 生学习热情。
2、适当介绍椭圆的起源,让 学生了解历史上人们是如何 认识椭圆的。
活动设二:建立数学模型
教学过程
1、提出问题:截口曲线为什么是椭圆? 2、从游戏中抽象出圆锥模型 3、证明过程。
证明过程要点: (1)对两个切点进行猜想 (2)球的切线的概念。 (3)辅助线的做法。
2、高中学生个性

习了椭圆的第一
活泼,思维活跃
定义,对椭圆有 ,完全具备空间

直观印象。在此
想象和逻辑推理
之前还学过立体 能力。

几何,对理解旦
德林双球模型问
题不大。
情感分析
3、面对全新的 知识领域,学生 肯定会有强烈的
探求欲望。
知识目标
能力目标
情感目标

1、顺应椭圆概念

产生的历史顺序 ,突出对椭圆定
教学过程
例1、如图,AB是平面 的斜线段,A为斜足,若点P 在平面 内运动,使得 ABP的面积为定值,则动点P
的轨迹( )
B
A.圆 C.一条直线
B.椭圆 D.两条平行直线
AP
例2:一个半径为2的球放在桌面上,一束平行光线与
桌面成 30 , 球在桌面上的投影是什么形状?离心率多
少?
设计意图
强调本节课结论 的应用,树立用 数学解决生活现 象的勇气
为什么截口曲线是椭圆?
舟山中学
条目
1
教材分析
2
学情分析
3
目标分析
4
教学过程
5
设计体会
一、教材的地位和作用
1、在已知椭圆第一定义的基础上介绍椭圆的截面定义,并用旦 德林双球法证明了这两个定义的统一性。

2、本阅读材料具有厚重的历史背景,旦德林双球法构造之巧妙, 充分展现了数学的魅力。
材 二、教材的内容要点

1.了解椭圆的不同定义(截面定义),理解椭圆是圆锥上的一种曲线

2.感受旦德林双球法的巧妙构造。
3.体会数学源于生活,并服务于生活
三、重点与难点。
重点:使学生正确理解截口曲线是椭圆。 难点:(1)旦德林双球证法中的辅助线添法。
(2)利用所得的结论解决与之有关的问题
认知分析
能力分析

1、学生已经学

教学过程


情景体验-----数学建模-----应用拓展
活动一:情景体验
教学过程
设计意图
做游戏:
四组道具:
(1)一条绳子,两个图钉,一支笔 (2)一个圆锥形玻璃容器,和一杯有颜 色的液体。 (3)一只长萝卜,一把小刀 (4)一只手电筒和一只小球 请各组同学挑选一个道具,用手中的道 具给出椭圆,并作出解释。
4、动画演示
设计意图
有意引导学生从生活中 抽象出数学模型,并尝 试解决模型。
M P
N
活动设三:自主探究,举一反三
教学过程
设计意图
1、研究用平面斜截圆柱,让学 生自主证明截口曲线为椭圆,并 展示成果。
2、探究如何计算椭圆的a,b,并 形成结论。
引导学生举一反 三,类比证明。
M P N
活动四:应用拓展
相关文档
最新文档