高三数学一轮复习试题答案详解

合集下载

高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题

高考数学一轮复习 考点01 集合必刷题 理(含解析)-人教版高三全册数学试题

考点01 集合1.若集合A={-1,0,1},B={y|y=x2,x∈A},则A∩B=( )A.{0} B.{1}C.{0,1} D.{0,-1}【答案】C【解析】因为B={y|y=x2,x∈A}={0,1},所以A∩B={0,1}.2.设集合,集合,则()A. B. C. D.【答案】B【解析】集合=,集合,则。

故答案为:B.3.已知全集为整数集Z.若集合A={x|y=1-x,x∈Z},B={x|x2+2x>0,x∈Z},则A∩(∁Z B)=( ) A.{-2} B.{-1}C.[-2,0] D.{-2,-1,0}【答案】D【解析】由题意可知,集合A={x|x≤1,x∈Z},B={x|x>0或x<-2,x∈Z},故A∩(∁Z B)={-2,-1,0}.故选D.4.已知集合A={x|0<x≤6},B={x∈N|2x<33},则集合A∩B中的元素个数为( )A.6 B.5C.4 D.3【答案】B【解析】集合A={x|0<x≤6},B={x∈N|2x<33}={0,1,2,3,4,5},∴A∩B={1,2,3,4,5},∴A∩B中元素个数为5.故选B.5.已知集合,,则()A. B. C. D.【答案】A【解析】因为集合,,所以A∩B={0,1}.故答案为:A.6.若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A .M =NB .M ⊆NC .M ∩N =∅D .N ⊆M【答案】D【解析】∵M ={x ||x |≤1}={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M .故选D. 7.已知集合 ,,则( )A .B .C .D .【答案】C 【解析】由题意得,,.故选C.8.已知集合A ={1,a 2},B ={2a ,-1},若A ∩B ={4},则实数a 等于( ) A .-2 B .0或-2 C .0或2 D .2【答案】D【解析】因为A ∩B ={4},所以4∈A 且4∈B ,故⎩⎪⎨⎪⎧a 2=4,2a =4,a =2.故选D.9.已知集合,,则集合( )A .B .C .D .【答案】D 【解析】已知集合,,∴A∩B 中的元素满足:解得: 则A∩B=. 故选D.10.设全集U =R ,已知集合A ={x ||x |≤1},B ={x |log 2x ≤1},则(∁U A )∩B =( ) A .(0,1] B .[-1,1] C .(1,2]D .(-∞,-1]∪[1,2]【答案】C【解析】因为A={x||x|≤1}={x|-1≤x≤1},B={x|log2x≤1}={x|0<x≤2},所以∁U A={x|x>1或x<-1},则(∁U A)∩B=(1,2].11.已知全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0},则图中阴影部分表示的集合为( )A.{0,1,2} B.{1,2}C.{3,4} D.{0,3,4}【答案】A【解析】∵全集U=R,集合A={0,1,2,3,4},B={x|x2-2x>0}={x|x>2或x<0},∴∁U B={x|0≤x≤2},∴图中阴影部分表示的集合为A∩(∁U B)={0,1,2}.故选A.12.设集合M={x|x<4},集合N={x|x2-2x<0},则下列关系中正确的是( )A.M∩N=M B.M∪(∁R N)=MC.N∪(∁R M)=R D.M∩N=N【答案】D【解析】由题意可得N=(0,2),M=(-∞,4),N⊆M.故选D.13.设集合A={x|y=lg(-x2+x+2)},B={x|x-a>0}.若A⊆B,则实数a的取值X围是( ) A.(-∞,-1) B.(-∞,-1]C.(-∞,-2) D.(-∞,-2]【答案】B【解析】集合A={x|y=lg(-x2+x+2)}={x|-1<x<2},B={x|x-a>0}={x|x>a},因为A⊆B,所以a≤-1.14.已知,则()A. B.C. D.【答案】C【解析】由题可得则故选C.15.已知集合A={x|x<1},B={x|x2-x-6<0},则( )A.A∩B={x|x<1}B.A∪B=RC.A∪B={x|x<2}D.A∩B={x|-2<x<1}【答案】D【解析】集合A={x|x<1},B=x{x|x2-x-6<0}={x|-2<x<3},则A∩B={x|-2<x<1},A∪B={x|x <3}.故选D.16.设U=R,已知集合A={x|x≥1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值X围是( ) A.(-∞,1) B.(-∞,1]C.(1,+∞)D.[1,+∞)【答案】A【解析】∵U=R,集合A={x|x≥1}=[1,+∞),∴∁U A=(-∞,1),由B={x|x>a}=(a,+∞)以及(∁U A)∪B=R可知实数a的取值X围是(-∞,1).故选A.17.已知集合,集合,则A. B. C. D.【答案】A【解析】由题得A={x|-2<x<3},所以={x|x≤-2或x≥3},所以=.故答案为:A18.已知集合,,则∁A. B. C. D.【答案】A【解析】由,即,解得或,即,∁,解得,即,则∁,故选A.1.A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },若A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0},则A -B =( ) A .{2} B .{1,2} C .{-2,1,2} D .{-2,-1,0}【答案】C【解析】∵A ,B 为两个非空集合,定义集合A -B ={x |x ∈A 且x ∉B },A ={-2,-1,0,1,2},B ={x |(x -1)(x +2)<0}={x |-2<x <1},∴A -B ={-2,1,2}.故选C.20.对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={y |y ≥0},B ={x |-3≤x ≤3},则A *B =________. 【答案】[-3,0)∪(3,+∞)【解析】由题意知A -B ={x |x >3},B -A ={x |-3≤x <0},所以A *B =[-3,0)∪(3,+∞). 21.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 【答案】{1}【解析】∵集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},∴∁I B ={0,1},则A ∩(∁I B )={1}.22.(2018某某红色七校联考)集合A ={x |x 2+x -6≤0},B ={y |y =x ,0≤x ≤4},则A ∩(∁R B )=________. 【答案】[-3,0)【解析】∵A ={x |x 2+x -6≤0}={x |-3≤x ≤2},B ={y |y =x ,0≤x ≤4}={y |0≤y ≤2},∴∁R B ={y |y <0或y >2},∴A ∩(∁R B )=[-3,0).23.已知集合A ={y |y 2-(a 2+a +1)y +a (a 2+1)>0},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =12x 2-x +52,0≤x ≤3.若A ∩B =∅,则实数a 的取值X 围是________. 【答案】(-∞,-3]∪[3,2]【解析】由题意可得A ={y |y <a 或y >a 2+1},B ={y |2≤y ≤4}.当A ∩B =∅时,⎩⎪⎨⎪⎧a 2+1≥4,a ≤2,∴3≤a ≤2或a ≤-3,∴a 的取值X 围是(-∞,-3]∪[3,2]. 24.已知集合,,则_________.【答案】【解析】因为,,所以,故{0,7},故填. 25.已知集合,.(1)若A∩B=,某某数m的值;(2)若,某某数m的取值X围.【答案】(1)2;(2)【解析】由已知得:,.(1)因为,所以,故,所以.(2).因为,或,所以或.所以的取值X围为.。

高考数学一轮复习综合测试卷一含解析新人教A版

高考数学一轮复习综合测试卷一含解析新人教A版

综合测试卷(一)时间:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020浙江超级全能生第一次联考,2)已知复数z =2-i 1+i(i 为虚数单位),则复数z 的模等于( )A.√102B.3√22C.√3D.√52答案 A 由于z =2-i 1+i =(2-i)(1-i)(1+i)(1-i)=1-3i2,∴|z |=|12-32i |=√(12)2+(-32)2=√102.故选A .2.(2019江西南昌外国语学校适应性测试,1)已知集合M ={x |0<x <5},N ={x |m <x <6},若M ∩N ={x |3<x <n },则m +n 等于 ( )A.9B.8C.7D.6答案 B 因为M ∩N ={x |0<x <5}∩{x |m <x <6}={x |3<x <n },所以m =3,n =5,因此m +n =8.故选B . 3.(2020九师联盟9月质量检测,3)埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔,令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约为230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为 ( )A.128.4米B.132.4米C.136.4米D.140.4米答案 C 本题主要考查空间几何体的结构特征,考查数学抽象、数学运算的核心素养.由已知条件“胡夫金字塔的底部周长除以其高度的两倍,得到商为3.14159”可得,胡夫金字塔的原高为230×42×3.14159≈146.4米,则胡夫金字塔现高大约为146.4-10=136.4米,故选C . 4.(2019广西梧州调研,6)若抛物线x 2=2py (p >0)上一点(1,m )到其准线的距离为54,则抛物线的方程为( )A.x 2=y B.x 2=2y 或x 2=4y C.x 2=4y D.x 2=y 或x 2=4y答案 D 由已知可得m =12p ,则12p +p 2=54,化简得2p 2-5p +2=0,解得p =12或p =2,所以抛物线方程为x 2=y 或x 2=4y.5.(2018湖南张家界三模,4)已知变量x ,y 之间的线性回归方程为p^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误..的是 ( ) x 6 8 10 12 y6m32A.变量x ,y 之间成负相关关系B.可以预测,当x =20时,p^=-3.7 C.m =4D.该回归直线必过点(9,4)答案 C 由-0.7<0,得变量x ,y 之间成负相关关系,故A 说法正确;当x =20时,p^=-0.7×20+10.3=-3.7,故B 说法正确; 由表格数据可知。

辽宁省2023-2024学年2024届高三上学期一轮复习联考(一)数学试题(含答案解析)

辽宁省2023-2024学年2024届高三上学期一轮复习联考(一)数学试题(含答案解析)

【详解】 y f 2x 1 为奇函数,即 f 2x 1 f 2x 1 0 ,
所以 f x 关于 1, 0 中心对称,则 f (x) f (2 x) ,
y f x 1 为偶函数,即 f x 1 f x 1 f (2 x) f (x) ,
所以 f (2 x) f (2 x) f (x 2) f (x 2) f (x 4) f (x) ,
ab
ab
A. ab 3
B. (a b)2 12
C. 1 1 2 3 ab 3
D. 1 1 2 ab
11.已知函数
f
x
cos2
x
2
(0
π)
的一个对称中心为
π 6
,
1 2
,则(

A. f x 的最小正周期为π
B.
f
π 12
1 4
C.直线 x 5π 是函数 f x 图像的一条对称轴
辽宁省 2023-2024 学年 2024 届高三上学期一轮复习联考(一) 数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设集合 A 2, 1, 0,1, 2 , B x∣x2 x 2 0 ,则 A B ( )
系.
【详解】 3 4 3
3
,所以
a
log3
4
1,
3 2

3
3
因为 0.82
4 2 5
8 55
1 5
64 1 55
49 0.7 , 0.7 0.64 (0.8) 2 , 4
3
即 0.82
0.7
0.8 2 ,所以 b

高考数学一轮复习数列多选题(讲义及答案)含答案

高考数学一轮复习数列多选题(讲义及答案)含答案

高考数学一轮复习数列多选题(讲义及答案)含答案一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B .11b <<C .22n n S T <D .22n n S T ≥【答案】ABC【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.3.已知n S 是等差数列{}n a 的前n 项和,201920212020S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列结论中正确的是( ) A .20200a >B .20210a <C .2019202020212022a a a a ⋅>⋅D .2019n =时,n T 取得最大值【答案】ABC 【分析】根据题设条件,得到2021202020212020201920200,0S S a S S a -=<-=>,进而求得201920220a a >->,20192020a a >20212022a a ,再结合“裂项法”求得12121112n n n T d a a a a ++⎫⎛=-⎪⎝⎭,结合0d <,即可求解. 【详解】设等差数列{}n a 的公差为d ,因为201920212020S S S <<,可得2021202020210S S a -=<,2020201920200S S a -=>,20212019S S -=202120200a a +>,即202020210a a >->,202020210a d a d ->-->,即201920220a a >->, 所以20192020a a >20212022a a ,0d <,即数列{}n a 递减, 且10a >,20a >,…,20200a >,20210a <,又由12n n n n b a a a ++=,可得1211n n n n b a a a ++==1121112n n n n d a a a a +++⎛⎫- ⎪⎝⎭, 则122323341121211111111122n n n n n T d a a a a a a a a a a a a d a a +++⎛⎫⎛=-+-+⋅⋅⋅+-=- ⎪⎝⎝⎭121n n a a ++⎫⎪⎭,由0d <,要使n T 取最大值,则121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值, 显然1210n n a a ++>,而23a a >34201920202021202220222023a a a a a a a a >⋅⋅⋅>><<⋅⋅⋅, 所以当2020n =时,121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值. 综上可得,正确的选项为ABC. 故选:ABC. 【点睛】本题主要考查了数列的综合应用,其中解答中熟练应用通项n a 和n S 的关系式,数列的“裂项法”求和,以及数列的单调性进行求解是解答的关键,着重考查推理与运算能力.4.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.5.记数列{}n a 的前n 项和为n S ,*n ∈N ,下列四个命题中不正确的有( ) A .若0q ≠,且对于*212,n n n n a a a ++∀∈=N ,则数列{}n a 为等比数列B .若nn S Aq B =+(非零常数q ,A ,B 满足1q ≠,0A B +=),则数列{}n a 为等比数列C .若数列{}n a 为等比数列,则232,,,n n n n n S S S S S --仍为等比数列D .设数列{}n a 是等比数列,若123a a a <<,则{}n a 为递增数列 【答案】AC 【分析】若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,可判断A ;利用n a 与n S 的关系,可求得数列{}n a 的通项公式,可判断B ;若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,可判断C ;设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,分类讨论10a >与10a <两种情况,可判断D ; 【详解】对于A ,若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,故A 错误;对于B ,当2n ≥时,()111(1)nn n n n n a S S Aq B AqB Aq q ---=-=+-+=-且1q ≠;当1n =时,0A B +=,则()111a S Aq B A q ==+=-符合上式,故数列{}n a 是首项为()1A q -公比为q 的等比数列,故B 正确;对于C ,若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,不为等比数列,故C 错误;对于D ,设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,若10a >,可得21q q <<,即1q >,则{}n a 为递增数列;若10a <,可得21q q >>,即01q <<,则{}n a 为递增数列;故D 正确;故选:AC 【点睛】结论点睛:本题考查等比数列通项公式及和的性质,等比数列和的性质:公比为1q ≠-的等比数列{}n a 的前n 项和为n S ,则232,,,n n n n n S S S S S --仍成等比数列,其公比为n q ;同理等差数列和的性质:公差为d 的等差数列{}n a 的前n 项和为n S ,数列232,,,m m m m m S S S S S --构成等差数列,公差为md ,考查学生的分析能力,属于中档题.6.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-, 可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+, 所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC.【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法: (1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠; (3)通项公式法:nn a p q =⋅(p 、q 为非零常数); (4)前n 项和法:nn S p q p =⋅-,p 、q 为非零常数且1q ≠.7.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,8.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.二、平面向量多选题9.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的为( )A .当0x =时,[]2,3y ∈B .当P 是线段CE 的中点时,12x =-,52y =C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x y -的最大值为1- 【答案】BCD 【分析】利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确. 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ 1153(2)222OB OB AB OA OB =+-+=-+,故B 对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:OP ON OM =+;又OP xOA yOB =+;0x ∴,1y ;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.10.在ABC 中,D 、E 分别是AC 、BC 上的点,AE 与BD 交于O ,且AB BC BC CA CA AB ⋅=⋅=⋅,2AB AC AE +=,2CD DA =,1AB =,则( )A .0AC BD ⋅=B .0OA OE ⋅=C .34OA OB OC ++= D .ED 在BA 方向上的正射影的数量为712【答案】BCD 【分析】根据AB BC BC CA CA AB ⋅=⋅=⋅以及正弦定理得到sin cos sin cos C B B C ⋅=⋅,从而求出B C =,进一步得到B C A ==,ABC 等边三角形,根据题目条件可以得到E 为BC 的中点和D 为AC 的三等分点,建立坐标系,进一步求出各选项. 【详解】由AB BC BC CA CA AB ⋅=⋅=⋅得cos cos AB BC B CA BC C ⋅=⋅, ||cos ||cos AB B CA C ⋅=⋅,正弦定理,sin cos sin cos C B B C ⋅=⋅,()0sin B C =-,B C =,同理:A C =,所以B C A ==,ABC 等边三角形.2AB AC AE +=,E 为BC 的中点,2CD DA =,D 为AC 的三等分点.如图建立坐标系,3A ⎛ ⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫ ⎪⎝⎭,136D ⎛ ⎝⎭,解得3O ⎛ ⎝⎭, O 为AE 的中点,所以,0OA OE +=正确,故B 正确; 1323,,,23AC BD ⎛⎫⎛=-= ⎪ ⎪ ⎝⎭⎝⎭,AC BD ⋅=123310236⨯--≠,故A 错误; 324OA OB OC OA OE OE ++=+==,故C 正确; 136ED ⎛= ⎝⎭,132BA ⎛= ⎝⎭,投影712||ED BA BA ⋅=,故D 正确. 故选:BCD.【点睛】如何求向量a 在向量b 上的投影,用向量a 的模乘以两个向量所成的角的余弦值就可以了,当然还可以利用公式a b b ⋅进行求解.。

2023年新高考数学一轮复习3-4 幂函数(真题测试)解析版

2023年新高考数学一轮复习3-4  幂函数(真题测试)解析版

专题3.4 幂函数(真题测试)一、单选题1.(2021·福建·高三学业考试)函数y = )A .B .C .D .【答案】A 【解析】 【分析】根据幂函数的性质判断函数值、增长特点,即可确定大致图象. 【详解】由0y =,排除B 、D ,根据对应幂函数的性质,第一象限增速逐渐变慢,排除C. 故选:A.2.(2011·上海·高考真题(文))下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .2yxB .1y x -=C .2y xD .13y x =【答案】A 【解析】 【详解】试题分析:由偶函数定义知,仅A,C 为偶函数, C. 2yx 在区间(0,)+∞上单调递增函数,故选A .3.(2021·全国·高考真题(文))下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x D【分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-∞为减函数,不合题意,舍.对于D ,()f x R 上的增函数,符合题意, 故选:D.4.(2011·陕西·高考真题(文))函数的图象是A .B .C .D .【答案】B 【解析】 【详解】试题分析:先找出函数图象上的特殊点(1,1),(8,2),(,),再判断函数的走向,结合图形,选出正确的答案.解:函数图象上的特殊点(1,1),故排除A ,D ; 由特殊点(8,2),(,),可排除C .故选B .5.(2007·山东·高考真题(理))设11,1,,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R 且为奇函数的所A .1,3B .1,1-C .1,3-D .1,1,3-【答案】A 【解析】 【详解】11,2αα=-=时,函数定义域不是R,不合题意; 1,3αα==时,函数y x α=的定义域为R 且为奇函数,合题意,故选A.6.(2019·全国·高考真题(理))若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .7.(2015·湖北·高考真题(理))设x R ∈,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是A .3B .4C .5D .6【答案】B 【解析】【详解】因为[]x 表示不超过x 的最大整数.由得,由得,由得,所以,所以, 由得,所以,由得,与矛盾,故正整数n 的最大值是4.8.(2012·山东·高考真题(理))设函数21(),()(,,0)f x g x ax bx a b R a x==+∈≠,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 A .当0a <时,12120,0x x y y +<+> B .当0a <时,12120,0x x y y +>+< C .当0a >时,12120,0x x y y +<+< D .当0a >时,12120,0x x y y +>+> 【答案】B 【解析】 【详解】令()()f x g x =,可得21ax b x =+. 设21(),F x y ax b x ==+ 根据题意()F x 与直线y ax b =+只有两个交点, 不妨设12x x <,结合图形可知,当0a >时如右图,y ax b =+与()F x 左支双曲线相切,与右支双曲线有一个交点,根据对称性可得12||>x x ,即120->>x x ,此时120x x +<, 21122111,0y y y y x x =>=-∴+>-,同理可得,当0a <时如左图,120x x +>,120y y +< 故选:B .二、多选题9.(2022·全国·高三专题练习)下列关于幂函数图象和性质的描述中,正确的是( ) A .幂函数的图象都过(1,1)点B .幂函数的图象都不经过第四象限C .幂函数必定是奇函数或偶函数中的一种D .幂函数必定是增函数或减函数中的一种 【答案】AB 【解析】举反例结合幂函数的性质判断即可. 【详解】因为11α=,所以的幂函数都经过(1,1),故A 正确;当0x >时,0x α>,幂函数的图象都不经过第四象限,故B 正确;12y x =的定义域为[)0,+∞,为非奇非偶函数,故C 错误;1y x=在(),0-∞和()0,∞+上为减函数,但在定义域内不是减函数,故D 错误. 故选:AB10.(2021·全国·高三专题练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数 B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数 D .当3α=时函数在其定义域上是增函数【答案】CD 【解析】 【分析】根据幂函数的性质对选项逐一分析,由此确定正确选项. 【详解】对于A 选项,1y x=,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误.对于C 选项,2yx ,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD11.(2022·广东潮州·二模)已知幂函数()f x 的图象经过点4,2,则下列命题正确的有( ). A .函数()f x 的定义域为R B .函数()f x 为非奇非偶函数C .过点10,2P ⎛⎫⎪⎝⎭且与()f x 图象相切的直线方程为1122y x =+D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭【答案】BC 【解析】 【分析】先利用待定系数法求出幂函数的解析式,写出函数的定义域、判定奇偶性,即判定选项A 错误、选项B 正确;设出切点坐标,利用导数的几何意义和过点P 求出切线方程,进而判定选项C 正确;平方作差比较大小,进而判定选项D 错误. 【详解】设()f x x α=,将点4,2代入()f x x α=,得24α=,则12α=,即12()f x x =, 对于A :()f x 的定义域为[)0,+∞,即选项A 错误; 对于B :因为()f x 的定义域为[)0,+∞, 所以()f x 不具有奇偶性,即选项B 正确;对于C :因为12()f x x =,所以()f x '=设切点坐标为(0x ,则切线斜率为()0k f x ='0)y x x -,又因为切线过点1(0,)2P ,所以01)2x -,解得01x =, 即切线方程为11(x 1)2y -=-,即1122y x =+,即选项C 正确;对于D :当120x x <<时,()()212221212[]222f x f x x x x x f +++⎛⎫-=- ⎪⎝⎭⎝⎭212024x x +==-<,即()()1212()22f x f x x xf ++<成立,即选项D 错误.故选:BC .12.(2022·全国·模拟预测)已知实数0,0,a b c R >>∈,且1a b +=,则下列判断正确的是( ) A .2212a b +≥B .22ac bc <C .()2bb a a >- D .2111b a -<+ 【答案】AD 【解析】 【分析】利用均值不等式可判断A ;取0c 可判断B ;借助幂函数b y x =的单调性,结合0,1a b <<可判断C ;作差法可判断D 【详解】 由于0,0a b >>,由均值不等式114a b ab +=≥≤,当且仅当12a b ==时等号成立选项A ,22211()2121242a b a b ab ab +=+-=-≥-⨯=,当且仅当12a b ==时等号成立,故A 正确;选项B ,由于R c ∈,当0c 时,22ac bc =,故B 错误;选项C ,由于0,0a b >>,1a b +=,故01,122a a <<<-<,即2a a <-由于01b b y x <<∴=在(0,)+∞单调递增,故()2bb a a <-,故C 错误; 选项D ,2122111b b a a a ----=++,由于0,1220,10a b b a a <<∴--<+>,故21101b a --<+,2111b a -∴<+,故D 正确 故选:AD13.(2022·全国·模拟预测)若幂函数()25ay a a x =--的图像关于y 轴对称,则实数=a ______.【答案】2- 【解析】 【分析】根据幂函数的概念和性质计算即可 【详解】由幂函数可得251a a --=,解得3a =或2a =-,又因为函数图像关于y 轴对称,则a 为偶数,所以2a =-. 故答案为:2-14.(2020·江苏·高考真题)已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____. 【答案】4- 【解析】 【分析】先求(8)f ,再根据奇函数求(8)f - 【详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=- 故答案为:4-15.(2014·上海·高考真题(理))若,则满足的取值范围是_____.【答案】(0,1) 【解析】 【详解】根据幂函数的性质,由于1223<,所以当01x <<时2132x x <,当1x >时,2132x x >,因此()0f x <的解集为(0,1). 16.(2022·北京房山·二模)已知函数()3,,.x x a f x x x a ≤⎧=⎨>⎩,若函数()f x 在R 上不是增函数,则a 的一个取值为___________.【答案】-2(答案不唯一,满足1a <-或01a <<即可) 【解析】作出y =x 和y =3x 的图象,数形结合即可得a 的范围,从而得到a 的可能取值. 【详解】y =x 和y =3x 的图象如图所示:∴当1a <-或01a <<时,y =3x 有部分函数值比y =x 的函数值小,故当1a <-或01a <<时,函数()f x 在R 上不是增函数. 故答案为:-2. 四、解答题17.(2022·全国·高三专题练习)幂函数()()22211mm m f xx m --=--在区间()0,∞+上是增函数,求实数m 的取值集合. 【答案】{}1- 【解析】 【分析】解方程211m m --=得到m 的值,再检验即得解. 【详解】解:由题得211m m --=,所以1m =-或2m =.当1m =-时,()2f x x =在()0,∞+上是增函数; 当2m =时,()1f x x -=在()0,∞+上不是增函数,舍去.故所求实数m 的取值集合为{}1-.18.(2020·全国·高三专题练习(理))已知幂函数()()22421mm f x m x -+=-在()0,∞+上单调递增,函数()2g x x k =-. (1)求m 的值;(2)当[]1,2x ∈时,记()(),f x g x 的值域分别为集合,A B ,若A B A ⋃=,求实数k 的取值范围.【答案】(1)0m =; (2)[]0,1. 【解析】 【分析】(1)根据幂函数定义和在第一象限内的单调性可构造方程组求得m ;(2)由一次函数和二次函数单调性可求得,A B ,由并集结果可构造不等式组求得结果. (1)()f x 为幂函数且在()0,∞+上单调递增,()2211420m m m ⎧-=⎪∴⎨-+>⎪⎩,解得:0m =;(2)由(1)知:()2f x x =,∴当[]1,2x ∈时,()[]1,4f x ∈,即[]1,4A =;当[]1,2x ∈时,()[]2,4g x k k ∈--,即[]2,4B k k =--;A B A =,2144k k -≥⎧∴⎨-≤⎩,解得:01k ≤≤,即实数k 的取值范围为[]0,1.19.(2021·新疆·乌鲁木齐市第二十中学高三阶段练习)已知函数23y x =(1)求定义域; (2)判断奇偶性;(3)已知该函数在第一象限的图象如图所示,试补全图象,并由图象确定单调区间.【答案】(1)定义域为(),x ∈-∞+∞;(2)偶函数;(3)图像见解析,23y x =的单调增区间是[)0+∞,,单调减区间是(]0-∞,【分析】(1)将函数23y x =改写成y ,即可判断定义域;(2)令23()f x x =()f x -并判断与()f x 的关系即可确定函数的奇偶性;(3)根据23y x =的奇偶性补全图像,根据补全后的图像确定函数的单调区间;【详解】(1)23y x =R;(2)令23()y x f x =23()f x x =(()f x f x ∴-,且定义域关于坐标原点对称,∴函数23y x =为偶函数.(3)因为函数23y x =为偶函数,所以函数23y x =的图像关于y 轴对称, 根据23y x =第一象限的图像补全图像如图所示:根据图像可知,函数23y x =单调增区间是[)0+∞,,单调减区间是(]0-∞,. 20.(2021·福建·上杭一中高三阶段练习)已知幂函数()()225222k k f x m m x -=-+(k ∈Z )是偶函数,且在0,上单调递增.(1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围;【答案】(1)()2f x x =;(2)()1,1-.【解析】【分析】(1)根据幂函数,偶函数的定义以及题意可知,2221m m -+=,2520k k ->,即可求出,m k ,得到函数()f x(2)由偶函数的性质以及函数的单调性可得()()212f x f x -<-,即212x x -<-,即可解出.【详解】(1)∵2221m m -+=,∴1m =,∵2520k k ->, ∴()502k k <<∈Z ,即1k =或2, ∵()f x 在()0,∞+上单调递增,()f x 为偶函数,∴2k =,即()2f x x =.(2)∵()()()()212212f x f x f x f x -<-⇒-<- ∴212x x -<-,()()22212x x -<-,21x <,∴()1,1x ∈-,即x 的取值范围为()1,1-.21.(2022·全国·高三专题练习)已知幂函数()()3m f x x m N -*=∈的图象关于y 轴对称,且在()0,∞+上是减函数,求满足13233m m f a f a ⎛⎫⎛⎫+-<-- ⎪ ⎪⎝⎭⎝⎭的实数a 的取值范围. 【答案】21033a a ⎧<<⎨⎩且43a ⎫≠⎬⎭. 【解析】【分析】根据幂函数()f x 的图象关于y 轴对称,且在(0,)+∞上单调递减,可得30m -<且3m -为偶数,求得1m =,再利用函数2y x 在在0,上为减函数,由偶函数的性质可转化为28233a a +>-求解即可. 【详解】因为函数()f x 在0,上单调递减,所以30m -<,解得3m <. 因为m *∈N ,所以1m =或2.又函数()f x 的图象关于y 轴对称,所以3m -是偶数,而231-=-为奇数,132-=-为偶数,所以1m =,所以()2f x x -=,()f x 在,0上为增函数,在0,上为减函数,所以1113233f a f a ⎛⎫⎛⎫+-<-- ⎪ ⎪⎝⎭⎝⎭等价于28233a a +>-且8203a -≠, 解得21033a <<且43a ≠. 故实数a 的取值范围为21033a a ⎧<<⎨⎩且43a ⎫≠⎬⎭.. 22.(2021·全国·高三专题练习)已知幂函数()()23122233p p f x p p x--=-+,满足()()24f f <.(1)求函数()f x 的解析式. (2)若函数()()()2g x f x mf x =+,[]1,9x ∈,是否存在实数m 使得()g x 的最小值为0?(3)若函数()()3h x n f x =-+,是否存在实数(),a b a b >,使函数()h x 在[],a b 上的值域为[],a b ?若存在,求出实数n 的取值范围;若不存在,说明理由.【答案】(1)()f x =存在1m =-使得()g x 的最小值为0(3)存在,9,24⎛⎤-- ⎥⎝⎦【解析】【分析】(1)根据幂函数的定义结合()()24f f <即可得解;(2)由函数()()()2g x f x mf x =+,即()2g x =+令t =记()2k t t mt =+,分12m -≤,132m <-<,32m -≥三种情况讨论即可得出答案; (3)由函数()()3h x n f x n =-+=在定义域内为单调递减函数,若存在实数a ,b (a b <),使函数()h x 在[],a b 上的值域为[],a b ,则n b n a ⎧=⎪⎨=⎪⎩①②,消元可得1n a a =+=+令q =求出q 的范围,即可得解.(1)解:∵()f x 是幂函数,∴得2331p p -+=,解得:1p =或2p =,当1p =时,()1f x x =,不满足()()24f f <, 当2p =时,()f x ()()24f f <,∴故得2p =,函数()f x 的解析式为()f x =(2)解:由函数()()()2g x f x mf x =+,即()2g x =+令t =[]1,9x ∈,∴[]1,3t ∈,记()2k t t mt =+,其对称轴在2m t =-, ①当12m -≤,即2m ≥-时,则()()min 110k x k m ==+=,解得:1m =-; ②当132m <-<时,即62m -<<-,则()2min 024m m k x k ⎛⎫=-=-= ⎪⎝⎭,解得:0m =,不满足,舍去; ③当32m -≥时,即6m ≤-时,则()()min 3390k x k m ==+=,解得:3m =-,不满足,舍去; 综上所述,存在1m =-使得()g x 的最小值为0;(3)解:由函数()()3h x n f x n =-+=若存在实数a ,b (a b <),使函数()h x 在[],a b 上的值域为[],a b,则n b n a ⎧=⎪⎨⎪⎩①②, ②-()()33a b a b -=+-+22=-=,1=③,将③代入②得,1n a a ==+q = ∵a b <1=313b a +=++-1b a a =+->,112<,∴102q <≤, 得:2219224n q q q ⎛⎫=--=-- ⎪⎝⎭.故得实数n 的取值范围9,24⎛⎤-- ⎥⎝⎦.。

2025届百师联盟高三一轮复习联考(一)数学试卷(含答案)

2025届百师联盟高三一轮复习联考(一)数学试卷(含答案)

2025届百师联盟高三一轮复习联考(一)数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“∀x ∈R ,12x 2−sin x >0”的否定是( )A. ∃x ∈R ,12x 2−sin x <0 B. ∃x ∈R ,12x 2−sin x ≤0C. ∀x ∈R ,12x 2−sin x ≤0D. ∀x ∈R ,12x 2−sin x <02.若全集U =R ,集合A ={x|x ≥0},B ={x|x 3≤27},则A ∩(∁U B)=( )A. (0,3)B. (3,+∞)C. [3,+∞)D. [0,3]3.在复平面内,复数z =(3+i)(1−i)对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.已知sin (α+π6)=32+cos α,则cos (2α−π3)=( )A. −12B. 12C. −34D. 345.函数f(x)={13x 3+ax 2−a +4,x >0,ax +cos x,x⩽0在R 上单调,则a 的取值范围是( )A. [1,3)B. (1,3]C. [1,3]D. (1,3)6.若15log 1.52⋅t =6×10log 1.53,则t =( )A. 60B. 45C. 30D. 157.已知函数f(x)=sin x +a cos x ,且f(x)=f(10π3−x).则函数g(x)=a sin x +cos x 的图象的一个对称轴可以为( )A. x =π6B. x =5π6C. x =7π6D. x =π8.已知点O(0,0),点P 1(π12,cos π12),P 2(π8,cos π8),P 3(π6,cos π6),则下列选项正确的是( )A. |OP 1|>|OP 2|>|OP 3| B. |OP 1|>|OP 3|>|OP 2|C. |OP 2|>|OP 3|>|OP 1|D. |OP 3|>|OP 2|>|OP 1|二、多选题:本题共3小题,共18分。

江西省2024届高三上学期一轮总复习验收考试数学含解析数学答案

江西省2024届高三上学期一轮总复习验收考试数学含解析数学答案

上进教育24 届高三一轮总复习验收考试数学参考答案及评分细则1.【答案】D【解析】由于A= {x| -1≤x≤1} 'B= {x|x>0} '则A∩B= {x|0 <x≤1} . 故选D.2.【答案】B由于Z= =2 +2i '则=2 -2i. 故选B.3.【答案】A【解析】由于a -b = ( 1 - m ' -1) '则a . (a -b) = 1 - m - 1 =0 '解得m=0 '那么 b =2. 故选A.4.【答案】C【解析】因为f’(x) = e x +a '所以f’(0) = e0 + a = 1 +a =2 '所以a = 1. 故选C.5.【答案】D【解析】由于f( -x) = =f(x) '所以函数f(x) 为定义在R上的偶函数'排除C;由于0 << 1. 故选D.6.【答案】C【解析】令t = +α 't∈'π)'得α= t - '则6tan t+4cos-t) =5cos(2t - 即6tan t +4sin t =5sin 2t = 10sin tcos t '即(5cos t+3)(cos t-1) =0 '且cos t<0 '那么cos t = - '则sin 2α=sin (2t - = - cos 2t = 1 - 2cos2 t = .故选C.7.【答案】A【解析】由题意知10 个数中 '1 '3 '5 '7 '9 为阳数 '2 '4 '6 '8 '10 为阴数. 记3 个数中至多有1 个阴数的事件为A'取出的3 个数之和是5 的倍数的事件为B. 若任取的3 个数中有0 个阴数 '则总数为N1= C=10;若任取的3 个数中有1 个阴数 '则总数为N2= C =50 '则P若任取的3 个数中有0 个阴数 '则只有2 种情况三个数之和为5 的倍数 '分别是{1 '5 '9} ' {3 '5 '7} ;若任取的3 个数中有1 个阴数 '此时3 个数之和必然为偶数 ' 因此3 个数之和的末尾数只能为0 '对于每2 个阳数之和 '结果都是偶数 '而阴数的末尾数都不相同 '必然每2 个阳数的和 '只有唯一的1 个阴数与之对应 '使得3 个数之和为5 的倍数 '从而符合条件的总数为C= 10 ' 于是8.【答案】D【解析】如图 '作直四棱柱AEBF-GCHD'使棱柱的顶点分别在圆柱的上、下底面圆周上 '设上底面圆心为O1'点B到直线EF的距离为h '则四面体ABCD的体积V=2 × ×S△CDO1. h'所以h =1 '即为底面半径长 '所以AB丄EF'所以四边形AEBF为正方形. 连接EG'交AC于点O' 由题意可知AB=2 '则AE=\'所以AC= \'OA= OE= \26. 由EGⅡBD'数学第1 页(共7 页)数学 第 2 页(共7 页)得L AOE 即为直线 AC 与 BD 所成的角或其补角. 在△AOE 中 ' 由余弦定理 '得 coSL AOE ==(\) 2+ (\) 2- (\)22 × \ × \= 1 故选 D.9.【答案】AB(每选对 1 个得 3 分) 【解析】因为 a > b >0→0 << '所以 A 正确 ; 因为函数 y =2x是 R 上的增函数 '所以 2a>2b>20=1 '所以 B正确 ; 因为函数 y =x 3是 R 上的增函数 '所以 a 3> b 3'所以 C 错误 ;当 a =2 'b = 2时 'log a 2 =1 'log b 2 = -1 '所以D 错误. 故选 AB.10.【答案】BC(每选对 1 个得 3 分)【解析】」f (x ) =f (2 -x ) ': 根据图象变换f (x )的图象关于直线 x = 1 对称 '故 A 错误 ;又」f (x ) = -f ( -x ) 且 f ( -x ) =f (2 +x ):f (x ) = -f (x +2) ' 即 f (x ) =f (x +4) '所以 f (x ) 是以 4 为周期的周期函数 '故 B 正确 ; 」f (x )为奇函数且在[ -1 '0]上单调递增 ':f (x ) 在[0 '1] 上单调递增 '又」f (x ) 的图象关于直线 x = 1 对称 ' :f (x )在[1 '2]上单调递减 '故 C 正确 ; 由以上分析得 f (x ) 的周期为 4 '」f (x )的图象关于(2 '0) 中心对称 ' :f (2) =0 'f (1) +f (3) =0 '」f (x ) 的图象关于直线 x = 1 对称 ' :f (0) =f (2) =0 ' :f (0) +f (1) +f (2) +2 024 2 024f (3) =0 ':k 0f (k ) =506 × [f (0) +f (1) +f (2) +f (3)] +f (2 024) '」f (2 024) =f (0) =0 ':k 0f (k ) =0 '故 D错误. 故选 BC.11.【答案】ACD(每选对 1 个得2 分)【解析】因为f( x) =ln ( e x- 1) - ln x = ln e x - 1 '所以由题意可得 a 1 =f( a ) = ln e a n - 1 ' 即 e a n + 1= e a n - 1 '对于 A'要证数列{a n }单调递减 ' 即证 e a n + 1 < e a n ' 即证 < e a n ' 即证 e a n - 1 <a n ea n' 即证( 1 -a n ) e a n - 1 < 0. 令 g (x ) = ( 1 -x )e x - 1 'x ∈ (0 ' + ∞ ) . 」g ’ ( x) = -x e x ' 当 x >0 时 g ’ ( x) <0 ': g( x) 在区间( 0 ' + ∞) 上单调递减 ' 」a n >0 ': g( a n ) <g( 0) =0 ': a n + 1 < a n ': 数列{a n }单调递减 '故 A 正确 ;对于 B' 由 A 知 '数列{a n } 为单调递 减数列 '所以 a 2 023 >a 2 024 '故 B 错误 ;对于 C ' 由 a n + 1 >a n 今ln>a n 今>a n今e an - 1 - a na n>0 '令 h (x ) = e 2x - 1 -2x e x 'x ∈ (0 ' + ∞ ) '则 h ’ (x ) =2e 2x -2(x +1)e x =2e x ( e x -x -1) . 易知 e x >x +1(x >0) '所 以 h ’ (x ) >0 '即 h (x )在区间(0 ' + ∞ )上单调递增. 因为>0 '所以 h>h (0) =0 '所以 a n + 1 >a n '故 C 正1 1 1 n 1 - 12D 正确. 故选 ACD.12.【答案】 + x 2 =1(答案不唯一)【解析】由题得 C =2 '所以 a 2 -b 2 =4 '取 a =\ 'b =1 '又焦点在 y 轴上 '所求方程可为 + x 2 = 1.13.【答案】2 +\34【解析】设点 P (x 'y ) ' 因为 PA =2 PO '所以 \x 2 + (y -3)2 =2 \x 2 +y 2 '化简得 x 2 + (y +1)2 =4 '所以点 P确 ;对于 D ' 因为 a 1 = 2 '再由 C 可知 'a n +1 > 2 a n →a n ≥ ( 2 )'则 a 1 + a 2 + a 3 + … + a n ≥ 1- 1 = 1 - 2n '故 x n + na n a n1 1 113.数学 第 3 页(共7 页)的轨迹为以(0 ' -1)为圆心 '2 为半径的圆 '又因为直线 mx - y +4 - 3m =0 过定点(3 '4) '所 以点 P 到直线 mx -y +4 -3m =0 的距离的最大值为点(0 ' -1)到(3 '4)的距离加上圆的半径 '故最大值为 2 +\34 .【解析】由于f (x )在区间上有且只有两个零点 '所以'即→3 <w <9 ' 由f得 ' wx + = k π ' k ∈ Z ' 」 x ∈ ' : wx + 或解得 或 '所以 w 的取值范围是15. 解:(1)该品种石榴的平均质量为 x =20 × [370 ×0. 005 + (390 +410 +450) ×0. 010 +430 ×0. 015] =416 '所以该品种石榴的平均质量为 416 g . (4 分)(2)由题可知 '这7 个石榴中 '质量在[380 '400) ' [400 '420) ' [420 '440)上的频率比为 0. 010 : 0. 010 : 0. 015 = 2 : 2 : 3 '所以抽取的质量在[380 '400) ' [400 '420) ' [420 '440)上的石榴个数分别为 2 '2 '3. (6 分) 由题意 X 的所有可能取值为 0 '1 '2 '3 '所以 X 的分布列为X 0 123 P4 351 35所以【评分细则】第(2)问中所求的每个概率算对 1 个得 1 分.解:由于则当 n ≥2 时 's n - 1 ='则 a n =s n -s n - 1 =n 2 'n ≥2 ;当 n = 1 时 'a 1 =s 1 = 1 符合上式 '则 a n = n 2 'n ∈ N * . (7 分)证明:由于 b n =6 .那么 T n =6n×≤6n - 1 '那么T i ≤ i6i - 1 ='即证.( 11 分)数学 第 4 页(共7 页)—→ —→—→—→【评分细则】1. 第(1)问中不验证首项 '扣2 分 ;2. 第(2)问中必须要有 T n ≤6n -1的过程 '没有过程扣2 分.17. (1)证明:由于平面 PDC 丄平面 ABCD '平面 PDC ∩平面 ABCD = CD '过点 P 作 CD 的垂线交 CD 的延长线于点 O '则 PO 丄平面 ABCD. 连接 OB 交 AD 于 Q '连接 OA ' 」PD =2 ' 上PDC = 120 O ' : OD = 1 ': OC =AB =2 ' (2 分) 又 AB ⅡCD ' 上ABC =90 O ' : 四边形 ABCO 为矩形 ' : OA =BC = \ 2 ' : OD= OA = \2 : Rt△ODA ~Rt△AOB ' (4 分) : 上OAD = 上ABO '又」 上OAD + 上DAB =90 O ' : 上AQB =90 O '即 AD 丄OB ' (5 分) 又 PO 丄平面 ABCD 'AD C 平面 ABCD ' : PO 丄AD '又 PO ∩BO =O ' (6 分) :AD 丄平面 POB '又」PB C 平面 POB ': AD 丄PB. (7 分)(2)解:以 O 为坐标原点 'OA 'OC 'OP 所在直线分别为 x 'y 'Z 轴建立如图所示的空间直角坐标系 '则 P (0 '0 '\3) 'C (0 '2 '0) 'A (\2 '0 '0) 'B (\2 '2 '0) ' 由于 E 在 PC 上 '设PE =λ PC '则 E (0 '2λ '\3 - \λ) ' : AE = ( - \2 '2λ '\3 - \3 λ) ' (8 分)又平面 ABCD 的法向量 n = (0 '0 '1) '设直线 AE 与平面 ABCD 所成角为 θ ' : sin θ = cos 〈A —'n 〉 = \= \55' (9 分)解得 λ = 或 λ = (舍去) ' (10 分):E (0 '1 '\)': —BA →= (0 ' -2 '0) '—BE →=(- \ ' - 1 '\)'—BC →= ( - \ '0 '0) '则{.. n n 11 {.. n2n2 00 ''即 {-- 2y 1x 1= -0 y '1 + \Z 1=0 '{- \2 x 2 =0 ' - \x 2 -y 2 + \23 Z 2=0( 12 分)'P· ·EO ,' 、·C·DQAB设平面 ABE 的法向量 n 1 = (x 1 'y 1 'Z 1) '平面 PBC 的法向量 n 2 = (x 2 'y 2 'Z 2) ' =0' =0'OA AB 2 '数学 第 5 页(共7 页)A取 x 1 = \ 'y 2 = \得 n 1 = (\ '0 '2 \) 'n 2 = (0 '\ '2) ' (14 分): cos 〈n 1 'n 2 〉= 4 \2 =4 \154\11 ×\7 77 ' 故平面 ABE 与平面 PBC 夹角的余弦值为4\7. ( 15 分)z P`、 EBx【评分细则】1. 如手写向量未标箭头扣 1 分 ;2. 如用其他解法 '若正确 '可给满分.18. 解:(1)依题意 'a =1 ' ( 1 分)双曲线的渐近线方程为y = ± bx F ( - C0) (2 分)a' ' '由点到直线的距离公式可得 b = \3 ' (3 分)所以 C 的标准方程为x 2-= 1. (4 分)(2)解法一:依题意 '直线 l 的斜率 k 存在且k ≠0 ' 故设直线 l 的方程为 y=kx+m 'M (x 1 'y 1 ) 'N (x 2 'y 2 ) ' 联立''消去 y 得x 2-2kmx - m 2-3 =0 '显然 3 -k 2 ≠0 ' 由韦达定理得 x 1 + x 2 ='x 1 x 2 = -Δ=12(m 2 -k 2+3) >0 ' (9 分)kk 1 +kk 2 =k-+- -+- =k . '将韦达定理代入化简得 kk 1 +kk 2 == -6 ' ( 11 分)因为直线不过点 A '所以 m +k ≠0 '所以 kk 1 +kk 2 =6k= - 6 即 m +2k =0 此时直线 l 为 y=kx-2k =k (x -2) ' (12 分) 设弦 MN 的中点为 Q '则 Q'( 13 分)若 FM = FN '要满足 FQ 丄MN ' (14 分)Dm +k' 'yCO数学 第 6 页(共7 页)即 k 2='此时直线 l 为 y = ± \515(x-2) ' (16 分)所以存在 k = ± \515'使得 FM = FN '此时直线 l 为 y = ± \515(x-2) . ( 17 分)解法二(齐次化) :设直线 l 的方程为 m (x-1) +ny=1 'M (x 1 'y 1 ) 'N (x 2 'y 2 ) '将双曲线的方程 x 2-= 1 变形为[(x-1) +1]2 - = 1 '即3(x-1)2 +6(x-1) -y 2 =0 ' (7 分)所以3(x-1)2 +6(x-1)[m (x-1) +ny ] -y 2 =0 ' 整理得(3 +6m )(x -1)2 +6ny (x -1) -y 2 =0 ' 所以2-6n- (3 +6m ) =0 ' (9 分)因为 k 1 = y 1 k 2 = y 2为方程 k 2 -6nk - (3 +6m ) =0 的两根 ' 所以 k 1 +k 2 =6n = - 6 = 6n( 11 分) 所以 m=1 '此时直线 l 为 x -2 + ny =0. (12 分) 下同解法一(略) . 【评分细则】1. 第(2)问中的解法一设直线 l 的方程为 x=ty+m (其中 t = 相应步骤得分一致 ;2. 解法二用齐次化的方法化简不唯一 '可参考解法二酌情给分. 19. (1)解 : Y x 1 'x 2 ∈ [1 '2] '且 x 1 < x 2 'f (x 1 ) -f (x 2 ) = + x 1 -- x 2 =+1)(x 1 -x 2 )=(x 1 +x 2 ) + 1 ix 1 - x 2 i<× (2 +2) + 1 x 1 - x 2 =3 ix 1 - x 2 i'所以f (x )是[1 '2]上的“3 类函数”. (4 分)(2)解:因为f (x )是[1 'e ]上的“2 类函数”'不妨设 x 1 'x 2 ∈ [1 'e ] '且 x 1 < x 2 . 则2(x 1 -x 2 ) <f (x 1 ) -f (x 2 ) <2(x 2 -x 1 )恒成立. (5 分)即 g (x ) =f (x ) +2x 在[1 'e ]上单调递增 'h (x ) =f (x ) -2x 在[1 'e ]上单调递减 ' 所以 Y x ∈ [1 'e ] 'g ’ (x ) =f’ (x ) +2≥0 'h ’ (x ) =f’ (x ) -2≤0 恒成立 ' (6 分) 又f’ (x ) = axe x - x - ln x - 1 '所以 Y x ∈ [1 'e ] ' -2 ≤ axe x - x - ln x - 1 ≤2 恒成立 ' 所以 Y x ∈ [1 'e ] ' =≤a ≤=恒成立 ' (7 分)记 F (t ) ='G (t ) ='t = x + ln x ∈ [1 'e+1] ' (8 分)则 F’ (t ) =2 - t G ’ (t ) = -2 - te t ' et ' x 1 - 1 ' x 2 - 1 k m'所以F(t)在[1 '2)上单调递增 '在(2 'e+1]上单调递减 'G(t)在[1 'e+1]上单调递减 ' (9 分)所以max = Fmin= G所以(3)证明:不妨设1≤x1≤x2≤2 '当x2 - x1≤x2- x1≤1 ':当x2 - x1> 时 ' 由f得f(x1) -f(x2) =f(x1) -f(1) +f(2) -f(x2) ≤f(x1) -f(1) +f(2) -f(x2)<2(x1-1) +2(2 -x2) =2 -2(x2-x1) < 1 '所以 Y x1 'x2∈[1 '2] ' f(x1) -f(x2) < 1. ( 17 分)【评分细则】如用其他解法'若正确'可给满分.数学第7 页(共7 页)。

【经典双基题】高三数学(理)(通用版)一轮复习检测试题12 word版含解析

【经典双基题】高三数学(理)(通用版)一轮复习检测试题12 word版含解析

一.单项选择题。

(本部分共5道选择题)1.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎢⎡⎦⎥⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( ).A .(2,3)B .(-∞,2)∪(3,+∞) C.⎝ ⎛⎭⎪⎪⎫13,12 D.⎝ ⎛⎭⎪⎪⎫-∞,13∪⎝ ⎛⎭⎪⎪⎫12,+∞解析 由题意知-12,-13是方程ax 2-bx -1=0的根,所以由根与系数的关系得-12+⎝ ⎛⎭⎪⎪⎫-13=b a ,-12×⎝ ⎛⎭⎪⎪⎫-13=-1a .解得a =-6,b =5,不等式x 2-bx -a <0即为x 2-5x +6<0,解集为(2,3). 答案 A2.若函数f (x )=2sin(ωx +φ),x ∈R(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则( ). A .ω=12,φ=π6B .ω=12,φ=π3C .ω=2,φ=π6D .ω=2,φ=π3解析 由T =2πω=π,∴ω=2.由f (0)=3⇒2sin φ=3,∴sin φ=32,又|φ|<π2,∴φ=π3.答案 D3.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m、n∈[-1,1],则f(m)+f′(n)的最小值是( )A.-13 B.-15C.10 D.15解析:求导得f′(x)=-3x2+2ax,由函数f(x)在x=2处取得极值知f′(2)=0,即-3×4+2a×2=0,∴a=3.由此可得f(x)=-x3+3x2-4,f′(x)=-3x2+6x,易知f(x)在(-1,0)上单调递减,在(0,1)上单调递增,∴当m∈[-1,1]时,f(m)min=f(0)=-4.又f′(x)=-3x2+6x的图象开口向下,且对称轴为x=1,∴当n∈[-1,1]时,f′(n)min=f′(-1)=-9.故f(m)+f′(n)的最小值为-13.答案:A4.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( ).A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件解析若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=± 2.故“a=1”是“N⊆M”的充分不必要条件.答案 A5.某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为( )(三视图:主(正)试图、左(侧)视图、俯视图)A.⎝ ⎛⎭⎪⎪⎫95-π2 c m 2B.⎝ ⎛⎭⎪⎪⎫94-π2 cm 2C.⎝ ⎛⎭⎪⎪⎫94+π2 cm 2D.⎝⎛⎭⎪⎪⎫95+π2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.答案 C二.填空题。

高三数学一轮复习暑假集训小测验附答案解析

高三数学一轮复习暑假集训小测验附答案解析

8月小测一、单选题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设全集U={−3,−2,−1,0,1,2,3},集合S={−3,0,1},T={−1,2},则∁U(S∪T)等于().A. ⌀B. {−2,3}C. {−2,−1,2,3}D. {−3,−1,0,1,2}【答案】B【解析】【分析】根据并集、补集的定义计算可得.【详解】解:因为S={−3,0,1},T={−1,2},所以S∪T={−3,−1,0,1,2},又U={−3,−2,−1,0,1,2,3},所以∁U(S∪T)={−2,3}.故选:B2.“1a <1b”是“log2a>log2b”的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】根据充分条件和必要条件的定义结合对数函数的性质分析判断即可.【详解】若a=−1,b=−2,则满足1a <1b,而不满足log2a>log2b,当log2a>log2b时,a>b>0,所以aab >bab>0,即1a<1b,所以“1a <1b”是“log2a>log2b”的必要不充分条件,故选:B3.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋯,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为A. 6B. 8C. 12D. 18【答案】C 【解析】【详解】试题分析:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图4.函数f (x )=e x +1x 3(e x −1)(其中e 为自然对数的底数)的图象大致为( )A. B. C. D.【答案】D【解析】【解析】先根据函数的奇偶性排除A 、C ,再由 x →+∞ 时, f (x ) 的趋向性判断选项即可【详解】由题, f (x ) 的定义域为 {x|x ≠0} ,因为 f (−x )=e −x +1−x 3(e −x −1)=e x +1x 3(e x −1)=f (x ) ,所以 f (x ) 是偶函数,图象关于 y 轴对称,故排除A 、C ; 又因为 f (x )=e x +1x 3(e x −1)=1x 3+2x 3(e x −1) ,则当 x →+∞ 时, x 3→+∞ , e x −1→+∞ ,所以 f (x )→0 , 故选:D【点睛】本题考查函数奇偶性的应用,考查函数图象二、填空题:本题共2小题,每小题5分,共10分。

高三数学一轮复习《函数》练习题(含答案)

高三数学一轮复习《函数》练习题(含答案)

高三数学一轮复习《函数》练习题(含答案)第I 卷(选择题)一、单选题1.已知集合{}|1M x x =>,(){}2|lg 3N x y x x ==-,则M N ⋃为( )A .[)3,+∞B .()1,+∞C .()1,3D .()0,∞+2.若函数f (x )和g (x )分别由下表给出:满足g (f (x ))=1的x 值是( ).A .1B .2C .3D .43.已知函数()22x a xf x -=+的图象关于直线1x =对称,若()log ,04,6,46a x x g x x x ⎧<≤=⎨-<≤⎩且123x x x <<,()()()123g x g x g x ==,则123x x x 的取值范围为( )A .()0,2B .()0,4C .()4,6D .(]4,64.设k >0,若不等式3log ()3xk kx -≤0在x >0时恒成立,则k 的最大值为( ) A .eB .eln3C .log 3eD .35.若,,(0,1)r s t ∈,且45log log lg r s t ==,则( ) A .1115104r s t << B .1113104s r t << C .1111054t s r <<D .1111054r t s <<6.已知()f x 是R 上的奇函数,且当0x >时,()2022af x x x=-,若()()1202202024f f +=,则()2f -=( ) A .2020B .2020-C .4045D .4045-7.设126a =,3log 2b =,ln 2c =则( ) A .a b c << B .b c a << C .c a b <<D .c b a <<8.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若()f x m =在[0,)π上有两个实根a ,b ,且||3a b π->,则实数m 的取值范围是( ) A .1,02⎛⎫- ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,22⎛⎫- ⎪⎝⎭二、多选题 9.函数()()2,,R ax bf x a b c x c+=∈+的图象可能为( ) A . B .C .D .10.设函数()21,25,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,集合()(){}220,M x f x f x k k R =++=∈,则下列命题正确的是( )A .当0k =时,{}0,5,7M =B .当1k >时M =∅C .若{},,M a b c =,则k 的取值范围为()15,3--D .若{},,,M a b c d =(其中a b c d <<<),则2214a b c d +++=11.已知函数()2sin (0)4f x x πωω⎛⎫=+> ⎪⎝⎭,则下列说法正确的是( )A .若函数()f x 的最小正周期为π,则其图象关于直线8x π=对称B .若函数()f x 的最小正周期为π,则其图象关于点,08π⎛⎫⎪⎝⎭对称C .若函数()f x 在区间0,8π⎛⎫⎪⎝⎭上单调递增,则ω的最大值为2D .若函数()f x 在[]0,2π有且仅有5个零点,则ω的取值范围是192388ω≤< 12.下列各式比较大小,正确的是( ) A .1.72.5>1.73B .24331()22-> C .1.70.3>0.93.1D .233423()()34> 13.为排查新型冠状病毒肺炎患者,需要进行核酸检测.现有两种检测方式:(1)逐份检测:(2)混合检测:将其中k 份核酸分别取样混合在一起检测,若检测结果为阴性,则这k 份核酸全为阴性,因而这k 份核酸只要检测一次就够了,如果检测结果为阳性,为了明确这k 份核酸样本究竟哪几份为阳性,就需要对这k 份核酸再逐份检测,此时,这k 份核酸的检测次数总共为1k +次.假设在接受检测的核酸样本中,每份样本的检测结果是阴性还是阳性都是独立的,并且每份样本是阳性的概率都为()01p p <<,若10k =,运用概率统计的知识判断下列哪些p 值能使得混合检测方式优于逐份检测方式.(参考数据:lg 0.7940.1≈-)( ) A .0.4B .0.3C .0.2D .0.1第II 卷(非选择题)三、填空题14.已知函数()3136f x x x =+-,函数()ln 1x g x m x+=-,若对任意[]11,2x ∈,存在21,e e x ⎡⎤∈⎢⎥⎣⎦,使得()()12f x g x ≤,则实数m 的取值范围为______.15.已知奇函数()f x 定义域为R ,()()1f x f x -=,当()0,1x ∈时,()21log 2f x x ⎛⎫=+ ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭___________.16.化简2011log 5310.06428-+⎛⎫+-+ ⎪⎝⎭的结果为________.17.定义在R 上的函数()1442x x f x +=+,129101010S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则S 的值是______. 四、解答题18.已知函数2()22f x x ax =++,(1)当1a =时,求函数()f x 在[3,3]-的最大值和最小值; (2)若对于任意x ∈R 都有()0f x >,求实数a 的取值范围.19.解下列方程与不等式(1)2lg(426)lg(3)1x x x +---=(2)222log log (3)x x x <-20.已知函数21()x f x x+=.(1)判断()f x 奇偶性;(2)当(1,)x ∈+∞时,判断()f x 的单调性并证明;(3)在(2)的条件下,若实数m 满足(3)(52)f m f m >-,求m 的取值范围.21.经普查,某种珍稀动物今年存量为1100只,而5年前存量为1000只. (1)在这5年中,若该动物的年平均增长率为a %,求a 的值(结果保留一位小数); (2)如果保持上述的年平均增长率不变,那么还需要经过几年才能使该动物的存量达到1300只?(精确到1年)22.已知a R ∈,函数()f x x x a =-.(1)设1a =,判断函数()f x 的奇偶性,请说明理由;(2)设0a ≠,函数()f x 在区间(),m n 上既有最大值又有最小值,请分别求出m ,n 的取值范围.(只要写出结果,不需要写出解题过程)23.某物流公司欲将一批海产品从A 地运往B 地,现有汽车、火车、飞机三种运输工具可供选择,这三种工具的主要参考数据如下:若这批海产品在运输过程中的损耗为300元/h ,问采用哪种运输方式比较好,即运输过程中的费用与损耗之和最小.参考答案1.D2.A3.C4.B5.A6.D7.B8.D 9.ABD10.ABD11.ACD 12.BC13.CD 14.7,8⎛⎤-∞ ⎥⎝⎦15.0 16.27217.1818.(1)()()max min 17,1f x f x ==(2)(19.(1)3x =(2)(4,)+∞ 20.(1)奇函数 (2)增函数 (3)(1,2) 21.(1) 1.9a = (2)9年22.(1)函数()f x 既不是奇函数也不偶函数;(2)当0a >时, 02a m ≤<,a n <≤;当0a <m a ≤<,02a n <≤. 23.当550021s <时,汽车总费用最小;当55004000213s <时,火车总费用最小;当40003s 时,飞机总费用最小(其中s 表示运输路程)。

【2022届高三数学一轮复习】专题1

【2022届高三数学一轮复习】专题1

专题1.8 基本不等式-重难点题型精练参考答案与试题解析一.选择题(共8小题,满分40分,每小题5分)1.(5分)(2021•三模拟)已知a >0,b >0,且a +2b =3ab ,则ab 的最小值为( ) A .1B .89C .49D .2√23【分析】利用已知条件推出1b +2a =3,然后利用基本不等式转化求解即可.【解答】解:因为a >0,b >0,且a +2b =3ab , 所以1b +2a =3,所以3=1b +2a ≥2√2ab , 所以√ab ≥2√23,即ab ≥89当且仅当{1b =2aa +2b =3ab即a =43,b =23时等号成立,故ab 的最小值89. 故选:B .【点评】本题考查基本不等式的应用,考查转化思想以及计算能力,是基础题. 2.(5分)(2021•乙卷)下列函数中最小值为4的是( ) A .y =x 2+2x +4 B .y =|sin x |+4|sinx| C .y =2x +22﹣xD .y =lnx +4lnx【分析】利用二次函数的性质求出最值,即可判断选项A ,根据基本不等式以及取最值的条件,即可判断选项B ,利用基本不等式求出最值,即可判断选项C ,利用特殊值验证,即可判断选项D . 【解答】解:对于A ,y =x 2+2x +4=(x +1)2+3≥3, 所以函数的最小值为3,故选项A 错误;对于B ,因为0<|sin x |≤1,所以y =|sin x |+4|sinx|≥2√|sinx|⋅4|sinx|=4, 当且仅当|sinx|=4|sinx|,即|sin x |=2时取等号, 因为|sin x |≤1,所以等号取不到,所以y =|sin x |+4|sinx|>4,故选项B 错误;对于C ,因为2x >0,所以y =2x +22﹣x =2x +42x ≥2√2x ⋅42x =4, 当且仅当2x =2,即x =1时取等号, 所以函数的最小值为4,故选项C 正确; 对于D ,因为当x =1e 时,y =ln 1e +4ln 1e=−1−4=−5<4, 所以函数的最小值不是4,故选项D 错误. 故选:C .【点评】本题考查了函数最值的求解,涉及了二次函数最值的求解,利用基本不等式求解最值的应用,在使用基本不等式求解最值时要满足三个条件:一正、二定、三相等,考查了转化思想,属于中档题. 3.(5分)(2021•和平区校级模拟)实数a ,b 满足a >0,b >0,a +b =4,则a 2a+1+b 2b+1的最小值是( )A .4B .6C .32D .83【分析】利用基本不等式得到ab 的范围,可解决此题. 【解答】解:∵a >0,b >0,∴4=a +b ≥2√ab ,∴0<ab ≤4. ∴a 2a+1+b 2b+1=a 2(b+1)+b 2(a+1)(a+1)(b+1)=a 2+b 2+ab(a+b)ab+a+b+1=(a+b)2−2ab+4abab+5=16+2ab ab+5=2(ab+5)+6ab+5=2+6ab+5∈[83,165).∴最小值为83. 故选:D .【点评】本题考查基本不等式应用、转化思想,考查数学运算能力,属于中档题.4.(5分)(2021•包头二模)在△ABC 中,已知C =60°,AB =4,则△ABC 周长的最大值为( ) A .8B .10C .12D .14【分析】根据余弦定理算出(a +b )2=16+3ab ,再利用基本不等式加以计算可得a +b ≤8,即可得到△ABC周长的最大值.【解答】解:∵在△ABC 中,C =60°,AB =c =4,∴由余弦定理,得c 2=a 2+b 2﹣2ab cos C ,即16=a 2+b 2﹣2ab cos60°=a 2+b 2﹣ab ≥2ab ﹣ab =ab (当且仅当a =b =4时等号成立), ∵16=a 2+b 2﹣ab =(a +b )2﹣3ab ,∴(a +b )2≤16+3ab ≤16+3×16=64,由此可得a +b ≤8(当且仅当a =b =4时等号成立),∴△ABC 周长a +b +c ≤8+4=12(当且仅当a =b =4时等号成立),即当且仅当a =b =4时,△ABC 周长的最大值为12.故选:C .【点评】本题给出三角形的一边和它的对角,求周长的最大值,着重考查了用余弦定理解三角形和基本不等式求最值等知识,属于中档题.5.(5分)(2021•南通模拟)已知x >0,y >0,且x +y =1,则下列结论中正确的是( ) A .1x+1y 有最小值4B .xy 有最小值14C .2x +2y 有最大值√2D .√x +√y 有最大值2【分析】利用“乘一法”及基本不等式的性质逐项判断即可. 【解答】解:∵x >0,y >0,且x +y =1, 对于A ,1x +1y=(1x+1y)(x +y )=2+x y +yx ≥4,故A 正确,对于B ,∵x +y ≥2√xy ,∴xy ≤(x+y 2)2=14,故B 错误,对于C ,2x +2y ≥2√2x ⋅2y =2√2,故C 错误, 对于D ,(√x +√y )2=x +y +2√xy =1+2√xy ,∵xy 有最大值14,故(√x +√y )2有最大值2,故D 错误,故选:A .【点评】本题考查基本不等式的性质,同时考查学生的运算能力.属于基础题.6.(5分)(2021•湖南模拟)数学里有一种证明方法叫做Proofswithoutwords ,也称之为无字证明,一般是指仅用图象语言而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证明被认为比严格的数学证明更为优雅.现有如图所示图形,在等腰直角三角形△ABC 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD =a ,BD =b ,则该图形可以完成的无字证明为( )A .a+b 2≥√ab (a >0,b >0)B .2aba+b ≤√ab (a >0,b >0)C .a+b 2≤√a 2+b 22(a >0,b >0)D .a 2+b 2≥2√ab (a >0,b >0)【分析】由已知图形先求出OC ,CD ,然后结合OC ≤CD 即可判断.【解答】解:由题意得AB =AD +BD =a +b ,CO =12(a +b ),OD =OB ﹣DB =12(a +b )﹣b =12(a ﹣b ),Rt △OCD 中,CD 2=OC 2+OD 2=(a+b)24+(a−b)24=a 2+b 22, 因为OC ≤CD ,所以12(a +b )≤√a 2+b 22,当且仅当a =b 时取等号, 故选:C .【点评】本题主要考查了基本不等式的应用,体现了转化思想的应用,属于基础题.7.(5分)(2021•浙江模拟)已知直线l 过第一象限的点(m ,n )和(1,5),直线l 的倾斜角为135°,则1m+4n的最小值为( )A .4B .9C .23D .32【分析】根据题意,由直线的斜率计算公式可得n−5m−1=−1,变形可得m +n =6,则有1m+4n=16×(1m+4n)(m +n )=16(5+4m n +nm),结合基本不等式的性质分析可得答案. 【解答】解:根据题意,直线l 过第一象限的点(m ,n )和(1,5),直线l 的倾斜角为135°, 则n−5m−1=−1,变形可得m +n =6,则1m+4n=16×(1m +4n)(m +n )=16(5+4m n +nm ), 又由点(m ,n )在第一象限,即m >0,n >0, 则有4m n+nm≥2√4m n ×nm =4,当且仅当n =2m 时等号成立, 故1m +4n =16(5+4m n +n m )≥32,即1m +4n 的最小值为32, 故选:D .【点评】本题考查基本不等式的性质以及应用,涉及直线的斜率,属于基础题.8.(5分)(2021•1月份模拟)已知a ,b ,c ∈[12,1],则a 2+2b 2+c 2ab+bc的取值范围是( )A .[2,3]B .[52,3]C .[2,52]D .[1,3]【分析】由a 2+2b 2+c 2=a 2+b 2+b 2+c 2,然后利用重要不等式得到a 2+2b 2+c 2ab+bc≥2,根据12≤a b≤2,12≤b a≤2,构造对勾函数,然后结合其性质可求. 【解答】解:a 2+2b 2+c 2ab+bc=a 2+b 2+b 2+c 2ab+bc≥2ab+2bc ab+bc=2,当且仅当a =b =c 时取等号, 因为12≤a ≤1,12≤b ≤1,所以12≤a b≤2,12≤b a≤2,令f (x )=x +1x ,12≤x ≤2,根据对勾函数单调性知,当x =1时,函数取得最小值2,当x =2或12时,函数取得最大值52,故2≤f(x)≤52, 所以2≤b a +a b ≤52,即a 2+b 2≤52ab , 同理b 2+c 2≤52bc ,所以a 2+2b 2+c 2≤52(ab +bc), 所以a 2+2b 2+c 2ab+bc≤52.所以2≤a 2+2b 2+c 2ab+bc ≤52.故选:C .【点评】本题主要考查了基本不等式,不等式的性质及对勾函数单调性在求解范围及最值中的应用,试题的变形比较灵活,属于中档题.二.多选题(共4小题,满分20分,每小题5分)9.(5分)(2021•二模拟)已知正数a ,b 满足ab =a +b ,则( ) A .1a−1+1b−1≥2B .1a 2+1b 2≥12C .2−a +2−b ≥12D .log 2a +log 2b ≥2【分析】由ab =a +b ,转化为(a ﹣1)(b ﹣1)=1,可判断A ; 由ab =a +b 转化为1a +1b=1,再结合2(a 2+b 2)≥(a +b )2可判断B ;取a =b =3可判断C ;由ab =a +b ≥2√ab ,得ab ≥4,可判断D .【解答】解:因为正数a ,b 满足ab =a +b ,所以(a ﹣1)(b ﹣1)=1,且a >1,b >1,所以1a−1+1b−1≥2√1(a−1)(b−1)=2,∴A 对;由ab =a +b 可得1a+1b=1,所以2(1a 2+1b 2)≥(1a +1b )2=1,即1a 2+1b 2≥12,故B 正确;当a =b =3时,2−3+2−3=14<12,故C 错误;因为ab =a +b ≥2√ab ,所以ab ≥4,所以log 2a +log 2b =log 2(ab )≥log 24=2,故D 正确. 故选:ABD .【点评】本题考查基本不等式应用,考查数学运算能力,属于中档题.10.(5分)(2021•B 卷模拟)已知a ,b ,c 为正数,且满足abc =1,则下列结论正确的是( ) A .(a +b )√c ≥2 B .1a +1b+1c≤a 2+b 2+c 2C .若0<c ≤1,则(a +1)(b +1)<4D .a 2b 2+2b 2c ≥3【分析】(a +b )√c 转化为(a +b )√1ab 可判断A ;1a+1b+1c转化为ab +bc +ac 可判断B ;由0<c ≤1可知ab ≥1,则(a +1)(b +1)=ab +a +b +1,利用基本不等式可判断C ; 2b 2c 转化为2b 2•1ab=2b a可判断D .【解答】解:∵a ,b ,c 为正数,abc =1∴(a +b )√c =(a +b )√1ab ≥2√ab •√1ab =2,∴A 对;∵a ,b ,c 为正数,abc =1,∴1a +1b +1c=ab +bc +ac ≤a 2+b 22+b 2+c 22+a 2+c 22=a 2+b 2+c 2,∴B 对;由0<c ≤1,abc =1可知ab ≥1,∵a ,b 为正数,∴(a +1)(b +1)=ab +a +b +1≥ab +2√ab +1≥4,∴C 错;∵a ,b ,c 为正数,abc =1,∴a 2b 2+2b 2c =a 2b2+2b 2•1ab=a 2b 2+b a+b a≥3√a 2b 2⋅b a ⋅ba3=3,∴D 对. 故选:ABD .【点评】本题考查基本不等式及应用,考查数学运算能力,属于中档题. 11.(5分)(2021•辽宁模拟)设x >0,y >0,则下列结论正确的是( ) A .不等式(x +y)(1x +1y )≥4恒成立B .函数f (x )=3x +3﹣x的最小值为2C .函数f(x)=xx 2+3x+1的最大值为15D .若x +y =2,则12x+1+1y+1的最小值为 56【分析】由已知结合基本不等式分别检验各选项即可判断. 【解答】解:因为x >0,y >0, (x +y )(1x+1y )=2+yx+xy ≥4,当且仅当y x =x y时取等号,A 正确; 因为3x >1,则f (x )=3x +3﹣x ≥2√3x ⋅3−x =2,当且仅当3x =3﹣x ,即x =0时取等号,但x >0,故B 错误; f(x)=xx 2+3x+1=1x+1x +3≤12+3=15,当且仅当x =1x ,即x =1时取等号,C 正确; 因为x +y =2,所以2x +2y =4, 则12x+1+1y+1=12x+1+22y+2=17(12x+1+22y+2)(2x +1+2y +2)=17(3+2y+22x+1+2x+1y+1)≥17(3+2√2), 当且仅当2y+22x+1=2x+1y+1时取等号,D 错误.故选:AC .【点评】本题主要考查了利用基本不等式求解最值,解题的关键是应用条件的检验及配凑.12.(5分)(2021•山东二模)已知实数a ,b 满足a 2﹣ab +b =0(a >1),下列结论中正确的是( ) A .b ≥4B .2a +b ≥8C .1a+1b>1 D .ab ≥274【分析】A .由验证可得:b =a 2a−1=a 2−1+1a−1=a +1+1a−1=a ﹣1+1a−1+2,利用基本不等式即可判断出正误;B .2a +b =2a +a +1+1a−1=3(a ﹣1)+1a−1+4利用基本不等式即可判断出正误; C .由a >1,可得1a∈(0,1),1a+1b=1a+a−1a 2=−1a 2+2a=−(1a−1)2+1>1,利用二次函数的单调性即可判断出正误;D .ab =a •a 2a−1=a 3a−1,令f (x )=x 3x−1,(x >1).求出f ′(x ),利用导数研究函数的单调性即可判断出正误.【解答】解:实数a ,b 满足a 2﹣ab +b =0(a >1),A .b =a 2a−1=a 2−1+1a−1=a +1+1a−1=a ﹣1+1a−1+2≥2√(a −1)⋅1a−1+2=4,当且仅当a =2时取等号,因此正确;B .2a +b =2a +a +1+1a−1=3(a ﹣1)+1a−1+4≥2√3(a −1)⋅1a−1+4=2√3+4,当且仅当a =1+√33取等号,因此不正确;C .∵a >1,∴1a∈(0,1),1a+1b=1a+a−1a 2=−1a 2+2a=−(1a−1)2+1<1,因此不正确;D .ab =a •a 2a−1=a 3a−1,令f (x )=x 3x−1,(x >1).f ′(x )=2x 2(x−32)(x−1)2, 可得x =32时,函数f (x )取得极小值,即最小值.f (32)=(32)332−1=274, ∴f (x )≥274,即ab ≥274,因此正确. 故选:AD .【点评】本题考查了基本不等式、二次函数的单调性、利用导数研究函数的单调性,考查了推理能力与计算能力,属于基础题.三.填空题(共4小题,满分20分,每小题5分)13.(5分)(2021•湖南模拟)已知a >b ,关于x 的不等式ax 2+2x +b ≥0对于一切实数x 恒成立,又存在实数x 0,使得ax 02+2x 0+b =0成立,则a 2+b 2a−b的最小值为 2√2 .【分析】不等式ax 2+2x +b ≥0对于一切实数x 恒成立,可得△≤0,存在x 0∈R ,使ax 02+2x 0+b =0成立,则△≥0,可得ab 的等式关系,利用基本不等式的性质求解a 2+b 2a−b的最小值即可.【解答】解:由题意,不等式ax 2+2x +b ≥0对于一切实数x 恒成立,可得{a >04−4ab ≤0,解得ab ≥1,存在x 0∈R ,使ax 02+2x 0+b =0成立,则△≥0,即4﹣4ab ≥0,得ab ≤1, ∴ab =1,∵a >b ,∴a >1,∴a −1a >0, 由b =1a ,a 2+b 2a−b=a 2+1a2a−1a=(a −1a )+2a−1a≥2√2,当且仅当(a−1a)2=2时取等号.故答案为:2√2.【点评】本题考查了基本不等式的性质的运用和构造思想,特别是构造分子,分母适合基本不等式,属于中档题.14.(5分)(2021•鄞州区校级模拟)若实数x,y满足2x2+xy﹣y2=1,则5x2﹣2xy+2y2的最小值为2.【分析】由已知2x2+xy﹣y2=(2x﹣y)(x+y)=1,而5x2﹣2xy+2y2=(2x﹣y)2+(x+y)2,然后利用基本不等式即可求解,【解答】解:因为2x2+xy﹣y2=(2x﹣y)(x+y)=1,令t=2x﹣y,则x+y=1 t,则5x2﹣2xy+2y2=(2x﹣y)2+(x+y)2=t2+1t2≥2√t2⋅1t2=2,当且仅当t2=1t2,即t=±1时取等号,此时5x2﹣2xy+2y2取最小值2.故答案为:2.【点评】本题主要考查了利用基本不等式求解最值,解题的关键是基本不等式的应用条件的配凑,属于基础题.15.(5分)(2021•汕头三模)函数y=a x﹣3+1(a>0且a≠1)的图象恒过定点A,若点A在直线mx+ny﹣1=0上,其中m>0,n>0,则mn的最大值为124.【分析】先利用指数函数的性质求出定点A,然后利用点在直线上,得到3m+2n=1,再利用基本不等式求解mn的最值即可.【解答】解:因为当x=3时,y=a3﹣3+1=2,所以函数y=a x﹣3+1(a>0且a≠1)的图象恒过定点A(3,2),又点A在直线mx+ny﹣1=0上,所以3m+2n﹣1=0,即3m+2n=1,因为m>0,n>0,所以mn=16⋅3m⋅2n≤16⋅(3m+2n2)2=16×14=124,当且仅当3m=2n=12,即m=16,n=14时取等号,所以mn的最大值为124.故答案为:124.【点评】本题考查了指数函数恒过定点问题,利用基本不等式求解最值问题,在使用基本不等式求解最值时要满足三个条件:一正、二定、三相等,属于中档题.16.(5分)(2021•嘉定区二模)已知正数x 、y 满足x +4y=1,则1x+y 的最小值为 9 .【分析】利用“乘1法”与基本不等式的性质即可得出. 【解答】解:因为正数x 、y 满足x +4y=1,则1x+y =(1x+y )(x +4y )=5+xy +4xy ≥5+2√xy ⋅4xy =9,当且仅当xy =4xy 且x +4y =1,即x =13,y =6时取等号,此时1x+y 的最小值9.故答案为:9.【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题. 四.解答题(共6小题,满分70分)17.(10分)(2021•内江模拟)已知a >0,b >0,4a +b =2ab . (1)求a +b 的最小值;(2)若a +b ≥|2x ﹣1|+|3x +2|对满足题中条件的a ,b 恒成立,求实数x 的取值范围. 【分析】(1)由已知利用乘1法,结合基本不等式即可直接求解;(2)结合(1)中的最值,然后结合不等式恒成立与最值的相互转化关系,结合零点分段讨论即可求解. 【解答】解:(1)因为a >0,b >0,4a +b =2ab , 所以4b +1a=2,所以a +b =12(a +b )(1a+4b)=12(5+b a+4a b )≥12(5+2√b a ⋅4a b )=92, 当且仅当b a=4a b且4b+1a=2,即a =32,b =3时取等号,a +b 的最小值92;(2)若a +b ≥|2x ﹣1|+|3x +2|对满足题中条件的a ,b 恒成立,则92≥|2x ﹣1|+|3x +2|, 当x ≥12时,原不等式可化为2x ﹣1+3x +2≤92, 所以12≤x ≤710;当−23<x <12时,原不等式可化为﹣2x +1+3x +2≤92, 所以−23<x <12,当x ≤−23时,原不等式可化为﹣2x +1﹣3x ﹣2≤92,所以−1110≤x ≤−23, 综上,x 的取值范围[−1110,710].【点评】本题主要考查了乘1法及基本不等式求解最值,还考查了不等式的恒成立与最值关系的相互转化及利用零点分段求解不等式,分段讨论去绝对值是求解不等式的关键. 18.(12分)(2021春•青山湖区校级期中)已知正数a 、b 满足1a +1b=1.(1)求a +b 的最小值; (2)求4a a−1+9bb−1的最小值.【分析】(1)利用乘1法a +b =(a +b )(1a+1b),展开后结合基本不等式即可求解;(2)先对已知式子进行变形,结合已知条件可得(a ﹣1)(b ﹣1)=1,利用基本不等式可求. 【解答】解:(1)因为a 、b 是正数,所以a +b =(a +b)(1a +1b )=2+ab +ba ≥2+2√ab ×ba =4,当且仅当a =b =2时等号成立,故a +b 的最小值为4.(2)因为a >1,b >1,所以a ﹣1>0,b ﹣1>0,则4a a−1+9b b−1=4+4a−1+9+9b−1≥13+2√4a−1×9b−1=25,当且仅当a =53、b =52时等号成立,故4aa−1+9bb−1的最小值为25.【点评】本题主要考查了利用基本不等式求解最值,解题的关键是应用条件的配凑,属于中档题. 19.(12分)(2020秋•海淀区校级月考)已知x +y =1,x ,y ∈R +. (1)求x 2+y 2+xy 的最小值; (2)求√x +√y 的最大值; (3)求x (1﹣3y )的最小值.【分析】(1)x 2+y 2+xy =(x +y )2﹣xy =1﹣xy ,然后利用基本不等式即可求解; (2)(√x +√y )2=x +y +2√xy =1+2√xy ,然后利用基本不等式即可求解;(3)由x (1﹣3y )=(1﹣y )(1﹣3y )=3y 2﹣4y +1,然后结合二次函数的性质可求解. 【解答】解:(1)x 2+y 2+xy =(x +y )2﹣xy =1﹣xy ≥1﹣(x+y 2)2=34,当且仅当x =y =12时,取得最小值34;(2)因为x+y=1,x,y∈R+,所以(√x+√y)2=x+y+2√xy=1+2√xy≤1+x+y=2,当且仅当x=y时取等号,此时取得最大值2;(3)∵x,y∈R+,x+y=1,∴x(1﹣3y)=(1﹣y)(1﹣3y)=3y2﹣4y+1,结合二次函数的性质可知,当y=23时取得最小值−13.【点评】本题主要考查了基本不等式及二次函数的性质在求解最值中的应用,属于基础题.20.(12分)(2021•江西模拟)设a>0,b>0,且a+b=2ab.(1)若不等式|x+1|+2|x|≤a+b恒成立,求实数x的取值范围;(2)当实数a,b满足什么条件时,a﹣b+3ba取得最小值,并求出最小值.【分析】(1)先利用基本不等式求出a+b的最小值,从而将所求的不等式转化为|x+1|+2|x|≤2,根据绝对值的定义分别讨论,求解不等式即可;(2)利用已知的等式,将b用a表示出来,然后代入a﹣b+3ba中化简变形,由基本不等式求解最值即可.【解答】解:(1)由a>0,b>0,a+b=2ab,可得1a +1b=2,所以a+b=12(a+b)(1a+1b)=12(b a+a b+2)≥12⋅(2√b a⋅a b+2)=12×4=2.当且仅当a=b=1时取等号,不等式|x+1|+2|x|≤a+b恒成立,即|x+1|+2|x|≤2,当x<﹣1时,不等式可化为﹣x﹣1﹣2x≤2,解得x≥﹣1,此时x∈∅;当﹣1≤x≤0时,不等式可化为x+1﹣2x≤2,解得x≥﹣1,此时﹣1≤x≤0;当x>0时,不等式可化为x+1+2x≤2,解得x≤13,此时0<x≤13.综上所述,实数x的取值范围是{x|−1≤x≤13 };(2)由a>0,b>0,a+b=2ab,所以b=a2a−1,故a﹣b+3ba=a−a2a−1+32a−1=2a2−2a+32a−1=a−12+54a−2=14(4a−2)+54a−2,当4a﹣2>0,即a>12时,a﹣b+3ba=14(4a−2)+54a−2≥2√14(4a−2)⋅54a−2=√5,当且仅当a=12+√52,b=12+√510时,a﹣b+3b a有最小值√5.【点评】本题考查了不等式的求解以及基本不等式的应用,主要考查了“1”的代换的应用,在使用基本不等式求解最值时要满足三个条件:一正、二定、三相等,属于中档题.21.(12分)(2020秋•海门市校级月考)(1)已知正实数x,y满足x+2x+3y+4y=10,则xy的取值范围为多少?(2)已知a>b>0,则a2+1ab+1a(a−b)的最小值是多少?【分析】(1)令t=xy,t>0,则y=tx,然后代入后结合基本不等式即可求解,(2)由已知a2+1ab+1a(a−b)=a2−ab+ab+1ab+1a(a−b),=ab+1ab+a(a﹣b)+1a(a−b),然后结合基本不等式即可求解.【解答】解:(1)令t=xy,t>0,则y=t x,∴10=x+2x+3y+4y=x+2x+3t x+4x t=(1+4t)x+2+3tx≥2√(1+4t)x⋅2+3tx=2√(2+3t)(t+4)t,整理可得,3t2﹣11t+8≤0,解可得,1≤t≤8 3,故1≤xy≤8 3,(2)∵a>b>0,∴a﹣b>0,则a2+1ab+1a(a−b)=a2−ab+ab+1ab+1a(a−b),=ab+1ab+a(a﹣b)+1a(a−b),≥2√ab⋅1ab+2√a(a−b)⋅1a(a−b)=2+2=4,当且仅当ab=1ab且a(a﹣b)=1a(a−b)即a=√2,b=√22时取等号,此时取得最小值4.【点评】本题主要考查利用基本不等式求解最值,解题的关键是应用条件的配凑.22.(12分)(2019秋•濮阳期末)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=920υυ2+3υ+1600(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式) (2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内? 【分析】(1)根据基本不等式性质可知y =920υυ2+3υ+1600=9203+(v+1600v)≤92083,进而求得y 的最大值.根据等号成立的条件求得此时的平均速度.(2)在该时间段内车流量超过10千辆/小时时,解不等式即可求出v 的范围. 【解答】解:(1)依题意,y =920υυ2+3υ+1600=9203+(v+1600v)≤92083, 当且仅当v =1600v,即v =40时,上式等号成立, ∴y max =92083(千辆/时). ∴如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25km /h 且小于64km /h .当v =40km /h 时,车流量最大,最大车流量约为92083千辆/时;(2)由条件得920υυ2+3υ+1600>10,整理得v 2﹣89v +1600<0,即(v ﹣25)(v ﹣64)<0.解得25<v <64.【点评】本题主要考查了基本不等式在最值问题中的应用.要特别留意等号取得的条件.。

高三数学一轮复习第一次检测考试试题 理(含解析)

 高三数学一轮复习第一次检测考试试题 理(含解析)

——————————教育资源共享步入知识海洋————————2019高三一轮复习第一次检测考试数学(理科)试题一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x∈N|x2+2x﹣3≤0},则集合A的真子集个数为()A. 3B. 4C. 31D. 32【答案】A【解析】【分析】求出集合,由此能求出集合A的真子集的个数.【详解】由题集合,∴集合A的真子集个数为.故选:A.【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.命题:“,”的否定为A. ,B. ,C. ,D. ,【答案】C【解析】特称命题的否定是全称命题,特称命题“”的否定为全称命题:,故选C.3.若,则()A. B. C. D.【答案】B【解析】分析:先对两边取对数,求出的值,再根据对数的换底公式和运算性质计算,即可求出答案.详解:,,故选B.点睛:本题考查指对互化,对数的换底公式和运算性质,属于基础题.4.设,则等于()A. B. C. 1 D.【答案】D【解析】【分析】原积分化为根据定积分的计算法则计算即可【详解】由题故选:D.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题,5.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1B. ﹣4C. ﹣D. ﹣1【答案】D【解析】分析:求导,利用函数f(x)在x=1处的倾斜角为得f′(1)=﹣1,由此可求a的值.详解: 函数(x>0)的导数,∵函数f(x)在x=1处的倾斜角为∴f′(1)=﹣1,∴1+=﹣1,∴a=﹣1.故选:D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.6.已知偶函数f(x)在[0,+∞)单调递增,若f(2)=﹣2,则满足f(x﹣1)≥﹣2的x的取值范围是()A. (﹣∞,﹣1)∪(3,+∞)B. (﹣∞,﹣1]∪[3,+∞)C. [﹣1,﹣3]D. (﹣∞,﹣2]∪[2,+∞)【答案】B【解析】【分析】根据题意,结合函数的奇偶性与单调性分析可得若,即有,可得,解可得的取值范围,即可得答案.【详解】根据题意,偶函数在单调递增,且,可得,若,即有,可得,解可得:即的取值范围是;故选:B.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是利用函数的奇偶性与单调性转化原不等式.7.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=,则实数a的取值范围为()A. B. (﹣2,1) C. D.【答案】C【解析】【分析】由是定义在上的奇函数,且满足,求出函数的周期,由此能求出实数的取值范围.【详解】∵是定义在上的奇函数,且满足,,函数的周期为4,则又,即,即解得故选C.【点睛】本题考查函数的周期性和奇偶性的应用,是基础题.解题时要认真审题,仔细解答.8.若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|﹣1)的图象可以是()A. B. C. D.【答案】C【解析】【分析】由函数在上为减函数,由此求得的范围,结合的解析式.再根据对数函数的图象特征,得出结论.【详解】由函数在上为减函数,故.函数是偶函数,定义域为函数的图象,时是把函数的图象向右平移1个单位得到的,故选:C.【点睛】本题主要考查函数的奇偶性和单调性的应用,对数函数的图象特征,函数图象的平移规律,属于中档题.9.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln(x2﹣x+1),则方程f(x)= 0在区间[0,6]上的解的个数是()A. 5B. 7C. 9D. 11【答案】C【解析】【分析】要求方程在区间上的解的个数,根据函数是定义域为的周期为3的奇函数,且当时,可得一个周期内函数零点的个数,根据周期性进行分析不难得到结论.【详解】∵时,令,则,解得,又∵是定义域为的的奇函数,∴在区间上,,又∵函数是周期为3的周期函数则方程在区间的解有0,1,1.5,2,3,4,4.5,5,6共9个故选:D.【点睛】本题考查函数零点个数的判断,考查函数的奇偶性,周期性的应用,属中档题. 10.点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A﹣B﹣C﹣M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象的形状大致是图中的()A. B. C. D.【答案】A【解析】【分析】随着点P的位置的不同,讨论三种情形即在AB上,在BC上,以及在CM上分别建立面积的函数,分段画出图象即可.【详解】根据题意得,分段函数图象分段画即可,故选:A.【点睛】本题主要考查了分段函数的图象,分段函数问题,应切实理解分段函数的含义,把握分段解决的策略.11.对于任意x∈R,函数f(x)满足f(2﹣x)=﹣f(x),且当x≥1时,函数f(x)=lnx,若a=f(2﹣0.3),b=f(log3π),c=f(﹣)则a,b,c大小关系是()A. b>a>cB. b>c>aC. c>a>bD. c>b>a【答案】A【解析】【分析】由判断函数关于点对称,根据时是单调增函数,判断在定义域上单调递增;再由自变量的大小判断函数值的大小.【详解】对于任意函数满足,∴函数关于点对称,当时,是单调增函数,∴在定义域上是单调增函数;由∴∴b>a>c.故选:A.【点睛】本题主要考查了与函数有关的命题真假判断问题,涉及函数的单调性与对称性问题,是中档题.12.设函数f'(x)是函数f(x)(x∈R)的导函数,已知f'(x)<f(x),且f'(x)=f'(4﹣x),f(4)=0,f(2)=1,则使得f(x)﹣2e x<0成立的x的取值范围是()A. (﹣2,+∞) B. (0,+∞) C. (1,+∞) D. (4,+∞)【答案】B【解析】【分析】构造函数,利用的导数判断函数的单调性,求出不等式的解集即可.【详解】设则即函数在上单调递减,因为,即导函数关于直线对称,所以函数是中心对称图形,且对称中心,由于,即函数过点,其关于点(的对称点(也在函数上,所以有,所以而不等式即即所以故使得不等式成立的的取值范围是故选:B.【点睛】本题考查了利用导数判断函数的单调性,并由函数的单调性和对称性解不等式的应用问题,属中档题.二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知命题p:“存在x∈R,使”,若“非p”是假命题,则实数m的取值范围是_____.【答案】【解析】试题分析:非p即:“对任意x∈R, 4x+2x+1+m0”,如果“非p”是假命题,即m-4x-2x+1,而令t=,y===,,所以m<0,故答案为。

2023年新高考数学一轮复习7-2 等差数列及其前n项和(真题测试)解析版

2023年新高考数学一轮复习7-2 等差数列及其前n项和(真题测试)解析版

专题7.2 等差数列及其前n 项和(真题测试)一、单选题1.(2022·全国·高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.9【答案】D 【解析】 【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D2.(2021·北京·高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,对应的宽为12345,,,,b b b b b (单位: cm),且长与宽之比都相等,已知1288a =,596=a ,1192b =,则3b =A .64 B .96C .128D .160【答案】C 【解析】 【分析】设等差数列{}n a 公差为d ,求得48d =-,得到3192a =,结合党旗长与宽之比都相等和1192b =,列出方程,即可求解. 【详解】由题意,五种规格党旗的长12345,,,,a a a a a (单位:cm)成等差数列,设公差为d , 因为1288a =,596=a ,可得519628848513a a d --===--, 可得3288(31)(48)192a =+-⨯-=, 又由长与宽之比都相等,且1192b =,可得3113a ab b =,所以3131192192=128288a b b a ⋅⨯==. 故选:C.3.(2020·全国·高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3699块B .3474块C .3402块D .3339块 【答案】C 【解析】 【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S -=-+,解方程即可得到n ,进一步得到3n S . 【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n =+-⨯=, 设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分 别为232,,n n n n n S S S S S --,因为下层比中层多729块, 所以322729n n n n S S S S -=-+, 即3(927)2(918)2(918)(99)7292222n n n n n n n n ++++-=-+ 即29729n =,解得9n =, 所以32727(9927)34022n S S +⨯===.故选:C4.(2022·吉林·东北师大附中模拟预测(理))数列{}n a 为等差数列,前n 项的和为n S ,若10110a <,101110120a a +>,则当0n S <时,n 的最大值为( )A .1011B .1012C .2021D .2022【答案】C 【解析】 【分析】分析数列{}n a 的单调性,计算2021S 、2022S ,即可得出结论. 【详解】因为10110a <,101110120a a +>,则10120a >,故数列{}n a 为递增数列, 因为()12021202110112021202102a a S a +==<,()()120222022101110122022101102a a S a a +==+>,且当1012n ≥时,10120n a a ≥>,所以,当2022n ≥时,20220n S S ≥>, 所以,满足当0n S <时,n 的最大值为2021.故选:C.5.(2022·北京·高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】设等差数列{}n a 的公差为d ,则0d ≠,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论. 【详解】设等差数列{}n a 的公差为d ,则0d ≠,记[]x 为不超过x 的最大整数. 若{}n a 为单调递增数列,则0d >,若10a ≥,则当2n ≥时,10n a a >≥;若10a <,则()11n a a n d +-=, 由()110n a a n d =+->可得11a n d >-,取1011a N d ⎡⎤=-+⎢⎥⎣⎦,则当0n N >时,0n a >, 所以,“{}n a 是递增数列”⇒“存在正整数0N ,当0n N >时,0n a >”; 若存在正整数0N ,当0n N >时,0n a >,取N k *∈且0k N >,0k a >, 假设0d <,令()0n k a a n k d =+-<可得k a n k d >-,且k ak k d->, 当1k a n k d ⎡⎤>-+⎢⎥⎣⎦时,0n a <,与题设矛盾,假设不成立,则0d >,即数列{}n a 是递增数列.所以,“{}n a 是递增数列”⇐“存在正整数0N ,当0n N >时,0n a >”.所以,“{}n a 是递增数列”是“存在正整数0N ,当0n N >时,0n a >”的充分必要条件. 故选:C.6.(2021·北京·高考真题)已知{}n a 是各项均为整数的递增数列,且13a ≥,若12100n a a a ++⋅⋅⋅+=,则n 的最大值为( ) A .9B .10C .11D .12【答案】C 【解析】【分析】使数列首项、递增幅度均最小,结合等差数列的通项及求和公式求得n 可能的最大值,然后构造数列满足条件,即得到n 的最大值. 【详解】若要使n 尽可能的大,则,递增幅度要尽可能小, 不妨设数列是首项为3,公差为1的等差数列,其前n 项和为,则,,所以11n ≤. 对于,,取数列各项为(1,2,10)n =⋯,1125a =,则1211100a a a ++⋅⋅⋅+=, 所以n 的最大值为11. 故选:C .7.(2022·海南海口·二模)设公差不为0的等差数列{}n a 的前n 项和为n S ,已知()9353m S a a a =++,则m =( ) A .9 B .8C .7D .6【答案】C 【解析】 【分析】根据等差数列的前n 项和的性质及等差数列通项公式化简可得. 【详解】因为()9353m S a a a =++,又959S a =, 所以()53593m a a a a =++,所以3553m a a a a ++=,即352m a a a +=,设等差数列{}n a 的公差为d ,则1112(1)2(4)a d a m d a d +++-=+, 所以(+1)8m d d =,又0d ≠,所以18m +=, 所以7m =. 故选:C.8.(2023·全国·高三专题练习)等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有( )A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项 【答案】B 【解析】 【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=⨯a a S 可判断BC ; 90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D. 【详解】对于选项A ,∵n S 有最大值,∴ 等差数列{}n a 一定有负数项, ∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确; 对于选项B ,∵6139100a a a a +=+=,且10a >, ∴90a >,100a <, ∴179=170S a >,910181802a a S +=⨯=, 则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <, 故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<, ∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确. 故选:B. 二、多选题9.(2023·全国·高三专题练习)已知等差数列{an }的公差为d ,前n 项和为Sn ,且91011S S S =<,则( ) A .d <0 B .a 10=0 C .S 18<0 D .S 8<S 9【答案】BC 【解析】 【分析】由91011S S S =<,得100,0d a >= ,判断出A,B 选项,再结合90a <,11818118910918()9()9()92a a S a a a a a +==+=+=判断C 选项,再根据等式性质判断D 选项 【详解】910S S = ,101090a S S ∴=-= ,所以B 正确又1011S S < ,111110100a S S a d ∴=-=+> ,0d ∴> ,所以A 错误 1090,0,0a d a =>∴<11818118910918()9()9()902a a S a a a a a +==+=+=<,故C 正确 9989890,,a S S a S S <=+∴> ,故D 错误故选:BC10.(2022·江苏·南京市宁海中学模拟预测)定义11222n nn a a a H n-+++=为数列{}n a 的“优值”.已知某数列{}n a 的“优值”2nn H =,前n 项和为n S ,下列关于数列{}n a 的描述正确的有( )A .数列{}n a 为等差数列B .数列{}n a 为递增数列C .2022202520222S = D .2S ,4S ,6S 成等差数列 【答案】ABC 【解析】【分析】由新定义可得112222n n n a a a n -++⋯+=⋅,利用该递推关系求出数列{}n a 的通项公式,然后逐一核对四个选项得答案. 【详解】 由已知可得112222n n nn a a a H n-+++==,所以112222n n n a a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②得2n ≥时,()()111221212n n n n n a n n n ---=⋅--⋅=+⋅,即2n ≥时,1n a n =+,当1n =时,由①知12a =,满足1n a n =+.所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 正确, 所以()32n n n S +=,所以32n S n n +=故2022202520222S =,故C 正确. 25S =,414S =,627S =,2S ,4S ,6S 不是等差数列,故D 错误,故选:ABC .11.(2022·江苏·南京市江宁高级中学模拟预测)已知两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列说法正确的是( )A .若为等差数列,则112d a =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d 【答案】ABD 【解析】 【分析】对于A ,利用对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案;对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以即 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 正确. 故选:ABD12.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A -记为20a =,()30,1A -记为31,a =-⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =-C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2--,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S a a a++++++++=-=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a -=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =-+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =-+=-+=-,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2--,则16224a =--=-,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=-=+++,对应点的坐标为()1,+n n ,()1,1n n +-,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++-++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 三、填空题13.(2019·全国·高考真题(理))记Sn 为等差数列{an }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4. 【解析】 【分析】根据已知求出1a 和d 的关系,再结合等差数列前n 项和公式求得结果. 【详解】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d ⨯+==⨯+. 14.(2019·江苏·高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16. 【解析】 【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 15.(2021·福建省华安县第一中学高三期中)已知数列{}n a 的前n 项和为n S ,11a =,121n n a a n +=++(*n ∈N ),则99a 的值为________,99S 的值为________. 【答案】 99 4950 【解析】 【分析】利用数列的递推关系可知数列{}n a 的奇数项是首项为1,公差为2的等差数列,偶数项是首项为2,公差为2的等差数列,利用等差数列的通项公式和前n 项和公式即可求解. 【详解】将1n =代入121n n a a n +=++得2312a =-=, 由121n n a a n +=++①得123n n a a n +++=+2②, ②-①得22n n a a +-=,所以数列{}n a 的奇数项、偶数项都是以2为公差的等差数列,()991501299a =+-⨯=, ()()991359924698S a a a a a a a a =+++++++++ 5049494815022492495022⨯⨯=⨯+⨯+⨯+⨯=, 故答案为:99 ; 4950.16.(2020·海南·高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{an },则{an }的前n 项和为________. 【答案】232n n - 【解析】 【分析】首先判断出数列{}21n -与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列,所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -. 四、解答题17.(2023·全国·高三专题练习)已知数列{}n a 中,11a =,当2n ≥时,11n n n n a a a a ---=⋅.求证:数列1{}na 是等差数列.【答案】证明见解析 【解析】 【分析】利用定义法证明出数列1{}na 是等差数列.【详解】当2n ≥时,11n n n n a a a a ---=⋅,因11a =,显然0n a ≠,否则10n a -=,由此可得10a =,矛盾, 两边同时除以1n n a a -⋅,得1111n n a a --=,而11a =1, 所以数列1{}na 是以1为首项,1为公差的等差数列.18.(2019·北京·高考真题(文))设{n a }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{na }的通项公式;(Ⅱ)记{na }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)212n a n =-;(Ⅱ)30-. 【解析】 【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得{}n a 的通项公式;(Ⅱ)首先求得n S 的表达式,然后结合二次函数的性质可得其最小值. 【详解】(Ⅰ)设等差数列{}n a 的公差为d ,因为234+10+8+6a a a ,,成等比数列,所以2324(+8)(+10)(+6)a a a =,即2(22)(34)d d d -=-,解得2d =,所以102(1)212n a n n =-+-=-.(Ⅱ)由(Ⅰ)知212n a n =-, 所以22102121112111()224n n S n n n n -+-=⨯=-=--;当5n =或者6n =时,n S 取到最小值30-.19.(2016·全国·高考真题(文))等差数列{n a }中,34574,6a a a a +=+=. (Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】 【详解】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d ,从而求得n a ;(Ⅱ)由(Ⅰ)求n b ,再求数列{}n b 的前10项和.试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有112+54,+53a d a d ==. 解得121,5a d ==.所以{}n a 的通项公式为235n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤=⎢⎥⎣⎦. 当n=1,2,3时,2312,15n n b +≤<=; 当n=4,5时,2323,25n n b +≤<=; 当n=6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=.20.(2022·全国·高考真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<.【答案】(1)()12n n n a +=(2)见解析 【解析】 【分析】(1)利用等差数列的通项公式求得()121133n n S n n a +=+-=,得到()23n n n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=; (2)由(1)的结论,利用裂项求和法得到121111211n a a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得.(1)∵11a =,∴111S a ==,∴111S a =, 又∵n n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,∴()121133n n S n n a +=+-=,∴()23n n n a S +=, ∴当2n ≥时,()1113n n n a S --+=,∴()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+, 即111n n a n a n -+=-, ∴31211221n n n n n a a a a a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--,显然对于1n =也成立, ∴{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭∴12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 21.(2022·安徽·合肥一中模拟预测(文))已知()f x =数列{}na 的前n 项和为n S ,点11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈)且11a =,0n a >.(1)求数列{}n a 的通项公式;(2)数列{}n b 的前n 项和为n T ,且满足212211683++=+--n nn n T Tn n a a ,确定1b 的值使得数列{}n b 是等差数列.【答案】(1)*N =∈n a n (2)1 【解析】 【分析】(1)根据点11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈),得到11+n a 212141+-=n n a a ,利用等差数列的定义求解; (2)由(1)化简得到114143+-=+-n n T Tn n ,利用等差数列的定义得到()()1431=-+-n T n T n ,再利用数列通项与前n 项和的关系求解. (1)解:因为()f x =11,+⎛⎫- ⎪⎝⎭n n n P a a 在曲线()y f x =上(n N +∈),所以11+=n a 212141+-=n n a a ,所以21n a ⎧⎫⎨⎬⎩⎭是以1为首项,以4为公差的等差数列,所以()2114143=+-=-n n n a,即*N =∈n a n ; (2)由(1)知:212211683++=+--n nn n T Tn n a a ,即为()()()()143414341+-=++-+n n n T n T n n ,整理得:114143+-=+-n n T Tn n , 所以数列43⎧⎫⎨⎬-⎩⎭n T n 是以1T 为首项,以1为公差的等差数列, 则1143=+--nT T n n ,即()()1431=-+-n T n T n , 当2n ≥时,114811-=-=+-n n n b T T b n , 若{}n b 是等差数列,则1b 适合上式, 令1n =,得1143=-b b ,解得11b =.22.(2021·全国·高考真题)已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数 (1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.【答案】(1)122,5,31n b b b n ===-;(2)300. 【解析】 【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可; (2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和. 【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=.【整体点评】 (1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质; 方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路. (2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.。

(完整版)高三数学一轮复习专题复习《函数的单调性与最值》

(完整版)高三数学一轮复习专题复习《函数的单调性与最值》

函数的单调性与最值(45分钟 100分)、选择题(每小题5分,共40分)1.(2013 •沈阳模拟)下列函数在(0,+ a )上是增函数的是( )A. y=l n( x-2)C.y=x-x 1y=- ■、 € (- a ,0].1) ________________________ 2【解析】 选 C.函数y=ln (x-2) 在(2,+ a )上为增函数,y=- 在[0,+ a )上为减函 数,y=x-x -1 =x- 在[0,+ a )上为减函数,故C 正确.2.(2014 -衢州模拟 )下列函数中,值域为(-a ,0)的是( )2 A.y=-x 1B.y=3x_1C.y= ' 【解析】D.y=- ' 'y=-x 2的值域为(- a ,0]; {1 1 X <T的值域为y<3X 3y=3x-1 即 y € (- a ,0); y= 的值域为(-a ,0) U (0,+ a );3.(2014 •珠海模拟)若函数y=ax 与y=-':在(0, ":在(0,+ a 选B.函数 1=0,+ a)上都是减函数,则y=ax +bx在(0,+ a)上是A.增函数 B.减函数b【解析】选B.因为y=ax 与、=-、在(0,+ g )上都是减函数,所以a<0,b<0,b所以y=ax 2+bx 的对称轴x=— ]<0,所以y=ax 2+bx 在(0,+ g )上为减函数.4.已知奇函数f(x)对任意的正实数 x i ,x 2(x i 丰X 2),恒有(x i -X 2)(f(x i )-f(x 2))>0,则一定正确的是()A.f(4)>f(-6)B.f(-4)<f(-6)C.f(-4)>f(-6)D.f(4)<f(-6)【解析】选 C.由(x i -x 2)(f(x i )-f(x 2))>0 知 f(x)在(0,+ g )上递增,的值域是() A.{0,1}B.{0,-1}C.{-1,1}D.{1,1}【思路点拨】 先求f(x)的值域,再据[x ]的规定求[f(x)]的值域.2X所以 y=[f(x)] € {0,-1}. 表示不超过x 的最大整数,则函数y=[f(x)]6.(2013 •天津模拟)设函数f(x)= r 2 x - 4x + 6f x > 0, t x + 6f x < 0f 则不等式 f(x)>f(1) 的解集是所以 f(4)<f(6) ? f(-4)>f(-6).又[X ]表示不超过x 的最大整数A.(-3,1) U (3,+ g)B. (-3,1) U (2,+ g)2【解析】选 A.当 x > 0 时,f(x)>f(1)=3, 即 x -4x+6>3,解得 O W x<1 或 x>3;当 x<0 时,f(x)>f(1)=3, 即 x+6>3,解得-3<x<0.故 f(x)>f(1) 的解集是(-3,1) U (3,+8).7. (2014 •厦门模拟)定义在R 上的函数f(x)在区间(-8 ,2)上是增函数,且f(x+2)的图象关于 x=0对称,则() A.f(-1)<f(3)B.f(0)>f(3)C.f(-1)=f(3)D.f(0)=f(3)【思路点拨】由已知得到f(x)的对称性,进而作出图象大致形状,数形结合求解• 【解析】选A.因为f(x+2)的图象关于x=0对称,所以f(x)的图象关于x=2对称,又f(x)在区间(-8,2)上是增函数,则其在(2,+ 8)上为减函数,作出其图象大致形状如图所示 ^=2【加固训练】 已知f(x)是定义在(0,+)上的单调递增函数,且满足f(3x-2)<f(1), 则实数x的取值范围是( A.(- 8,1)C. D.(1,+ 8)【解析】选B.因为 f(x) ;3x-2>0, 所以(敦一 2 < 1? 是定义在(0,+ 8 )上的单调递增函数2 x > -,,且满足 f(3x-2)<f(1), ? x €所以实数x 的取值范围是 V由图象知,f(-1)<f(3), 故选A.8.(能力挑战题)(2013 •金华模拟)设函数 g(x)=x 2-2(x € R),fg(x) + x + 4,x < g(x),f (x )= I - >g (X)・则 f(x)的值域是()r g '■ 4^°A.J U (1,+ g )B. [0,+ g ) 討)C. Lf【思路点拨】 明确自变量的取值范围,先求每一部分的函数值范围,再取并集求值域2x + x + 2, x <-> 2F 2 L x -x-2, - 1 < x < 2,、填空题(每小题5 分,共20分)9. (2014 •台州模拟)如果函数f(x)=ax 2-3x+4在区间(-g ,6)上单调递减,则实数a 的取值范围【解析】 选 D.由 x<g(x)=x 2-2 得 x 2-x-2>0,则x<-1或x>2.因此由 x > g(x)=x 2-2 得-1 < x < 2. 由以上可得f(x)的值域是 U (2,+ g ).D. 于是f(x)= 且 f(-1)=f(2)=0,所以-(2)当0时,二次函数f(x)的对称轴为直线因为f(x)在区间(-g ,6)上单调递减, 31 所以a>0,且2a > 6,解得 0<a w 4【误区警示】本题易忽视a=0的情况而失误【思路点拨】由于f(x)为R 上的减函数,所以当x<-1时,恒有f(x)>f(-1),由此可求得a 的取 值范围. 円【解析】因为f(x)为R 上的减函数,所以必有f(-1) W 1 ,即1+a w -1,所以a w -2. 答案:a w -2的取值范围是. 卜'+ax,x< li [ax z + x.x > 1【解析】因为函数f(x)=在R 上单调递减,2 2 所以g(x)=x +ax 在(-g ,1]上单调递减,且h(x)=ax +x 在(1,+ g )上单调递减,且g(1) > h(1),【解析】(1)当a=0时,f(x)=-3x+4. 函数在定义域 R 上单调递减,故在区间(-g ,6)上单调递减 10.函数 f(x)= f 1| —‘X <- 1,Xk - x + a f x >- 1在R 上是减函数,则实数 a 的取值范围是【加固训练】 (2013 •保定模拟)已知函数f(x)=在R 上单调递减,则实数a综上所述,0 < aw :.a < 0,11——v 1,2a _l + a > a + 1,b所以解得a w-2.答案:a w -211. (2014 •宁波模拟)规定符号“”表示一种两个正实数之间的运算,即ab岂^b+a+b,a,b是正实数,已知1k=3,则函数f(x)=kx 的值域是.【解析】由题意知1k=; +1+k=3,解得k=1,所以f(x)=kx=1x==(-£|+2)2+4,因为>0,所以f(x)>1.答案:(1,+ )12. 函数f(x)的定义域为A,若X I,X2€ A且f(x i)=f(x 2)时总有x i=X2,则称f(x)为单函数.例如,函数f(x)=2x+1(x € R)是单函数,下列命题:①函数f(x)=x 2(x € R)是单函数;②指数函数f(x)=2 x(x € R)是单函数;③若f(x)为单函数,x 1,x 2€ A 且X" X2,则f(x 1)丰 f(x 2);④在定义域上具有单调性的函数一定是单函数其中的真命题是(写出所有真命题的编号).【解析】对于①,x 1=2,x 2=-2时,f(x 1 )=f(x 2),而X" X2,故函数f(x)=x 不为单函数,故①错;对于②,因为y=2x在定义域内为单调增函数,故②正确;对于③,假设f(x 1)=f(x 2),由f(x)为单函数,故X1=X2,这与X1M X2矛盾,故原命题成立,故③正确;对于④,因函数在定义域上具有单调性,即满足f(x)为单函数的定义,故④正确.答案:②③④三、解答题(13题12分,14〜15题各14分)13. (2014 •温州模拟)已知函数 f(x)=log a (1-x)+log a (x+3)(0<a<1). ⑴求函数f(x)的定义域.⑵若函数f(x)的最小值为-4,求实数a 的值.解之得-3<x<1.所以函数的定义域为{x|-3<x<1}._ 22 ⑵ 函数可化为 f(x)=log a (l-x)(x+3)=log a (-x -2x+3)=log a [-(x+1)+4]. 2因为-3<x<1,所以 0<-(x+1) +4W 4.2因为 0<a<1,所以 log a [-(x+1) +4] > log a 4,即 f(x) min =log a 4.I -壯 由 log a 4=-4,得 a -4=4,所以 a=_=- 故实数a 的值为丄.I14. 已知函数f(x)=a- 1刘.⑵ 若f(x)<2x 在(1,+ g )上恒成立,求实数a 的取值范围【解析】 ⑴ 当x € (0,+ g )时,1f(x)=a- ”,设 0<X 1<X 2,则 X 1X 2>0,x 2-x 1>0, l\ 1\a a _电丿xj所以f(x)在(0,+ g )上是增函数【解析】(1)要使函数有意义:则有 I -X > 0 x + 3 > 0(1)求证:函数y=f(x) 在(0,+ g )上是增函数f(x 2)-f(X 1)=1 1⑵ 由题意a- <2x 在(1,+ g )上恒成立,设h(x)=2x+壬, 则a<h(x)在(1,+ g )上恒成立.任取 x i ,x 2€ (1,+ g )且 x i <X 2,因为 1<X 1<X 2,所以 X 1-X 2<O,X 1X 2>1, I 1 I所以 2-' >0,所以 h(x i )<h(X 2),所以h(x)在(i,+ g )上单调递增故 a w h(i)即 a w 3,所以a 的取值范围是(-g ,3].i5.(能力挑战题)(20i4 •绍兴模拟)已知函数f(x)⑴求f(i).⑵解不等式 f(-x)+f(3-x) > -2.【解析】⑴令x=y=i,则 f(i)=f(i)+f(i),f(i)=0.⑵由题意知f(x)为(0,+ g )上的减函数:-x>0,且B-xAO.所以 x<o,因为 f(xy)=f(x)+f(y),住)x,y € (0,+ g )且 f ' =i.所以 f(-x)+f(3-x) > -2,h(x i )-h(x 2)=(x i -x 2)的定义域是(0,+ g ),且满足f(xy)=f(x)+f(y),f =i,如果对于 0<x<y,都有 f(x)>f(y).解得-1 W x<0.所以不等式的解集为[-1,0). 可化为 f(-x)+f(3-x) > -2f > 0=f(1),f(-x)+f。

2023届百师联盟高三一轮复习联考(一)数学试题含答案解析

2023届百师联盟高三一轮复习联考(一)数学试题含答案解析
故选:BCD.
三、填空题:本题共4小题,每小题5分,共20分.
13.已知函数 ,则不等式 的解集为___________.
【答案】
【解析】
【分析】根据函数的单调性解不等式即可.
【详解】根据题目所给的函数解析式,可知函数 在 上是减函数,
所以 ,解得 .
故答案为:
14.已知 ,则 ___________.
由题可得 ,
由题意得 ,
解得 ,
所以 ,
由 得 或 ,
由 得 ,
所以 的单调递减区间是 ,单调递增区间是 ;
【小问2详解】
因为 ,
由(1)可知, 在 处取得极大值,在 处取得极小值,
的单调递减区间是 ,单调递增区间是 ,
依题意,要使 有三个零点,则 ,
即 ,
解得 ,经检验, ,
根据零点存在定理,可以确定函数有三个零点,
,所以 .
故答案为: .
16.已知函数 ,若不等式 的解集中恰有两个非负整数,则实数k的取值范围为______________.
【答案】
【解析】
【分析】由题可得 ,构造函数 ,问题等价于 的图象在 的图象上方所对应的x的取值范围中恰好有两个非负整数,利用导数研究函数的性质,然后利用数形结合即得.
【详解】因为 等价于 ,即 ,
,即 ,
解得 ,
综上,实数k的取值范围为 .
故答案为: .
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.已知函数 .
(1)求函数 的单调递减区间;
(2)求函数 在区间 上的值域.
【答案】(1)
(2)
【解析】
【分析】(1)对 作三角恒等变换,得到单一的三角函数解析式,根据解析式运用整体法即可得到其单调递减区间;

2024届联考高三一轮复习联考(三)全国卷文科数学一轮三数学(全国文)答案

2024届联考高三一轮复习联考(三)全国卷文科数学一轮三数学(全国文)答案
.g(z)在10, 上单调递增,在1,+ 上单调递减,………………………………………………………3分
\2)\2
B( )的最大值为 2 ln2i ln2 <o·
:.g(x)<0,即f'(x)<0在(0,+)上恒成立,…………………………………4分
f(x)在(0,+)上单调递减.………………………………………………………………………………5分
N是平行四边形
是平行四边形
是平行四边形
所以平面PBC
即是△A
2
全国卷文科数学答案第2页
由余弦定理,得DM2=MN2+DN22MN·DN·COSLMND—1+4AC2+2X1X2ACXSinB
11sina
=1 X(54COSa)十2X1XACX
42AC
4Cos +sina·…9分-4+ sini a4 i·其中o< <r·
TT3
当a ,即a=x时,DM有最大值:
424
DM长度的最大值为 ·i2分
21.(1)证明:f(u)=x(alnzz1)=axrlnzz2x的定义域为(0,+),
当a=1时,f"(x)=lnx2z.…………………………………………………1分
112
设x()=Inx2r,则g'(r) 2 ·
由g(.r)—0·得 2·当o< <2时·g ( )>o;当 >2时·g ( )<0
h(x)有极大值也是最大值h(e) e·
当0<z<1时,h(x)<0,当z>1时,h(x)>0,且z→+o时,h(x)→0.…………………………………10分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
第三节 简单的逻辑联结词、全称量词与存在量词
(时间40分钟,满分80分)
一、选择题(6×5分=30分)
1.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是
A .不存在x ∈R ,x 3-x 2+1≤0
B .存在x ∈R ,x 3-x 2+1≥0
C .存在x ∈R ,x 3-x 2+1>0
D .对任意的x ∈R ,x 3-x 2+1>0
解析 写命题的否定需要注意“任意”和“存在”的互换,还要注意小于等于的否定是大于,根据上述分析,可知选C.
答案 C
2.(2011·安徽)命题“所有能被2整除的整数都是偶数”的否定是
A .所有不能被2整除的整数都是偶数
B .所有能被2整除的整数都不是偶数
C .存在一个不能被2整除的整数是偶数
D .存在一个能被2整除的整数不是偶数
答案 D
3.下列命题中,真命题是
A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数
B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数
C .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数
D .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数
解析 m =0时,f (x )=x 2+mx 是偶函数.故选A.
答案 A
4.下列4个命题:
p 1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭
⎪⎫13x p 2:∃x ∈(0,1),12log x >13
log x
p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >12
log x p 4:∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <13
log x 其中的真命题是
A .p 1,p 3
B .p 1,p 4
C .p 2,p 3
D .p 2,p 4
解析 p 1是假命题,p 2是真命题,
对于p 3,x =12时,1212⎛⎫ ⎪⎝⎭= 12=22<1,12log 12=1,∴p 3是假命题, 对于p 4,当x ∈⎝ ⎛⎭⎪⎫0,13时,12x ⎛⎫ ⎪⎝⎭<1,而13log x >13log 13=1, ∴是真命题,故选D.
答案 D
5.已知命题
p 1:函数y =2x -2-x 在R 上为增函数,
p 2:函数y =2x +2-x 在R 上为减函数,
则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∧p 2和q 4:p 1∧(綈p 2)中,真命题是
A .q 1,q 3
B .q 2,q 3
C .q 1,q 4
D .q 2,q 4 解析 ∵y =2x 在R 上为增函数,y =2-x =⎝ ⎛⎭
⎪⎫12x 在R 上为减函数, ∴y =-2-x =-⎝ ⎛⎭
⎪⎫12x 在R 上为增函数, ∴y =2x -2-x 在R 上为增函数,故p 1是真命题.
y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.
∴q 1:p 1∨p 2是真命题,因此排除B 和D ,
q 2:p 1∧p 2是假命题,q 3:綈p 1是假命题,
(綈p 1)∨p 2是假命题,故q 3是假命题,排除A.故选择C.
答案 C
6.下列命题的否定是真命题的有
①p:Δ<0时方程ax2+bx+c=0(a≠0)无实根;
②p:存在一个整数b,使函数f(x)=x2+bx+1在[0,+∞)上不是单调函数;
③p:∃x∈R,使x2+x+1≥0不成立.
A.0 B.1
C.2 D.3
答案 B
二、填空题(3×4分=12分)
7.命题“存在向量a,b,使|a+b|=|a|+|b|”的否定是________,它是________命题.
答案对任意向量a,b,|a+b|≠|a|+|b|.假.
8.已知命题:“∃x∈[1,2],使x2+2x+a≥0”为真命题,则a的取值范围是________.解析当1≤x≤2时,8≥x2+2x≥3,
如果“∃x∈[1,2],使x2+2x+a≥0”为真命题应有
-a≤8,所以a≥-8.
答案a≥-8
9.已知命题p:∃m∈R,m+1<0,命题q:∀x∈R,x2+mx+1>0恒成立,若p∧q为假命题,则实数m的取值范围是________.
解析因为p∧q为假命题,所以p、q中至少有一个为假命题,而命题p:∃m∈R,m+1<0为真命题,所以命题q:∀x∈R,x2+mx+1>0恒成立必定为假命题,所以Δ=m2-4×1≥0,解得m≤-2或m≥2,又命题p:∃m∈R,m+1<0为真命题,所以m<-1,故综上可知:m≤-2.
答案m≤-2
三、解答题(38分)
10.(12分)写出下列命题的“否定”,并判断其真假:
(1)p:∀x∈R,x2-x+1
4≥0;
(2)q:所有的正方形都是矩形;
(3)r:∃x∈R,x2+2x+2≤0;
(4)s:至少有一个实数x,使x3+1=0.
解析(1)綈p:∃x∈R,x2-x+1
4<0,这是假命题,
因为∀x∈R,x2-x+1
4=⎝




x-
1
2
2≥0恒成立.
(2)綈q :至少存在一个正方形不是矩形,假命题.
(3)綈r :∀x ∈R ,x 2+2x +2>0,真命题,这
是由于∀x ∈R ,x 2+2x +2=(x +1)2+1≥1>0成立.
(4)綈s :∀x ∈R ,x 3+1≠0,假命题,
这是由于x =-1时,x 3+1=0.
11.(12分)设命题p :函数f (x )=⎝ ⎛⎭
⎪⎫a -32x 是R 上的减函数,命题q :函数f (x )=x 2-4x +3在[0,a ]的值域为[-1,3].若“p 且q ”为假命题,“p 或q ”为真命题,求a 的取值范围.
解析 由0<a -32<1得32<a <52.
∵f (x )=(x -2)2-1在[0,a ]上的值域为[-1,3],得2≤a ≤4.
∵p 且q 为假,p 或q 为真,得p 、q 中一真一假.
若p 真q 假得,32<a <2,
若p 假q 真得,52≤a ≤4.
综上,32<a <2或52≤a ≤4.
12.(14分)已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎢⎡⎦
⎥⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果p 或q 为真命题,p 且q 为假命题.求c 的取值范围.
解析 由命题p 知:0<c <1.
由命题q 知:2≤x +1x ≤52,
要使x +1x >1c 恒成立,
则2>1c ,即c >12.
又由p 或q 为真,p 且q 为假知,
p 、q 必有一真一假,
当p 为真,q 为假时,
c 的取值范围为0<c ≤12.
当p 为假,q 为真时,c ≥1.
综上,c 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c ⎪⎪⎪ 0<c ≤12或c ≥1.。

相关文档
最新文档