双曲面及其渐进锥面

合集下载

空间解析几何-第3章-常见的曲面2

空间解析几何-第3章-常见的曲面2
②当 时
截线为双曲线
y = h
y
x
z
o
③当 时
截线为直线
用平行于坐标面的平面截割
(2)用y = h 截曲面
(0 , b , 0)
用平行于坐标面的平面截割
(2)用y = h 截曲面
③当 时
截线为直线
②当 时
①当 时
(1)单叶双曲面与x,y轴分别交于(±a,0,0), (0,±b,0)而与z轴无实交点. 上述四点称为单叶双曲面的实顶点, 而与z轴的交点(0,0,±ci) 称为它的两个虚交点. (2)截距:分别用y=0,z=0和x=0,z=0, 代入得x,y轴上的截距为: , ; 在z轴上没有截距.
*
空间解析几何
第3章 常见的曲面2
本章主要内容
柱面 2 锥面 3 旋转曲面 4 曲线与曲面的参数方程 5 椭球面 6 双曲面(单叶双曲面,双叶双曲面) 7 抛物面(椭圆抛物面,双曲抛物面) 8 二次直纹面 9 作图
五种典型的 二次曲面
§3.5 五种典型的二次曲面
x
y
z
o
2°用y = 0 截曲面
3°用x = 0 截曲面
1°用z = 0 截曲面
x
z
y
O
4.主截线
Cx=0
Cy=0
两条主抛物线具有相同的顶点,对称轴和开口方向
————其为点(0,0,0)
————xoz 面上的抛物线
主抛物线
———— yoz 面上的抛物线
有相同的定点(0,0,0) 相同的对称轴z轴,开口均向z轴正方向
单叶双曲面 双叶双曲面
x
y
o
z
x
y
o
z
单叶双曲面

高等数学B资料:7_4_3锥面与二次曲面(更新)

高等数学B资料:7_4_3锥面与二次曲面(更新)

13
x a
z c
0
,
y b
x a
z c
0
.
y b
(4) y1 b,
截痕为一对相交于点(0,b,0) 的直线.
x a
z c
0
,
x a
z c
0
.
y b
y b
(3)用坐标面 yoz ( x 0) ,x x1 与曲面相截
均可得双曲线.
14
平面 x a 的截痕是两对相交直线.
单叶双曲面图形 z
o
y
x
15
3.双叶双曲面
由方程
x2 y2 z2 a2 b2 c2 1

x2 a2
y2 b2
z c
2 2
1

x2 a2
y2 b2
z c
2 2
1
所确定的曲面称为双叶双曲面。
z x2 y2 z2 a2 b2 c2 1
o
y
x
4.椭圆抛物面
z
由方程
z
x2 a2
y2 b2

y
x2 a2
截椭球面,截得的曲线为
x2 a2
z
y2 b2 h
z c
2 2
1
,即
x
2
a2
y2 h2 b2 1 c2 zh


h c
时,1
h2 c2
0
,上面方程可写成
x2
y2
a
1
h2 c2
2
b
1
h2 c2
2
1

zh
它表示平面 zh 上的一个椭圆,长、短半轴分别为

空间曲面与曲线 (2)

空间曲面与曲线 (2)

得到一组交线称为截口曲线(简称截口)。
通过这组平行平面上的截口(简称为平行截口)
的形状来分析曲面的大体形状,这种方法称为
截割法。
用平行于xOy坐标平面z=h(|h|≤c)截椭球面,截
口为
x2 y2
h2

a2

b2
1
c2
z h
30
当|h|=c时,截口是平面z=h上的一个点(0,0,c)或
c h2 b2 b
虚半轴平行于x轴,虚半轴长为
a h2 b2 b
它的顶点 0,h, c h2 b2
(0,0,-c);
当|h|<c时,截口是一椭圆,它的两半轴分别为
a
1

h2 c2
及b
h2 1 c2
它的两轴的端点分别是


a
1
h2 c2
,0,
h

0,b
1

h2 c2
,
h

31
椭球面的参数方程
x a cos cos
y z

b cos sin c sin
空间曲面与空间曲线
1. 球面 2.柱面 3.锥面 4.旋转曲面 5.二次曲面: 一、椭球面 6. 空间曲线
二、双曲面
三、抛物面
1
1. 球面
到定点P0 (x0 , y0 , z0 )的距离等于定长 r的点的轨迹叫球面 . 则球面方程是 (x x0 )2 ( y y0 )2 (z z0 )2 r 2 , r是半径, P0 (x0 , y0 , z0 )是球心. 一般方程: x 2 y 2 z 2 Ax By Cz D,即

第四章 柱面、锥面、旋转曲面与二次曲面

第四章  柱面、锥面、旋转曲面与二次曲面
柱面、锥面、 第四章 柱面、锥面、旋转曲面与二次曲面
主要内容 1、柱面 、 2、锥面 、 3、旋转曲面 、 4、椭球面 、 5、双曲面 、 6、抛物面 、
第一节
柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 所形成的曲面称为柱面. 叫柱面的准线 准线, 这条定曲线 C 叫柱面的准线,动直线 L 叫 柱面的母线 母线. 柱面的母线 F1 ( x , y , z ) = 0 设柱面的准线为 F ( x , y , z ) = 0 (1) 2 母线的方向数为X,Y,Z。如果 1(x1,y1,z1)为准线 母线的方向数为 。如果M 为准线 上一点,则过点M 上一点,则过点 1的母线方程为 x − x1 y − y1 z − z1 = = (2) X Y Z
z = ay
z
z = a(± x 2 + y 2 )
y x
平方得: z2 = a2 ( x2 + y2 ) 该旋转曲面叫做圆锥面, 其顶点在原点.
将下列各曲线绕对应的轴旋转一周, 例3 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程. 生成的旋转曲面的方程.
x z (1)双曲线 2 − 2 = 1分别绕 x 轴和 z 轴; ) a c
第三节 旋转曲面
一、. 旋转曲面 1、 定义 以一条平面曲线 绕其平面上的一 、 定义: 以一条平面曲线C绕其平面上的一 条直线旋转一周所成的曲面叫做旋 条直线旋转一周所成的曲面叫做 旋 转曲面, 这条定直线叫旋转曲面的 转曲面 轴. 曲线C称为放置曲面的母线 曲线 称为放置曲面的母线 称为放置曲面的 纬线

yoz 坐标面上的已知曲线 f ( y , z ) = 0 绕z 轴旋
转一周的旋转曲面方程 转一周的旋转曲面方程. 旋转曲面方程

常见曲面方程总结(一)

常见曲面方程总结(一)

常见曲面方程总结(一)前言•引言:曲面是数学中的重要概念,广泛应用于计算机图形学、工程设计等领域。

在形状设计和模拟中,掌握常见曲面方程是非常重要的基础知识。

本文将介绍几种常见的曲面方程,并分析其特性和应用场景。

正文一、球面方程•定义:球面是由到定点距离相等于固定半径的点所组成的曲面。

它的方程一般可以表示为:(x-a)² + (y-b)² + (z-c)² = r²,其中(a,b,c)为球心坐标,r为半径。

•特性:球面是空间中对称性最高的曲面,具有旋转对称性、轴对称性和平面对称性。

•应用:球面方程广泛应用于计算机图形学中的三维建模,如球体、球形光源等。

二、圆柱面方程•定义:圆柱面是围绕某条直线旋转而形成的曲面。

它的方程可以表示为:(x-a)² + (y-b)² = r²,其中(a,b)为圆心坐标,r为半径。

•特性:圆柱面在与旋转轴垂直的方向上是无限延伸的,而在旋转轴方向上是有限长度的。

•应用:圆柱面方程常用于描述圆柱体、柱形物体等实际物体的几何特征。

三、锥面方程•定义:锥面是由定点到平面上所有点的连线所组成的曲面。

它的方程可以表示为:(x-a)² + (y-b)² = z²,其中(a,b)为锥顶坐标。

•特性:锥面在平面上形成对称的圆锥形状,而在垂直于平面的方向上是无限延伸的。

•应用:锥面方程常用于描述圆锥体、棱锥体等实际物体的几何特征。

四、椭球面方程•定义:椭球面是由到两个定点的距离之和等于常数的点所组成的曲面。

它的方程可以表示为:(x-a)²/r₁² + (y-b)²/r₂² + (z-c)²/r₃² = 1,其中(a,b,c)为椭球中心坐标,r₁、r₂、r₃为轴长。

•特性:椭球面可以是旋转椭球、扁椭球或球体等不同形状,取决于轴长的比值。

4.3旋转曲面 4.4椭球面

4.3旋转曲面 4.4椭球面
§4.3 旋转曲面
定义4.3.1 在空间,以一条曲线绕着定直线旋 在空间, 定义 转一周所生成的曲面称为旋转曲面或称回旋曲面 旋转曲面或称回旋曲面. 转一周所生成的曲面称为旋转曲面或称回旋曲面.
这条定直线叫旋转曲面的旋转轴. 这条定直线叫旋转曲面的旋转轴. 旋转轴 这条曲线叫旋转曲面的母线. 这条曲线叫旋转曲面的母线. 母线
y
例 卫星接收装置
.
5环面 圆(x − R ) 2 + y 2 = r 2 ( R > r > 0) 绕 y轴 旋转所成曲面 轴
y
o
r
R
x
5环面 圆(x − R ) 2 + y 2 = r 2 ( R > r > 0) 绕 y轴 旋转所成曲面 轴 y
o
x
.
z
5环面 圆(x − R ) 2 + y 2 = r 2 ( R > r > 0)
旋转椭球面与椭球面的区别: 旋转椭球面与椭球面的区别: 与平面 z
= z1 (| z1 |< c)的交线为圆 的交线为圆.
2 a2 2 2 x + y 2 = 2 (c − z1 ) . 截面上圆的方程 c z = z 1
( 2) a = b = c ,
x2 y2 z2 1 球面 2 + 2 + 2 = a a a
2
Φ(x, y) ≡ a11x + 2a12xy + a22 y
a11 a12 a13 A = a12 a22 a23 a a a 13 23 33
在平面上,双曲线有渐进线。 在平面上,双曲线有渐进线。 相仿,单叶双曲面和 相仿,单叶双曲面和双叶双曲面 渐进锥面。 有渐进锥面。 去截它们, 用z=h去截它们,当|h|无限增大 时, 双曲面的截口椭圆与它的 的截口椭圆与它的渐进锥 双曲面的截口椭圆与它的渐进锥 的截口椭圆任意接近, 面 的截口椭圆任意接近,即: x 双曲面和锥面任意接近。 双曲面和锥面任意接近。

空间解析几何-第3章-常见的曲面2

空间解析几何-第3章-常见的曲面2
把方程的右边都化成1,则左边有两项正,一项负的, 就表示单叶双曲面. 而左边有两项负,一项正的,就表示 双叶双曲面.
把方程的左边都化成两项正,一项负,则右边是1的就 表示单叶双曲面,而右边是-1的,就表示双叶双曲面.
2°绘图时要注意区分“实轴”和“虚轴”,并且保证对坐 标轴的标注要符合右手系的原则.
1、椭圆抛物面
x2 a2
, 椭圆
z h.
O
结论:单叶双曲面可看作由一
个椭圆的变动(大小位置都改
x
y
变)而产生,该椭圆在变动中,
保持所在平面与xOy 面平行,
且两对顶点分别在两定双曲线
上滑动.
用平行于坐标面的平面截割
z
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
1
h2 b2

y h.
①当 h b时
截线为双曲线
o
y
用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 Cyh: a2
z2 c2
0,
y h.
③当 h =b 时
截线为直线
(0 , b , 0)
单叶双曲面: x2 y2 z2 1 a2 b2 c2
用y = h 截曲面
①当 h b 时
②当 h b 时
③当 h =b 时
x2 Cyh: a2
x2 Czh: a2
y2 b2
h2 c2
1,
z h.
结论:双叶双曲面可看作由 一个椭圆的变动(大小位置 都改变)而产生,该椭圆在 变动中,保持所在平面与 x
xOy 面平行,且两轴的端点
分别在两定双曲线上滑动.
z
o
y
(2)用 y t截曲面

单双叶双曲面

单双叶双曲面
得中心在原点的双曲线.
x2 z2 2 2 1 a c y 0
实轴与 x 轴相合, 虚轴与 z 轴相合.
(3)用坐标面 yoz ( x 0),与曲面相截
均可得双曲线.
单叶双曲面图形
z
o x
y
二、 双叶双曲面
x2 y2 z2 2 2 1 2 a b c
双叶双曲面 z
§4.5 双曲面 一、单叶双曲面
x2 y2 z2 2 2 1 单叶双曲面 2 a b c
(1)用坐标面 xoy ( z 0) 与
曲面相截截得中心在原点
O(0,0,0) 的椭圆
2 y2 x2 2 1 a b z 0
与平面 z z1 的交线为椭圆.
2 x2 y2 z1 2 2 1 2 当 z1 变动时,这种椭 b c a 圆的中心都在 z 轴上. z z 1 (2)用坐标面 xoz ( y 0)与曲面相截
o x
y
双曲面及其渐进锥面
x y z 双叶: 2 2 2 1 a b c x2 y2 z2 渐进锥面: 2 2 2 0 a b c x2 y2 z2 单叶: 2 2 2 1 a b c
在平面上,双曲线有渐进线。 相仿,单叶双曲面和双叶双曲面 有渐进锥面。 用z=h去截它们,当|h|无限增大 时, 双曲面的截口椭圆与它的渐进锥 面 的截口椭圆任意接近,即: x 双曲面和锥面任意接近。

4.5双曲面

4.5双曲面

第四章§5双曲面§4.5 双曲面一、单叶双曲面),,(1222222为正数c b a czb y a x =-+对称性主平面、主轴与中心.中心二次曲面单叶双曲面的标准方程.),,(1222222为正数c b a cz b y a x =++(类似椭球面)xoya-a-bb(3) 被坐标面截得的曲线:0,z ⎧⎨=⎩0,y ⎧⎨=⎩①②③①腰椭圆②双曲线③双曲线22221,x ya b +=22221,x z a c-=2222y z b c (1) 曲面的对称性:(2) 曲面与坐标轴的交点:顶点(±a , 0, 0)与(0, ±b , 0)xoy-bb平面z =h 的截痕:(4) 被坐标面的平行平面所截得的曲线:椭圆.平面y =k 的截痕情况:.y k ⎧⎨=⎩当|k |<b 时, 双曲线当|k |=b 时,两对直线相交于(0,±b, 0).2222221x z k a c b -=-.z h ⎧⎨=⎩④2222221,x y h a b c+=+④hsec cos ,sec cos ,tg .x a u y b u z c u νν=⎧⎪=⎨⎪=⎩),,(1222222为正数c b a cz b y a x =-+单叶双曲面P168.72222221,x y z a b c -+=2222221x y z a b c-++=单叶双曲面.Ax 2+By 2+Cz 2=1, ABC≠0.小结:A, B, C 两正一负表示单叶双曲面;二、双叶双曲面),,(1222222为正数c b a czb y a x -=-+对称性主平面、主轴与中心. 中心二次曲面.小结: 椭球面与双曲面(单叶,双叶)都是中心二次曲面双叶双曲面的标准方程.),,(1222222为正数c b a czb y a x =-+单叶双曲面双叶双曲面),,(1222222为正数c b a czb y a x -=-+zo与坐标轴的交点顶点. 存在范围c xyc-中心二次曲面z c=z c=-⑤⑥双曲线⑤双曲线⑥没交点上的截痕为平面1y y =双曲线上的截痕为平面1x x =()z h h c =≥平面上的截痕:双曲线(5) 被坐标面的平行平面所截得的曲线:.z h ⎧⎨=⎩⑦当|h |=c 时, 双叶双曲面),,(1222222为正数c b a czb y a x -=-+截得的图形为点;椭圆zc xyc-2222221,x y ha b c +=-⑤⑥ozxyoc c-11-zoy-a a-bba b=单叶旋转双曲面双叶旋转双曲面x2222221x y za b c+-=2222221x y za b c +-=-2222220x y za b c +-=单叶:双叶:yx zo在平面上,双曲线有渐进线。

空间解析几何图形演示

空间解析几何图形演示

8x

12
z
将 其 换 成投 影 柱 面 的 交 线
y2 = – 4x ( 消去z )
0 x
y2 = – 4x
y
25. 空间曲线作为投影柱面的交线(1)
2 y2 z2 4x 4z
L:

y
2

3z 2

8x

12
将 其 换 成投 影 柱 面 的 交 线
y2+(z – 2)2 = 4 z
n次齐次方程 F(x,y,z)= 0 的图形是以原点为顶点的锥面;
z
准线
顶点 0
y
x
反之,以原点为顶点的锥面的方程是 n次齐次方程 F(x,y,z)= 0.
锥面是直纹面
5. 空间曲线——圆柱螺线
圆柱面 x 2 y 2 a 2
z
M(x,y,z)
x = acos t y = asin t
z = bt
y2 = – 4x ( 消去z ) y2+(z – 2)2 = 4 (消去x )
0
.
x
y2 = – 4x
y
25. 空间曲线作为投影柱面的交线(1)
2 y2 z2 4x 4z
L:

y
2

3z 2

8x

12
将 其 换 成投 影 柱 面 的 交 线
y2+(z – 2)2 = 4 z
y2 = – 4x ( 消去z ) L: y2+(z – 2)2 = 4 (消去x )
x2 y2 z2 1
a2 b2 c2
含两个直母线系
.
直纹面在建筑学上有意义

高等数学几种常见的曲面及其方程

高等数学几种常见的曲面及其方程

一、二次曲面
1-1球面
(X-X0)2+(Y-Y0)2+(Z-Z0)2=R2
球心为M0(X0,Y0,Z0)
1-2椭圆锥面
1-3椭球面
其中,表示xOz平面上的椭圆绕z轴旋转而成的椭球面。

1-4单叶双曲面
其中,表示xOz平面上的双曲线绕z轴旋转而成的单叶双曲面。

1-5双叶双曲面
其中,表示xOz平面上的双曲线绕x轴旋转而成的双叶双曲面。

1-6椭圆抛物面
1-7双曲抛物面(马鞍面)
二、柱面
2-1圆柱面
X2+Y2=R2
2-2椭圆柱面
2-3双曲柱面
2-4抛物柱面
y2=2px
注:形如二、柱面只含x,y而缺少z的方程F(x,y)=0在空间直角坐标系中表示母线平行于z 轴的柱面,其准线为xOy平面上的曲线C:F(x,y)=0
特别地,
1.球x2+y2+z2=R2
2.圆柱面x2+y2=R2
3.旋转抛物面X2+Y2=z(以原点为顶点,上下两个开口分别向上向下的抛物线旋转而成的图形)
4.X2+Y2=z2(以原点为顶点,上下两个开口分别向上向下的圆锥,锥顶角为90。

)。

解析几何课4旋转面等

解析几何课4旋转面等
x y z 双叶: 2 2 2 1 a b c x2 y2 z2 渐进锥面: 2 2 2 0 a b c x2 y2 z2 单叶: 2 2 2 1 a b c
o
x
.
z
上一页
下一页
返回
5环面 圆 (x R) 2 y 2 r 2 ( R r 0) 绕 y轴 旋转所成曲面 y
生活中见过这个曲面吗?
o
x
.
z
环面方程
上一页 下一页
( x 2 z 2 R) 2 . y 2 r 2
.
或 ( x 2 y 2 z 2 R 2 r 2 ) 2 4R 2 ( x 2 z 2 )
y
绕 y 轴一周
o
.
a
x
z
上一页
下一页
返回
2 单叶旋转双曲面
上题双曲线
x2 y2 2 2 1 b a z 0
y
绕 y 轴一周
得单叶旋转双曲面
.
.
o
x2 z2 y2 2 1 2 a b
z
a
x
.
上一页
下一页
返回
3 旋转锥面 两条相交直线
x2 y2 2 2 =0 a b z = 0
x
x
上一页
下一页
返回
y z 2 1 2 (2)yOz 面上椭圆 a c
绕 y 轴和 z 轴;
2
2
z
绕 y 轴旋转
y
2
旋 转 椭 球 面
y x z 1 2 2 a c
2 2
x z
绕 z 轴旋转
上一页
下一页
x y z 2 1 2 a c

五. 二次曲面、椭球面、抛物面、双曲面、椭圆锥面

五. 二次曲面、椭球面、抛物面、双曲面、椭圆锥面
10
同理:yoz 坐标面上的已知曲线 f ( y, z) 0绕 y 轴旋转一周的旋转曲面方程为
f ( y, x2 z2 ) 0. 绕坐标轴旋转的旋转曲面方程的特点:
出现某两变量的平方和.
11
(3) 常见的旋转曲面
① 圆柱面: x2 y2 a2
直线C:
y x
a 0
绕z轴旋转而成. z
x
o
y
12
13
yoz 面上直线:
z y cot
x 0
z
绕z 轴旋转一周所得的圆锥面方程:
z x2 y2 cot
o
y
令 b cot,则
x
z b x2 y2.
14
③ 旋转双曲面
x x
双曲线
x2 a2
z2 c2
1
y 0
o
z
oo
z
y
y
绕 x轴旋转而成的曲面:
x2 a2
y2 c2
都可通过配方研究它的图形.
5
以上几例表明研究空间曲面有两个基本问题: 2. 两个基本问题 (1) 已知一曲面作为点的几何轨迹时,
求曲面方程. (2) 已知方程时 , 研究它所表示的几何形状
( 必要时需作图 ).
6
二、几种特殊的曲面及其方程
1. 平面 Ax By Cz D 0 2. 球面 以M0 (x0 , y0 , z0 )为球心,R 为半径的 球面方程为
x2 y2 z2 R2
o
x
z R2 x2 y2 表示上(下)球面 .
M0
M
y
4
例2 研究方程 x2 y2 z2 2x 4 y 0 表示怎样 的曲面.
解 配方得 此方程表示: 球心为 M0(1, 2, 0),

双曲面

双曲面
总结:单叶双曲面Σ可以看成动椭圆 Γhz 的轨迹,动椭圆 Γhz 变动时满足下列条件: ① 所在平面平行于 xoy 面. ②两轴的端点分别在两个主双曲线 Γ0y , Γ0x 上滑动. 平行于 xoz 面的平面与单叶双曲面的交线 Γhy 为
⎧ x2 z 2 h2 ⎪ 2 − 2 = 1− 2 Γ ⎨a c b ⎪ y h = ⎩
z h
当 h < c 时,为虚椭圆; 当 h = c 时,为点椭圆; 当 h > c 时,为实椭圆. 此椭圆的两半轴长分别为
a b 2 h2 − c2 , h − c2 , c c a b 顶点为 (± h 2 − c 2 , 0, h) , (0, ± h 2 − c 2 , h) c c
⎧ x2 y2 h2 1 + = − + ⎪ 且 Γhz ⎨ a 2 b 2 c 2 的顶点与主截线的关系为: ⎪ z=h ⎩
(±ห้องสมุดไป่ตู้
a 2 b − h 2 , h, 0) ,显然顶点在腰椭圆 Γ0z 上 b ⎧ x2 z2 ⎧ x2 z2 ⎪ 2 − 2 =0 ⎪ 2 − 2 =0 ②当 h =b 时:为两相交直线,方程为 ⎨ a 或 ⎨a c c ⎪ ⎪ y = b y = −b ⎩ ⎩ ⎧x z ⎪ ± =0 ⎨a c ⎪ ⎩ y=b ⎧x z ⎪ ± =0 ⎨a c ⎪ ⎩ y = −b
u, v 为参数
二.双叶双曲面 1.双叶双曲面的定义
x2 y2 z2 在直角坐标系下,由方程 2 + 2 − 2 = −1 (a > 0, b > 0, c > 0) a b c
所表示的曲面叫做双叶双曲面,方程②叫做双叶双曲面的标准方程. 2. 双叶双曲面的性质 设双叶双曲面Σ: F ( x, y, z ) = (1).对称性

《解释几何-第四版》第四章 柱面、锥面、旋转曲面与二次曲面 讲解与习题柱面、锥面、旋转曲面与二次曲面

《解释几何-第四版》第四章  柱面、锥面、旋转曲面与二次曲面  讲解与习题柱面、锥面、旋转曲面与二次曲面

F1 ( x, y ) 0 F2 ( x, z ) 0
(2)
那么(2)与(1)是两个等价的方程组,也就 是(2)表示的曲线与(1)是同一条曲线。从而 曲面 F1 ( x, y) 0 与曲面 F2 ( x, z) 0 都通过已知曲线(1) 同理方程 F3 ( y, z) 0 也通过已知曲线(1)。 我们把曲面 F1 ( x, y) 0 称为空间曲线(1)对xOy坐 标面的射影柱面,而曲线
F ( x, y) 0 (1) z0 作准线,z轴的方向 0, 0,1 为母线的方向,来建立 柱面方程。 任取准线上的一点 M1 ( x1, y1, z1 ) ,过 M1 的母线 方程为 xx y y zz
1
0

1
0

1
1

x x1 y y1
(2)
又因为点
第四章
柱面、锥面、旋转曲面与二次曲面
主要内容
1、柱面 2、锥面 3、旋转曲面 4、椭球面 5、双曲面 6、抛物面 7、单叶双曲面与双曲抛物面的直母线
第一节
柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线,动直线 L 叫 柱面的母线. F1 ( x, y, z ) 0 设柱面的准线为 F ( x, y, z ) 0 (1) 2 母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线 上一点,则过点M1的母线方程为 x x1 y y1 z z1 (2) X Y Z
f ( x 2 y 2 , z ) 0
yoz 坐标面上的已知曲线 f ( y , z ) 0绕 z 轴旋
转一周的旋转曲面方程.

空间几何旋转曲面方程记忆口诀

空间几何旋转曲面方程记忆口诀

空间几何旋转曲面方程记忆口诀空间几何旋转曲面方程记忆口诀一、引子在学习空间几何的过程中,我们经常会遇到旋转曲面方程这一内容。

它们在三维空间中呈现出各种不同的形态,对于我们理解和掌握空间几何的知识至关重要。

但是,由于其复杂的形式和多样的变化,我们往往会感到困惑和不知所措。

本文将结合口诀的形式,带领大家逐步记忆和理解空间几何旋转曲面方程,希望对大家的学习能够有所帮助。

二、空间几何旋转曲面简介在空间几何中,旋转曲面是指直线或者曲线绕着一条轴线旋转而形成的曲面。

它们可以分为圆锥曲面、双曲面、抛物面等多种类型,每种类型又有不同的特点和方程形式。

而要深入理解和掌握这些旋转曲面的方程,我们首先需要记忆它们的具体形式和特点。

三、提出口诀为了更好地帮助大家记忆空间几何旋转曲面的方程,我特意设计了如下口诀,希望能够带给大家一些帮助:“圆锥曲面轴中心,双曲面两异心。

抛物面退化记,口诀带你追。

”四、口诀解读1. 圆锥曲面轴中心:圆锥曲面的方程一般形式为:\( \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0 \)当圆锥曲面的轴与坐标轴重合时,即轴线通过空间坐标系的原点时,称之为轴中心圆锥曲面。

2. 双曲面两异心:双曲面的方程有两种形式,一般的双曲面方程为:\( \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \)当双曲面有两个焦点且与坐标轴相交时称之为双曲面两异心。

3. 抛物面退化记:抛物面的一般方程为:\( z = ax^2 + by^2 \)当抛物面变化成简单曲线的时候,我们称之为抛物面退化。

五、口诀应用以上口诀为大家概括了圆锥曲面、双曲面和抛物面的方程形式和特点。

我们可以根据这些口诀,快速记忆和掌握各类旋转曲面的方程,帮助我们更好地理解和应用空间几何的知识。

六、个人观点对于空间几何旋转曲面方程的记忆,我认为口诀是一种非常有效且有趣的方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档