人教版数学九年级上册:22.3 第2课时 最大利润问题 (含答案)
22.3.2 实际问题与二次函数(销售最大利润问题)(练习)(解析版)
第二十二章二次函数22.3.2 实际问题与二次函数(销售最大利润问题)精选练习答案基础篇一、单选题(共12小题)1.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元【答案】C【解析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.2.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元【答案】D【解析】设利润为w,由题意得,每天利润为:w=(2+x)(20–2x)=–2x2+16x+40=–2(x–4)2+72.所以当涨价4元(即售价为14元)时,每天利润最大,最大利润为72元.故选D.3.某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件.若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系为()A.y=10x2﹣100x﹣160B.y=﹣10x2+200x﹣360C.y=x2﹣20x+36D.y=﹣10x2+310x﹣2340【答案】B【分析】根据等量关系“利润=(售价﹣进价)×(50+10×降价)”列出函数关系式即可.【详解】根据题意得:y=(x ﹣2)[50+10(13﹣x )]整理得:y=﹣10x 2+200x ﹣360.故选:B .【点睛】此题考查了从实际问题中抽象出二次函数关系式,掌握销售问题中的基本数量关系是解决问题的关键.4.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x 元,所获利润为y 元,可得函数关系式为( )A .y =−10x 2+110x +10B .y =−10x 2+100xC .y =−10x 2+100x +110D .y =−10x 2+90x +100【答案】D【分析】根据总利润=单件利润×数量建立等式就可以得出结论.【详解】解:由题意,得y=(10+x -9)(100-10x ),y=-10x 2+90x+100.故选:D .【点睛】本题考查了销售问题的数量关系的运用,总利润=单件利润×数量的运用,解答时找准销售问题的数量关系是关键.5.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 【答案】C【解析】y=x (6-x )=-x 2+6x,x =-2b a =32=3.故选C. 6.在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( )A .1月份B .2月份C .5月份D .7月份【答案】C【分析】先根据图中的信息用待定系数法表示出每千克售价的一次函数以及每千克成本的二次函数,然后每千克收益=每千克售价﹣每千克成本,得出关于收益和月份的函数关系式,根据函数的性质得出收益的最值以及相应的月份.【详解】设x 月份出售时,每千克售价为y 1元,每千克成本为y 2元,根据图甲设y 1=kx+b ,∴ {3k +b =56k +b =3, ∴ {k =−23b =7, ∴y 1=﹣23x+7,根据图乙设y 2=a (x ﹣6)2+1,∴4=a (3﹣6)2+1,∴a=13,∴y 2=(13x ﹣6)2+1,∵y=y 1﹣y 2,∴y=﹣23x+7﹣[13(x ﹣6)2+1], ∴y=﹣13x 2+103x ﹣6.∵y=﹣13x 2+103x ﹣6,∴y=﹣13(x ﹣5)2+73.∴当x=5时,y 有最大值,即当5月份出售时,每千克收益最大.故选C .【点睛】本题主要考查了一次函数和二次函数的应用,要注意需先根据图中得出两个函数解析式,然后再表示出收益与月份的函数式,再求解.7.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( )A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )]【答案】C【解析】分析:设销售单价定为每千克x 元,获得利润为y 元,则可以根据成本,求出每千克的利润.以及按照销售价每涨1元,月销售量就减少10千克,可求出销量.从而得到总利润关系式.详解:设销售单价为每千克x 元,此时的销售数量为500−10(x −50),每千克赚的钱为x −40, 则y =(x −40)[500−10(x −50)].故选C.点睛:此题主要考查了二次函数在实际问题中的运用,根据利润=(售价-进价)×销量,列出函数解析式,求最值是解题关键.8.某商品的进价为每件40元,当售价为每件80元时,每星期可卖出200件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出8件,店里每周利润要达到8450元.若设店主把该商品每件售价降低x 元,则可列方程为( )A .()()8020088450x x -+=B .()()4020088450x x -+=C .()()40200408450x x -+=D .()()402008450x x -+=【答案】B【解析】利润=售价﹣进价,由每降价1元,每星期可多卖出8件,可知每件售价降低x 元,每星期可多卖出8x 件,从而列出方程即可.解:原来售价为每件80元,进价为每件40元,利润为每件40元,所以每件售价降价x 元后,利润为每件(40﹣x )元.每降价1元,每星期可多卖出8件,因为每件售价降低x 元,每星期可多卖出8x 件,现在的销量为(200+8x ).根据题意得:(40﹣x )×(200+8x ) =8450.故选B .点睛:本题主要考查列一元二次方程解决实际问题.解题的关键在于要理解题意,并根据题中的数量关系建立方程.9.某商店经营皮鞋,所获利润y(元)与销售单价x(元)之间的关系为2242956y x x =-++,则获利最多为( ).A .3144B .3100C .144D .2956【答案】B【解析】试题解析:利润y (元)与销售的单价x (元)之间的关系为2242956y x x =-++, 2(12)3100.y x ∴=--+∵−1<0∴当x =12元时,y 最大为3100元,故选B.10.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y=﹣n 2+14n ﹣24,则企业停产的月份为( )A .2月和12月B .2月至12月C .1月D .1月、2月和12月【答案】D【分析】知道利润y 和月份n 之间函数关系式,求利润y 大于0时x 的取值.【详解】由题意知,利润y 和月份n 之间函数关系式为y=-n 2+14n -24,∴y=-(n -2)(n -12),当n=1时,y <0,当n=2时,y=0,当n=12时,y=0,故停产的月份是1月、2月、12月.故选:D .【点睛】考查二次函数的实际应用,判断二次函数y >0、y=0、y <0,要把二次函数写成交点式,看看图象与x 轴的交点,结合开口分析,进行判断.11.某产品进货单价为90元,按100元一件出售时能售出500件.若每件涨价1元,则销售量就减少10件.则该产品能获得的最大利润为( )A .5000元B .8000元C .9000元D .10000元 【答案】C【解析】设单价定为x ,总利润为W ,则可得销量为:500-10(x -100),单件利润为:(x -90),由题意得,W=(x -90)[500-10(x -100)]=-10x2+2400x -135000=-10(x -120)2+9000,故可得当x=120时,W 取得最大,为9000元,故选C .【点睛】本题考查了二次函数的应用,解答本题的关键是表示出销量及单件利润,得出W 关于x 的函数解析式,注意掌握配方法求二次函数最值的应用.12.(2019·黑龙江中考真题)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ).A .20%;B .40%;C .18%;D .36%. 【答案】A【分析】可设降价的百分率为x ,第一次降价后的价格为()251x -,第一次降价后的价格为()2251x -,根据题意列方程求解即可.【详解】解:设降价的百分率为x根据题意可列方程为()225116x -= 解方程得115x =,295x =(舍) ∴每次降价得百分率为20%故选:A .【点睛】本题考查了一元二次方程的在销售问题中的应用,正确理解题意,找出题中等量关系是解题的关键.二、填空题(共5小题)13.(2018·北京101中学初三月考)数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 … 月销量(件) 200 180 160 140 …已知该运动服的进价为每件60元,设售价为x (x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x 的式子表示).【答案】 2x +400 −2x 2+520x −24000【解析】分析:运用待定系数法求出月销量;根据月利润=每件的利润×月销量列出函数关系式. 详解:设月销量y 与x 的关系式为y=kx+b ,由题意得,{100k +b =200110k +b =180, 解得{k =−2b =400 . 则y=-2x+400;由题意得,y=(x -60)(-2x+400)=-2x 2+520x -24000点睛:本题考查的是二次函数的应用,一次函数的运用,掌握待定系数法求函数解析式是解题的关键. 14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x 元,可列方程为_________.【答案】(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭【解析】利润=单件利润⨯数量,本题中,单件利润=售价-成本单价 (50)30x =--提升篇5030x =--. 数量100205x =+⨯. ∴利润为1400时,单价利润⨯数量1400=,得到(5030)1002014005x x ⎛⎫--+⋅= ⎪⎝⎭. 15.(2008·吉林中考真题)某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为 元时,获得的利润最多.【答案】70【解析】解:设销售单价定为每千克x 元,获得利润为y 元,则:y=(x -40)[500-(x -50)×10],=(x -40)(1000-10x ),=-10x 2+1400x -40000,=-10(x -70)2+9000,∴当x=70时,利润最大为9000元.16.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件,当x=____时才能使利润最大.【答案】70【分析】根据题意可以得到利润与售价之间的函数关系式,然后化为顶点式即可解答本题.【详解】解:设获得的利润为w 元,由题意可得,w=(x ﹣40)(100﹣x )=﹣(x ﹣70)2+900,∴当x=70时,w 取得最大值,故答案是:70.【点睛】考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.17.某旅行社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种变化方法变化下去,每床每日提高____元可获最大利润。
初中九年级上册数学:第22章-二次函数 22.3 第2课时 商品利润最大问题
第2课时 商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系. 2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题 【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可) 【类型二】利用图象解析式确定最大利润 (2014·福建莆田)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图①所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数关系式y 2=mx 2-8mx +n ,其变化趋势如图②所示.(1)求y 2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克. 三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。
22.3实际问题与二次函数 第2课时 最大利润问题(精品原创)
,
在日常生活中存在着许许多多的与数学知识有关的 实际问题。如商品销?
如果你是商场经理,如何定价才能使商场获得最大利润呢?
温故而知新
某商场春节前购进一批海南西瓜,每天能售出500千克, 每千克盈利0.3元.为了尽快减少库存,商场决定采取适当的 降价措施.调查表明:当销售价每降价0.1元时,其销售量每 天将多售出100千克.商场要想平均每天盈利达到120元,每 千克西瓜应降价多少元?
3.某商品的进价为每件50元,售价为每件60元,每个月可卖出 200件,如果每件商品的售价上涨1元,则每个月少买10件(每 件售价不能高于72元),设每件商品的售价上涨x元(x为正整 数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润? 最大月利润是多少元?
例 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:如调整价格,每涨价1元,每星期少卖出10 件;每降价1元,每星期可多卖出20件,已知商品的进价为 每件40元,如何定价才能使利润最大? 分析: 调整价格包括涨价和降价两种情况
先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品
解:设降低x元后,单件利润为(13.5-x-2.5),销售件 数是(500+100x), y=(13.5-x-2.5)(500+100x) 即y=-100x2+600x+5500 (0≤x≤11 )
配方得y=-100(x-3)2+6400
当x=3时,y的最大值是6400元. ∴销售单价为10.5元时,最大利润为6400元.
3.某商品的进价为每件50元,售价为每件60元,每个月可卖出 200件,如果每件商品的售价上涨1元,则每个月少买10件(每 件售价不能高于72元),设每件商品的售价上涨x元(x为正整 数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润? 最大月利润是多少元?
人教九年级数学上册- 最大利润问题(附习题)
即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综上可知: 该商品的价格定价为65元时,可获得最大利润6250元.
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
综合应用
3.某种文化衫以每件盈利20元的价格出售,每天可售出40 件. 若每件降价1元,则每天可多售10件,如果每天要盈利 最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元, 由题意得:y=(20-x)(40+10x)
=-10x2+160x+800 =-10(x-8)2+1440 (0<x<20). 当x=8时,y取最大值1440. 即当每件降价8元时,每天的盈利最多。
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a
3
2 4
3 8
,
4ac b2 4a
32
4 4
9, 16
最高点为
3 8
,
9 16
.
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71
,
4a
43
12
最低点为
1 6
,
71 12
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
分析:(1)根据题意,设平均每天销售A种礼盒 为x盒,B种礼盒为y盒,列二元一次方程组解 答;(2)根据题意,设A种礼盒降价m元/盒,则A 种礼盒的销售量为(10+m3 )盒,再根据总利润 =每件商品的利润×销售量”列出解析式即 可.
人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在最大利润问题中的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,虽然学生们提出了很多有见地的观点,但我感觉他们在分析问题和解决问题的能力上还有待提高。为此,我计划在今后的教学中,多设计一些开放性的问题,引导学生深入思考,培养他们的逻辑思维和分析能力。
总之,在本次教学过程中,我深刻认识到了自身在教学方法和策略上的不足,也看到了学生在学习过程中遇到的困难。在今后的教学中,我将不断调整和改进,努力提高教学效果,让每个学生都能在数学学习的道路上取得更好的成绩。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-二次函数模型的建立:如何根据问题的具体情境,正确地建立二次函数模型,包括确定自变量和因变量,理解函数中各个参数的实际意义。
-实际问题与数学模型的关联:将实际问题抽象成数学模型,理解数学模型背后的实际背景,以及如何将数学结果应用到实际问题中去。
举例:在农产品销售问题中,重点在于让学生理解售价、销售量和成本之间的关系,并将其表达为二次函数的形式。
九年级数学: 22.3实际问题与二次函数 最大利润问题练习题含答案
人教版数学九级上册第二十二章二次函数 22.3 实际问题与二次函数最大利润问题专题练习题1.服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( )A.150元 B.160元 C.170元 D.180元2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( )A.50元 B.80元 C.90元 D.100元3.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n -24,则该企业一年中应停产的月份是( )A.1月、2月、3月 B.2月、3月、4月C.1月、2月、12月 D.1月、11月、12月4.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=,所以每件降价____元时,每日获得的利润最大为____元.5.已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式y=-x2+1200x-357600,则当卖出盒饭数量为____盒时,获得最大利润是____元.6. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41.每年最多可投入100万元的销售投资,则5年所获利润的最大值是.7. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可多售出5件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?8. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)9.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元,当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出).(1)公司每日租出x 辆车时,每辆车的日租金收入为 元;(用含x 的代数式表示)(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益才能盈利?10.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x 元(x 为整数).(1)直接写出每天游客居住的房间数量y 与x 的函数关系式;(2)设宾馆每天的利润为W 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿情况,得到以下信息:①当日所获利润不低于5000元;②宾馆为游客居住的房间共支出费用没有超过600元;③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?11.某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x 满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x≤5),20x +60(5<x≤19). (1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x 天创造的利润为w 元,求w 与x 之间的函数解析式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)答案:1---3 ACC4. (30-x) (20+x) -x 2+10x +600 5 6255. 600 24006. 205万元7. 解:设每天的销售利润为y 元,销售单价为x 元,则y =(x -50)=-5(x -80)2+4500,∵a =-5<0,50≤x ≤100,∴当x =80时,y 最大值=45008. 解:(1)y =-0.5x +160(120≤x ≤180)(2)设销售利润为W 元,则W =(x -80)(-0.5x +160)=-12(x -200)2+7200,∵a =-12<0, ∴当x<200时,y 随x 的增大而增大,∴当x =180时,W 最大=-12(180-200)2+7200=7000, 则当销售单价为180元时,销售利润最大,最大利润是7000元9. (1) 1500-50x(2)由题意可知,租赁公司的日收益为y =x(1500-50x)-6250=-50(x -15)2+5000,∵-15<0,当x =15时,租赁公司日收益最大,最大是5000元(3)由题意得-50(x -15)2+5000>0,解得5<x<25,∵x ≤20,∴5<x ≤20,即当每日租出至少6辆时,租赁公司的日收益才能盈利10. 解:(1)根据题意得y =50-x(0≤x ≤50,且x 为整数)(2)W =(120+10x -20)(50-x)=-10x 2+400x +5000=-10(x -20)2+9000,∵a =-10<0,∴当x =20时,W 最大值=9000,则当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元(3)由题意得⎩⎪⎨⎪⎧-10(x -20)2+9000≥5000,20(-x +50)≤600,解得20≤x≤40, ∵房间数y =50-x ,又∵-1<0,∴当x =40时,y 的值最小,这天宾馆入住的游客人数最少,最少人数为2y =2(-x +50)=20(人)11. 解:(1)设李红第x 天生产的粽子数量为260只,根据题意得20x +60=260,解得x =10,则李红第10天生产的粽子数量为260只(2)根据图象得当0≤x≤9时,p =2;当9<x≤19时,可求解析式为p =110x +1110, ①当0≤x≤5时,w =(4-2)·32x=64x ,x =5时w 的最大值为320;②当5<x≤9时,w =(4-2)·(20x+60)=40x +120,x =9时w 的最大值为480;③当9<x≤19时,w=·(20x+60)=-2x2+52x+174=-2(x-13)2+512,x=13时w 的最大值为512.综上所述,第13天的利润最大,最大利润是512元。
人教版九年级上册:22.3.2 最大利润问题 同步练习(含答案)
22.3实际问题与二次函数同步练习第2课时最大利润问题一、选择题1.便民商店销售一种商品,在销售过程中,发现一周利润y(单位:元)与每件销售价x(单位:元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,每件销售价x(单位:元)满足15≤x≤22,那么一周可获得的最大利润是()A.20元B.1508元C.1550元D.1558元2.商场销售某种品牌的电磁炉.在销售过程中,发现一周利润y(元)与每台销售价x(元)之间满足y=-2(x-20)2+980.由于某种原因,x的取值范围只能是15≤x≤19,那么一周可获得的最大利润是()A.976元B.978元C.980元D.982元3.经过调研预测,黄山市某塑料玩具生产公司一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月4.某种商品每件进价为18元,调查表明:在某段时间内若以每件x元(18≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为()A.18元B.20元C.22元D.24元5.某品牌钢笔进价为8元/支,按10元/支出售时每天能卖出20支.市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元/支B.12元/支C.13元/支D.14元/支6.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是()A.销售单价降低15元时,每天获得利润最大B.每天的最大利润为1250元C.若销售单价降低10元,则每天的利润为1200元D.若每天的利润为1050元,则销售单价一定降低了5元7.某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70;当x=150时,y=50,且y是x的一次函数.设销售利润为S(元),为了获得最大的销售利润,每件产品的售价应定为()A.160元B.180元C.140元D.200元二、填空题8.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=-x2+70x -800.要想获得最大利润,则销售单价应该定为元.9.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加一人,每人的单价就降低10元.当一个旅行团的人数为时,这个旅行社可以获得最大的营业额.10.某旅行社有100张床位,每张床位每晚收费10元时,客床可全部租出.若每张床位每晚收费提高2元,则减少10张床位的租出;若每张床位每晚收费再提高2元,则再减少10张床位的租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每张床位每晚的收费应提高元.11.(中考·贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为________元.12.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天销售量t(单位:件)与每件的销售价x(单位:元)可以看成是一次函数关系:t=-3x+204.(1)商场卖这种服装每天的销售利润y(单位:元)与每件的销售价x(单位:元)之间的函数解析式为______________________;(2)商场要想每天获得最大销售利润,每件的销售价定为________元最合适,最大利润是________元.三、解答题13.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系y=-x2+20x-75.(1)当销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(2)当销售单价为多少元时,该种商品每天的销售利润为21元?14.(2020·宿迁)某超市经销一种商品,每千克成本为50元.经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数解析式.(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?15.(2020·辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?16.(2020·青岛)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4 m,宽AB=3 m,抛物线的最高点E到BC的距离为4 m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示,求该抛物线的函数解析式.(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2 m,求每个B型活动板房的成本是多少(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本).(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?17.茶叶是湖南省的主要经济作物之一.2021年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/千克,并根据历年的相关数据整理出第x天(1≤x≤15,且x为整数)制茶成本(含采摘和加工)和制茶量的相关信息如表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本).(1)求出该茶厂第10天的收入;(2)设该茶厂第x天的收入为y(元),试求出y与x之间的函数关系式,并求出该茶厂第几天的收入最高?最高收入为多少元?18.某服装批发市场销售一种衬衫,每件衬衫的进价为50元,规定每件售价不低于进价.经市场调查发现,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:(1)求出y与x之间的函数解析式.(不需要求自变量x的取值范围)(2)该批发市场每月想获利24000元,又想尽量给客户优惠,则该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?19.某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润.若该公司在甲、x(单位:辆)之间满足y=-12乙两地共销售30辆该品牌的汽车,甲、乙两地总的销售利润为W万元,其中在甲地销售x辆.(1)求W与x的函数关系式.(2)甲、乙两地各销售多少辆车时W最大?W的最大值是多少?(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?20.小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种“多肉植物”,单株获利最大.(提示:单株获利=单株售价-单株成本)参考答案一、选择题1.便民商店销售一种商品,在销售过程中,发现一周利润y(单位:元)与每件销售价x(单位:元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,每件销售价x(单位:元)满足15≤x≤22,那么一周可获得的最大利润是(D)A.20元B.1508元C.1550元D.1558元2.商场销售某种品牌的电磁炉.在销售过程中,发现一周利润y(元)与每台销售价x(元)之间满足y=-2(x-20)2+980.由于某种原因,x的取值范围只能是15≤x≤19,那么一周可获得的最大利润是(B)A.976元B.978元C.980元D.982元3.经过调研预测,黄山市某塑料玩具生产公司一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则没有盈利的月份为(D)A.2月和12月B.2月至12月C.1月D.1月、2月和12月4.某种商品每件进价为18元,调查表明:在某段时间内若以每件x元(18≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为(D)A.18元B.20元C.22元D.24元5.某品牌钢笔进价为8元/支,按10元/支出售时每天能卖出20支.市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为(D)A.11元/支B.12元/支C.13元/支D.14元/支6.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是(D)A.销售单价降低15元时,每天获得利润最大B.每天的最大利润为1250元C.若销售单价降低10元,则每天的利润为1200元D.若每天的利润为1050元,则销售单价一定降低了5元7.某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70;当x=150时,y=50,且y是x的一次函数.设销售利润为S(元),为了获得最大的销售利润,每件产品的售价应定为(A)A.160元B.180元C.140元D.200元二、填空题8.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y (元)与销售单价x (元)满足关系y =-x 2+70x -800.要想获得最大利润,则销售单价应该定为 35 元.9.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加一人,每人的单价就降低10元.当一个旅行团的人数为 55 时,这个旅行社可以获得最大的营业额.10.某旅行社有100张床位,每张床位每晚收费10元时,客床可全部租出.若每张床位每晚收费提高2元,则减少10张床位的租出;若每张床位每晚收费再提高2元,则再减少10张床位的租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每张床位每晚的收费应提高 6 元.11.(中考·贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,可卖出(30-x )件,若使利润最大,则每件商品的售价应为___25_____元. 12.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天销售量t (单位:件)与每件的销售价x (单位:元)可以看成是一次函数关系:t =-3x +204.(1)商场卖这种服装每天的销售利润y (单位:元)与每件的销售价x (单位:元)之间的函数解析式为_y =-3x 2+330x -8568_____________________;(2)商场要想每天获得最大销售利润,每件的销售价定为__55______元最合适,最大利润是___507_____元. 三、解答题13.某商场经调研得出某种商品每天的利润y (元)与销售单价x (元)之间满足关系y =-x 2+20x -75.(1)当销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元? (2)当销售单价为多少元时,该种商品每天的销售利润为21元? 解:(1)∵y =-x 2+20x -75=-(x -10)2+25, ∴当x =10时,y 最大=25,∴最大利润是25元.(2)当y =21时,得-x 2+20x -75=21,解得x 1=8,x 2=12,∴当销售单价为8元或12元时,该种商品每天的销售利润为21元.14.(2020·宿迁)某超市经销一种商品,每千克成本为50元.经试销发现,该种商品每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数解析式.解:设y =kx +b ,则⎩⎨⎧55k +b =70,60k +b =60,解得⎩⎨⎧k =-2,b =180.∴y (千克)与x (元/千克)之间的函数解析式为y =-2x +180.(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?解:由题意得(x -50)(-2x +180)=600, 整理,得x 2-140x +4 800=0, 解得x 1=60,x 2=80.答:该天的销售单价应定为60元/千克或80元/千克.(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少? 解:设当天的销售利润为w 元,则w =(x -50)(-2x +180)=-2(x -70)2+800. ∵-2<0,∴当x =70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元. 15.(2020·辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶. (1)求y 与x 之间的函数关系式;解:设y 与x 之间的函数关系式为y =kx +b (k ≠0).根据题意,得⎩⎨⎧12k +b =90,14k +b =80,解得⎩⎨⎧k =-5,b =150.∴y 与x 之间的函数关系式为y =-5x +150.(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元? 解:根据题意,得w =(x -10)(-5x +150)=-5(x -20)2+500. ∵a =-5<0,∴抛物线开口向下,w 有最大值. ∴当x <20时,w 随着x 的增大而增大. ∵10≤x ≤15且x 为整数, ∴当x =15时,w 有最大值,w最大值=-5×(15-20)2+500=375.答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗手液每天销售利润最大,最大利润是375元.16.(2020·青岛)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD =4 m ,宽AB =3 m ,抛物线的最高点E 到BC 的距离为4 m.(1)按如图①所示的直角坐标系,抛物线可以用y =kx 2+m (k ≠0)表示,求该抛物线的函数解析式.解:∵长方形的长AD =4 m ,宽AB =3 m ,抛物线的最高点E 到BC 的距离为4 m ,∴OH =AB =3 m ,D (2,0).∴EO =EH -OH =4-3=1(m). ∴E (0,1). ∴该抛物线的函数解析式为y =kx 2+1, 把点D (2,0)的坐标代入,得k =-14. ∴该抛物线的函数解析式为y =-14x 2+1.(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元/m 2.已知GM =2 m ,求每个B 型活动板房的成本是多少(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本). 解:∵GM =2 m ,∴OM =OG =1 m.∴当x =1时,y =34. ∴N ⎝⎛⎭⎫1,34. ∴MN =34 m.∴S 长方形MNFG =MN ·GM =34×2=32(m 2). ∴32×50+425=500(元).答:每个B 型活动板房的成本是500元.(3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少? 解:根据题意,得w =(n -500)[100+20(650-n )10] =-2(n -600)2+20 000.∵每月最多能生产160个B 型活动板房, ∴100+20(650-n )10≤160,解得n ≥620. ∵-2<0,∴当n ≥620时,w 随n 的增大而减小. ∴当n =620时,w 有最大值19 200.答:公司将销售单价定为620元时,每月销售B 型活动板房所获利润最大,最大利润是19200元.17.茶叶是湖南省的主要经济作物之一.2021年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/千克,并根据历年的相关数据整理出第x 天(1≤x ≤15,且x 为整数)制茶成本(含采摘和加工)和制茶量的相关信息如表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本).(1)求出该茶厂第10天的收入;(2)设该茶厂第x天的收入为y(元),试求出y与x之间的函数关系式,并求出该茶厂第几天的收入最高?最高收入为多少元?解:(1)当x=10时,制茶成本为150+10x=250(元/千克),制茶量为40+4x=40+4×10=80(千克),该茶厂第10天的收入为(400-250)×80=12000(元).(2)根据题意得y=[400-(150+10x)]·(40+4x)=-40x2+600x+10000=-40(x-7.5)2+12250.∵a=-40<0,1≤x≤15,且x是正整数,∴x=7或8时,y取得最大值,最大值为12240.∴y与x之间的函数关系式为y=-40x2+600x+10000,该茶厂第7天和第8天的收入最高,最高为12240元.18.某服装批发市场销售一种衬衫,每件衬衫的进价为50元,规定每件售价不低于进价.经市场调查发现,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:(1)求出y与x之间的函数解析式.(不需要求自变量x的取值范围)(2)该批发市场每月想获利24000元,又想尽量给客户优惠,则该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?解:(1)y=-20x+2600.(2)由题意得(x-50)(-20x+2600)=24000,解得x1=70,x2=110.∵要尽量给客户优惠,∴这种衬衫应定价为70元/件.(3)由题意得w=(x-50)(-20x+2600)=-20(x-90)2+32000.∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价,∴50≤x,(x-50)≤50×30%,解得50≤x≤65,∴当x=65时,w取得最大值,此时w=19500.答:售价定为65元可获得最大利润,最大利润是19500元.19.某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润.若该公司在甲、x(单位:辆)之间满足y=-12乙两地共销售30辆该品牌的汽车,甲、乙两地总的销售利润为W万元,其中在甲地销售x辆.(1)求W与x的函数关系式.(2)甲、乙两地各销售多少辆车时W最大?W的最大值是多少?(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?解:(1)W=-12x2+10x+2(30-x)=-12x2+8x+60.(2)W=-12x2+8x+60=-12(x-8)2+92,∵a=-12<0,∴当x=8时,W取最大值92,此时30-x=22,∴在甲地销售8辆车,在乙地销售22辆车时W最大,W的最大值是92.(3)甲地每辆车的平均销售利润为(-12x2+10x)÷x=-12x+10,∴-12x+10≤2,解得x≥16.∵W=-12(x-8)2+92,a=-12<0,∴当x≥16时,W随x的增大而减小,∴当x=16时,W最大,此时W=-12×(16-8)2+92=60,∴可获得的最大销售利润为60万元.20.小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利1元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种“多肉植物”,单株获利最大.(提示:单株获利=单株售价-单株成本)解:(2)设直线的解析式为y1=kx+b(k≠0),把点(3,5),(6,3)代入,得{5=3k+b,3=6k+b,解得{k=−23,b=7,∴直线的解析式为y1=-23x+7.设抛物线的解析式为y2=a(x-6)2+1, 把点(3,4)代入上式得4=a(3-6)2+1,解得a=13,∴抛物线的解析式为y2=13(x-6)2+1,∴y1-y2=-23x+7-13(x-6)2-1=-13(x-5)2+73.∵-13<0,∴x=5时,函数取得最大值,∴5月销售这种“多肉植物”,单株获利最大.。
人教版九年级数学上册22.3 第2课时 商品利润最大问题同步测试题附答案【精校】
第2课时 商品利润最大问题知识点1、二次函数常用来解决最优化的问题,这个问题实质是求函数的最大(小)值。
2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a - 时,二次函数有最大(小)值y=244ac b a-。
一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。
若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。
若每件商品的售价为x元,则可卖处(350-10x)件商品。
商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.54.9h t t =-(t 单位s ,h 单位m )可用来描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是( )A 、0.71sB 、0.70sC 、0.63sD 、0.36s5、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数图像大致为( )A B 第5题 C D6、已知二次函数2(0)y ax bx c a =++≠的图像如图所示,现有下列结论:①abc >0;②24b ac -<0;③c <4b ;④a+b >0.则其中正确的结论的个数是( )A 、1B 、2C 、3D 、47、如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A 、x=10,y=14B 、x=14,y=10C 、x=12,y=15D 、x=15,y=12第6题 第8题二、填空题1、已知卖出盒饭的盒数x (盒)与所获利润y (元)满足关系式:21200357600y x x =-+-,则卖出盒饭数量为 盒时,获得最大利润为 元。
人教版九年级数学上册课时训练:22.3 实际问题与二次函数 第2课时 利润(费用)类问题
22.3第2课时利润(费用)类问题1.某种产品按质量分为10个档次,生产最低档次产品,每件获利8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,每提高一个档次将减少3件.如果每天获得利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5 B.7 C.9 D.102.某玩具厂计划生产一种玩具熊,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊的成本为R(元),售价为每只P(元),且R,P与x之间的关系式分别为R=30x+500,P=170-2x.若想获得最大利润,则日产量为()A.25只B.30只C.35只D.40只3.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=-x2+10x,y2=2x.若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元4.出售某种文具盒,若每个获利x元,一天可售出(6-x)个,则当x=________时,一天出售该种文具盒的总利润y最大.5.某服装店购进价格为每件15元的童装若干件,销售一段时间后发现:当每件的售价为25元时平均每天能售出8件,若每件每降价2元,平均每天能多售出4件.若设每件服装定价为x(x<25)元,则每件服装的利润为________元,每天销售服装________件,该服装店每天的销售利润y=____________________元;若设每件服装降价x元,则每件服装的利润为____________元,每天销售服装____________件,该服装店每天的销售利润y=_______________________________________元.(所列算式均不化简)6.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:每条裤子每降价1元,则每月可多销售5条.设每条裤子的售价为x 元(x为正整数),每月的销售量为y条.(1)直接写出y与x之间的函数关系式(不用写自变量的取值范围);(2)设该网店每月获得的利润为w元,当每条裤子的售价降价多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?7.牧民巴特尔在生产和销售某种奶食品时,采取客户先网上订购,然后由巴特尔付费选择甲或乙快递公司送货上门的销售方式,甲快递公司运送2千克,乙快递公司运送3千克共需运费42元;甲快递公司运送5千克,乙快递公司运送4千克共需运费70元.(1)求甲、乙两个快递公司每千克的运费各是多少元;(2)假设巴特尔生产的奶食品当日可以全部出售,且选择运费低的快递公司运送,若该产品每千克的生产成本y 1(元)(不含快递运费),销售价y 2(元)与生产量x (千克)之间的函数关系式为:y 1=⎩⎪⎨⎪⎧-2x +58(0<x <8),42(x ≥8),y 2=-6x +120(0<x <13),则巴特尔每天的生产量为多少千克时获得的利润最大?最大利润为多少元?8.某商场销售一种商品,进价为每个20元,规定每个商品的售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:(1)求y与x之间的函数解析式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数解析式;(3)不考虑其他因素,当每个商品的售价为多少元时,商场每天获得的总利润最大,最大总利润是多少?9.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与每件商品的售价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与每件商品的售价x之间的函数解析式(不要求写自变量的取值范围);(2)若商店按每件商品的售价不低于成本价,且不高于50元销售,则每件商品的售价定为多少元,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?10.为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其他因素的情况下:(1)分别写出该企业两个投资方案的年利润y1,y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?11.某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =-1100x +150,成本为20元/件.无论销售多少,每月还需支出广告费62500元,设月利润为w 内元(利润=销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a≤40),当月销量为x 件时,每月还需缴纳1100x 2元的附加费,设月利润为w 外元(利润=销售额-成本-附加费).(1)当x =1000时,y =________,w 内=________;(2)分别求出w 内,w 外与x 之间的函数解析式(不必写出x 的取值范围);(3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?答案1.C 2.C 3.D4.35.(x -15) (8+25-x 2×4) (x -15)(8+25-x 2×4) (25-15-x ) (8+x 2×4) (25-15-x )(8+x 2×4) 6.解:(1)由题意可得:y =100+5(80-x ),整理得y =-5x +500.(2)由题意,得w =(x -40)(-5x +500)=-5x 2+700x -20000=-5(x -70)2+4500.∵a =-5<0,∴w 有最大值,当x =70时,w 最大值=4500.80-70=10(元).答:当每条裤子的售价降价10元时,每月获得的利润最大,最大利润为4500元.(3)由题意,得-5(x -70)2+4500=4220+200,解得x 1=66,x 2=74.∵抛物线开口向下,∴当66≤x ≤74时,符合该网店要求.而为了让顾客得到最大的实惠,应取x =66,故休闲裤的销售单价应定为66元/条.7.解:(1)设甲快递公司每千克的运费是x 元,乙快递公司每千克的运费是y 元,根据题意得⎩⎪⎨⎪⎧2x +3y =42,5x +4y =70,解得⎩⎪⎨⎪⎧x =6,y =10. 答:甲快递公司每千克的运费是6元,乙快递公司每千克的运费是10元.(2)设生产量为x kg 时,获得的利润为W 元.①当0<x <8时,W =x (-6x +120+2x -58)-6x =-4x 2+56x =-4(x -7)2+196, ∴当x =7时,W 的值最大,最大值为196;②当8≤x <13时,W =x (-6x +120-42)-6x =-6x 2+72x =-6(x -6)2+216,∴当x =8时,W 的值最大,最大值为192.∵196>192,∴巴特尔每天的生产量为7千克时获得的利润最大,最大利润为196元.8.解:(1)设y 与x 之间的函数解析式为y =kx +b ,则⎩⎪⎨⎪⎧40k +b =80,50k +b =60,解得⎩⎪⎨⎪⎧k =-2,b =160, ∴y 与x 之间的函数解析式是y =-2x +160(20≤x ≤60).(2)由题意可得w =(x -20)(-2x +160)=-2x 2+200x -3200,即w 与x 之间的函数解析式是w =-2x 2+200x -3200(20≤x ≤60).(3)∵w =-2x 2+200x -3200=-2(x -50)2+1800,20≤x ≤60,∴当x =50时,w 取得最大值,为1800.故当每个商品的售价为50元时,商场每天获得的总利润最大,最大总利润是1800元.9.解:(1)设y 与x 之间的函数解析式为y =kx +b .将(30,100),(45,70)代入,得⎩⎪⎨⎪⎧100=30k +b ,70=45k +b ,解得⎩⎪⎨⎪⎧k =-2,b =160, 故y 与x 之间的函数解析式为y =-2x +160.(2)由题意得w =(x -30)(-2x +160)=-2(x -55)2+1250.∵-2<0,∴当x <55时,w 随x 的增大而增大,而30≤x ≤50,∴当x =50时,w 有最大值,为1200,故每件商品的售价定为50元,才能使销售该商品每天获得的利润最大,最大利润为1200元.(3)由题意得(x -30)(-2x +160)≥800,结合函数图象得40≤x ≤70.∵y =-2x +160,-2<0,∴y 随x 的增大而减小,∴当x =70时,y 取得最小值,y 最小=-2×70+160=20,∴每天的销售量最少应为20件.10.解:(1)y 1=(10-a )x (1≤x ≤200,且x 为整数);y 2=10x -0.05x 2(1≤x ≤120,且x 为整数).(2)①∵3<a <8,∴10-a >0,即y 1随x 的增大而增大,∴当x =200时,方案一的最大年利润为(10-a )×200=(2000-200a )万美元.②y 2=-0.05(x -100)2+500.∵-0.05<0,1≤x ≤120,∴当x =100时,方案二有最大年利润,为500万美元.(3)由2000-200a >500,得a <7.5,∴当3<a <7.5时,选择方案一;由2000-200a =500,得a =7.5,∴当a =7.5时,选择方案一或方案二均可;由2000-200a <500,得a >7.5,∴当7.5<a <8时,选择方案二.11.解:(1)140 57500(2)w 内=x (y -20)-62500=-1100x 2+130x -62500, w 外=-1100x 2+(150-a )x .(3)当x =-1302×(-1100)=6500时,w 内最大; 由题意,得0-(150-a )24×(-1100)=4×(-1100)×(-62500)-13024×(-1100), 解得a 1=30,a 2=270(不符合题意,舍去),所以a =30.(4)当x =5000时,w 内=337500,w 外=-5000a +500000. 若w 内<w 外,则a <32.5;若w 内=w 外,则a =32.5;若w 内>w 外,则a >32.5.所以,当10≤a <32.5时,选择在国外销售;当a =32.5时,在国外和国内销售都一样;当32.5<a ≤40时,选择在国内销售.。
人教版九年级数学上知识点巩固与综合运用 第2课时 商品利润最大问题
-10 x +50000.
∵-10<0,∴当 x =700时, W 有最小值,
最小值为-10×700+50000=43000.
∵42000<43000,
∴当种植甲种蔬菜的种植面积为400m2,
乙种蔬菜的种植面积为600m2时, W 最小.
1
2
3
4
5
6
7
8
谢谢观看
Thank you for watching!
= +,
= − ,
解得ቊ
∴ y =- x +140.
= .
1
2
3
4
5
6
7
8
(2)当护眼灯销售单价定为多少元时,商店每月出
售这种护眼灯所获的利润最大?最大月利润为多少
元?
解:(2)设每月出售这种护眼灯所获的利润为 w元.
根据题意得 w =( x -40) y =( x -40)(- x+
装按每件 x ( x ≥100)元出售,每天可销售(200-
x )件.若想获得最大利润,则 x 应定为( A
A. 150
B. 160
C. 170
D. 180
1
2
3
4
5
6
7
8
)
4. (2023-2024·石家庄赵县月考)某纪念品的进价
为每件40元,售价为每件50元,每星期可卖出200件.
经市场调查发现:以不低于现售价的价格销售该商
∵-4<0,50≤ x ≤68,
∴当 x =68时, w 取得最大值,
最大值为-4×(68-70)2+3600=3584.
答:单价定为68元时,每星期销售这种商品获得的
利润最大,最大利润是3584元.
最新人教版初中数学九年级上册22.3 第2课时 商品利润最大问题过关习题及解析答案
第2课时 商品利润最大问题知识点1、二次函数常用解决最优化的问题,这个问题实质是求函数的最大(小)值。
2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a-时,二次函数有最大(小)值y=244ac b a -。
一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。
若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。
若每件商品的售价为x 元,则可卖处(350-10x)件商品。
商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )[]A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.5 4.9h t t =-(t 单位s ,h 单位m )可用描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是()A、0.71sB、0.70sC、0.63sD、0.36s5、如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),2y PC=,则y关于x的函数图像大致为()[]A B 第5题 C D6、已知二次函数2(0)=++≠的图像如图所示,现有下列结论:①abcy ax bx c a>0;②24-<0;③c<4b;④a+b>0.则其中正确的结论的个数是()b acA、1B、2C、3D、47、如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A、x=10,y=14B、x=14,y=10C、x=12,y=15D、x=15,y=12第6题第8题二、填空题1、已知卖出盒饭的盒数x(盒)与所获利润y(元)满足关系式:21200357600y x x=-+-,则卖出盒饭数量为盒时,获得最大利润为元。
人教版九年级数学上册 22.3 第2课时 商品利润最大问题 教案
第2课时 商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入 红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题 【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润(2014·福建莆田)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图①所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数关系式y 2=mx 2-8mx +n ,其变化趋势如图②所示. (1)求y 2的解析式; (2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎨⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。
秋人教版九年级数学期末复习训练课件22.3 实际问题与二次函数第2课时 最大利润问题
C.90元 答:当销售单价为55元时,销售这种童装每月可获利1800元
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
第2课时 最大利润问题
(1)求D出.y与1x的0函0元数关系式,并写出自变量x的取值范围;
W最大值=-2×(60-65)2+2000=1950.
∴当x<65时,W随着x的增大而增大;
于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.
2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为(
11.(河南中考)某公司推出一款产品,经市场调查发现,该产品的日销售量 y(个)与销售单价x(元)之间满足一次函数关系,关于销售单价,日销售量, 日销售利润的几组对应值如表:
1.(长葛月考)服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为(
)
3.一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要
使每天获得的利润最大,则每件的售价应定为( )
(3)设每月获得的利润为w元,由题意得:w=(x-30)(-2x+200)-450=-2(x-65)2+2000,∵-2<0,∴当x≤65时,w随x的增大而
销售单价x(元) 85 95 105 115 日销售量y(个) 175 125 75 m 日销售利润w(元) 875 1875 1875 875
(注:日销售利润=日销售量×(销售单价-成本单价)
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值; (2)根据以上信息,填空: 该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最 大值是2000元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中, 日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日 销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
人教版九年级上册第22章 课时2 最大利润问题3(18页)
∵ y = 60 > 0,Q随x的增大而增大 ∴当x最大= 50时,Q最大= 1200 答:此时每月的总利润最多是1200元.
学习目标
探究新知
当堂检测
课堂总结
(2)当售价在50~70元时,每月销售量与售价的关系如 图所示,则此时当该商品售价x是多少元时,该商店每月 获利最大,最大利润是多少元?
22.3 实际问题与二次函数 课时2 最大利润问题
学习目标
探究新知
当堂检测
课堂总结
1.会运用二次函数的性质解决商品销售中的最大利润问题. 2.能弄清商品销售问题中的数量关系及确定自变量的取值范围.
学习目标
探究新知
当堂检测
课堂总结
复习回顾
某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进 价为每件40元,则每星期销售额是 18000 元,销售利润 6000 元.
最大利 确定自变量 润问题 取 值 范 围
涨价:要保证销售量≥0; 降件:要保证单件利润≥0.
确定最大 利润
利用配方法或公式求最大值或 利用函数简图和性质求出.
学习目标
探究新知
当堂检测
课堂总结
例1: 某种商品每天的销售利润y(元)与销售
单价x(元)之间满足关系:y=ax2+bx-75.其图象
如图. (1)销售单价为多少元时,该种商品每天的 y
销售利润最大?最大利润是多少元?
16
(2)销售单价在什么范围时,该种商品每天
的销售利润不低于16元?
O 57
x
学习目标
解:设每件应降价x元,每天的利润为y元, 由题意得:y=(20-x)(40+10x)
人教版九年级数学上册学案:22.3 第2课时 商品利润最大问题
第2课时商品利润最大问题学习目标:1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。
2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。
学习重点:应用二次函数最值解决实际问题中的最大利润。
学习难点:能够正确地应用二次函数最值解决实际问题中的最大利润.特别是把握好自变量的取值范围对最值的影响。
学习过程:一、情景导学:1、问题:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?问题1、总利润= ×,单件利润= —。
2、在这个问题中有那些变量?其中哪些是自变量?哪些是因变量?3、根据前面的分析我们若设每个涨价x元,总利润为y元,此时y与x之间的函数关系式是,化为一般式。
这里y是x的函数。
现在求最大利润,实质就是求此二次函数的最值,你会求吗?试试看。
二、做一做:例题1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?例题2、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.⑵在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?⑶增种多少棵橙子,可以使橙子的总产量在60400个以上?三、训练:1.将进货为40元的某种商品按50元一个售出时,能卖出500个.已知这时商品每涨价一元,其销售数就要减少20个.为了获得最大利益,售价应定为多少?2.某类产品按质量共分为10个档次,生产最低档次产品每件利润为8元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?四.活动与探究某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围)(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价).(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在坐标系中画出函数图象的草图.(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?课后巩固:1.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值2.已知二次函数y=ax2+bx+c(a≠0)的图象如图则下列结论中正确的是( )A.a>0 B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+b x+c=0的一个根3、x=3时,y有最大值为-1,且抛物线过点(4,-3) 、求符合条件的二次函数解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时最大利润问题
1.将进货价为每件70元的某种商品按每件100元出售时每天能卖出20件,若这种商品每件的售价在一定范围内每降低1元,其日销售量就增加1件,为了获得最大利润,决定降价x 元,则单件的利润为________元,每日的销售量为________件,则每日的利润y(元)关于x(元)的函数关系式是y=________________,所以每件降价________元时,每日获得的利润最大,为________元.
2.服装店将进价为100元/件的服装按x元/件出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()
A.150 B.160 C.170 D.180
3.某公司的生产利润原来是a万元,经过连续两年的增长达到了y万元,如果每年增长的百分率都是x,那么y关于x的函数解析式是()
A.y=x2+a B.y=a(x-1)2
C.y=a(1-x)2D.y=a(1+x)2
4.[2019·丹东] 某服装超市购进单价为30元/件的童装若干件,物价部门规定其销售单价不低于30元/件,不高于60元/件.销售一段时间后发现:当销售单价为60元/件时,平均每月的销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元/件,平均月销售量为y件.
(1)求出y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当销售单价为多少时,销售这种童装每月可获利1800元?
(3)当销售单价为多少时,销售这种童装每月获得的利润最大?最大利润是多少?
5.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.经市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元/个)有如下关系:y=-x+60(30≤x≤60,且x 为整数).设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)这种双肩包的销售单价定为多少元/个时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不能高于42元/个,该商店销售这种双肩包每天要获得200元的销售利润,那么销售单价应定为多少元/个?
6. 某商店销售某种商品所获得的利润y(元)与所卖件数x(件)之间满足关系式y=-x2+1000x -200000,则当0<x≤450时的最大利润为()
A.2500元B.47500元
C.50000元D.250000元
7.某种工艺品的进价为每件100元,当标价135元出售时,每天可售出100件.根据销售统计,该工艺品每件的价格每降低1元,每天可多售出4件.要使每天获得的利润最大,则每件需降价()
A.5元B.10元
C.15元D.20元
8.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量y(件)与销售单价x(元/件)之间的关系符合一次函数y=-x+140.
(1)直接写出x的取值范围:__________;
(2)若销售该服装获得的利润为W元,试写出利润W与销售单价x之间的关系式:________________________________________________________________________.
9.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元,试销期间发现每天的销售量y(袋)与销售单价x(元/袋)之间满足一次函数关系,部分数据如下表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.
(1)请直接写出y与x之间的函数关系式;
(2)如果想每天获得160元的利润,那么销售单价应定为多少元/袋?
(3)设每天的利润为w元,当销售单价定为多少元/袋时,每天的利润最大?最大利润是多少元?
10.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y(件)与销售单价x(元/件)之间存在一次函数关系,如图22-3-9所示.
(1)求y与x之间的函数解析式(不要求写出自变量的取值范围);
(2)如果规定每天漆器笔筒的销售量不低于240件,那么当销售单价为多少时,每天获取的利润最大,最大利润是多少?
图22-3-9
11.十一黄金周期间,由于7座以下小型车辆免收高速公路通行费,使汽车租赁市场需求旺盛.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当租出的车辆每减少1辆,每辆车的日租金将增加50元,另外公司平均每日的各项支出共4800元.设公司每日租出x(0≤x≤20)辆车时,日收益为y元.(日收益=日租金收入-平均每日各项支出)
(1)公司每日租出x(x≤20)辆车时,每辆车的日租金增加__________元,此时每辆车的日租金为__________元(用含x的代数式表示);
(2)当每日租出多少辆时,租赁公司的日收益最多?最多是多少元?
答案
1.(30-x) (20+x) -x 2+10x +600 5 625
2.A [解析] 设利润为w 元,
则w =(x -100)(200-x)=-x 2+300x -20000=-(x -150)2+2500(100≤x≤200), 故当x =150时,w 有最大值.
3.D
4.解:(1)由题意得y =80+20×60-x 10
, ∴y 与x 之间的函数关系式为y =-2x +200(30≤x≤60).
(2)由题意得(x -30)(-2x +200)-450=1800,
解得x 1=55,x 2=75(不符合题意,舍去).
答:当销售单价为55元/件时,销售这种童装每月可获利1800元.
(3)设每月获得的利润为w 元.由题意得
w =(x -30)(-2x +200)-450
=-2(x -65)2+2000.
∵-2<0,
∴当x≤65时,w 随x 的增大而增大.
∵30≤x≤60,
∴当x =60时,w 取最大值,w 最大=-2(60-65)2+2000=1950.
答:当销售单价为60元/件时,销售这种童装每月获得的利润最大,最大利润是1950元.
5.解:(1)w =()x -30·y =(x -30)·(-x +60)=-x 2+90x -1800(30≤x≤60,且x 为整数).
(2)w =-x 2+90x -1800=-
()x -452+225.
∵-1<0,
∴当x =45时,w 有最大值,最大值为225.
答:这种双肩包的销售单价定为45元/个时,每天的销售利润最大,最大利润是225元.
(3)当w =200时,可得方程-()x -452+225=200,解得x 1=40,x 2=50. ∵50>42,∴x =50不符合题意,舍去.
答:销售单价应定为40元/个.
6.B [解析] 因为抛物线的对称轴为直线x =500,在对称轴左侧,y 随x 的增大而增大,
因此在0<x≤450的范围内,
当x =450时,函数有最大值为47500.
7.A
8.(1)60≤x≤90 (2)W =-x 2+200x -8400
[解析] (1)∵规定试销期间销售单价不低于成本单价,且获利不得高于50%,∴60≤x≤90.
(2)∵单件利润为(x -60)元,销售量为y =-x +140,
∴销售该服装获得的利润W =(x -60)(-x +140)=-x 2+200x -8400.
9.解:(1)设y =kx +b ,将x =3.5,y =280;x =5.5,y =120代入,得⎩⎪⎨⎪⎧3.5k +b =280,5.5k +b =120,
解得⎩
⎪⎨⎪⎧k =-80,b =560.则y 与x 之间的函数关系式为y =-80x +560(3.5≤x≤5.5). (2)由题意,得(x -3)(-80x +560)-80=160,
整理,得x 2-10x +24=0,
解得x 1=4,x 2=6.
∵3.5≤x≤5.5,∴x =4.
答:如果想每天获得160元的利润,那么销售单价应定为4元/袋.
(3)由题意,得w =(x -3)(-80x +560)-80
=-80x 2+800x -1760
=-80(x -5)2+240.
∵3.5≤x≤5.5,
∴当x =5时,w 有最大值为240.
故当销售单价定为5元/袋时,每天的利润最大,最大利润是240元.
10.解:(1)设y 与x 之间的函数解析式为y =kx +b.
由题意得⎩
⎪⎨⎪⎧40k +b =300,55k +b =150, 解得⎩
⎪⎨⎪⎧k =-10,b =700. 故y 与x 之间的函数解析式为y =-10x +700.
(2)由题意,得-10x +700≥240,解得x≤46.
设每天获得的利润为w 元,则w =(x -30)·y =(x -30)(-10x +700)=-10x 2+1000x -
21000=-10(x-50)2+4000.
∵-10<0,
∴当x<50时,w随x的增大而增大.
∴当x=46时,w最大=-10×(46-50)2+4000=3840.
答:当销售单价为46元/件时,每天获取的利润最大,最大利润是3840元.
11.解:(1)50(20-x)(-50x+1400)
(2)由题意,得y=x(-50x+1400)-4800=-50x2+1400x-4800=-50(x-14)2+5000.
∵-50<0,
∴函数图象开口向下,函数有最大值,
即当x=14时,在0≤x≤20范围内,y有最大值5000.
答:当每日租出14辆时,租赁公司的日收益最多,最多是5000元.。