贵州省黔西南州2014年中考数学考试答题卡
经济数学基础试题及答案
经济数学基础试题及答案一、选择题1、在下列数学家中,哪一位是第一个把圆周率精确到小数点后7位的人?A.阿基米德B.牛顿C.欧拉D.祖冲之答案:D.祖冲之2、在下列四个方程中,哪一个不是一元二次方程?A. 2x^2 + 3x - 5 = 0B. x^3 - 2x^2 + x = 0C. ax^2 + bx + c = 0(a≠0)D. (x + 3)(x - 2) = x^2 - x - 6答案:B. x^3 - 2x^2 + x = 03、在下列四个函数中,哪一个是偶函数?A. y = x^3B. y = x^2 + 1C. y = cosxD. y = lg|x|答案:D. y = lg|x|4、在下列四个命题中,哪一个是真命题?A.若a是正数,则a>0B.若a是负数,则a<0C.若a是零,则a=0D.若a是正数,则|a|=a答案:D.若a是正数,则|a|=a5、在下列四个数中,哪一个是无理数?A. π/4B. √9C. eD. ln10答案:A. π/4二、填空题1、若函数f(x) = x^2 - 2x - 8的函数值小于0,则相应的x的取值范围是_____.答案:(-2, 4)2、若函数f(x)在区间[0, 1]上单调递增,则f(0)=-1,f(1)=-3,则该函数的最大值和最小值分别为_____.答案:-1, -33、若直线y=ax+b(a、b为常数)与两坐标轴所围成的面积为1,则_____.答案:b=-1或b=14、若函数f(x)在区间[0, 1]上单调递减,且f(x)的函数值介于-1和1之间,则称f(x)为“弱减函数”。
若对于任意实数x都有f(x)=f(2-x),则____(填“是”或“不是”)“弱减函数”。
答案:是5、若函数f(x)在区间[0, 1]上单调递增,且f(0)=0,f(1)=1,则该函数的最大值和最小值分别为_____.答案:1, 0《经济数学基础12》期末试题及答案一、单项选择题(每题2分,共20分)1、下列哪个选项正确地描述了函数的概念?(A)映射(B)关系(C)变量(D)公式2、下列哪个选项是方程x2 + 2x + 1 = 0的根?(A)x = 1(B)x = -1(C)x = 2(D)x = -23、下列哪个选项正确地描述了导数的应用?(A)优化问题(B)概率问题(C)代数问题(D)几何问题4、下列哪个选项正确地描述了微分的概念?(A)无穷小量(B)导数(C)极限(D)积分5、下列哪个选项正确地描述了不定积分的概念?(A)原函数(B)导函数(C)定积分(D)微分方程6、下列哪个选项正确地描述了定积分的概念?(A)原函数(B)导函数(C)定积分(D)变上限积分7、下列哪个选项正确地描述了二重积分的概念?(A)二重积分是两个积分的和(B)二重积分是两个积分的差(C)二重积分是一个积分的平方(D)二重积分是一个积分的多次积分8、下列哪个选项正确地描述了级数的概念?(A)级数是无穷多个数的和(B)级数是无穷多个数的积(C)级数是无穷多个数的商(D)级数是无穷多个数的差9、下列哪个选项正确地描述了微分方程的概念?(A)包含导数的方程(B)包含变量的等式(C)包含积分的方程(D)包含微分的方程10、下列哪个选项正确地描述了经济数学的概念?(A)经济数学是数学在经济中的应用(B)经济数学是数学在社会科学中的应用(C)经济数学是数学在物理中的应用(D)经济数学是数学在哲学中的应用二、填空题(每题3分,共30分)1、函数f(x) = x2 + 2x + 1的最小值是________。
黔西南州2012年中考数学试卷及答题卡
绝密☆启用前黔西南州2012年初中毕业生学业暨升学统一考试试卷数 学注意事项:1、一律用黑色笔或2B 铅笔将答案填写或填涂在答题卷指定的位置内。
2、本试题共4页,满分150分,答题时间150分钟。
一、选择题(每小题4分,共40分)1. 411-的倒数是( ) A.45- B. 45 C. 54- D. 542.下列运算正确的是( )A.734a a a =∙- B. 1234a a a =∙ C.1234)(a a = D. 734a a a =+3.a -3在实数范围内有意义,则a 的取值范围( )A .a ≥3 B.a ≤3 C.a ≥3- D.a ≤3-4.三角形的两边长分别为2和6,第三边是方程021102=+-x x 的解,则第三边的长为( )A .7 B.3 C.7或3 D. 无法确定5.袋子里有3个红球和2个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个球,取出红球的概率是( ) A .52B. 53C. 32D. 23 6.如图1,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( ) A .︒40 B. ︒30 C. ︒50 D. ︒607.如图2,兴义市进行城区规划,工程师需测某楼AB 的高度,工程师在D 得用 高2m 的测角仪CD ,测得楼顶端A 的仰角为30°,然后向楼前进30m 到达E ,又 测得楼顶端A 的仰角为60°,楼AB 的高为( ) A .m )(2310+ B.m )(2320+ C. m )(235+ D. m )(2315+ 8.如图3,⊙O 的半径为2,点A 的坐标为(2,2),直线AB 为⊙O 的切线,B 为切点.则B 点的坐标为( )A .⎪⎪⎭⎫⎝⎛-5823, B .()13,- C . ⎪⎭⎫ ⎝⎛-5954, D . ()31,- 9.已知一次函数11-=x y 和反比例函数xy 22=的图象在平面直角坐标系中交于A 、B 两点,当21y y >时,x 的取值范围是( )A .2>xB .01<<-xC .2>x ,01<<-xD . 2<x ,0>x 10.如图4,抛物线2212-+=bx x y 与x 轴交于A 、B 两点,与y 交于C 点,且A (﹣1,0),点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,m 的值是( ) A .4025 B .4124 C .4023 D .4125二、填空题(每小题3分,共30分)11.在2011年,贵州省“旅发大会”在我州召开,据统计,“万峰林”风景区招待游客的人数一年大约为30.1万人,这一数据用科学记数法表示为 _________ .12.已知一个样本﹣1,0,2,x ,3,它们的平均数是2,则这个样本的方差2S = _____ .13.计算:=---|2|14.32ππ)( _________ .14.已知反比例函数的图象经过点(m ,2)和(﹣2,3),则m 的值为 _________ .15.已知圆锥的底面半径为10cm ,它的展开图的扇形的半径为30cm ,则这个扇形圆心角的度数是 _________ . 16.已知312y xm --和n m n y x +21是同类项,则2012)(n m += _________ .17.如图5,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,若AD=1,BC=3,△AOD 的面积为3,则△BOC 的面积为 _________ . 18.如图6,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若AC=2,CE=4,则四边形ACEB 的周长为 _________ .19.分解因式:2416a a -= _________ .20.如图7,把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB=3cm ,BC=5cm ,则重叠部分△DEF 的面积是 _________ cm 2.三、(本题有两个小题,每小题7,共14分)21.(1)计算:()()20123021823130sin 2-+--+⎪⎭⎫ ⎝⎛----︒π图1图 2 图3图4图 5 图6 图7(2)解方程:143222=--+-x x x . 四、(本大题10分)22.如图8,△ABC 内接于⊙O ,AB=8,AC=4,D 是AB 边上一点,P 是优弧的中点,连接P A 、PB 、PC 、PD ,当BD 的长度为多少时,△P AD 是以AD 为底边的等腰三角形?并加以证明.五、(本大题12分)23.近几年我市加大中职教育投入力度,取得了良好的社会效果.某校随机调查了九年级m 名学生的升学意向,并根据调查结果绘制出如下两幅不完整的统计图.请你根据图中的信息解答下列问题: (1)m= _________ ;(2)扇形统计图中“职高”对应的扇形的圆心角α= _________ ; (3)请补全条形统计图;(4)若该校九年级有学生900人,估计该校共有多少名毕业生的升学意向是职高?六、(本大题14分)24(1(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案? (3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润. 七、(本大题14分)请阅读下列材料: 25.请阅读下列材料:问题:已知方程012=-+x x ,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y ,则x y 2=所以2yx =把2y x =代入已知方程,得01222=-+⎪⎭⎫⎝⎛y y化简,得0422=-+y y 故所求方程为0422=-+y y 。
2024年贵州省中考数学试题(含答案)
贵州省2024年初中学业水平考试(中考)试题卷数学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.下列有理数中最小的数是()A .2- B.0C.2D.4【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024-<<<,∴最小的数是2-,故选:A .2.“黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A .不是轴对称图形,不符合题意;B .是轴对称图形,符合题意;C .不是轴对称图形,不符合题意;D .不是轴对称图形,不符合题意;故选:B .3.计算23a a +的结果正确的是()A.5aB.6aC.25aD.26a 【答案】A【解析】【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:235a a a +=,故选:A .4.不等式1x <的解集在数轴上的表示,正确的是()A. B. C.D.【答案】C【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .5.一元二次方程220x x -=的解是()A.13x =,21x = B.12x =,20x = C.13x =,22x =- D.12x =-,21x =-【答案】B【解析】【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶220x x -=,∴()20x x -=,∴0x =或20x -=,∴12x =,20x =,故选∶B .6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A .7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A.100人B.120人C.150人D.160人【答案】D【解析】【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题.【详解】解:20800160100⨯=(人),故选D .8.如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是()A.AB BC= B.AD BC = C.OA OB = D.AC BD⊥【答案】B【解析】【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵ABCD 是平行四边形,∴AB CD AD BC AO OC BO OD ====,,,,故选B .9.小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次【答案】A【解析】【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A 正确,选项B 错误;小星定点投篮10次,不一定投中4次,故选项C 错误;小星定点投篮4次,不一定投中1次,故选项D 错误故选;A .10.如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为()A.30πB.25πC.20πD.10π【答案】C【解析】【分析】本题考查了弧长,根据弧长公式∶π180n r l =求解即可.【详解】解∵150AOB ∠=︒,24OA =,∴ AB 的长为150π2420π180⨯=,故选∶C .11.小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是()A.x y= B.2x y = C.4x y = D.5x y=【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a ,根据题意列出等式2x y y a +=+,2x a x y +=+,然后化简代入即可解题.【详解】解:设“▲”的质量为a ,由甲图可得2x y y a +=+,即2x a =,由乙图可得2x a x y +=+,即2a y =,∴4x y =,故选C .12.如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是()A.二次函数图象的对称轴是直线1x =B.二次函数图象与x 轴的另一个交点的横坐标是2C.当1x <-时,y 随x 的增大而减小D.二次函数图象与y 轴的交点的纵坐标是3【答案】D【解析】【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶∵二次函数2y ax bx c =++的顶点坐标为()1,4-,∴二次函数图象的对称轴是直线=1x -,故选项A 错误;∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x -,∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误;∵抛物线开口向下,对称轴是直线=1x -,∴当1x <-时,y 随x 的增大而增大,故选项C 错误;设二次函数解析式为()214y a x =++,把()3,0-代入,得()20314a =-++,解得1a =-,∴()214y x =-++,当0x =时,()20143y =-++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确,故选D .二、填空题(本大题共4题,每题4分,共16分)13.计算的结果是________.【答案】【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式,.=a ≥0,b >0)是解题关键.14.如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出AD AB =,即可求解.【详解】解∶由作图可知∶AD AB =,∵5AB =,∴5AD =,故答案为∶5.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x 天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x 天,根据题意,得()24015012x x =+,解得20x =,故答案为:20.16.如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.2653##2653【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,AB BC CD AD ∴===,BE EC CF DF ===,AD BC ,D FCM ∠=∠,B D∠=∠在ABE 和ADF △中AB ADB D BE DF=⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADF ≌,∴AE AF =,在ADF △和MCF △中D FCMDF CF AFD MFC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADF MCF ≌,∴CM AD =,AF MF =,5AE = ,5AE AF MF ∴===,过E 点作EN AF ⊥于N 点,90ANE ∴∠=︒ 4sin 5EAF ∠=,5AE =,4EN ∴=,3AN =,∴2NF AF AN =-=,527MN ∴=+=,在Rt ENM △中EM ===,即12EM EC CM BC BC =+=+=AB BC CD AD === ,AB BC ∴==,.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,正确添加辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17.(1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.【答案】(1)见解析(2)12x -,1【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,2022(1)+-+-421=++7=;选择①,②,④,212222+-+⨯421=++7=;选择①,③,④,()0212122+-+⨯411=++6=;选择②,③,④,()012122-+-+⨯211=++4=;(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=;当3x =时,原式3112-==.18.已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x=(2)a c b <<,理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入k y x=可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【小问1详解】解:把()1,3代入k y x=,得31k =,∴3k =,∴反比例函数的表达式为3y x =;【小问2详解】解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<,∴0a c b <<<,∴a c b <<.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)23【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数n ,找出符合要求的数量m ,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,8.328.3>,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有4种,故甲被抽中的概率为4263=.20.如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.【答案】(1)见解析(2)12【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明ABCD 是平行四边形,然后根据矩形的定义得到结论即可;(2)利用勾股定理得到BC 长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵AB CD ∥,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;选择②,证明:∵AD BC =,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;【小问2详解】解:∵90ABC ∠=︒,∴4BC ===,∴矩形ABCD 的面积为3412⨯=.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a -亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩,解得56x y =⎧⎨=⎩,答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩,根据题意,得:()561055a a +-≤,解得5a ≥,答:至少种植甲作物5亩.22.综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)【答案】(1)20cm(2)3.8cm【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出DN 长,然后根据BD BN DN =-计算即可.【小问1详解】解:在Rt ABC 中,45A ∠=︒,∴45B ∠=︒,∴20cm BC AC ==,【小问2详解】解:由题可知110cm 2ON EC AC ===,∴10cm NB ON ==,又∵32DON ∠=︒,∴tan 10tan 32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=,∴10 6.2 3.8cm BD BN DN =-=-=.23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.【答案】(1)DCE ∠(答案不唯一)(2)163(3)163【解析】【分析】(1)利用等边对等角可得出DCE DEC ∠=∠,即可求解;(2)连接OC ,利用切线的性质可得出90DCE ACO ∠+∠=︒,利用等边对等角和对顶角的性质可得出AOE DCE ∠=∠,等量代换得出90AEO CAO ∠+∠=︒,然后利用三角形内角和定理求出90AOE ∠=︒,即可得证;(3)设2OE =,则可求2AO OF BO x ===,EF x =,22OD x =+,2DC DE x ==+,在Rt ODC △中,利用勾股定理得出()()()2222222x x x +=++,求出x 的值,利用tan OP OC D OD CD==可求出OP ,即可求解.【小问1详解】解:∵DC DE =,∴DCE DEC ∠=∠,故答案为:DCE ∠(答案不唯一);【小问2详解】证明:连接OC ,,∵PC 是切线,∴OC CD ⊥,即90DCE ACO ∠+∠=︒,∵OA OC =,∴OAC ACO ∠=∠,∵DCE DEC ∠=∠,AEO DEC ∠=∠,∴90AEO CAO ∠+∠=︒,∴90AOE ∠=︒,∴OD AB ⊥;【小问3详解】解:设OE x =,则2AO OF BO x ===,∴EF OF OE x =-=,22OD OF DF x =+=+,∴2DC DE DF EF x ==+=+,在Rt ODC △中,222OD CD OC =+,∴()()()2222222x x x +=++,解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =,∵tan OP OC D OD CD ==,∴8106OP =,解得403OP =,∴163BP OP OB =-=.【点睛】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y 与x 的函数表达式为y kx b =+,把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩,解得280k b =-⎧⎨=⎩,∴y 与x 的函数表达式为280y x =-+;【小问2详解】解:设日销售利润为w 元,根据题意,得()10w x y=-⋅()()10280x x =--+22100800x x =-+-()2225450x =--+,∴当25x =时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w 元,根据题意,得()10w x m y=--⋅()()10280x m x =---+()22100280080x m x m =-++--,∴当()100250222mm x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎝⎭⎝⎭,∵糖果日销售获得的最大利润为392元,∴()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,化简得2601160m m -+=解得12m =,258m =(舍去)∴m 的值为2.25.综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度;(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【答案】(1)画图见解析,90(2)见解析(3)23或83【解析】【分析】(1)依题意画出图形即可,证明四边形OAPC 是矩形,即可求解;(2)过P 作PC OB ⊥于C ,证明矩形OAPC 是正方形,得出OA AP PC OC ===,利用ASA 证明APM CPN △≌△,得出AM CN =,然后利用线段的和差关系以及等量代换即可得证;(3)分M 在线段AO ,线段AO 的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,PC 即为所求,∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥,∴四边形OAPC 是矩形,∴90APC ∠=︒,故答案为:90;【小问2详解】证明:过P 作PC OB ⊥于C ,由(1)知:四边形OAPC 是矩形,∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥,∴PA PC =,∴矩形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴OM ON OM CN OC+=++OM AM AP=++OA AP=+2AP =;【小问3详解】解:①当M 在线段AO 上时,如图,延长NM 、PA 相交于点G ,由(2)知2OM ON PA +=,设OM x =,则3ON x =,2AO PA x ==,∴AM AO OM x OM =-==,∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌,∵90AOB ∠=︒,PA OA ⊥,∴AP OB ∥,∴ONF PGF ∽ ,∴33325OF ON xPF PG x x ===+,∴53PF OF =,∴53833OP OF +==;②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴ON OM-OC CN OM=+-AO AM OM=+-AO AO=+2AO =,∵33ON OM x==∴AO x =,2CN AM x ==,∵PC AO ∥,∴CG CN OM ON=,即23CG x x x =,∴23CG x =,∵PC AO ∥,∴OMF PGF ∽ ,∴3253OF OM x PF PG x x ===+,∴53PF OF =,∴53233OP OF -==;综上,OP OF 的值为23或83.【点睛】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。
2011年贵州黔南中考数学试卷答题卡
(1)
填 涂 样 例
题
题
题
(2)
考号: 考号:
题 二 题 题
.
原班级: 原班级:
题
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
2011 黔南中考数学试卷答题卡
请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效 请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效
题
考 生 禁 填
注
缺考考生, 由监考员用 2B 铅笔填涂下面 的缺考标记
意 事 项
缺考标 记
题
1.答题前,考生先将自己的姓名、准考证号填写 清楚, 请认真核对条形码上的准考证号、 姓名。 2.1-13 题必须使用 2B 铅笔填涂;其它题答案必 须使用黑色字迹的钢笔或签字笔书写, 字体工 整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答, 超出答题区域书写的答案无效;在草稿纸、试 题卷上答题无效。 4.作图时,仍使用 2B 铅笔。 5.保持清洁,不要折叠,不要弄破。
考场: 考场:
( 3)
( 2)
(2)
23. 4+6=10分 23.(本小题 4+6=10 分)
(3)
(1) )
,
。
25.(本小题 12 分) 5.(
(2)解: 解
(1) 解: (4)
24.(本小题 12 分) 4.(
证明( 证明(1):
(完整word版)中考数学答题卡
滨州市二0一六年初中学生学业考试数学模拟试卷答题卡姓名 座号准考证号请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效请在各题目的答题区域内作答,超出边框的答案无效。
2014年贵州省黔西南州中考数学试卷(含答案和解析)
2014年贵州省黔西南州中考数学试卷一、选择题(每小题 4 分,共 40 分)1.(4 分)(2014?黔西南州)﹣ 的倒数是( )A .B . ﹣ 2C . 2D .﹣2.(4分)(2014?黔西南州)不等式 2x ﹣4>0 的解集为( )A .B .x>2C .x>﹣ 2D .x>8x> 3.(4 分)(2014?黔西南州)已知等腰三角形 △ABC 中,腰 AB=8 ,底 BC=5 ,则这个三角形的周长为( )A .21B . 20C . 19D . 18 4.( 4分)( 2014?黔西南州)在一个不透明的盒子中装有 12个白球,若干个黄球, 它们除颜色不同外, 其余均相同.若 从中随机摸出一个球是白球的概率是 ,则黄球的个数为( )A .18B . 20C . 24D . 286.(4 分)(2014?黔西南州)已知两圆半径分别为 3、5,圆心距为 8,则这两圆的位置关系为(如图, 已知 AB=AD ,那么添加下列一个条件后, 仍无法判定 △ABC ≌ △ADC 的是(∠BAC= ∠DAC C .∠BCA= ∠DCA D .∠B=∠D=90 A .外离 B .内含 C .相交 D .外切B .D . B.10.( 4 分)(2014?黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步地休息.已知甲先出发 2 秒.在跑步过程中,甲、乙两人的距离 y (米)与乙出发的时间 t (秒)之间的关系如图所示,给出以下结论: ① a=8; ② b=92;③ c=123.其中正确的是(二、填空题(共 10 小题,每小题 3 分,共 30分)2 11.(3 分)( 2014?黔西南州)当 x=1 时,代数式 x 2+1= ____ .12.(3 分)(2014?黔西南州) 20140000用科学记数法表示(保留 3 个有效数字)为 _ .13.(3 分)(2014?黔西南州)已知甲组数据的平均数为 甲,乙组数据的平均数为 乙,且 甲= 乙,而甲组数据的方差为 S 2甲=1.25,乙组数据的方差为 S 2 乙=3,则 _________ 较稳定.14.(3 分)( 2014?黔西南州)点 P (2, 3)关于 x 轴的对称点的坐标为 __A .B .C .D .9.(4 分)(2014?黔西南州)已知如图, 一次函数 y=ax+b 和反比例函数 y= 的图象相交于 A、B 两点,不等式ax+b B . ﹣ 3< x<0 或 x> 1 C . x<﹣ 3 或 x> 1 D .﹣3<x<1500 米,先到终点的人原 C .仅有①③D .仅有②③ A . x <﹣ 315.(3 分)(2014?黔西南州)函数的自变量 x的取值范围是 ___________16.(3 分)(2014?黔西南州)四边形的内角和为17.(3分)(2014?黔西南州)如图,已知 a ∥b ,小亮把三角板的直角顶点放在直线 b 上.若 ∠1=35°,则∠2的度数为 ____________ .20.(3 分)(2014?黔西南州)在平面直角坐标系中,对于平面内任一点( m ,n ),规定以下两种变换:(1)f (m ,n )=(m ,﹣n ),如 f (2,1)=(2,﹣1);(2)g (m ,n )=(﹣ m ,﹣ n ),如 g ( 2, 1)=(﹣ 2,﹣1) 按照以上变换有: f[g ( 3,4) ]=f (﹣ 3,﹣ 4) =(﹣ 3,4),那么 g[f (﹣3,2)]= ________________________________________.18.(3 分)(2014?黔西南州)如图, AB 是⊙O 的直径, AB=15 ,AC=9 ,则 tan ∠ADC=19.(3 分)(2014?黔西南州)如图,将矩形纸片 ABCD 折叠,使边 AB 、 CD 均落在对角线 BD上,得折痕 BE 、BF ,则 ∠EBF= _______21.(12 分)( 2014?黔西南州)(1)计算:(四、解答题(共 1 小题,满分 12 分)22.(12分)( 2014?黔西南州)如图,点 B、C、D都在⊙O上,过 C点作 CA∥BD交OD的延长线于点 A,连接 BC,∠B= ∠A=30°,BD=2 .(1)求证: AC 是⊙O 的切线;(2)求由线段 AC、AD 与弧 CD 所围成的阴影部分的面积.(结果保留π)2+(π﹣2014)0+sin60°+| ﹣2|.2)解方程:五、解答题(共 1 小题,满分 14 分)23.(14 分)( 2014?黔西南州)我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类, A :特别好; B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:( 1)本次调查中,一共调査了_________ 名同学,其中 C 类女生有 _____________ 名;(2)将下面的条形统计图补充完整;( 3)为了共同进步,学校想从被调査的 A 类和 D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.六、解答题(共 14 分)24.(14 分)( 2014?黔西南州)为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过 160 千瓦时的部分x超过 160 千瓦时的部分x+0.15某居民五月份用电 190千瓦时,缴纳电费 90 元.( 1)求 x 和超出部分电费单价;(2)若该户居民六月份所缴电费不低于 75 元且不超过 84 元,求该户居民六月份的用电量范围.25.(12 分)( 2014?黔西南州)已知点 P(x0,y0)和直线 y=kx+b ,则点 P到直线 y=kx+b 的距离 d 可用公式d=计算.例如:求点 P(﹣ 2,1)到直线 y=x+1 的距离.解:因为直线 y=x+1 可变形为 x﹣ y+1=0 ,其中 k=1,b=1.所以点 P(﹣ 2,1)到直线 y=x+1 的距离为 d= = = = .根据以上材料,求:(1)点 P(1,1)到直线 y=3x﹣2 的距离,并说明点 P与直线的位置关系;(2)点 P(2,﹣ 1)到直线 y=2x ﹣ 1 的距离;(3)已知直线 y=﹣x+1 与 y=﹣ x+3 平行,求这两条直线的距离.226.(16 分)(2014?黔西南州)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c 经过 A(﹣ 3,0)、B(1,0)、C(0,3)三点,其顶点为 D,连接 AD,点 P是线段 AD 上一个动点(不与 A、D重合),过点 P作 y轴的垂线,垂足点为 E,连接 AE .( 1)求抛物线的函数解析式,并写出顶点 D 的坐标;(2)如果 P点的坐标为( x,y),△PAE的面积为 S,求 S与x之间的函数关系式,直接写出自变量x的取值范围,并求出 S 的最大值;( 3)在( 2)的条件下,当 S取到最大值时,过点 P作 x轴的垂线,垂足为 F,连接 EF,把△PEF沿直线EF折叠,点 P 的对应点为点 P ′,求出 P′的坐标,并判断 P′是否在该抛物线上.2014年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(每小题 4 分,共 40 分) 1.(4 分)(2014?黔西南州)﹣ 的倒数是( A . B . ﹣ 2 考倒数. 分析:根据倒数的定义:若两个数的乘积是 1,我们就称这两个数互为倒数可得答案 解答: 解:﹣ 的倒数是﹣ 2. 故选: B . 点此题主要考查了倒数,关键是掌握两个倒数1. 2.(4分)(2014?黔西南州)不等式 2x ﹣4>0 的解集为( )A .B .x>2C .x>﹣ 2D .x>8x> 考点 : 解一元一次不等式.专题 : 计算题.分析: 根据不等式的性质先移项得到 2x>4,然后把 x 的系数化为 1 即可. 解答: 解:移项得 2x >4,系数化为 1 得 x> 2.故选 B .点评: 本题考查了解一元一次不等式:解一元一次不等式的基本步骤为: ① 去分母; ② 去括号; ③ 移项; ④ 合 并同类项; ⑤ 化系数为 1.3.(4 分)(2014?黔西南州)已知等腰三角形 △ABC 中,腰 AB=8 ,底 BC=5 ,则这个三角形的周长为( )A .21B . 20C . 19D . 18 考点 : 等腰三角形的性质.分析: 由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解. 解答: 解: 8+8+5=16+5 =21. 故这个三角形的周长为 21. 故选: A .点评: 考查了等腰三角形两腰相等的性质,以及三角形周长的定义.4.( 4分)( 2014?黔西南州)在一个不透明的盒子中装有 12个白球,若干个黄球, 它们除颜色不同外, 从中随机摸出一个球是白球的概率是 ,则黄球的个数为( ))C .2D .﹣ ﹣其余均相同. 若 A .18 B .20 C .24 D .28考点:分概率公式.= ,解此分式方程即可求得答案首先设黄球的个数为x 个,根据题意得:解解:设黄球的个数x 个,根据题意得: = ,解得: x=24 ,经检验: x=24 是原分式方程的解;∴ 黄球的个数为 24.故选 C .点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.考点:全等三角形的判定.分析:本题要判定△ABC≌△ADC,已知 AB=AD ,AC 是公共边,具备了两组边对应相等,故添加CB=CD 、∠ BAC= ∠ DAC 、∠B= ∠ D=90 °后可分别根据 SSS、SAS、HL 能判定△ABC≌△ADC,而添加∠BCA=∠DCA 后则不能.解答:解: A、添加 CB=CD ,根据 SSS,能判定△ABC≌△ADC,故 A 选项不符合题意;B、添加∠BAC=∠DAC,根据 SAS,能判定△ ABC ≌ △ ADC ,故 B 选项不符合题意;C、添加∠BCA=∠DCA 时,不能判定△ABC≌△ADC,故 C选项符合题意;D、添加∠ B=∠ D=90 °,根据 HL ,能判定△ABC≌△ADC,故 D 选项不符合题意;故选: C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA 、 AAS 、HL .注意: AAA 、 SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(4 分)(2014?黔西南州)已知两圆半径分别为3、5,圆心距为 8,则这两圆的位置关系为()A.外离B.内含C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是 3、5,O1O2=8,根据两圆位置关系与圆心距 d,两圆半径 R,r 的数量关系间的联系即可得出⊙O1 和⊙O2 的位置关系.解答:解:∵⊙O1、⊙O2 的半径分别是 3、5,O1O2=8,又∵ 3+5=8 ,∴⊙O1 和⊙O2 的位置关系是外切.故选 D .点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径 R, r 的数量关系间的联系.7.( 4 分)(2014?黔西南州)如图所示,是由 5 个相同的小正方体组合而成的几何体,它的左视图是()如图,已知 AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌ △ADC 的是(C.∠BCA= ∠DCA D.∠B= ∠ D=90 °B.∠BAC= ∠DAC考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有看到的棱都应表现在左视图中.解答:解:此几何体的左视图是“日”字形.故选 D .点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵ 此图形旋转 180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确; B 、∵ 此图形旋转 180°后能与原图形重合,∴ 此图形是中心对称图形,不是轴对称图形,故此选项错误; C、此图形旋转 180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误; D 、∵此图形旋转 180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选: A .点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.考反比例函数与一次函数的交专数形结合.D.8.( 4 分)(2014?黔西南州)下列图形中,既是中心对称,又是轴对称图形的是(9.(4 分)(2014?黔西南州)已知如图,一次函数 y=ax+b 和反比例函数y= 的图象相交于A 、B 两点,不等式 ax+bC. x<﹣ 3 或 x> 1 D.﹣3<x<1)B.﹣ 3< x<0 或 x> 1分析:观察函数图象得到当﹣ 3<x<0或 x>1时,一次函数图象都在反比例函数图象上方,即有ax+b> .解答:解:不等式 ax+b > 的解集为﹣ 3<x<0 或 x>1.故选 B .点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了观察函数图象的能力.C.仅有①③D.仅有②③10.( 4 分)(2014?黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500 米,先到终点的人原地休息.已知甲先出发 2 秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间 t(秒)之间的关系如图所示,给出以下结① a=8;② b=92;③ c=123.其中正确的是()考点:一次函数的应用.专题:行程问题;压轴题.分析:易得乙出发时,两人相距 8m,除以时间 2 即为甲的速度;由于出现两人距离为 0 的情况,那么乙的速度较快.乙 100s跑完总路程 500可得乙的速度,进而求得 100s时两人相距的距离可得 b的值,同法求得两人距离为 0 时,相应的时间,让两人相距的距离除以甲的速度,再加上 100 即为 c 的值.解答:解:甲的速度为: 8÷2=4(米 /秒);乙的速度为: 500÷100=5(米 /秒); b=5×100﹣4×(100+2)=92(米); 5a﹣ 4×( a+2) =0,解得 a=8, c=100+92 ÷4=123(秒),∴ 正确的有①②③ .故选 A .点评:考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.二、填空题(共 10 小题,每小题 3 分,共 30分)11.(3 分)( 2014?黔西南州)当 x=1 时,代数式 x2+1= 2 .考点:代数式求值.分析:把 x 的值代入代数式进行计算即可得解.解答:解: x=1 时, x2+1=12+1=1+1=2 .故答案为: 2.点评:本题考查了代数式求值,是基础题,准确计算是解题的关键.12.(3 分)(2014?黔西南州) 20140000用科学记数法表示(保留 3 个有效数字)为 2.01×107.考点:科学记数法与有效数字.分析:科学记数法的表示形式为 a×10n的形式,其中 1≤|a|< 10, n 为整数.确定 n的值是易错点,由于20140000 有 8 位,所以可以确定 n=8 ﹣1=7 .有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与 10 的多少次方无关.解答:解: 20140000=2.014×107≈2.01×107.故答案为: 2.01×107.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.13.(3 分)(2014?黔西南州)已知甲组数据的平均数为甲,乙组数据的平均数为乙,且甲= 乙,而甲组数据的方差为 S2甲=1.25,乙组数据的方差为 S2乙=3,则甲较稳定.考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙方差可判断.解答:解:由于甲的方差小于乙的方差,所以甲组数据稳定.故答案为:甲.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(3分)(2014?黔西南州)点 P(2, 3)关于 x 轴的对称点的坐标为(2,﹣3).考点:关于 x 轴、 y 轴对称的点的坐标.分析:根据关于 x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P( x,y)关于 x 轴的对称点 P′的坐标是( x ,﹣ y)得出即可.解答:解:∵点 P( 2,3)∴ 关于 x 轴的对称点的坐标为:(2,﹣ 3).故答案为:( 2,﹣ 3).点评:此题主要考查了关于 x 轴、y 轴对称点的性质,正确记忆坐标规律是解题关键.15.(3 分)(2014?黔西南州)函数的自变量 x的取值范围是 x≥ .考点:函数自变量的取值范围.分析:根据被开方数大于等于 0 列式计算即可得解.解答:解:由题意得, 2x ﹣1≥0,点评:本题考查了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不能为0;( 3)当函数表达式是二次根式时,被开方数非负.16.(3分)(2014?黔西南州)四边形的内角和为360°.考点:多边形内角与外角.分析:根据 n 边形的内角和是( n﹣2) ?180°,代入公式就可以求出内角和.故答案为: x ≥.解答:解:(4﹣ 2)×180°=360°.故四边形的内角和为 360 °.故答案为: 360°.点评:本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.17.(3 分)(2014?黔西南州)如图,已知数为 55°.a∥ b,小亮把三角板的直角顶点放在直线b 上.∠1=35°,则∠2 的度考点:平行线的性质;余角和补角.分析:先根据三角板的直角顶点在直线 b 上求出∠3 的度数,再由平行线的性质即可得出结论.解答:解:∵三角板的直角顶点在直线 b 上,∠ 1=35 °,∴ ∠ 3=90°﹣ 35°=55°,∵ a∥ b,∴ ∠ 2=∠ 3=55°.故答案为: 55°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.18.(3 分)( 2014?黔西南州)如图, AB 是⊙O的直径, AB=15 ,AC=9 ,则 tan∠ADC=考点:圆周角定理;勾股定理;锐角三角函数的定义.分析:根据勾股定理求出 BC 的长,再将 tan∠ADC 转化为 tanB 进行计算.解答:解:∵AB 为⊙O 直径,∴ ∠ ACB=90 °,∴ BC= =12,∴ tan∠ ADC=tanB=故答案为.点评:本题考查了圆周角定理和三角函数的定义,要充分利用转化思想.19.(3分)(2014?黔西南州)如图,将矩形纸片ABCD 折叠,使边 AB、CD 均落在对角线BF,则∠EBF= 45 °.BD 上,得折痕 BE 、考点 : 角的计算;翻折变换(折叠问题) .分析: 根据四边形 ABCD 是矩形,得出 ∠ABE= ∠EBD= ∠ABD ,∠DBF=∠FBC= ∠ DBC ,再根据∠ABE+ ∠EBD+ ∠DBF+ ∠FBC=∠ABC=90 °,得出 ∠EBD+ ∠DBF=45 °,从而求出答案. 解答: 解: ∵四边形 ABCD 是矩形,根据折叠可得 ∠ABE= ∠ EBD= ∠ABD ,∠ DBF= ∠ FBC= ∠DBC ,∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90 °,∴∠EBD+∠DBF=45 °,即 ∠ EBF=45 °,故答案为: 45°.点评: 此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角是相等的,再进行计算,是一道 基础题.20.(3 分)(2014?黔西南州)在平面直角坐标系中,对于平面内任一点( m ,n ),规定以下两种变换:(1)f (m ,n )=(m ,﹣n ),如 f (2,1)=(2,﹣1);(2)g (m ,n )=(﹣ m ,﹣ n ),如 g ( 2, 1)=(﹣ 2,﹣1) 按照以上变换有: f[g ( 3,4) ]=f (﹣ 3,﹣ 4) =(﹣ 3,4),那么 g[f (﹣3,2)]= (3,2) .∴ g[f (﹣ 3, 2) ] =g (﹣ 3,﹣ 2)=(3,2), 故答案为( 3, 2).点评: 本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关 键是明白两种运算改变了哪个坐标的符号.三、解答题(共 12 分)21.(12 分)( 2014?黔西南州)考实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.分析: ( 1)本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别 进行计算,然后根据实数的运算法则求得计算结果;( 2)根据分式方程的步骤,可得方程的解.解答:解:( 1)原式 =9+1+ +2﹣=12﹣ ; =12﹣ ;专新定义.分析: 由题意应先进行 f 方式的运算,再进行 解解: ∵f (﹣ 2) =(﹣ 3,﹣ g 方式的运算,注意运算顺序及坐标的符号变化. 1)计算: 2+( π﹣2014) 0+sin60°+| ﹣2|. 考点 : 点的坐2)解方程:( 2)方程两边都乘以(x+2 )( x﹣ 2),得x+2=4 ,解得 x=2 ,经检验 x=2 不是分式方程的解,原分式方程无解.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算;注意分式方程要验根.四、解答题(共 1 小题,满分 12 分)22.(12分)( 2014?黔西南州)如图,点 B、C、D都在⊙O 上,过 C点作 CA∥BD 交 OD 的延长线于点A,连接 BC,∠B= ∠A=30°,BD=2 .(1)求证: AC 是⊙O 的切线;(2)求由线段 AC、AD 与弧 CD 所围成的阴影部分的面积.(结果保留π)考切线的判定;扇形面积的计算.分析:(1)连接 OC,根据圆周角定理求出∠COA ,根据三角形内角和定理求出∠OCA ,根据切线的判定推出即可;( 2)求出 DE,解直角三角形求出 OC,分别求出△ACO 的面积和扇形 COD 的面积,即可得出答解答:( 1)证明:连接 OC,交 BD 于 E,∵∠B=30°,∠B= ∠COD ,∴ ∠ COD=60 °,∵ ∠A=30 °,∴ ∠ OCA=90 °,即 OC⊥ AC ,∴AC 是⊙O 的切线;(2)∵AC∥BD,∠OCA=90 °,∴∠OED=∠OCA=90 °,∴ DE= BD= ,∵ sin ∠ COD= ,∴ OD=2 ,∴ AC=2 ,∴S阴影= ×2×2 ﹣ =2 ﹣在 Rt△ ACO 中,tan∠ COA=点评:本题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.五、解答题(共 1 小题,满分 14 分)23.(14 分)( 2014?黔西南州)我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类, A :特别好; B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:( 1)本次调查中,一共调査了 50 名同学,其中 C 类女生有 8 名;(2)将下面的条形统计图补充完整;( 3)为了共同进步,学校想从被调査的 A 类和 D 类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:( 1)由扇形图可知, B 类总人数为 10+15=25 人,由条形图可知 B 类占 50%,则样本容量为:25÷50%=50 人;由条形图可知, C 类占 40%,则 C 类有 50×40%=20 人,结合条形图可知 C 类女生有 20﹣ 12=8 人;( 2)根据( 1)中所求数据补全条件统计图;( 3)根据被调査的 A 类和 D 类学生男女生人数列表即可得出答案.解答:解:( 1)样本容量: 25÷50%=50,C 类总人数: 50 ×40%=20 人,C 类女生人数: 20﹣ 12=8 人.故答案为: 50, 8;2)补全条形统计图如下:( 3)将 A 类与 D 类学生分为以下几种情况:男 A 女 A1 女 A2男D 男A 男D 女A1男D 女A2 男D女D 女D男A 女A1 女D 女A2 女D∴ 共有 6 种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女) = = .点评:此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.六、解答题(共 14 分)24.(14 分)( 2014?黔西南州)为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过 160 千瓦时的部分x超过 160 千瓦时的部分x+0.15某居民五月份用电 190千瓦时,缴纳电费 90 元.( 1)求 x 和超出部分电费单价;(2)若该户居民六月份所缴电费不低于75 元且不超过 84 元,求该户居民六月份的用电量范围.考点:一元一次不等式的应用;一元一次方程的应用.分析:( 1)等量关系为:不超过 160千瓦时电费 +超过 160 千瓦时电费 =90;( 2)设该户居民六月份的用电量是 a 千瓦时.则依据收费标准列出不等式 75≤160×0.45+0.6(a﹣160)≤84.解答:解:( 1)根据题意,得160x+ ( 190﹣160)(x+0.5)=90,解得 x=0.45 ;则超出部分的电费单价是 x+0.15=0.6 (元 /千瓦时).答: x和超出部分电费单价分别是 0.45和 0.6元/千瓦时;( 2)设该户居民六月份的用电量是 a 千瓦时.则75≤160×0.45+0.6(a﹣160)≤84,解得 165≤a≤180.答:该户居民六月份的用电量范围是165 度到 180度.点评:本题考查了一元一次不等式的应用,一元一次方程的应用.解答本题的关键是读懂题意,设出未知数,找出等量(不等量)关系,列方程(不等式)求解.七、解答题(共 12 分)25.(12 分)( 2014?黔西南州)已知点 P (x 0,y 0)和直线 y=kx+b ,则点 P 到直线 y=kx+b 的距离 d 可用公式计算.例如:求点 P (﹣ 2,1)到直线 y=x+1 的距离. 解:因为直线 y=x+1 可变形为 x ﹣ y+1=0 ,其中 k=1, b=1.所以点 P (﹣ 2,1)到直线 y=x+1 的距离为 d= = = = .根据以上材料,求:(1)点 P (1,1)到直线 y=3x ﹣2 的距离,并说明点 P 与直线的位置关系;(2)点 P (2,﹣ 1)到直线 y=2x ﹣ 1 的距离;(3)已知直线 y=﹣x+1 与 y=﹣ x+3 平行,求这两条直线的距离.考点 : 一次函数综合题.分析: ( 1)根据条件的 P 的坐标和点到直线的距离公式可以直接求出结论;( 2)直接将 P 点的坐标代入公式 d= 就可以求出结论;( 3)在直线 y=﹣ x+1 任意取一点 P ,求出 P 点的坐标, 然后代入点到直线的距离公式 可以求出结论.解答: 解:(1) ∵点 P (1, 1),∴点 P 到直线 y=3x ﹣2 的距离为:d= =0, ∴点 P 在直线 y=3x ﹣2 上; ( 2)由题意,得∵ y=2x ﹣ 1 ∴k=2, b=﹣1.∵P (2,﹣1),∴ d= = .∴点 P (2,﹣ 1)到直线 y=2x ﹣ 1的距离为 ; ( 3)在直线 y= ﹣ x+1 任意取一点 P , 当 x=0 时, y=1 .∴ P ( 0, 1).∵ 直线 y=﹣ x+3 ,∴ k=﹣ 1,b=3, ∴ d=∴ 两平行线之间的距离为.点评: 本题考查了一次函数的点与直线之间的距离公式的运用,由函数的解析式求点的坐标的运用,平行线的性 质的运用,解答时掌握点到直线的距离公式是关键.八、解答题(共 16 分)26.(16 分)(2014?黔西南州)如图所示,在平面直角坐标系中,抛物线 y=ax 2+bx+c 经过 A (﹣ 3,d= 就0)、B(1,0)、C(0,3)三点,其顶点为 D,连接 AD,点 P是线段 AD 上一个动点(不与 A、D重合),过点 P作 y轴的垂线,垂足点为 E,连接 AE .( 1)求抛物线的函数解析式,并写出顶点 D 的坐标;(2)如果 P点的坐标为( x,y),△PAE的面积为 S,求 S与x之间的函数关系式,直接写出自变量x的取值范围,并求出 S 的最大值;( 3)在( 2)的条件下,当 S取到最大值时,过点 P作x轴的垂线,垂足为 F,连接EF,把△PEF沿直线EF折叠,点 P 的对应点为点 P ′,求出 P′的坐标,并判断 P′是否在该抛物线上.考点:二次函数综合题.分析:( 1)由抛物线 y=ax2+bx+c 经过 A (﹣3,0)、B(1,0)、C(0,3)三点,则代入求得 a,b,c,进而得解析式与顶点 D.(2)由P在AD上,则可求 AD解析式表示 P点.由 S△APE= ?PE?y P,所以 S可表示,进而由函数最值性质易得 S 最值.( 3)由最值时, P为(﹣,3),则 E与C重合.画示意图, P'过作 P'M ⊥y轴,设边长通过解直角三角形可求各边长度,进而得 P'坐标.判断 P′是否在该抛物线上,将 x P'坐标代入解析式,判断是否为y P'即可.解答:解:(1)∵抛物线 y=ax2+bx+c 经过 A(﹣ 3,0)、 B(1,0)、C(0,3)三点,∴,解得,2∴ 解析式为 y= ﹣ x2﹣2x+3 ∵﹣x2﹣2x+3=﹣( x+1 )2+4,∴ 抛物线顶点坐标 D 为(﹣ 1, 4).(2)∵A(﹣ 3,0),D(﹣1,4),解得 ,∴ AD 解析式: y=2x+6 ,∵ P 在 AD 上,∴ P ( x , 2x+6),∴S △APE = ?PE?y P = ?(﹣x )?(2x+6)=﹣x 2﹣3x (﹣3<x<﹣1),当 x=﹣=﹣ 时,S 取最△APE 大值 .3)如图 1,设 P ′F 与y 轴交于点 N ,过 P ′作 P ′M ⊥y 轴于点 M ,∵ △PEF 沿EF 翻折得△ P ′EF ,且 P (﹣ ,3),∴ ∠PFE=∠P ′FE , PF=P ′F=3,PE=P ′E= , ∵PF ∥y 轴,∴ ∠PFE=∠FEN ,∵ ∠ PFE=∠ P ′FE ,∴ ∠ FEN= ∠ P ′FE ,∴ EN=FN ,设 EN=m ,则 FN=m , P ′N=3 ﹣ m .在 Rt △ P ′EN 中,2 2 2∵ ( 3﹣ m ) 2+( ) 2=m 2,∴ m= .∴ m= . ∵ S △ P ′EN= ?P ′N ?P ′E= ?EN?P ′M ,P ′M= 在 Rt △ EMP ′中,∵EM=∴ OM=EO ﹣ EM= ,∴ 设 AD 为解析式为 y=kx+b ,有=,∴P′(当 x= 时, y=﹣()2﹣ 2? +3= ≠ ,∴ 点 P ′不在该抛物线上.点评:本题考查了待定系数法求抛物线解析式,二次函数图象、性质及设边长利用勾股定理解直角三角形等常规考点,题目考点适中,考法新颖,适合学生练习巩固.。
2024年贵州黔西南中考数学试题及答案
2024年贵州黔西南中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;(2)求证:OD AB ^;【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】【答案】D二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】【答案】(1)DCEÐ(答案不唯一)(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或83。
2024年贵州省中考数学试题含答案解析
贵州省2024年初中学业水平考试(中考)试题卷数 学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2−B. 0C. 2D. 4【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024−<<<,∴最小的数是2−,故选:A .2. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A .不是轴对称图形,不符合题意;B . 是轴对称图形,符合题意;C . 不是轴对称图形,不符合题意;D . 不是轴对称图形,不符合题意;故选:B .3. 计算23a a +结果正确的是( )的A. 5aB. 6aC. 25aD. 26a【答案】A【解析】 【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解: 235a a a +=,故选:A .4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B. C.D.【答案】C【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .5. 一元二次方程220x x −=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =−D. 12x =−,21x =− 【答案】B【解析】【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶ 220x x −=, ∴()20x x −=, ∴0x =或20x −=,∴12x =,20x =,故选∶B .6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0−,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】 【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A .7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人 【答案】D【解析】【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题. 【详解】解:20800160100×=(人), 故选D .8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥【答案】B【解析】 【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵ABCD 是平行四边形,∴AB CD AD BC AO OC BO OD ====,,,,故选B .9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次【答案】A【解析】【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A 正确,选项B 错误;小星定点投篮10次,不一定投中4次,故选项C 错误;小星定点投篮4次,不一定投中1次,故选项D 错误故选;A .10. 如图,在扇形纸扇中,若150AOB ∠=°,24OA =,则 AB 的长为( )A. 30πB. 25πC. 20πD. 10π【答案】C【解析】 【分析】本题考查了弧长,根据弧长公式∶π180n r l =求解即可. 【详解】解∵150AOB ∠=°,24OA =,∴ AB 的长为150π2420π180×=, 故选∶C . 11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y =B. 2x y =C. 4x y =D. 5x y =【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a ,根据题意列出等式2x y y a +=+,2x a x y +=+,然后化简代入即可解题.【详解】解:设“▲”的质量为a ,由甲图可得2x y y a +=+,即2x a =,由乙图可得2x a x y +=+,即2a y =,∴4x y =,故选C .12. 如图,二次函数2y ax bx c ++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <−时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3【答案】D【解析】【分析】本题考查了二次函数性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D . 【详解】解∶ ∵二次函数2y ax bx c ++的顶点坐标为()1,4−,∴二次函数图象的对称轴是直线=1x −,故选项A 错误;∵二次函数2y ax bx c ++的图象与x 轴的一个交点的横坐标是3−,对称轴是直线=1x −,∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误;∵抛物线开口向下, 对称轴是直线=1x −,∴当1x <−时,y 随x 的增大而增大,故选项C 错误;设二次函数解析式为()214y a x =++,把()3,0−代入,得()20314a =−++, 解得1a =−,∴()214y x =−++,当0x =时,()20143y =−++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确,故选D . 二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式,.a ≥0,b >0)是解题关键.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若的5AB =,则AD 的长为______.【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出AD AB =,即可求解.【详解】解∶由作图可知∶ AD AB =,∵5AB =,∴5AD =,故答案为∶5.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x 天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x 天,根据题意,得()24015012x x =+, 解得20x ,故答案为:20.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M ,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D ∠=∠在ABE 和ADF △中AB ADB D BE DF= ∠=∠ = ,∴()SAS ABE ADF ≌,∴AE AF =,在ADF △和MCF △中D FCMDF CF AFD MFC∠=∠ = ∠=∠ ,∴()ASA ADF MCF ≌,∴CM AD =,AF MF =,5AE = ,5AE AF MF ∴===,过E 点作EN AF ⊥交N 点,90ANE ∴∠=° 4sin 5EAF ∠=,5AE =,4EN ∴=,3AN =,∴2NF AF AN =−=,527MN ∴=+=,在Rt ENM △中EM ,即12EM EC CM BC BC =+=+= AB BC CD AD === ,AB BC ∴==,. 【点睛】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,熟练根据题意灵活构造辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2−,③()01−,④122×中任选3个代数式求和; (2)先化简,再求值:()21122x x −⋅+,其中3x =. 【答案】(1)见解析 (2)12x −,1 【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,2022(1)+−+−421=++7=;选择①,②,④,212222+−+× 421=++7=;选择①,③,④,()0212122+−+× 411=++6=;选择②,③,④,()012122−+−+× 211=++4=;(2)解:()21122x x −⋅+ ()()11(1)21x x x =−+⋅+ 12x −=; 当3x =时,原式3112−=. 18. 已知点()1,3在反比例函数k y x=的图象上. (1)求反比例函数的表达式; (2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x= (2)a c b <<,理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入k y x=可得k 的值,进而可得函数的解析式; (2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【小问1详解】解:把()1,3代入k y x =,得31k =, ∴3k =,∴反比例函数的表达式为3y x =;【小问2详解】解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,3013−<<<,∴0a c b <<<,∴a c b <<.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)13【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数n ,找出符合要求的数量m ,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,8.328.3>,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙 丙甲甲,乙 甲,丙 乙乙,甲乙,丙 丙丙,甲 丙,乙 由表格可知共有6种等可能结果,其中抽中甲的有2种, 故甲被抽中的概率为2163=. 20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=°,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.【答案】(1)见解析 (2)12【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明ABCD 是平行四边形,然后根据矩形定义得到结论即可;(2)利用勾股定理得到BC 长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵AB CD ∥,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=°,∴四边形ABCD 是矩形;选择②,证明:∵AD BC =,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=°,∴四边形ABCD 是矩形;小问2详解】解:∵90ABC ∠=°,∴4BC ===,∴矩形ABCD 的面积为3412×=.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;的【(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y += +=, 解得56x y = = , 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a −亩,根据题意,得:()561055a a +−≤,解得5a ≥,答:至少种植甲作物5亩.22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ′为法线,AO 为入射光线,OD 为折射光线.) 【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ′在同一平面内,测得20cm AC =,45A ∠=°,折射角32DON ∠=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°≈,cos320.84°≈,tan 320.62°≈)【答案】(1)20cm(2)3.8cm【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答. (1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出DN 长,然后根据BD BN DN =−计算即可.小问1详解】解:在Rt ABC 中,45A ∠=°,∴45B ∠=°,∴20cm BC AC ==,【小问2详解】 解:由题可知110cm 2ONEC AC ===, ∴10cm NB ON ==,又∵32DON ∠=°, ∴tan 10tan 32100.62 6.2cm DN ON DON =⋅∠=×°≈×=,∴10 6.2 3.8cm BD BN DN =−=−=.23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.【答案】(1)DCE ∠(答案不唯一)(2)163【(3)163【解析】【分析】(1)利用等边对等角可得出DCE DEC ∠=∠,即可求解;(2)连接OC ,利用切线的性质可得出90DCE ACO ∠+∠=°,利用等边对等角和对顶角的性质可得出AOE DCE ∠=∠,等量代换得出90AEO CAO ∠+∠=°,然后利用三角形内角和定理求出90AOE ∠=°,即可得证;(3)设2OE =,则可求2AOOF BO x ===,EF x =,22OD x =+,2DC DE x ==+,在Rt ODC △中,利用勾股定理得出()()()2222222x x x +=++,求出x 的值,利用tanOP OC D OD CD==可求出OP ,即可求解.【小问1详解】解:∵DC DE =,∴DCE DEC ∠=∠,故答案为:DCE ∠(答案不唯一); 【小问2详解】证明:连接OC , ,∵PC 是切线,∴OC CD ⊥,即90DCE ACO ∠+∠=°,∵OA OC =,∴OAC ACO ∠=∠,∵DCE DEC ∠=∠,AEO DEC ∠=∠,∴90AEO CAO∠+∠=°, ∴90AOE ∠=°,∴OD AB ⊥;【小问3详解】解:设OE x =,则2AOOF BO x ===, ∴EF OF OE x =−=,22OD OF DF x =+=+, ∴2DC DE DF EF x ==+=+,在Rt ODC △中,222OD CD OC =+,∴()()()2222222x x x +=++,解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =, ∵tanOP OC D OD CD ==, ∴8106OP =, 解得403OP =, ∴163BP OP OB =−=. 【点睛】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元 … 12 14 16 18 20 …销售量y /盒… 56 52 48 44 40 …(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值. 【答案】(1)280y x =−+ (2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y 与x 的函数表达式为y kx b =+, 把12x =,56y =;20x ,40y =代入,得12562040k b k b += +=, 解得280k b =− = , ∴y 与x 的函数表达式为280y x =−+; 【小问2详解】解:设日销售利润为w 元,根据题意,得()10w x y =−⋅()()10280x x =−−+22100800x x =−+−()2225450x =−−+,∴当25x =时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w 元,根据题意,得()10w x m y =−−⋅ ()()10280x m x =−−−+()22100280080x m x m =−++−−,∴当()100250222m m x ++=−=×−时,w 有最大值为()25050210028008022m m m m ++ −++−−, ∵糖果日销售获得的最大利润为392元,∴()25050210028008039222m m m m ++ −++−−=, 化简得2601160m m −+=解得12m =,258m =(舍去)∴m 的值为2.25. 综合与探究:如图,90AOB ∠=°,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度; (2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值. 【答案】(1)画图见解析,90(2)见解析 (3)23或83【解析】【分析】(1)依题意画出图形即可,证明四边形OAPC 是矩形,即可求解;(2)过P 作PC OB ⊥于C ,证明矩形OAPC 是正方形,得出OAAP PC OC ===,利用ASA 证明APM CPN △≌△,得出AM CN =,然后利用线段的和差关系以及等量代换即可得证; (3)分M 在线段AO ,线段AO 的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,PC 即为所求,∵90AOB ∠=°,PA OA ⊥,PC OB ⊥, ∴四边形OAPC 是矩形,∴90APC ∠=°,故答案为:90;【小问2详解】证明:过P 作PC OB ⊥于C ,由(1)知:四边形OAPC 是矩形, ∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥, ∴PA PC =,∴矩形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=°, ∵PN PM ⊥,∴90APM CPN MPC ∠=∠=°−∠,又90A PCN ∠=∠=°,AP CP =, ∴APM CPN △≌△,∴AM CN =,∴OM ON OM CN OC +=++OM AM AP =++OA AP =+2AP =;【小问3详解】解:①当M 在线段AO 上时,如图,延长NM 、PA 相交于点G ,由(2)知2OM ON PA +=,设OM x =,则3ON x =,2AOPA x ==, ∴AM AO OM x OM =−==, ∵90AOB MAG °∠=∠=,AMG OMN ∠=∠, ∴()ASA AMG OMN ≌,∴3AGON x ==, ∵90AOB ∠=°,PA OA ⊥,∴AP OB ∥,∴ONF PGF ∽ , ∴33325OF ON x PF PG x x ===+, ∴53PF OF =, ∴53833OP OF +==; ②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=°,PC AO ∥,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=°−∠,又90A PCN ∠=∠=°,AP CP =, ∴APM CPN △≌△,∴AM CN =,∴ON OM −OC CN OM =+−AO AM OM =+−AO AO +2AO =,∵33ON OM x == ∴AO x =,2CNAM x ==, ∵PC AO ∥,∴CGN OMN ∽, ∴CG CN OM ON=,即23CG x x x =, ∴23CG x =, ∵PC AO ∥,∴OMF PGF ∽ , ∴3253OF OM x PF PG x x ===+, ∴53PF OF =, ∴53233OP OF −==; 综上,OP OF 的值为23或83. 【点睛】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。
2014年贵州省毕节地区中考数学试卷
2014年贵州省毕节地区中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中只有一个选项正确,请你把认为正确的选项天灾相应的答题卡上) 1.计算﹣32的值是( )A.9B. -9C. 6 D -62.如图是某一几何体的三视图,则该几何体是( )A. 三棱柱B. 长方体C. 圆柱 D 圆锥 3.下列运算正确的是( ) A. ∏-3.14 B.532=+ C. a a a 2=∙ D 23a a a =÷4.下列因式分解正确的是( )A. )1)(1(2222-+=-x x xB. 22)1(12-=-+x x xC.22)1(1+=+x xD.2)1(22+==+-x x x x 5.下列叙述正确的是( )A.方差越大,说明数据越稳定B. 在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D 两边及其一边的对角对应相等的两个三角形全等 6.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A. 6B. 5C. 4 D 37.我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是( )A. 23,24B.24,22C.24,24 D 22,248.如图,菱形ABCD 中,对角线AC 、BC 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A. 3.5B. 4C. 7 D 149.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A. 13B. 14C. 15 D 16 10.若分式的值为零,则x 的值为( )A.0B. 1C. -1 D ±1 11.抛物线y=2x 2,y=﹣2x 2,共有的性质是( )A. 开口向下B. 对称轴是y 轴C. 都有最低点 D y 随x 的增大而减少 12.如图,△ABC 中,AE 交BC 于点D ,∠C=∠E ,AD :DE=3:5,AE=8,BD=4,则DC 的长等于( )A.415 B. 512 C. 320 D 41713.若﹣2a m b 4与5a n+2b 2m+n可以合并成一项,则m n的值是( ) A. 2 B. 0 C. -1 D 1 14.如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x≥ax+4的解集为( )A. x≥B. x≤3C. x≤ D x≥315.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A. 1B.C. 3 D二、填空题(本大题共5小题,每小题5分,共25分)16.1纳米=10﹣9米,将0.00305纳米用科学记数法表示为米.17.不等式组的解集为.18.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.19.将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.20.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.三、解答及证明(本大题共7小题,共80分)21.(8分)计算:(﹣)﹣2﹣|﹣﹣2|+(﹣1.414)0﹣3tan30°﹣.22.(8分)先化简,再求值:(﹣)÷,其中a2+a﹣2=0.23.(10分)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.24.(12分)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.25.(12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y 关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.26.(14分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.27.(16分)如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线Ac的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.。
2024年贵州省中考数学试题含参考答案
贵州省2024年初中学业水平考试(中考)试题卷数 学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2−B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D. 3. 计算23a a +结果正确的是( )A. 5aB. 6aC. 25aD. 26a4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B.C.D. 5. 一元二次方程220x x −=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =−D. 12x =−,21x =− 6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0−,()0,0,则“技”所在的象限为( )A 第一象限 B. 第二象限 C. 第三象限 D. 第四象限的.7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB ∠=°,24OA =,则 AB 的长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y =B. 2x y =C. 4x y =D. 5x y =12. 如图,二次函数2y ax bx c ++部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴另一个交点的横坐标是2C. 当1x <−时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2−,③()01−,④122×中任选3个代数式求和; (2)先化简,再求值:()21122x x −⋅+,其中3x =. 18. 已知点()1,3在反比例函数k y x=的图象上.的(1)求反比例函数的表达式;(2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由. 19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=°,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】的第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ′为法线,AO 为入射光线,OD 为折射光线.) 【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ′在同一平面内,测得20cm AC =,45A ∠=°,折射角32DON ∠=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°≈,cos320.84°≈,tan 320.62°≈)23. 如图,AB 为半圆O F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值. 销售单价x /元 … 12 14 16 18 20 …销售量y /盒 … 56 52 48 44 40 …(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB ∠=°,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度; (2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.贵州省2024年初中学业水平考试(中考)试题卷数 学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2−B. 0C. 2D. 4【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024−<<<,∴最小的数是2−,故选:A .2. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A .不是轴对称图形,不符合题意;B . 是轴对称图形,符合题意;C . 不是轴对称图形,不符合题意;D . 不是轴对称图形,不符合题意;故选:B .3. 计算23a a +结果正确的是( )的A. 5aB. 6aC. 25aD. 26a【答案】A【解析】 【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解: 235a a a +=,故选:A .4. 不等式1x <的解集在数轴上的表示,正确的是( )A.B. C.D.【答案】C【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .5. 一元二次方程220x x −=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =−D. 12x =−,21x =− 【答案】B【解析】【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶ 220x x −=, ∴()20x x −=, ∴0x =或20x −=,∴12x =,20x =,故选∶B .6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0−,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】 【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A .7. 为了解学生的阅读情况,某校在月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人 【答案】D【解析】【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题. 【详解】解:20800160100×=(人), 故选D .8. 如图,ABCD 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥【答案】B【解析】 【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵ABCD 是平行四边形,∴AB CD AD BC AO OC BO OD ====,,,,故选B .9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次【答案】A【解析】【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A 正确,选项B 错误;小星定点投篮10次,不一定投中4次,故选项C 错误;小星定点投篮4次,不一定投中1次,故选项D 错误故选;A .10. 如图,在扇形纸扇中,若150AOB ∠=°,24OA =,则 AB 的长为( )A. 30πB. 25πC. 20πD. 10π【答案】C【解析】 【分析】本题考查了弧长,根据弧长公式∶π180n r l =求解即可. 【详解】解∵150AOB ∠=°,24OA =,∴ AB 的长为150π2420π180×=, 故选∶C . 11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y =B. 2x y =C. 4x y =D. 5x y =【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a ,根据题意列出等式2x y y a +=+,2x a x y +=+,然后化简代入即可解题.【详解】解:设“▲”的质量为a ,由甲图可得2x y y a +=+,即2x a =,由乙图可得2x a x y +=+,即2a y =,∴4x y =,故选C .12. 如图,二次函数2y ax bx c ++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <−时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3【答案】D【解析】【分析】本题考查了二次函数性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶ ∵二次函数2y ax bx c ++的顶点坐标为()1,4−,∴二次函数图象的对称轴是直线=1x −,故选项A 错误;∵二次函数2y ax bx c ++的图象与x 轴的一个交点的横坐标是3−,对称轴是直线=1x −,∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误;∵抛物线开口向下, 对称轴是直线=1x −,∴当1x <−时,y 随x 的增大而增大,故选项C 错误;设二次函数解析式为()214y a x =++,把()3,0−代入,得()20314a =−++, 解得1a =−,∴()214y x =−++,当0x =时,()20143y =−++=, ∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确,故选D . 二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式,.a ≥0,b >0)是解题关键.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若的5AB =,则AD 的长为______.【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出AD AB =,即可求解.【详解】解∶由作图可知∶ AD AB =,∵5AB =,∴5AD =,故答案为∶5.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x 天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x 天,根据题意,得()24015012x x =+, 解得20x ,故答案为:20.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌△,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M ,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,AB BC CD AD ∴===,BE EC CF DF ===,D FCM ∠=∠,B D ∠=∠在ABE 和ADF △中AB ADB D BE DF= ∠=∠ = ,∴()SAS ABE ADF ≌,∴AE AF =,在ADF △和MCF △中D FCMDF CF AFD MFC∠=∠ = ∠=∠ ,∴()ASA ADF MCF ≌,∴CM AD =,AF MF =,5AE = ,5AE AF MF ∴===,过E 点作EN AF ⊥交N 点,90ANE ∴∠=° 4sin 5EAF ∠=,5AE =,4EN ∴=,3AN =,∴2NF AF AN =−=,527MN ∴=+=,在Rt ENM △中EM ,即12EM EC CM BC BC =+=+= AB BC CD AD === ,AB BC ∴==,. 【点睛】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,熟练根据题意灵活构造辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2−,③()01−,④122×中任选3个代数式求和; (2)先化简,再求值:()21122x x −⋅+,其中3x =. 【答案】(1)见解析 (2)12x −,1 【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,2022(1)+−+−421=++7=;选择①,②,④,212222+−+× 421=++7=;选择①,③,④,()0212122+−+× 411=++6=;选择②,③,④,()012122−+−+× 211=++4=;(2)解:()21122x x −⋅+ ()()11(1)21x x x =−+⋅+ 12x −=; 当3x =时,原式3112−=. 18. 已知点()1,3在反比例函数k y x=的图象上. (1)求反比例函数的表达式; (2)点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x= (2)a c b <<,理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入k y x=可得k 的值,进而可得函数的解析式; (2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【小问1详解】解:把()1,3代入k y x =,得31k =, ∴3k =,∴反比例函数的表达式为3y x =;【小问2详解】解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a −,()1,b ,()3,c 都在反比例函数的图象上,3013−<<<,∴0a c b <<<,∴a c b <<.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)13【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数n ,找出符合要求的数量m ,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,8.328.3>,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙 丙甲甲,乙 甲,丙 乙乙,甲乙,丙 丙丙,甲 丙,乙由表格可知共有6种等可能结果,其中抽中甲的有2种,故甲被抽中的概率为2163=. 20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=°,有下列条件: ①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.【答案】(1)见解析 (2)12【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明ABCD 是平行四边形,然后根据矩形定义得到结论即可;(2)利用勾股定理得到BC 长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵AB CD ∥,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=°,∴四边形ABCD 是矩形;选择②,证明:∵AD BC =,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=°,∴四边形ABCD 是矩形;小问2详解】解:∵90ABC ∠=°,∴4BC ===,∴矩形ABCD 的面积为3412×=21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;的【(2)设种植甲作物a 亩,则种植乙作物()10a −亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y += +=, 解得56x y = = , 答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a −亩,根据题意,得:()561055a a +−≤,解得5a ≥,答:至少种植甲作物5亩.22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ′为法线,AO 为入射光线,OD 为折射光线.) 【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ′在同一平面内,测得20cm AC =,45A ∠=°,折射角32DON ∠=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°≈,cos320.84°≈,tan 320.62°≈)【答案】(1)20cm(2)3.8cm【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答. (1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出DN 长,然后根据BD BN DN =−计算即可.小问1详解】解:在Rt ABC 中,45A ∠=°,∴45B ∠=°,∴20cm BC AC ==,【小问2详解】 解:由题可知110cm 2ONEC AC ===, ∴10cm NB ON ==,又∵32DON ∠=°, ∴tan 10tan 32100.62 6.2cm DN ON DON =⋅∠=×°≈×=,∴10 6.2 3.8cm BD BN DN =−=−=.23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.【答案】(1)DCE ∠(答案不唯一)(2)163【(3)163【解析】【分析】(1)利用等边对等角可得出DCE DEC ∠=∠,即可求解;(2)连接OC ,利用切线的性质可得出90DCE ACO ∠+∠=°,利用等边对等角和对顶角的性质可得出AOE DCE ∠=∠,等量代换得出90AEO CAO ∠+∠=°,然后利用三角形内角和定理求出90AOE ∠=°,即可得证;(3)设2OE =,则可求2AOOF BO x ===,EF x =,22OD x =+,2DC DE x ==+,在Rt ODC △中,利用勾股定理得出()()()2222222x x x +=++,求出x 的值,利用tanOP OC D OD CD==可求出OP ,即可求解.【小问1详解】解:∵DC DE =,∴DCE DEC ∠=∠,故答案为:DCE ∠(答案不唯一); 【小问2详解】证明:连接OC , ,∵PC 是切线,∴OC CD ⊥,即90DCE ACO ∠+∠=°,∵OA OC =,∴OAC ACO ∠=∠,∵DCE DEC ∠=∠,AEO DEC ∠=∠,∴90AEO CAO∠+∠=°, ∴90AOE ∠=°,∴OD AB ⊥;【小问3详解】解:设OE x =,则2AOOF BO x ===, ∴EF OF OE x =−=,22OD OF DF x =+=+, ∴2DC DE DF EF x ==+=+,在Rt ODC △中,222OD CD OC =+, ∴()()()2222222x x x +=++,解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =, ∵tanOP OC D OD CD ==, ∴8106OP =, 解得403OP =, ∴163BP OP OB =−=. 【点睛】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值. 销售单价x /元 … 12 14 16 18 20 …销售量y /盒… 56 52 48 44 40 …(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值. 【答案】(1)280y x =−+ (2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y 与x 的函数表达式为y kx b =+, 把12x =,56y =;20x ,40y =代入,得12562040k b k b += +=, 解得280k b =− = , ∴y 与x 的函数表达式为280y x =−+; 【小问2详解】解:设日销售利润为w 元,根据题意,得()10w x y =−⋅()()10280x x =−−+22100800x x =−+−()2225450x =−−+,∴当25x =时,w 有最大值为∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w 元,根据题意,得()10w x m y =−−⋅ ()()10280x m x =−−−+()22100280080x m x m =−++−−,∴当()100250222m m x ++=−=×−时,w 有最大值为()25050210028008022m m m m ++ −++−−, ∵糖果日销售获得的最大利润为392元,∴()25050210028008039222m m m m ++ −++−−=, 化简得2601160m m −+=解得12m =,258m =(舍去)∴m 的值为2.25. 综合与探究:如图,90AOB ∠=°,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度; (2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值. 【答案】(1)画图见解析,90(2)见解析 (3)23或83【解析】【分析】(1)依题意画出图形即可,证明四边形OAPC 是矩形,即可求解; (2)过P 作PC OB ⊥于C ,证明矩形OAPC 是正方形,得出OAAP PC OC ===,利用ASA 证明APM CPN △≌△,得出AM CN =,然后利用线段的和差关系以及等量代换即可得证;(3)分M 在线段AO ,线段AO 的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,PC 即为所求,∵90AOB ∠=°,PA OA ⊥,PC OB ⊥,∴四边形OAPC 是矩形,∴90APC ∠=°,故答案为:90;【小问2详解】证明:过P 作PC OB ⊥于C ,由(1)知:四边形OAPC 是矩形,∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥,∴PA PC =,∴矩形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=°,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=°−∠,又90A PCN ∠=∠=°,AP CP =, ∴APM CPN △≌△,∴AM CN =,∴OM ON OM CN OC +=++OM AM AP =++OA AP =+2AP =;【小问3详解】解:①当M 在线段AO 上时,如图,延长NM 、PA 相交于点G ,由(2)知2OM ON PA +=,设OM x =,则3ON x =,2AOPA x ==, ∴AM AO OM x OM =−==, ∵90AOB MAG °∠=∠=,AMG OMN ∠=∠, ∴()ASA AMG OMN ≌,∴3AGON x ==, ∵90AOB ∠=°,PA OA ⊥,∴AP OB ∥,∴ONF PGF ∽ , ∴33325OF ON x PF PG x x ===+, ∴53PF OF =, ∴53833OP OF +==; ②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=°,PC AO ∥,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=°−∠,又90A PCN ∠=∠=°,AP CP =, ∴APM CPN △≌△,∴AM CN =,∴ON OM −OC CN OM =+−AO AM OM =+−AO AO +2AO =,∵33ON OM x == ∴AO x =,2CNAM x ==, ∵PC AO ∥,∴CGN OMN ∽, ∴CG CN OM ON=,即23CG x x x =, ∴23CG x =, ∵PC AO ∥,∴OMF PGF ∽ , ∴3253OF OM x PF PG x x ===+, ∴53PF OF =, ∴53233OP OF −==; 综上,OP OF 的值为23或83. 【点睛】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。
2024年贵州省中考数学真题试卷及答案解析
贵州省2024年初中学业水平考试(中考)试题卷数学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A.B.C.D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是()A. B. 0 C. 2 D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是()A. B. C. D.3. 计算的结果正确的是()A. B. C. D.4. 不等式的解集在数轴上的表示,正确的是( )A. B.C. D.5. 一元二次方程的解是()A. ,B. ,C. ,D. ,6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为,,则“技”所在的象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为()A. 100人B. 120人C. 150人D. 160人8. 如图,的对角线与相交于点O,则下列结论一定正确的是()A B. C. D.9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是()A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若,,则的长为()A. B. C. D.11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x,y,则下列关系式正确的是()A. B. C. D.12. 如图,二次函数的部分图象与x轴的一个交点的横坐标是,顶点坐标为,则下列说法正确的是()A. 二次函数图象的对称轴是直线B. 二次函数图象与x轴的另一个交点的横坐标是2C. 当时,y随x的增大而减小D. 二次函数图象与y轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13. 计算的结果是________.14. 如图,在中,以点A为圆心,线段的长为半径画弧,交于点D,连接.若,则的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形中,点E,F分别是,的中点,连接,.若,,则的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①,②,③,④中任选3个代数式求和;(2)先化简,再求值:,其中.18. 已知点在反比例函数的图象上.(1)求反比例函数的表达式;(2)点,,都在反比例函数的图象上,比较a,b,c的大小,并说明理由.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形的对角线与相交于点O,,,有下列条件:①,②.(1)请从以上①②中任选1个作为条件,求证:四边形是矩形;(2)在(1)的条件下,若,,求四边形的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A处投射到底部B处,入射光线与水槽内壁的夹角为;第二步:向水槽注水,水面上升到的中点E处时,停止注水.(直线为法线,为入射光线,为折射光线.)【测量数据】如图,点A,B,C,D,E,F,O,N,在同一平面内,测得,,折射角.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求的长;(2)求B,D之间的距离(结果精确到0.1cm).(参考数据:,,)23. 如图,为半圆O的直径,点F在半圆上,点P在的延长线上,与半圆相切于点C,与的延长线相交于点D,与相交于点E,.(1)写出图中一个与相等的角:______;(2)求证:;(3)若,,求的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.25. 综合与探究:如图,,点P在的平分线上,于点A.(1)【操作判断】如图①,过点P作于点C,根据题意在图①中画出,图中的度数为______度;(2)【问题探究】如图②,点M在线段上,连接,过点P作交射线于点N,求证:;(3)【拓展延伸】点M在射线上,连接,过点P作交射线于点N,射线与射线相交于点F,若,求的值.参考答案1. 【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵,∴最小的数是,故选:A.2. 【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意;故选:B.3. 【答案】A【解析】【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解:,故选:A.4. 【答案】C【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式的解集在数轴上的表示如下:.故选:C.5. 【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶,∴,∴或,∴,,故选∶B.6. 【答案】A【解析】【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A.7. 【答案】D【解析】【分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题.【详解】解:(人),故选D.8. 【答案】B【解析】【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵是平行四边形,∴,故选B.9. 【答案】A【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A正确,选项B错误;小星定点投篮10次,不一定投中4次,故选项C错误;小星定点投篮4次,不一定投中1次,故选项D错误故选;A.10. 【答案】C【解析】【分析】本题考查了弧长,根据弧长公式∶求解即可.【详解】解∵,,∴的长为,故选∶C.11. 【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a,根据题意列出等式,,然后化简代入即可解题.【详解】解:设“▲”的质量为a,由甲图可得,即,由乙图可得,即,∴,故选C.12. 【答案】D【解析】【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A.B.C,利用待定系数法求出二次函数的解析式,再求出与y轴的交点坐标即可判定选项D.【详解】解∶∵二次函数的顶点坐标为,∴二次函数图象的对称轴是直线,故选项A错误;∵二次函数的图象与x轴的一个交点的横坐标是,对称轴是直线,∴二次函数图象与x轴的另一个交点的横坐标是1,故选项B错误;∵抛物线开口向下,对称轴是直线,∴当时,y随x的增大而增大,故选项C错误;设二次函数解析式为,把代入,得,解得,∴,当时,,∴二次函数图象与y轴的交点的纵坐标是3,故选项D正确,故选D.二、填空题(本大题共4题,每题4分,共16分)13. 【答案】【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式==,故答案为:.【点拨】本题考查二次根式的乘法运算,掌握二次根式乘法的运算法则(a≥0,b>0)是解题关键.14. 【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出,即可求解.【详解】解∶由作图可知∶,∵,∴,故答案为∶5.15. 【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x天,根据题意,得,解得,故答案为:20.16. 【答案】##【解析】【分析】延长,交于点M,根据菱形的性质和中点性质证明,,过E点作交N点,根据三角函数求出,,,,在中利用勾股定理求出,根据菱形的性质即可得出答案.【详解】延长,交于点M,在菱形中,点E,F分别是,的中点,,,,,在和中,,,在和中,,,,,,过E点作于N点,,,,,,,在中,即,,,故答案为:.【点拨】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,正确添加辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. 【答案】(1)见解析(2),1【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,;选择①,②,④,;选择①,③,④,;选择②,③,④,;(2)解:;当时,原式.18. 【答案】(1)(2),理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点代入可得k的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A.点B和点C的横坐标即可比较大小.【小问1详解】解:把代入,得,∴,∴反比例函数的表达式为;【小问2详解】解:∵,∴函数图象位于第一、三象限,∵点,,都在反比例函数的图象上,,∴,∴.19. 【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数,找出符合要求的数量,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有4种,故甲被抽中的概率为.20. 【答案】(1)见解析(2)【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明是平行四边形,然后根据矩形的定义得到结论即可;(2)利用勾股定理得到长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵,,∴是平行四边形,又∵,∴四边形是矩形;选择②,证明:∵,,∴是平行四边形,又∵,∴四边形是矩形;【小问2详解】解:∵,∴,∴矩形的面积为.21. 【答案】(1)种植1亩甲作物和1亩乙作物分别需要5.6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x、y名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a亩,则种植乙作物亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x、y名学生,根据题意,得,解得,答:种植1亩甲作物和1亩乙作物分别需要5.6名学生;【小问2详解】解:设种植甲作物a亩,则种植乙作物亩,根据题意,得:,解得,答:至少种植甲作物5亩.22. 【答案】(1)(2)【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出长,然后根据计算即可.【小问1详解】解:在中,,∴,∴,【小问2详解】解:由题可知,∴,又∵,∴,∴.23. 【答案】(1)(答案不唯一)(2)(3)【解析】分析】(1)利用等边对等角可得出,即可求解;(2)连接,利用切线的性质可得出,利用等边对等角和对顶角的性质可得出,等量代换得出,然后利用三角形内角和定理求出,即可得证;(3)设,则可求,,,,在中,利用勾股定理得出,求出x的值,利用可求出,即可求解.【小问1详解】解:∵,∴,故答案为:(答案不唯一);【小问2详解】证明:连接,,∵是切线,∴,即,∵,∴,∵,,∴,∴,∴;【小问3详解】解:设,则,∴,,∴,在中,,∴,解得,(舍去)∴,,,∵,∴,解得,∴.【点拨】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24. 【答案】(1)(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y与x函数表达式为,把,;,代入,得,解得,∴y与x的函数表达式为;【小问2详解】解:设日销售利润为w元,根据题意,得,∴当时,有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w元,根据题意,得,∴当时,有最大值为,∵糖果日销售获得的最大利润为392元,∴,化简得解得,当时,,则每盒的利润为:,舍去,∴m的值为2.25. 【答案】(1)画图见解析,90(2)见解析(3)或【解析】【分析】(1)依题意画出图形即可,证明四边形是矩形,即可求解;(2)过P作于C,证明矩形是正方形,得出,利用证明,得出,然后利用线段的和差关系以及等量代换即可得证;(3)分M在线段,线段的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,即为所求,∵,,,∴四边形是矩形,∴,故答案为:90;【小问2详解】证明:过P作于C,由(1)知:四边形是矩形,∵点P在的平分线上,,,∴,∴矩形是正方形,∴,,∵,∴,又,,∴,∴,∴;【小问3详解】解:①当M在线段上时,如图,延长、相交于点G,由(2)知,设,则,,∴,∵,,∴,∴,∵,,∴,∴,∴,∴,∴;②当M在的延长线上时,如图,过P作于C,并延长交于G由(2)知:四边形是正方形,∴,,,∵,∴,又,,∴,∴,∴,∵∴,,∵,∴,∴,即,∴,∵,∴,∴,∴,∴;综上,的值为或.【点拨】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。