世界奥数七年级初赛1
七年级数学奥数题八套(附答案)
七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如果n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b,则化简a b(a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x = 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4; 则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案 一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D 二、9.一6a+1 06,10.一43.6, 11.男生比女生多的人数,1 2.90, 13.1 6,14.0.1 2 5,15.-151,16.1,17.1988;1. 18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).七年级奥数试题(二)一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。
七年级奥数竞赛讲座含答案
初一奥数数学竞赛第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789) =211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789) =1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解S=(1-2)+(3-4)+…+(-1)n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1·n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)×(100-2)的值:(100+2)×(100-2)=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算3001×2999的值.解3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算103×97×10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)×(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)×(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲:绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解(1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a <0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0) =|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002,y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4×13×(- 2)2- 12×(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z) =2xyz-2x2z =2×(-1)×2×(-3)-2×(-1)2×(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1×(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3 =a3-3a2b+3ab2-b3=(a-b)3 =(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以a3-b3-3ab(-1)=-1,即a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5×(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52×2+0+10×5×22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介一种不必求出a,b的值的解法.解14a-2b=2(7a-b) =2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5) =-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2×3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2 =(n+1-m)2=(11×11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0·x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0·x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4×3-3(a-3)=6×3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3×3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即(a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2×1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即(2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k >5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④×3+⑤×4得33y+8y=-57+16,所以y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①×2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①×2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①×3+②消去y得①×5+②×3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)·3+(a+2)·(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4×(-3)-b×(-1)=-2.③a×5+5×4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x 1,x 2,x 3,x 4,x 5满足方程组试确定3x 4+2x 5的值.3.将式子3x 2+2x-5写成a(x+1)2+b(x+1)+c 的形式,试求4.k 为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m 的值第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).说明对含有字母系数的不等式的解,也要分情况讨论.。
七年级组初赛试题及答案
七年级组初赛试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是三角形的D. 地球是方形的答案:B2. 太阳系中最大的行星是?A. 地球B. 木星C. 火星D. 金星答案:B3. 以下哪个是哺乳动物的特征?A. 有羽毛B. 有鳞片C. 有毛发D. 有翅膀答案:C4. 以下哪个选项是正确的?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 所有以上选项答案:D5. 以下哪个是化学元素的符号?A. HB. HeC. CD. 所有以上选项答案:D6. 以下哪个是光合作用的产物?A. 氧气B. 二氧化碳C. 水D. 所有以上选项答案:A7. 以下哪个是正确的数学公式?A. 勾股定理B. 圆周率C. 黄金分割D. 所有以上选项答案:D8. 以下哪个是正确的物理单位?A. 米B. 千克C. 秒D. 所有以上选项答案:D9. 以下哪个是正确的历史事件?A. 秦始皇统一六国B. 哥伦布发现新大陆C. 法国大革命D. 所有以上选项答案:D10. 以下哪个是正确的地理现象?A. 地壳运动B. 海洋环流C. 季风气候D. 所有以上选项答案:D二、填空题(每题2分,共20分)1. 地球的自转周期是____小时。
答案:242. 太阳系中距离太阳最近的行星是____。
答案:水星3. 哺乳动物的体温是____的。
答案:恒定4. 牛顿第一定律也被称为____定律。
答案:惯性5. 化学元素周期表中,元素符号为“Fe”代表的是____。
答案:铁6. 光合作用的主要原料是____和____。
答案:水、二氧化碳7. 勾股定理的公式是____。
答案:a² + b² = c²8. 圆周率的近似值是____。
答案:3.149. 秦始皇统一六国的时间是公元前____年。
答案:22110. 季风气候主要分布在____。
答案:亚洲东部三、简答题(每题5分,共30分)1. 请简述地球的形状及其科学依据。
七年级上册奥数竞赛题动点动角一元一次方程
七年级上册奥数竞赛题动点动角一元一次方程七年级上册奥数竞赛题中的动点动角和一元一次方程问题是一个经典而有趣的数学题型。
通过分析这类题目的具体操作方法以及推理论点,我们可以得出实践导向的结论,并进一步阐释相关问题。
本文将围绕这个主题,通过举例说明具体操作方法,分析性循序推理论点,并给出实践导向的结论,同时还会添加更多细节和深入相关信息。
动点动角问题是指在一个平面上,给定一个动点和一个初始角度,根据一定的规则,求解该动点在不同时间点上的位置。
在七年级上册的奥数竞赛中,常常出现这样的问题:已知一个动点以一定的角速度和初始角度在平面上运动,求解该动点在某个特定时间点上的位置坐标。
举一个例子,假设一个小车以每秒30度的角速度顺时针旋转,并且初始角度为0度。
那么在经过2秒后,我们可以通过一元一次方程来计算小车的位置坐标。
首先,我们可以设小车的初始坐标为原点O,然后根据角速度和时间的关系,可以得出小车在经过t秒后的角度A为A=30t。
接下来,我们需要利用三角函数的知识来求解小车的位置坐标。
在平面直角坐标系中,我们可以将小车的位置坐标表示为(x, y),其中x表示小车与y轴的距离,y表示小车与x轴的距离。
根据三角函数的定义,我们可以得出x=cosA和y=sinA。
代入A=30t,我们可以得到x=cos(30t)和y=sin(30t)。
因此,小车在经过2秒后的位置坐标可以表示为(x, y)=(cos(30*2), sin(30*2))。
通过这个例子,我们可以看出动点动角问题与一元一次方程的关联。
在解决这类问题时,我们需要将动点的运动过程转化成角度的变化,并利用三角函数的知识求解其位置坐标。
这就涉及到了一元一次方程的运用,即将时间作为未知数,通过角速度和初始角度的关系来建立方程,从而求解所需的位置坐标。
通过分析这类问题,我们可以得出以下实践导向的结论:在解决动点动角问题时,我们需要熟练掌握角速度和初始角度的概念,以及角度与位置坐标之间的关系。
七年级奥数课本(上册)
第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1计算:分析中学数学中,由于负数的引入,符号“+”与“-”具有了双重涵义,它既是表示加法与减法的运算符号,也是表示正数与负数的性质符号.因此进行有理数运算时,一定要正确运用有理数的运算法则,尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中,常常把小数变成分数,把带分数变成假分数,这样便于计算.例2计算下式的值:211³555+445³789+555³789+211³445.分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211³555+211³445)+(445³789+555³789)=211³(555+445)+(445+555)³789=211³1000+1000³789=1000³(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+(-1)n+1²n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项,第三、第四项,…,分别配对的方式计算,就能得到一系列的“-1”,于是一改“去括号”的习惯,而取“添括号”之法.解 S=(1-2)+(3-4)+…+(-1)n+1²n.下面需对n的奇偶性进行讨论:当n为偶数时,上式是n/2个(-1)的和,所以有当n为奇数时,上式是(n-1)/2个(-1)的和,再加上最后一项(-1)n+1²n=n,所以有例4在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.2.用字母表示数我们先来计算(100+2)³(100-2)的值:(100+2)³(100-2)=100³100-2³100+2³100-4=1002-22.这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式(a+b)(a-b)=a2-b2,①这个公式叫平方差公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例5计算 3001³2999的值.解 3001³2999=(3000+1)(3000-1)=30002-12=8 999 999.例6计算 103³97³10 009的值.解原式=(100+3)(100-3)(10000+9)=(1002-9)(1002+9)=1004-92=99 999 919.例7计算:分析与解直接计算繁.仔细观察,发现分母中涉及到三个连续整数:12 345,12 346,12 347.可设字母n=12 346,那么12 345=n-1,12 347=n+1,于是分母变为n2-(n-1)(n+1).应用平方差公式化简得n2-(n2-12)=n2-n2+1=1,即原式分母的值是1,所以原式=24 690.例8计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).分析式子中2,22,24,…每一个数都是前一个数的平方,若在(2+1)前面有一个(2-1),就可以连续递进地运用(a+b)(a-b)=a2-b2了.解原式=(2-1)(2+1)(22+1)(24+1)(28+1)³(216+1)(232+1)=(22-1)(22+1)(24+1)(28+1)(216+1)³(232+1)=(24-1)(24+1)(28+1)(216+1)(232+1)=……=(232-1)(232+1)=264-1.例9计算:分析在前面的例题中,应用过公式(a+b)(a-b)=a2-b2.这个公式也可以反着使用,即a2-b2=(a+b)(a-b).本题就是一个例子.通过以上例题可以看到,用字母表示数给我们的计算带来很大的益处.下面再看一个例题,从中可以看到用字母表示一个式子,也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90³20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷20=89.95.例12 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000³500.从而有 S=500 000.说明一般地,一列数,如果从第二项开始,后项减前项的差都相等(本题3-1=5-3=7-5=…=1999-1997,都等于2),那么,这列数的求和问题,都可以用上例中的“倒写相加”的方法解决.例13计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,说明如果一列数,从第二项起每一项与前一项之比都相等(本例中是都等于5),那么这列数的求和问题,均可用上述“错位相减”法来解决.例14 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991³1999-1990³2000;(4)4726342+472 6352-472 633³472 635-472 634³472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第二讲绝对值绝对值是初中代数中的一个基本概念,在求代数式的值、化简代数式、证明恒等式与不等式,以及求解方程与不等式时,经常会遇到含有绝对值符号的问题,同学们要学会根据绝对值的定义来解决这些问题.下面我们先复习一下有关绝对值的基本知识,然后进行例题分析.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解 (1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a <0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为 abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解 a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002, y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就可以分类讨论化简了.原式=-(3x+1)-(2x-1)=5x;原式=(3x+1)-(2x-1)=x+2;原式=(3x+1)+(2x-1)=5x.即说明解这类题目,可先求出使各个绝对值等于零的变数字母的值,即先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为“零点分段法”.例9已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.解有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.例10设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.分析本题也可用“零点分段法”讨论计算,但比较麻烦.若能利用|x-a|,|x-b|,|x-c|,|x-d|的几何意义来解题,将显得更加简捷便利.解设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图1-3所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).例11若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.分析与解要使原式对任何数x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有2x-5x+3x=0一种情况.因此必须有|4-5x|=4-5x且|1-3x|=3x-1.故x应满足的条件是此时原式=2x+(4-5x)-(1-3x)+4=7.练习二1.x是什么实数时,下列等式成立:(1)|(x-2)+(x-4)|=|x-2|+|x-4|;“.” Tel:151******** 整理者:辛国庆(2)|(7x+6)(3x-5)|=(7x+6)(3x-5).2.化简下列各式:(2)|x+5|+|x-7|+|x+10|.3.若a+b<0,化简|a+b-1|-|3-a-b|.4.已知y=|x+3|+|x-2|-|3x-9|,求y的最大值.5.设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15,对于满足p≤x≤15的x来说,T的最小值是多少?6.已知a<b,求|x-a|+|x-b|的最小值.7.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为( ).(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.第三讲求代数式的值用具体的数代替代数式里的字母进行计算,求出代数式的值,是一个由一般到特殊的过程.具体求解代数式值的问题时,对于较简单的问题,代入直接计算并不困难,但对于较复杂的代数式,往往是先化简,然后再求值.下面结合例题初步看一看代数式求值的常用技巧.例1求下列代数式的值:分析上面两题均可直接代入求值,但会很麻烦,容易出错.我们可以利用已经学过的有关概念、法则,如合并同类项,添、去括号等,先将代数式化简,然后再求值,这样会大大提高运算的速度和结果的准确性.=0-4a3b2-a2b-5=-4³13³(- 2)2- 12³(-2)-5=-16+2-5=-19.(2)原式=3x2y-xyz+(2xyz-x2z)+4x2?[3x2y-(xyz-5x2z)]=3x2y-xyz+2xyz-x2z+4x2z-3x2y+(xyz-5x2z)=(3x2y-3x2y)+(-xyz+2xyz+xyz)+(-x2z+4x2z-5x2z)=2xyz-2x2z=2³(-1)³2³(-3)-2³(-1)2³(-3)=12+6=18.说明本例中(1)的化简是添括号,将同类项合并后,再代入求值;(2)是先去括号,然后再添括号,合并化简后,再代入求值.去、添括号时,一定要注意各项符号的变化.例2已知a-b=-1,求a3+3ab-b3的值.分析由已知条件a-b=-1,我们无法求出a,b的确定值,因此本题不能像例1那样,代入a,b的值求代数式的值.下面给出本题的五种解法.解法1由a-b=-1得a=b-1,代入所求代数式化简a3+3ab-b3=(b-1)3+3(b-1)b-b3=b3-3b2+3b-1+3b2-3b-b3=-1.说明这是用代入消元法消去a化简求值的.解法2因为a-b=-1,所以原式=(a3-b3)+3ab=(a-b)(a2+ab+b2)+3ab=-1³(a2+ab+b2)+3ab=-a2-ab-b2+3ab=-(a2-2ab+b2)=-(a-b)2=-(-1)2=-1.说明这种解法是利用了乘法公式,将原式化简求值的.解法3 因为a-b=-1,所以原式=a3-3ab(-1)-b3=a3-3ab(a-b)-b3=a3-3a2b+3ab2-b3=(a-b)3=(-1)3=-1.说明这种解法巧妙地利用了-1=a-b,并将3ab化为-3ab(-1)=-3ab(a-b),从而凑成了(a-b)3.解法4 因为a-b=-1,所以(a-b)3=(-1)3=1,即 a3+3ab2-3a2b-b3=-1,a3-b3-3ab(a-b)=-1,所以 a3-b3-3ab(-1)=-1,即 a3-b3+3ab=-1.说明这种解法是由a-b=-1,演绎推理出所求代数式的值.解法 5a3+3ab-b3=a3+3ab2-3a2b-b3-3ab2+3a2b+3ab=(a-b)3+3ab(a-b)+3ab=(-1)3+3ab(-1)+3ab=-1.说明这种解法是添项,凑出(a-b)3,然后化简求值.通过这个例题可以看出,求代数式的值的方法是很灵活的,需要认真思考,才能找到简便的算法.在本例的各种解法中,用到了几个常用的乘法公式,现总结如下:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a-b)3=a3-3a2b+3ab2-b3;a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2).解由已知,xy=2(x+y),代入所求代数式中,消去xy,然后化简.所以解因为a=3b,所以c=5a=5³(3b)=15b.将a,c代入所求代数式,化简得解因为(x-5)2,|m|都是非负数,所以由(1)有由(2)得y+1=3,所以y=2.下面先化简所求代数式,然后再代入求值.=x2y+5m2x+10xy2=52³2+0+10³5³22=250例6如果4a-3b=7,并且3a+2b=19,求14a-2b的值.分析此题可以用方程组求出a,b的值,再分别代入14a-2b求值.下面介绍一种不必求出a,b的值的解法.解 14a-2b=2(7a-b)=2[(4a+3a)+(-3b+2b)]=2[(4a-3b)+(3a+2b)]=2(7+19)=52.|x|+|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的值.分析所求代数式中六个绝对值的分界点,分别为:0,1,2,据绝对值的意义去掉绝对值的符号,将有3个x和3个-x,这样将抵消掉x,使求值变得容易.原式=x+(x-1)+(x-2)-(x-3)-(x-4)-(x-5)=-1-2+3+4+5=9.说明实际上,本题只要x的值在2与3之间,那么这个代数式的值就是9,即它与x具体的取值无关.例8若x:y:z=3:4:7,且2x-y+z=18,那么x+2y-z的值是多少?分析 x:y:z=3:4:7可以写成的形式,对于等比,我们通常可以设它们的比值为常数k,这样可以给问题的解决带来便利.x=3k,y=4k,z=7k.因为2x-y+z=18,所以2³3k-4k+7k=18,所以k=2,所以x=6,y=8,z=14,所以x+2y-z=6+16-14=8.例9已知x=y=11,求(xy-1)2+(x+y-2)(x+y-2xy)的值.分析本题是可直接代入求值的.下面采用换元法,先将式子改写得较简洁,然后再求值.解设x+y=m,xy=n.原式=(n-1)2+(m-2)(m-2n)=(n-1)2+m2-2m-2mn+4n=n2-2n+1+4n-2m-2mn+m2=(n+1)2-2m(n+1)+m2=(n+1-m)2=(11³11+1-22)2=(121+1-22)2=1002=10000.说明换元法是处理较复杂的代数式的常用手法,通过换元,可以使代数式的特征更加突出,从而简化了题目的表述形式.练习三1.求下列代数式的值:(1)a4+3ab-6a2b2-3ab2+4ab+6a2b-7a2b2-2a4,其中a=-2,b=1;的值.3.已知a=3.5,b=-0.8,求代数式|6-5b|-|3a-2b|-|8b-1|的值.4.已知(a+1)2-(3a2+4ab+4b2+2)=0,求 a,b的值.5.已知第四讲一元一次方程方程是中学数学中最重要的内容.最简单的方程是一元一次方程,它是进一步学习代数方程的基础,很多方程都可以通过变形化为一元一次方程来解决.本讲主要介绍一些解一元一次方程的基本方法和技巧.用等号连结两个代数式的式子叫等式.如果给等式中的文字代以任何数值,等式都成立,这种等式叫恒等式.一个等式是否是恒等式是要通过证明来确定的.如果给等式中的文字(未知数)代以某些值,等式成立,而代以其他的值,则等式不成立,这种等式叫作条件等式.条件等式也称为方程.使方程成立的未知数的值叫作方程的解.方程的解的集合,叫作方程的解集.解方程就是求出方程的解集.只含有一个未知数(又称为一元),且其次数是1的方程叫作一元一次方程.任何一个一元一次方程总可以化为ax=b(a≠0)的形式,这是一元一次方程的标准形式(最简形式).解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b;(5)方程两边同除以未知数的系数,得出方程的解.一元一次方程ax=b的解由a,b的取值来确定:(2)若a=0,且b=0,方程变为0²x=0,则方程有无数多个解;(3)若a=0,且b≠0,方程变为0²x=b,则方程无解.例1解方程解法1从里到外逐级去括号.去小括号得去中括号得去大括号得解法2按照分配律由外及里去括号.去大括号得化简为去中括号得去小括号得例2已知下面两个方程3(x+2)=5x,①4x-3(a-x)=6x-7(a-x) ②有相同的解,试求a的值.分析本题解题思路是从方程①中求出x的值,代入方程②,求出a的值.解由方程①可求得3x-5x=-6,所以x=3.由已知,x=3也是方程②的解,根据方程解的定义,把x=3代入方程②时,应有4³3-3(a-3)=6³3-7(a-3),7(a-3)-3(a-3)=18-12,例3已知方程2(x+1)=3(x-1)的解为a+2,求方程2[2(x+3)-3(x-a)]=3a的解.解由方程2(x+1)=3(x-1)解得x=5.由题设知a+2=5,所以a=3.于是有2[2(x+3)-3(x-3)]=3³3,-2x=-21,例4解关于x的方程(mx-n)(m+n)=0.分析这个方程中未知数是x,m,n是可以取不同实数值的常数,因此需要讨论m,n取不同值时,方程解的情况.解把原方程化为m2x+mnx-mn-n2=0,整理得 m(m+n)x=n(m+n).当m+n≠0,且m=0时,方程无解;当m+n=0时,方程的解为一切实数.说明含有字母系数的方程,一定要注意字母的取值范围.解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.例5解方程(a+x-b)(a-b-x)=(a2-x)(b2+x)-a2b2.分析本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去x2,也就是说,原方程实际上仍是一个一元一次方程.解将原方程整理化简得(a-b)2-x2=a2b2+a2x-b2x-x2-a2b2,即 (a2-b2)x=(a-b)2.(1)当a2-b2≠0时,即a≠±b时,方程有唯一解(2)当a2-b2=0时,即a=b或a=-b时,若a-b≠0,即a≠b,即a=-b时,方程无解;若a-b=0,即a=b,方程有无数多个解.例6已知(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x-2m)+m的值.解因为(m2-1)x2-(m+1)x+8=0是关于x的一元一次方程,所以m2-1=0,即m=±1.(1)当m=1时,方程变为-2x+8=0,因此x=4,代数式的值为199(1+4)(4-2³1)+1=1991;(2)当m=-1时,原方程无解.所以所求代数式的值为1991.例7 已知关于x的方程a(2x-1)=3x-2无解,试求a的值.解将原方程变形为2ax-a=3x-2,即 (2a-3)x=a-2.由已知该方程无解,所以例8 k为何正数时,方程k2x-k2=2kx-5k的解是正数?来确定:(1)若b=0时,方程的解是零;反之,若方程ax=b的解是零,则b=0成立.(2)若ab>0时,则方程的解是正数;反之,若方程ax=b的解是正数,则ab>0成立.(3)若ab<0时,则方程的解是负数;反之,若方程ax=b的解是负数,则ab<0成立.解按未知数x整理方程得(k2-2k)x=k2-5k.要使方程的解为正数,需要(k2-2k)(k2-5k)>0.看不等式的左端(k2-2k)(k2-5k)=k2(k-2)(k-5).因为k2≥0,所以只要k>5或k<2时上式大于零,所以当k<2或k>5时,原方程的解是正数,所以k>5或0<k<2即为所求.例9若abc=1,解方程解因为abc=1,所以原方程可变形为化简整理为化简整理为说明像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.例10若a,b,c是正数,解方程解法1原方程两边乘以abc,得到方程ab(x-a-b)+bc(x-b-c)+ac(x-c-a)=3abc.移项、合并同类项得ab[x-(a+b+c)]+bc[x-(a+b+c)]+ac[x-(a+b+c)]=0,因此有[x-(a+b+c)](ab+bc+ac)=0.因为a>0,b>0,c>0,所以ab+bc+ac≠0,所以x-(a+b+c)=0,即x=a+b+c为原方程的解.解法2将原方程右边的3移到左边变为-3,再拆为三个“-1”,并注意到其余两项做类似处理.设m=a+b+c,则原方程变形为所以即x-(a+b+c)=0.所以x=a+b+c为原方程的解.说明注意观察,巧妙变形,是产生简单优美解法所不可缺少的基本功之一.例11设n为自然数,[x]表示不超过x的最大整数,解方程:分析要解此方程,必须先去掉[ ],由于n是自然数,所以n与(n+1)…,n[x]都是整数,所以x必是整数.解根据分析,x必为整数,即x=[x],所以原方程化为合并同类项得故有所以x=n(n+1)为原方程的解.例12已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.解由原方程可解得a最小,所以x应取x=160.所以所以满足题设的自然数a的最小值为2.练习四1.解下列方程:*2.解下列关于x的方程:(1)a2(x-2)-3a=x+1;4.当k取何值时,关于x的方程3(x+1)=5-kx,分别有:(1)正数解;(2)负数解;(3)不大于1的解.第五讲方程组的解法二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元,主要的消元方法有代入消元和加减消元两种,下面结合例题予以介绍.例1解方程组解将原方程组改写为由方程②得x=6+4y,代入①化简得11y-4z=-19.④由③得2y+3z=4.⑤④³3+⑤³4得33y+8y=-57+16,所以 y=-1.将y=-1代入⑤,得z=2.将y=-1代入②,得x=2.所以为原方程组的解.说明本题解法中,由①,②消x时,采用了代入消元法;解④,⑤组成的方程组时,若用代入法消元,无论消y,还是消z,都会出现分数系数,计算较繁,而利用两个方程中z的系数是一正一负,且系数的绝对值较小,采用加减消元法较简单.解方程组消元时,是使用代入消元,还是使用加减消元,要根据方程的具体特点而定,灵活地采用各种方法与技巧,使解法简捷明快.例2解方程组解法1由①,④消x得由⑥,⑦消元,得解之得将y=2代入①得x=1.将z=3代入③得u=4.所以解法2由原方程组得所以x=5-2y=5-2(8-2z)=-11+4z=-11+4(11-2u)=33-8u=33-8(6-2x)=-15+16x,即x=-15+16x,解之得x=1.将x=1代入⑧得u=4.将u=4代入⑦得z=3.将z=3代入⑥得y=2.所以为原方程组的解.解法3①+②+③+④得x+y+z+u=10,⑤由⑤-(①+③)得y+u=6,⑥由①³2-④得4y-u=4,⑦⑥+⑦得y=2.以下略.说明解法2很好地利用了本题方程组的特点,解法简捷、流畅.例3解方程组分析与解注意到各方程中同一未知数系数的关系,可以先得到下面四个二元方程:①+②得x+u=3,⑥②+③得y+v=5,⑦③+④得z+x=7,⑧④+⑤得u+y=9.⑨又①+②+③+④+⑤得x+y+z+u+v=15.⑩⑩-⑥-⑦得z=7,把z=7代入⑧得x=0,把x=0代入⑥得u=3,把u=3代入⑨得y=6,把y=6代入⑦得v=-1.所以为原方程组的解.例4解方程组解法1①³2+②得由③得代入④得为原方程组的解.为原方程组的解.说明解法1称为整体处理法,即从整体上进行加减消元或代入消为换元法,也就是干脆引入一个新的辅助元来代替原方程组中的“整体元”,从而简化方程组的求解过程.例5已知分析与解一般想法是利用方程组求出x,y,z的值之后,代入所求的代数式计算.但本题中方程组是由三个未知数两个方程组成的,因此无法求出x,y,z的确定有限解,但我们可以利用加减消元法将原方程组变形.①-②消去x得①³3+②消去y得①³5+②³3消去z得例6已知关于x,y的方程组分别求出当a为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解.分析与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.解由①得2y=(1+a)-ax,③将③代入②得(a-2)(a+1)x=(a-2)(a+2).④(1)当(a-2)(a+1)≠0,即a≠2且a≠-1时,方程④有因而原方程组有唯一一组解.(2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解.(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.例7已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时,就有一个方程,而这些方程有一个公共解,试求出这个公共解.解法1根据题意,可分别令a=1,a=-2代入原方程得到一个方程组将x=3,y=-1代入原方程得(a-1)²3+(a+2)²(-1)+5-2a=0.所以对任何a值都是原方程的解.说明取a=1为的是使方程中(a-1)x=0,方程无x项,可直接求出y值;取a=-2的道理类似.解法2可将原方程变形为a(x+y-2)-(x-2y-5)=0.由于公共解与a无关,故有例8甲、乙两人解方程组原方程的解.分析与解因为甲只看错了方程①中的a,所以甲所得到的解4³(-3)-b³(-1)=-2.③a³5+5³4=13.④解由③,④联立的方程组得所以原方程组应为练习五1.解方程组2.若x1,x2,x3,x4,x5满足方程组试确定3x4+2x5的值.3.将式子3x2+2x-5写成a(x+1)2+b(x+1)+c的形式,试求4.k为何值时,方程组有唯一一组解;无解;无穷多解?5.若方程组的解满足x+y=0,试求m的值.第六讲一次不等式(不等式组)的解法不等式和方程一样,也是代数里的一种重要模型.在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且“数学的基本结果往往是一些不等式而不是等式”.本讲是系统学习不等式的基础.下面先介绍有关一次不等式的基本知识,然后进行例题分析.1.不等式的基本性质这里特别要强调的是在用一个不等于零的数或式子去乘(或去除)不等式时,一定要注意它与等式的类似性质上的差异,即当所乘(或除)的数或式子大于零时,不等号方向不变(性质(5));当所乘(或除)的数或式子小于零时,不等号方向要改变(性质(6)).2.区间概念在许多情况下,可以用不等式表示数集和点集.如果设a,b为实数,且a<b,那么(1)满足不等式a<x<b的数x的全体叫作一个开区间,记作(a,b).如图1-4(a).(2)满足不等式a≤x≤b的数x的全体叫作一个闭区间,记作[a,b].如图1-4(b).(3)满足不等式a<x≤b(或a≤x<b)的x的全体叫作一个半开半闭区间,记作(a,b](或[a,b)).如图1-4(c),(d).3.一次不等式的一般解法一元一次不等式像方程一样,经过移项、合并同类项、整理后,总可以写成下面的标准型:ax>b,或ax<b.为确定起见,下面仅讨论前一种形式.一元一次不等式ax>b.(3)当a=0时,用区间表示为(-∞,+∞).例1解不等式解两边同时乘以6得12(x+1)+2(x-2)≥21x-6,化简得-7x≥-14,两边同除以-7,有x≤2.所以不等式的解为x≤2,用区间表示为(-∞,2].例2求不等式的正整数解.正整数解,所以原不等式的正整数解为x=1,2,3.例3解不等式分析与解因y2+1>0,所以根据不等式的基本性质有例4解不等式为x+2>7,解为x>5.这种错误没有考虑到使原不等式有意义的条件:x≠6.解将原不等式变形为解之得所以原不等式的解为x>5且x≠6.例5已知2(x-2)-3(4x-1)=9(1-x),且y<x+9,试比较解首先解关于x的方程得x=-10.将x=-10代入不等式得y<-10+9,即y<-1.例6解关于x的不等式:解显然a≠0,将原不等式变形为3x+3-2a2>a-2ax,即(3+2a)x>(2a+3)(a-1).。
七年级上册数学奥数知识点讲解
七年级上册数学奥数知识点讲解作为初中数学的重要组成部分,数学奥数知识点的掌握对于学生的学业成绩有着至关重要的影响。
本文旨在介绍七年级上册数学奥数知识点,帮助学生更好地理解这些知识点并提高数学成绩。
一、分式分式是初中数学奥数中的基础知识点之一,也是日常生活中常见的计算方法。
分式是指含有数值或变量的分数形式,且其分母不为零。
例如,$\frac{3}{4}$、$\frac{x}{y}$、$\frac{a+b}{c-d}$等就是分式。
在计算分式时,需要掌握常见的分式计算方法,如通分、约分、加减乘除等。
二、因数分解因数分解是指将一个数分解成两个或两个以上的因数的积的形式,是初中数学奥数中的重要知识点。
因数分解不仅可以帮助学生理解数的性质,还能在解决实际问题时发挥重要作用。
例如,将24分解成因数的积,可以得到$24=2\times2\times2\times3$。
这就是24的因数分解式。
在学习因数分解时,还需要掌握一些相关知识点,如最大公因数、最小公倍数、质数因数等。
三、平方根平方根是指一个数的正平方根,即能与其相乘得到该数的正整数,是初中数学奥数中的重要知识点之一。
在实际问题中,平方根常常被用来计算面积、体积、长度等。
例如,根据勾股定理可以得到直角三角形斜边的长度公式为$c=\sqrt{a^2+b^2}$,其中$\sqrt{}$的意思就是平方根。
当然,计算平方根还需要掌握相关的计算方法和公式,如平方根的性质、相反数、倒数等。
四、比例比例是指两个数或者两个量之间的大小关系,是初中数学奥数中的基础知识点之一。
比例在生活中广泛运用于各种计算,如商业、工程、科学等。
例如,购买物品时商家通常会给出价格与数量的比例,如“每斤10元”就表示价格与数量的比例为1:1。
在计算比例时,需要掌握一些基本的计算方法和公式,如比例的基本性质、比例的变化、比例的反比例等。
五、代数式和方程代数式和方程是初中数学奥数中的较为难点的知识点,而在实际问题的解决中却有着非常广泛的应用。
WMO世奥赛全国总决赛个人赛七年级初赛试卷
世界奥林匹克数学竞赛(中国区)选拔赛第八届世界奥林匹克数学竞赛(中国区)第八届世界奥林匹克数学竞赛(中国区)选拔选拔选拔赛赛冬季联赛全国总决赛---------------------------------------------------------------------------------考生须知:1.每位考生将获得考卷一份。
考试期间,不得使用计算工具或手机。
2.本卷共120分,填空题每小题5分,解答题每题10分,综合素质题10分,数学与生活10分。
3.请将答案写在本卷上。
考试完毕时,考卷及草稿纸会被收回。
4.若计算结果是分数,请化至最简,并确保为真分数或带分数。
七年级初赛试卷(本试卷满分120分,考试时间90分钟)一、填空题。
(每题5分,共60分)1.若a 、b 互为相反数,c 的绝对值为2,m 与n 互为倒数,则200922010)(mn c cb a −++=。
2.有2010名学生报数,从第一名开始从1至3报数,报到3的同学离开。
每轮后其余同学向前靠拢,再按此规则进行报数,那么过了轮后,人数首次不多于397人。
3.设n =100100101101102102103103……109109,则n 不能被7、9、11、13中哪些数整除:。
4.C 是线段AB 的中点,D 是线段CB 上的一点,如图所示,若所有线段的长度都是正整数,且线段AB 的所有可能的长度数的乘积等于140,则线段AB 的所有可能的长度数的和等于。
5.如图是某古宅大院窗棂图案:图形构成10×21的长方形,空格与实木的宽度均为1,那么,这种窗户的透光率(即空格面积与全部面积之比)是。
6.122−+−++x x x 的最小值是。
7.三个正方形连成如图所示的图形,则x 的度数为。
(四边形内角和为360°)(第7题图)(第8题图)(第11题图)8.如图,是由9个等边三角形组成的装饰图案,已知中间最小的等边三角形(阴影部分)边长为1cm,现欲将此图案的周边镶上一根彩线,则彩线的长度至少是。
初一奥林匹克数学竞赛真题及答案
初一奥林匹克数学竞赛真题及答案一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是()A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是()A.有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有()A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是()A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是()A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1.______.2.198919902-198919892=______.3.=________.4.关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的.如果工作4天后,工作效率提高了,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案及解析一、选择题1.C2.D3.C4.D5.C6.B7.D8.D9.C10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).。
世界青少年奥林匹克数学竞赛中国区选拔赛七年级数学试题含答案
2017春季省级初赛考生须知:本卷考试时间60分钟,共100分。
考试期间,不得使用计算工具或手机。
七年级试题(A卷)一、填空(每题3分,共30分)1、在△ABC 中,高BD 和CE 所在直线相交于O 点,若△ABC 不是直角三角形,且∠A =60°,则∠BOC =________度.2、在等腰△ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为___________.3、凸多边形恰好有三个内角是钝角,这样的多边形边数的最大值是____________.4、凸n 边形除去一个内角外,其余内角和为2570°,则n 的值是________.5、已知 是二元一次方程ay x -2=3的一个解,那么a 的值是________.6、若关于x 、y 的方程组 无解,则a 的值是________.7、正整数._______,698的最大值是则满足、m mn n m n m +=+8、已知关于x 的不等式组 无解,则a 的取值范围是________.9、 都是正数,那么N M 、的大小关系是________.10、若n 为不等式 的解,则n 的最小正整数的值是________.二、选择题(每题5分,共25分)11、三元方程 的非负整数解的个数有( ). A.20001999个 B.19992000个C.2001000个D.2001999个12、如图已知 分别⎩⎨⎧-==11y x ⎩⎨⎧=-=+1293y x y ax ⎩⎨⎧-≥--1250x a x >,如果))((),)((,,,200332200421200432200321200421a a a a a a N a a a a a a M a a a ++++++=++++++= 3002006>n 1999=++z y x CD BD ACB CP ACB A ABC 、,平分,中,∠∠=∠∆为ABC ∆的两个外角的平分线,给出下列结论:①CD CP ⊥; ②A D ∠-︒=∠2190;③AC PD //.其中正确的是( ). A.①② B.①③ C.②③ D.①②③13、有一个边长为4米的正六边形客厅,用边长为50厘米的正三角形瓷砖铺满,则需要这种瓷砖( )块.A.200B.300C.384D.42014、解方程组⎩⎨⎧=-=+472dy cx y ax 时,一个学生把a 看错后得到⎩⎨⎧==15y x ,而正确的解是⎩⎨⎧-==13y x ,则d c a 、、的值是:A.不能确定B.1,1,3===d c aC.d c 、不能确定,3=aD.2,2,3-===d c a15、某步行街摆放有若干盆甲、乙、丙三种造型的盆景,甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了( )朵.A.4380B.4200C. 4750D.3750三、计算题(16~20题每题5分,21~22题每题10分,共45分)16、已知,9,27,81614131===c b a 则c b a 、、的大小关系是多少?17、计算:20002000200020001998357153)37(++⨯18、已知=+++--a y x y xy x 1437622)(32(b y x +-x 3y ++c),试确定c b a 、、的值。
七年级数学竞赛初赛试卷
七年级数学竞赛初赛试卷一 填空题1.若01a <<,21b -<<-,则1212a b a b a b a b -++-+-++的值是 . 【答案】-3【解析】取0.5, 2.5a b ==-代入计算即可.2.若4322009m n x y --+=是关于,x y 的二元一次方程,且0mn <,03m n <+≤,则m n - 的值是 .【答案】4 【解析】4311213m m n n ⎧-==±⎧⎪∴⎨⎨-==±⎪⎩⎩0,031, 3.mn m n m n <<+∴=-=≤ 3.设,x y 为实数,代数式2254824x y xy x +-++的最小值为 .【答案】3.【解析】原式=()()224133x y x -+++≥4.化简:()()731022173+-=-. 【答案】4 【解析】原式=()()()()2227310221102211022144(7)(3)+-+-==- 5.计算: 111111()(1)232013232012+++++++ 11111(1)()22013232012-++++++= . 【答案】12013. 【解析】设111232013a +++=,111232012b +++=,则12013a b -=. 原式1(1)(1)2013a b a b a b =+-+=-=. 6.如图,已知正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,且13AE BF ==,动点P 从点E 出发沿线段EF 向点F 运动,当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次回到点E 时,点P 与正方形的边碰撞的次数(包括最后撞E 的一次)为 .FD CA B E【答案】6.【解析】如图,作相关直线的平行线,易知当点P 第一次回到点E 时,点P 与正方形的边碰撞的次数为6次. F D C A B E7.观察下列不等式: 213122+<; 221151233++<; 222111712344+++<; ……则第5个不等式是 .【解析】第4个不等式是222211119123455++++<, 第5个不等式是2222211111111234566+++++<. 【说明】明年可改为解答题,证明双向不等式.8.已知鸡兔同笼,共有a 只头和b 只脚(,a b 均是正整数),则,a b 应满足的条件是 .【答案】b 是偶数且24a b a <<.【解析】设笼子里有x 只鸡和y 只兔子,则,24.x y a x y b +=⎧⎨+=⎩解得42,22a b b a x y --==. 由,x y 都必须是正整数,可知b 是偶数且24a b a <<.9.设,a b 是常数,当,a b 满足条件 时,二元一次方程组1,2ax by x y a b+=⎧⎨-=--⎩无解. 【答案】20a b +=且1a ≠±.【解析】消去x ,得()221a b y a ab +=++. 该方程无解的条件是20a b +=且210a ab ++≠,即2b a =-且1a ≠±.10.已知在△ABC 中, AB BC CA <<,若4B C ∠=∠,则A ∠的取值范围是 .【答案】3080A ︒<∠<︒.【解析】由4B C ∠=∠,180A B C ∠+∠+∠=︒,得5180A C ∠+∠=︒.解得1365C A ∠=︒-∠,从而41445B A ∠=︒-∠. 由AB BC CA <<,知C A B ∠<∠<∠,即143614455A A A ︒-∠<∠<︒-∠. 解得3080A ︒<∠<︒.11.已知0,0,2a b a b >>+=,则22a b a b++的最小值是 . 【答案】1.【解析1】()()()2222211222a b a b a b a b ⎡⎤+=++-≥+=⎣⎦, 当且仅当1a b ==时,22a b +的最小值是2,22a b a b++的最小值是1. 【解析2】设1,1a t b t =+=-. 则()()2222211112t t a b t a b ++-+==+≥+. 当且仅当0,1t a b ===时,22a b a b++的最小值是1.12.三边长为整数,且周长等于36的不全等三角形的个数是 .【答案】27.【解析】设三角形的三边长为,,a b c ,且a b c ≤≤.由2363c a b c c <++=≤,得1218c ≤<,12,13,14,15,16,17c =.当12c =时,242a b b +=≤,12b ≥,由12b c ≤=知12,12b a ==.满足条件的三角形有1个. 类似地,当13,14,15,16,17c =时,分别有2,4,5,7,8个满足条件的三角形.因此,满足条件的三角形一共有1+2+4+5+7+8=27个.13.如图,建造一个花圃,花圃分为6个部分,现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则一共有 种不同的栽种方法.【解析1】按区域1→2→3→4→5→6的顺序栽花,显然1区有4种,2区3种,3区2种.如果4区与2区同色,则4区1种,5区2种,6区1种,这样全部栽种方法数是4×3×2×1×2×1=48种.如果4区与2区异色,则4区有1种,当5区与2区同色时,5区1种,6区2种;当5区与2区异色时,5区1种,6区1种,这样全部栽种方法数是4×3×2×1×1×2+4×3×2×1×1×1=72种.由分类计数原理知,共有48+72=120种栽种方法.本题也可按其他区域顺序涂色. 【解析2】先将6个区域分成4组,通过列举,6个区域分成4组的方案有5种,如下表:第一组 第二组 第三组 第四组分组方案1 1区 2区 3区、5区 4区、6区分组方案2 1区 2区、5区 3区、6区 4区分组方案3 1区 2区、5区 3区 4区、6区分组方案4 1区 2区、4区 3区、5区 6区分组方案5 1区 2区、4区 3区、6区 5区再将每一组栽一种颜色的花,有44A 种栽法,故整个花圃不同的栽种方法有445120A =种.14.已知若干个正数,互不相等,均不为1,每个数都等于其中另两个数的积,则这组数至少有 个.【答案】6.【解析】显然6个数111,,,,,a b ab ab b a ⎧⎫⎨⎬⎩⎭符合条件.下面否定个数为3,4,5的情形. (1)设3个数{},,a b ab 符合条件,则2a b ab ab =⋅=,21b =,1b =,矛盾. 这说明,3个数的情形不存在.(2)设4个数{},,,a b ab c 符合条件.(i)若b a ab =⋅,则21a =,1a =,矛盾; (ii)若b a c =⋅,则b c a =,4个数为,,,b a b ab a ⎧⎫⎨⎬⎩⎭,则a b ab =⋅或b a b a =⋅或b a ab a =⋅,即1b =(矛盾)或a b =(矛盾)或2a b =,从而4个数为231,,,b b b b ⎧⎫⎨⎬⎩⎭,则21b b b =⋅或231b b b =⋅或31b b b =⋅均得1b =,矛盾;(iii)若b ab c =⋅,则1c a =,4个数为1,,,a b ab a ⎧⎫⎨⎬⎩⎭,则a b ab =⋅或1a b a =⋅或1a ab a =⋅,即1b =(矛盾)或2b a =或a b =(矛盾),从而4个数为231,,,a a a a ⎧⎫⎨⎬⎩⎭,则21a a a =⋅或31a a a =⋅或231a a a =⋅均得1a =,矛盾.这说明,4个数的情形不存在.(3)设5个数{},,,,a b ab c d 符合条件.仿前述4个数的情形可推出矛盾.15..若2346,2347,3428,4239,a b c d a b c d a b c da b c d+++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩则3333d c b a +++= . 【答案】154. 【解析】将四个方程左右两边对应相加,得()1030a b c d +++=,3a b c d +++=.再将原一、三两个方程两边对应相加,得464614a b c d +++=,从而1b d +=.再将原二、四两个方程两边对应相加,得646416a b c d +++=,从而2a c +=.再将原一、二两个方程两边对应相加,得357513a b c d +++=,从而378a c +=.再将原一、四两个方程两边对应相加,得535715a b c d +++=,从而375b d +=. 从而3111,,,2222a b c d ====,3333154a b c d +++=.16.设,,a b c 是三个质数,满足2b a c =+,且8b a -=,则a b c ++= .【答案】33.【解析】由已知条件得8,16b a c a =+=+.若31a k =+(k 为正整数),则()833b a k =+=+为合数,矛盾;若32a k =+(k 为正整数),则()1636c a k =+=+为合数,矛盾.故3a k =(k 为正整数)且是质数,只能是3,11,19a b c ===.从而33a b c ++=.17.用abc 表示百位数字为a ,十位数字为b ,个位数字为c 的三位数,已知3194acb bca bac cab cba ++++=,则abc = .【答案】358. 【解析】因为()222abc acb bca bac cab cba a b c +++++=++, 即()3194222abc a b c +=++, 所以()()222319422215136abc a b c a b c =++-=++-+.经验证,136+222=358满足条件,136,358+222=580,580+222=802均不满足条件. 所以abc =358.18.既不是5的倍数,又不是2的倍数的正整数中,不能写成52a b -(,a b 为整数)形式的最小正整数是 .【答案】13. 【解析】12152=-,11352=-,25752=-,24952=-,141152=-,13不能写成52a b -形式,下面说明理由. 令()()265226156512c d a b a c b d ---=-⨯--⨯,其中2a c -=0或1,60,1,2,3,4,5b d -=. 则()()()265215120mod 13c d a b a c b d ---=-⨯--⨯≠.29.有一台单功能计算器,对任意两个整数只能完成它们差的绝对值的运算.启动该计算器,第一次输入两个整数后,显示结果为这两个数差的绝对值,输入第三个整数时,计算前次的结果与第三个整数差的绝对值.现启动该计算器,将1~2013这2013个整数随意地一个一个输入,全部输入完毕后显示的最后结果记为m ,则m 的最小值与最大值的和为 .【答案】2014.【解析】设输入的n 个数的顺序为123,,,,n x x x x ,则123n m x x x x =----一定不超过123,,,,n x x x x 中的最大数,所以0m n ≤≤.易知m 与123n ++++的奇偶性相同.任意四个连续正整数可以通过这种方式得到0:()()()1320a a a a -+-+-+=.(*)当2013n =时,1232013++++为奇数,m 为奇数,除1以外,每连续四个正整数按(*)式结合得到0,则m 的最小值为1;从1开始每连续四个正整数结合得到0,仅剩下2013,则m 的最大值为2013. 故m 的最小值与最大值的和为2014.。
奥林匹克数学竞赛初赛七年级考试卷(B)含答案
16.如图4是由几块相同的小正方体搭成的立体图形的三视图,则这立体图形中小正方体共有()块.
A、9B、10C、11D、12
Part 3计算:
17. 18.
Part 4列方程解应用题。
19、一队学生从甲地到乙地,速度为每小时8千米,当行进2千米路后,通讯员奉命回甲地取东西,他以每小时10千米的速度回甲地取了东西后,立即以同样速度追赶队伍,结果在距乙地3千米处追上队伍,求甲、乙两地的距离(取东西的时间不计)。
世界少年奥林匹克数学竞赛(中国区)选拔赛
2020-2021初赛试卷 七年级(B卷)
┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄
考生须知:本卷共120分,考试时间90分钟。第1至20题,每题6分。
考试期间,不得使用计算工具或手机
Part 1填空题
1.计算: + + +……+ =。
A、37B、36C、35D、34
15.某旅游团92人在快餐店就餐,该店备有9种菜,每份菜单单价分别为1、2、3、4、5、6、7、8、9(元),旅游团领队交代:每人可选不同的菜,但金额都须正好10元,且每一种菜最多只能买一份,这样,该团成员在购菜完全符合要求的所有方案中,至少有一个方案的人数不少于(C).
A.52 B.55 C.58 D.62
12.适合 的整数x的值的个数有(D)
A.5B.4C.3D.2
13.已知m是方程 的一个根,则 的值等于(D).
A、2005B、2006C、2007D、.2008
14.将一段72cm长的绳子,从一端开始每3cm作一记号,每4cm也作一记号,然后从有记号的地方剪断,则这段绳子共被剪成的段数为(B).
世界少年奥林匹克数学竞赛初赛七年级考试卷(A)含答案
世界少年奥林匹克数学竞赛(中国区)选拔赛 2012-2013 初赛试卷 七年级(A 卷) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 考生须知:本卷共120分,考试时间90分钟。
第1至20题,每题6分。
考试期间,不得使用计算工具或手机Part 1 填空题1. 计算: 211⨯+321⨯+431⨯+……+100991⨯= 。
2. 当1±≠x 时,方程20111133=--+++x x x x 的解是 。
3. 计算:3001×2999= 。
4. 计算: 97×103×10009= 。
5. 计算:1234712345-1234620122⨯= 。
6. 计算:当3-=x ,31=y 时,5y 3-2+x 的值是 。
7. 计算:=2-2-2--2-2-223201********* 。
8. 计算:有两个质数的平方和是125,这两质数的和是 。
9.当=x 时,分式 32+x x的值为0。
10. 732012÷的余数是 。
Part 2 单项选择题(把字母填在空格处)11. 如果4a-3b=7,并且3a+2b=19,14a-2b 的值是 。
A.52B.55C.58D.62 12.若m 为实数,则代数式m +m 的值一定是( ).A 、正数B 、0C 、负数D 、非负数 _______学校 姓名_________辅导教师__________年级____考场____考号手机电话 ---------------------------------------装-----------------------------订---------------------------线----------------------------------13.已知m 是方程01x -x 2=+2006的一个根,则3+1++22m 20062005m -m 的值等于( ). A 、2005 B 、2006 C 、2007 D 、.200814.将一段72cm 长的绳子,从一端开始每3cm 作一记号,每4cm 也作一记号,然后从有记号的地方剪断,则这段绳子共被剪成的段数为( ).A 、37B 、36C 、35D 、3415.某旅游团92人在快餐店就餐,该店备有9种菜,每份菜单单价分别为1、2、3、4、5、6、7、8、9(元),旅游团领队交代:每人可选不同的菜,但金额都须正好10元,且每一种菜最多只能买一份,这样,该团成员在购菜完全符合要求的所有方案中,至少有一个方案的人数不少于( ).A 、9人B 、10人C 、11人D 、12人16.如图4是由几块相同的小正方体搭成的立体图形的三视图,则这立体图形中小正方体共有( )块.A 、9B 、10C 、11D 、12Part 3 计算:17. 20022003)2()2(-+-; 18. 5.702.04.01.05.201.03.02.0-+=--x xPart 4 列方程解应用题。
七年级数学上学期竞赛试题(含答案)
七年级数学竞赛试题(满分:150分,时间:120分钟)第一卷 基础知识(满分100分)一、选择题(每小题5分,共50分) 1、(-0.125)2007×(-8)2008的值为( )(A )-4 (B )4 (C)-8 (D)82、任意有理数a ,式子1,1,,1a a a a a -+-++中,值不为0的是( ) (A )1a - (B )1a + (C )a a -+ (D )1a +3、若,,,a b c m 是有理数,且23,2a b c m a b c m ++=++=,那么b 与c ( ) (A )互为相反数 (B )互为倒数 (C )互为负倒数 (D )相等4、要使不等式753246a a a a a a a <<<<<<<成立,有理数a 的取值范围是( )(A )01a << (B )1a > (C )10a -<< (D )1a <- 5、把14个棱长为1的正方体,在地面上堆叠成如图所示的立方体,然后将露出的表面部分涂成红色,那么红色部分的面积为( ) (A )21 (B )24 (C )33 (D )376、某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场( ) A.不赔不赚 B.赚160元 C.赚80元 D.赔80元7、已知9999909911,99P Q ==,那么,P Q 的大小关系是( )(A )P Q > (B )P Q = (C )P Q < (D )无法确定8、小刘写出四个有理数,其中每三数之和分别是2,17,1,3--,那么小刘写出的四个有理数的乘积是( )(A )-1728 (B )102 (C )927 (D )无法确定 9、122-+-++x x x 的最小值是 ( ) (A ) 5 (B)4 (C)3 (D) 210、两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( ) (A) 273 (B) 819 (C) 1911 (D) 3549二、填空题(每小题6分,共30分) 11、当整数m =_________ 时,代数式136-m 的值是整数。
第12届IMC国际数学竞赛初一组初赛试题
第12届IMC国际数学竞赛初一组初赛试题第12届IMC国际数学竞赛初一组初赛试题涵盖了多个数学领域,旨在考察学生的数学基础知识、解题技巧以及创新思维能力。
以下是部分试题内容:1. 数列问题:- 某数列的前三项为1, 2, 3,从第四项开始,每一项都是前三项的和。
求第10项的值。
2. 几何问题:- 在一个直角三角形中,已知直角边分别为3厘米和4厘米,求斜边的长度。
3. 代数问题:- 解方程:\( x^2 - 5x + 6 = 0 \)。
4. 概率问题:- 一个袋子里有5个红球和3个蓝球,随机抽取2个球,求至少抽到一个红球的概率。
5. 逻辑推理问题:- 有5个盒子,每个盒子里都装有不同数量的糖果,分别是2, 3, 5, 7, 11颗。
现在知道这些糖果总数是30颗。
如果从每个盒子里都拿走1颗糖果,剩下的糖果总数是25颗。
请问每个盒子原来分别有多少颗糖果?6. 组合问题:- 有7种不同的颜色的球,需要选出5个球组成一组,问有多少种不同的组合方式?7. 应用题:- 一个农场主有一块长100米,宽50米的长方形土地。
他想在这块土地上种植两种作物,每种作物各占一半的土地面积。
如果一种作物需要每平方米2升水,另一种作物需要每平方米3升水,问农场主总共需要准备多少升水?8. 函数问题:- 定义一个函数\( f(x) = 2x + 3 \),求\( f(-1) \)的值。
9. 不等式问题:- 若\( a > 0 \)且\( b < 0 \),证明不等式\( a + b < |a| + |b| \)。
10. 统计问题:- 一组数据为:10, 12, 8, 15, 7。
求这组数据的平均数、中位数和众数。
请注意,这些试题只是示例,实际的IMC国际数学竞赛试题可能会包含更多的数学问题和更复杂的解题过程。
参赛者需要具备扎实的数学基础和良好的逻辑思维能力来解答这些题目。
2017imc国际数学竞赛初一组初赛试题
2017imc国际数学竞赛初一组初赛试题2017年IMC(International Mathematics Competition)国际数学竞赛是一项面向全球中学生的数学竞赛,旨在激发学生对数学的兴趣,培养他们的数学思维和解决问题的能力。
以下是2017年IMC国际数学竞赛初一组初赛的试题内容,供参考:一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个等边三角形的内角和是多少度?A. 90B. 180C. 270D. 3604. 以下哪个表达式等于 \( 2^3 \)?A. \( 2 \times 2 \)B. \( 2 \times 2 \times 2 \)C. \( 2 +2 + 2 \) D. \( 2 \times 2 + 2 \)5. 一个数的立方根是它自己,这个数可能是:A. 0B. 1C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 负数B. 正数C. 零D. 任意数7. 以下哪个数是质数?A. 1B. 2C. 3D. 48. 如果两个数的和是正数,且其中一个数是负数,那么另一个数:A. 必须为正数B. 可以是正数或零C. 必须为零D. 可以是负数或零9. 一个圆的半径增加一倍,它的面积增加:A. 2倍B. 4倍C. 8倍D. 16倍10. 一个长方体的体积是其长、宽、高的乘积,如果长宽高各增加一倍,体积增加:A. 2倍B. 3倍C. 4倍D. 8倍二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数是______。
12. 如果一个直角三角形的两条直角边分别是3和4,那么它的斜边长是______。
13. 一个数的倒数是1/4,这个数是______。
14. 如果一个数的立方是27,那么这个数是______。
15. 一个圆的直径是14厘米,那么它的半径是______厘米。
第16届全国初赛7年级
第16届WMO 世界奥林匹克数学竞赛七年级全国总决赛初赛(本试卷满分120分 ,考试时间90分钟 )一、选择题(每小题4分,共40分)1.如果a 与它的绝对值的和为0,则a -|2a |等于( ) A .0 B .a C .-a D .3a2.如图,点A 、B 对应的数是a 、b ,点A 在-3,-2对应的两点(包括这两点) 之间移动,点B 在-1,0对应的两点(包括这两点)之间移动,则以下四个代 数式的值可能比2017大的是( )A .b -aB .a b -1 C .(a -b )2 D .ba 11- 3.将1~1000的正整数中,除以4余3的数,由小到大排列,第n (1≤n ≤250) 个数可以表示为( )A .4n +3B .3n -4C .4n -1D .3n -24.若∠β与∠α互补,∠γ与∠α互余,且∠β与∠γ的和是34个平角,则∠β是∠α的( )A .512倍 B .5倍 C .11倍 D .无法确定两者的关系5.某县2016年“五一”期间举办了“杜鹃花旅游文化节”,吸引了众多游客前去 观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入景区的游客人数 约为1000人,同时每小时走出景区的游客人数约为600人,已知该景区游客的 饱和人数约为2000人,则据此可知开幕式当天该景区游客人数达到饱和的时间 约为( )A .10:00B .12:00C .13:00D .16:006.如图∠BOC =15°,图中所有不大于90°的角的度数之和为( ) A .270° B .285° C .320° D .360°7.如图,一圆桌周围有20个箱子,依顺时针方向编号为1~20.蜜蜜在1号箱子 中丢入一个红球后,沿着圆桌依顺时针方向行走,每经过一个箱子就依下列规 则丢入一个球:①若前一个箱子丢红球,经过的箱子就丢绿球;②若前一个箱 子丢绿球,经过的箱子就丢白球;③若前一个箱子丢白球,经过的箱子就丢红 球.已知她沿着圆桌走了100圈,则4号箱内红球的个数是( ) A .33 B .34 C .99 D .100第7题图 第10题图8.若a 、b 是有理数,且a >0,方程||x -a |-b |=3有3个不相等的解,则b 的值 为( )A .0B .-3C .2D .3 9.检查组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午 饭.由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇, 汽车赶了400千米才停下来休息.司机说:“再走从C 市到这里路程的二分之 一就到达目的地了.”则A 市到B 市的路程为( )A .600千米B .700千米C .800千米D .1200千米10.如图,四边形ABCD 中,AC 、BD 相交于O ,延长AC ,使AC =CE ,连接BE 、DE ,如果S 1,S 2,S 3分别表示△BCD ,△ABD ,△BDE 的面积,则下面正确 的结论是( )A .S 1=21S 2+S 3B .S 1=S 3-S 2C .S 1=21(S 3-S 2)D .S 1=21(S 3-2S 2)二、填空题(每小题5分,共30分)11.已知ab 2<0,a +b >0,且|a |=1,|b |=2,则|a -31|+(b -1)2=__________.12.若关于x 的一元一次方程3x +a =11的解也是关于a 的方程6x +3a =23的解,则 a =__________.13.某品牌奶粉的进货价降低8%而售价不变,利润由目前的m %增加到(m +10)%,则原利润为____________.14.在一次数学课上,包老师向学生提出了一个问题:苹果、梨、桔子、桃子四种水果都有许多,混在一起合成一大堆.最少要分成多少堆(每堆都有苹果、梨、 桔子和桃子四种水果),才能保证找得到这样的两堆,把这两堆合并后这四种 水果的个数都是偶数?你的答案是:___________堆.15.如左下图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是右下六种图的_____________.(填序号)16.在以下两个数列:1,3,5,7,…,1991,1993,1995,1997,1999和1,4,7,10,…,1990,1993,1996,1999中,同时出现在这两个数列中的数的个 数为_____________.三、解答题(共5小题,共50分)17.解关于x 的方程:(mx -n )(m +n )=0.(9分)18.历史上的数学巨人欧拉最先把关于x 的多项式用记号f (x )来表示.例如:f (x )=x 2+3x -5,当x =a 时,多项式的值用f (a )来表示.例如x =-1时, 多项式x 2+3x -5的值记为f (-1)=(-1)2+3×(-1)-5=-7.已知f (x ) =2632---+bkx a bx (a ,b 为常数),若对于任意有理数k ,总有f (2)=1, 求a ,b 的值.(9分)19.如图①,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3.将长方形OABC 沿数轴水平移动,移动后的长方形记为 O'A'B'C',移动后的长方形O'A'B'C'与原长方形OABC 重叠部分(如图②中阴 影部分)的面积记为S .设点A 的移动距离AA'=x . (1)当S =4时,x = ;(4分)(2)D 为线段AA'的中点,点E 在线段OO'上,且OE =31OO',当点D ,E 所表示的数互为相反数时,求x 的值.(6分)图① 图②20.转动钟面上的时针与分针,使时针与分针重合在12点处,再次转动钟面上的时针与分针.(1)算一算,什么时刻时针与分针再次重合?一天24小时中,时针与分针重 合多少次?(一天中起始时刻和结束时刻时针与分针重合次数只算一次, 下同)(5分)(2)转动钟面上的时针与分针,使时针与分针重合在12点处,再次转动钟面 上的时针与分针,算一算,什么时刻钟面角第一次为90°?一天24小时 中,钟面角为90°多少次?(5分)21.小美是一个爱动脑筋的学生,有一天老师布置了一道数学题:平面上有15条直线,无任何3条交于一点,怎样画才能得到72个交点,小美想了想,很快 就正确画出了图形,你知道小美是怎么画的吗?请你画出来.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
--------------------------------------------------------------------------------- 考生须知:
1. 每位考生将获得“题目及答题纸一份”。
2. 本卷共120分,第一题 、第二题(每小题6分),第三题(每小题10分)
3. 比赛期间,不得使用计算工具或手形。
4. 请将答案写在本卷上。
5. 比赛完毕时,所有“题目及答题纸”会被收回。
6. 本卷中所有附图不一定依比例绘成。
若计算结果是分数,请化至最简,并确保为真分数或
带分数,或将计算结果写成小数。
答案可以根式表示,但该根式必须是最简形式。
七年级试卷
(本试卷满分120分 ,考试时间90分钟 ) 一、选择题(每小题6分,共60分)
1. 若方程组2x-y-41=0;x-5y-16=0的解是方程3x-4ky=7的一个解
则k 的值是( )
A.13
B.14
C.15
D.16
2. 若方程组3x+5y=k+2;2x+3y=k 的解x 与y 的和为0,则k 的值为( )
A.k=-2
B.k=0
C.k=4
D.k=2
3. 古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸。
地支也有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字分别循环排列成如下两行: 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸……
子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……
从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,则当第2次甲和子在同一列时,该列的序号是( )
A. 31
B. 61
C. 91
D.无
4. 如图,在一个凸八边形中,每三个顶点形成三个角(如A ,B ,C 三个顶点形成∠ABC ,∠ACB ,
∠BAC),一共可作出168个角. 那么这些角中最小的一个一定是( )
(A )小于或等于20ο. (B) 小于或等于22.5ο
. (C)小于或等于25ο
. (D)小于或等于27.5ο
.
5. 两个正整数的和是60,它们的最小公倍数是273,则它们的乘积是( ) A. 273 B. 819 C. 1911 D. 3549
6. 定义一种新运算“▲”为x ▲y=ax +by(a,b 为常数),若1▲2=5,2▲3=8,那么,3▲4等于( )。
(A )10 (B )11 (C )12 (D )14
7. 如图,甲乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲速度的4倍,则它们第2007次相遇在边( )。
(A )AB 上 (B )BC 上 (C )CD 上 (D )DA 上
8. 已知坐标平面上的机器人接受指令“[a ,A]”(a ≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( ) A .(-1,-3)
B .(-1,3)
C .(3,-1)
D .(-3,-1)
9. 如图所示,AE ∥BD,∠1=3∠2, ∠2=25°,求∠C ?( )。
D
E
F
G
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
(A) 45° (B)50° (C)55° (D)60°
10.用M ,N ,P ,Q 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种. 图6-1—图6-4是由M ,N ,P ,Q 中的两种图形组合而成的(组合用“&”表示).
那么,下列组合图形中,表示P&Q 的是( )
二、填空题(每小题6分,共30分)
11. 小明的哥哥过生日时,妈妈送了他一件礼物:即三年后可以支取3000元的教育储蓄。
小明知道这笔储蓄年利率是3%(按复利计算),则小明妈妈为这件生日礼物在银行至少要存储________元。
(银行按整数元办理存储)
12. 一种商品,今年的成本比去年增加了十分之一,但仍保持原售价,因此,每份利润下降了五分之二,那么,今年这种商品的成本占售价的_________。
13. 在正整数中,不能写成三个不相等的合数之和的最大奇数是_____________。
14. 如图三圆每一个都外切于其他两个圆,并且三角形的每一边与圆中的两个相切,若每个圆的半径是8,那么三角形的周长是
__________.
15. 池塘里有3张荷叶A 、B 、C ,一只青蛙在这3张荷叶上跳来跳去,若青蛙从A 开始,跳
k (k ≥2)次后又回到A ,并设所有可能的不同跳法种数为k a ,则当k >2时,k a 与1 k a 之间的关系式是_______________。
8a 的值是__________。
三、解答题
16.如图,在△ABC 中,D 是BC 的中点,E 为AB 上一点,且BE=
3
1
AB 。
已知四边形BDME 的面积是35平方厘米,则△ABC 的面积是多少?
17.某校秋季运动会中,张、李、赵、丁、周、方、王、胡八名同学参加了100米比赛。
比赛结果是:1、李、赵、丁三人中李最快,丁最慢,但不是第八名;2、方的名次为张、赵名次的平均数;3、方比周高四个名次;4、王第四名;5、张比赵跑得快。
请你根据以上数据,填表排出八名同学的比赛名次。
第一名 第二名 第三名 第四名 第五名 第六名 第七名 第八名
M&P
N&P
N&Q
M&Q
图6-1
图6-2
图6-3
图6-4
A .
B .
C .
D .
D M
C B
E
A
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
18. 数独起源于18世纪的瑞士,后经美国、日本广泛流传与发展,最后形成了当今风靡世界的一种锻炼思维能力的数字游戏。
数独的游戏规则十分简单:
在一个9×9的九宫格里面填数字,每个方格中填入合适的数字以使得每行(从左到右),每列(从上到下)以及每个九宫格(加粗线条部分)都要包含从1~9的数字,并且既不..能遗漏也不能重复........。
请将下面数独问题中A 、B 、C 、D 所代表的数字填写完整:
A=________________ B=________________ C=________________ D=________________。