1998年全国硕士研究生入学考试数学二试题
1998考研数学真题
1998考研数学真题考研数学是研究生入学考试中重要的一部分,对于数学专业的考生来说尤为重要。
为了帮助考生更好地备考,下面将介绍1998年考研数学真题,并进行详细的解析与讲解。
一、多选题1.设集合A={1,2,3,4},B={2,3,4,5,6},C={1,3,5},则(A∪B)*C的结果是:A. {1,3,5,6}B. {1,2,3,4,5,6}C. {1,2,3,4,5}D. {2,3,4,5}答案:C解析:首先计算A∪B,得到{1,2,3,4,5,6},然后将结果与C计算得到的{1,3,5}进行运算,得到{1,2,3,4,5},故选项C为正确答案。
2.设集合A={x|x=a^2, a∈N},B={y|y=b^2, b∈N},若A∩B={9},则a,b分别为:A. a=√3, b=√3B. a=√3, b=3C. a=3, b=√3D. a=3, b=3答案:C解析:由题意可知,A是平方数集合,B也是平方数集合,且A∩B={9},则可推断9=a^2=b^2,因此a=3,b=3,故选项C为正确答案。
二、填空题1.若1+2+3+...+1998= ?,则填写中间那个数答案:1999003解析:该题是求1到1998的等差数列的和,使用等差数列求和公式Sn=(a1+an)n/2,其中a1为首项,an为末项,n为项数,代入a1=1,an=1998,n=1998,得到Sn=(1+1998)1998/2,计算结果为1999003。
2.设正整数n满足n^2-10n+9=0,那么n= ?答案:9解析:根据题意可得到n^2-10n+9=0,进行因式分解得到(n-9)(n-1)=0,因此n=9或n=1,但由题意要求正整数n,所以n=9为解。
三、计算题计算2sin45°+sin60°+cos30°的值。
答案:1.866解析:根据三角函数的定义和数值,sin45°=√2/2,sin60°=√3/2,cos30°=√3/2,带入计算得到2sin45°+sin60°+cos30°=2*√2/2+√3/2+√3/2=√2+√3=1.866。
1998年考研数学试题详解及评分参考
解:取沉放在原点 O, OY 轴正向铅直向下,则由牛顿第二定律得
m
d2y dt 2
=
mg
-
Br
-
kv
,
将
d2y dt 2
=
v
dy dt
代入以消去 t
,得 v与y
之间的微分方程 mv
=
y - b3 b1 - b2
=
z - c3 与直 线 c1 - c2
x - a1 a2 - a3
=
y - b1 b2 - b3
=
z - c1 c2 - c3
(A) 相交于一点 (B) 重合
(D) 平行但不重合
(D) 异面
【答】 应选 (A) .
éa1 b1 c1 ù
a1 b1 c1
【解】 因 êêa2
则 ( A* ) 2 + E 必有特征值
.
【答】 应填 [ A ]2 +1. l
【解】 因 A 有特征值 l ,故 A-1 必有特征值 1 , 从而 A* = A A-1 必有特征值 | A | ,
l
l
因此 ( A* ) 2 + E 必有特征值 ( A )2 +1. l
(5) 设平面区域 D 由曲线 y = 1 及直线 y = 0, x = 1, x = e2 所围成,二维随机变量 ( X ,Y ) 在
【解】
¶z ¶x
=
-
1 x2
f (xy) +
y x
f ¢(xy) +
yj ¢(x +
y) = yf ¢¢( xy) + j ¢(x +
y) +
yj ¢¢(x +
1998年全国硕士研究生入学考试数学二真题及答案
1998年全国硕士研究生入学统一考试数学二试题解析
0
x4 4
x3 3
x2
0 1
x4 4
x3 3
x2
2 0
0 (1 1 1) (4 8 4) 5 8 37 .
43
3
12 3 12
(3)【答案】 cot x ln sin x cot x x C.
【解析】因为 cot
x
csc2
x
1 sin 2
x
,所以
ln sin x sin2 x dx
x tf (x2 t2 )dt 0
u x2 t2
0
tf
x2
(u)
1 2t
du
0 x2
1 2
f
(u)du
1 2
x2
f (u)du ,
0
d x tf (x2 t2 )dt 1 d x2 f (u)du 1 f (x2 ) x2 1 f (x2 ) 2x xf (x2 ) .
由 yn
( xn
yn
)
1 xn
及
lim
n
xn
yn
0, lim 1 x n
n
0 可知 yn 为两个无穷小之积,故 yn 亦为无
穷小,应选(D).
方法2:排除法.
(A)的反例: xn
n,
yn
1 n2
,
lim
n
考研数学历年真题(1998-2007)年数学二
2007年全国硕士研究生入学统一考试数学二试题一、选择题:1~10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)当0x +→时,与x 等价的无穷小量是(A )1ex- (B )1ln1xx+- (C )11x +- (D )1cos x - [ ](2)函数在[],ππ-上的第一类间断点是x = [ ](A )0(B )1(C )2π-(D )2π (3)如图,连续函数()y f x =在区间[][]3,2,2,3--上的图形分别是直径为1的上、下半圆周,在区间[][]2,0,0,2-上的图形分别是直径为2的下、上半圆周,设0()()d xF x f t t =⎰,则下列结论正确的是:( )(A )3(3)(2)4F F =-- (B) 5(3)(2)4F F =(C ))()(2433F F =-(D ))()(2453-=-F F [ ] (4)设函数()f x 在0x =处连续,下列命题错误的是(A )若0()lim x f x x→存在,则(0)0f =(B )若0()()limx f x f x x→+-存在,则(0)0f = .(C )若0()lim x f x x→存在,则(0)0f '=(D )若0()()lim x f x f x x→--存在,则(0)0f '=.(5)曲线()1ln 1e xy x=++渐近线的条数为(A )0.(B )1.(C )2.(D )3. [ ](6)设函数()f x 在(0,)+∞上具有二阶导数,且()0f x ''>,令()n u f n =)( ,2,1=n ,则下列结论正确的是: (A) 若12u u > ,则{}n u 必收敛. (B) 若12u u > ,则{}n u 必发散(C) 若12u u < ,则{}n u 必收敛.(D) 若12u u < ,则{}n u 必发散. [ ](7)二元函数(,)f x y 在点()0,0处可微的一个充分条件是[ ] (A )()[](,)0,0lim(,)(0,0)0x y f x y f →-=.α均为n ,,s,,s α线性相关,则,,s A α线性相关,,s α线性相关,则,,s A α线性无关,,s α线性无关,则,,s A α线性相关,,s α线性无关,则,,s A α线性无关阶矩阵,将A 行得B ,再将2,)(A )F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C ) F(x)是周期函数⇔f(x)是周期函数.(D )F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A)32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-.(D) 32ln 8+. [ ](10)设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()((A) πab . (B)π2ab. (C) π)(b a +.(D)π2ba + . [ ] (11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y u y x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ ] (12)设函数,11)(1-=-x x ex f 则( )(A )x=0,x=1都是f(x)的第一类间断点. (B )x=0,x=1都是f(x)的第二类间断点.(C )x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D )x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ.(C) 01=λ. (D) 02=λ. [ ](14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则 [ ] (A )交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -.(D) 交换*A 的第1行与第2行得*B -.三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21x e y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分)计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分)确定常数a,使向量组,),1,1(1T a =α,)1,,1(2Ta =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)22(1)nn+1试问a取何值时, 该方程组有非零解, 并求出其通解.(23)(本题满分9分)设矩阵12314315a-⎛⎫⎪--⎪⎪⎝⎭的特征方程有一个二重根, 求a的值, 并讨论A是否可相似对角化.2003年考研数学(二)真题(A) 求曲线 )(x f y =的方程;(B) 已知曲线x y sin =在],0[π上的弧长为l ,试用l 表示曲线)(x f y =的弧长s .九 、(本题满分10分)有一平底容器,其内侧壁是由曲线)0)((≥=y y x ϕ绕y 轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设计要求,当以min /33m 的速率向容器内注入液体时,液面的面积将以min /2m π的速率均匀扩大(假设注入液体前,容器内无液体).+++1cos四、(本题满分7分)设.11.)1(232)(22≤≤<≤-⎪⎪⎩⎪⎪⎨⎧++=xxexexxxfxx,,,求函数⎰-=x dttfxF1)()(的表达式.五、(本题满分7分)已知函数)(xf在),(∞+0内可导,0)(>xf,1)(lim=+∞→xfx,且满足xh exfhxxfh11))()((lim=+→,求)(xf.六、(本题满分7分)求微分方程0)2(=-+dxyxxdy的一个解)(xyy=,使得由曲线)(xyy=与直线2,1==xx以及x轴所围成的平面图形绕x轴旋转一周的旋转体的体积最小.七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上断相平时,欲使闸门矩形部分与承受的水压与闸门下部承受的水压之比为5:4,闸门矩形部分的高h应为多少米?八、(本题满分8分)设31<<x,)3(1nnnxxx-=+(n=1,2,…).证明:数列{nx}的极限存在,并求此极限.九、(本题满分8分)设ba<<0,证明不等式abababbaa1lnln222<--<+.1、设1101)(>≤⎩⎨⎧=x x x f ,,则)]}([{x f f f =( ) ( A ) 0;(B )1;(C )1101>≤⎩⎨⎧x x ; (D )111>≤⎩⎨⎧x x .2、设当0→x 时,)1ln()cos 1(2x x +-是比n x x sin 高阶的无穷小,而nx x sin 是比()12-x e高阶的无穷小,则正整数n 等于( )( A )1; (B )2;(C )3; (D )4.3、曲线22)3()1(--=x x y 的拐点的个数为( ) ( A )0;(B )1;(C )2;(D )3.4、已知函数)(x f 在区间(1-δ,1+δ)内具有二阶可导,)(x f ' 严格单调减小,且)1(f =)1(f '=1,则( ) (A )在(1-δ,1)和(1,1+δ)内均有)(x f x <; (B )在(1-δ,1)和(1,1+δ)内均有)(x f x >;(C )在(1-δ,1)内有)(x f x <,在(1,1+δ)内,有)(x f x >; (D )在(1-δ,1)内有)(x f x >,在(1,1+δ)内,有)(x f x <.5、已知函数)(x f y =在其定义域内可导,它的图形如图所示:则其导函数)(x f y '=的图形为 ( )三、(本题满分6分)求⎰++1)12(22x xdx.四、(本题满分7分)求极限sin sin sin lim()sin xt x t x t x-→记此极限为)(x f ,求函数)(x f 的间断点并指出其类型.1、 写出)(x f 的带拉格朗日余项的一阶麦克劳林公式;2、 证明在],[a a -上至少存在一点η,使⎰-=''a adx x f f a )(3)(3η十一、(本题满分6分)已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=011101110,111011001B A 且矩阵X 满足X E E BXA AXB BXA AXA 阶单位矩阵,求是其中3,++=+.十二、(本题满分6分)已知4321,,,αααα是线性方程组0=AX 的一个基础解系,若144433322211,,,ααβααβααβααβt t t t +=+=+=+=,讨论实数t 满足什么关系时, 4321,,,ββββ也是0=AX 的一个基础解系.2000年全国硕士研究生入学统一考试数学(二)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1) ()=+-→30x 21ln arctan limx xx _____________.-(2)设函数()x y y =由方程y x xy+=2所确定,则=-0x dy _____________.(3)()=-+⎰+∞227x x dx_____________.(4)曲线()xe x y 112-=的斜渐进线方程为_____________.(5)设E A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=7000650004300021为4阶单位矩阵,且()()()=+-+=--11,B E A E A E B 则_____________.(C )()().00的拐点)是曲线,点(x f y f = (D )()()()()00.0f x f f ,点的极值不是也不是曲线()x f y =的拐点8.设函数()()x g x f ,是大于零的可导函数,且()()()()时,有则当b x a x g x f x g x f <<<'-',0( ) (A )()()()().x g b f b g x f > (B )()()()().x g a f a g x f > (C )()()()().b g b f x g x f > (D )()()()().a g a f x g x f >9.若()()为则20306lim ,06sin lim x x f x x xf x x x +=⎪⎭⎫⎝⎛+→→( ) (A )0.(B )6.(C )36.(D )∞10.具有特解xx x e y xe y e y 3,2,321===--的3阶常系数齐次线性微分方程是( )(A ).0=+'-''-'''y y y y (B ).0=-'-''+'''y y y y(C ).06116=-'+''-'''y y y y (D ).022=+'-''-'''y y y y 三、解答题 11.设()()()⎰+=.,1ln ln dx x f xx x f 计算12.设xOy 平面上有正方形{}10,10,≤≤≤≤=y x y x D )(及直线()()t S t t y x l 若.0:≥=+表示正方形D 位于直线l 左下方部分的面积,试求()().00⎰≥xx dt t S13.求函数()()()().3001ln 2≥=+=n f n x x x x f x阶导数处的在14.设函数(),cos 0dt t x S x⎰=(1)当n 为正整数,且()()();1221+<≤+<≤n x S n n x n 时,证明:ππ21.已知向量组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=01,1211032,1b a βββ,与向量组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=7691033213,2,1ααα,,具有相同的秩,且3β可由321ααα,,线性表示,求b a ,的值。
1998年考研数学二试题答案与解析
dx
1 4
−⎛⎜⎜⎜⎝ x
−
1 2
⎞⎠⎟⎟⎟2
=
lim
ε→0+
arcsin
(2x
−1)
1−ε 1
2
= arcsin1= π . 2
3
∫2 1
∫ dx
= lim
3 2
x2 − x ε→0+ 1+ε
M yn < xn yn < ε, 即
yn
<
1 M
ε,
所以 yn 必为无穷小。
(2) 函数 f (x) = (x2 − x − 2) x3 − x 不可导点的个数是
(A)0 (B)1 (C)2 (D)3 答 应选 C
分析 由按定义求导方法可知, x 在x = 0 不可导, x x 在 x = 0 处一阶可
π
(A) πe 4 (B) 2π
答 应选 A
(C) π
π
(D) e 4
分析
由微分与增量的关系可知, yΔx 1+ x2
的系数应是 dy
,从而 Δx
的系数
应是
y'
,即
y'
=
y 1+ x2
.
解此微分方程:
dy y
=
dx 1+ x2
.
得 ln y = arctan x + C1, y = Cearctan x , 由 y(0) = π知C = π , 于 是
NBF 考研辅导,全程包过,不过退款! QQ 客服:296312040
NBF 辅导,真正为考研人着想的辅导!
(3)
已知函数 y =
y
(
1998-数二真题、标准答案及解析
(C) 若 xn 有界,则 yn 必有无穷小.
(D)
若
1 xn
为无穷小,则
yn
必为无穷小.
【答】 应选(D) 【详解】 方法一: 由极限运算性质知
【】
( ) lim
n→∞
yn
=
lim
n→∞
xn yn
⋅ lim 1 = 0, x n→∞
n
所以(D)为正确选项.
方法二:
取数列 yn = 0 ,排除(A)
4
t →⎛⎜⎝
5π 4
⎞+ ⎟⎠
故 x = π , 5π 处, f ( x) 为第二类间断点.
44
在 x = 3π 处, lim f ( x) = 1,
4
t →⎛⎜⎝
3π 4
⎞+ ⎟⎠
在 x = 7π 处, 7π 为 f ( x) 的可去间断点.
4
4
但相应的函数在上两点处无定义,故 x = 7π , 7π 为 f ( x) 的可去间断点.
dx 0
.
( ) 【答】 xf x2 .
【详解】 令 u = x2 − t2 , dy = −2tdt,
当 t = 0 时, u = x2; 当 t = x 时, u = 0 ;
故
( ) ( ) ∫ ∫ d
x
tf
x2 − t2 dt = d
x2 1 f (u )du = xf x2
dx 0
dx 0 2
(kA* ) = .
(A) kA*
(B) k n−1 A*
(C) k n A*
【答】 应选(B) 【详解】 方法一:
采用加条件的技巧,设 A 可逆,则由 AA* = A* A = A E
考研数学历年真题(1998-2007)年数学二
[]
-1-
(7)二元函数 f (x, y) 在点 0, 0 处可微的一个充分条件是[ ]
(A) lim f (x, y) f (0, 0) 0 . (x, y)0,0
(B) lim f (x, 0) f (0, 0) 0, 且lim f (0, y) f (0, 0) 0 .
x0
x
(22)(本题满分 11 分)
设二元函数
f
(x,
y)
x2, 1, x2 y2
| x | | y |1
1 | x | | y | 2 ,计算二重积分 f (x, y)d ,其中 D
D x, y | x | | y | 2 .
(23) (本题满分 11 分)
x0
x
(D)3.
[]
(6)设函数 f (x) 在 (0, ) 上具有二阶导数,且 f (x) 0 ,令 un f (n)(n 1,2,),则下列结论正确的是:
(A) 若 u1 u2 ,则un 必收敛.
(B) 若 u1 u2 ,则un 必发散
(C) 若 u1 u2 ,则 un 必收敛.
(D) 若 u1 u2 ,则un 必发散.
y0
y
(C) lim f (x, y) f (0, 0) 0 .
(x, y)0,0
x2 y2
(D) lim x0
f
x
(
x,
0)
f
x
(0,
0)
0,
且lim y0
f
y
(0,
y)
f
y
(0,
0)
0
.
1
(8)设函数 f (x, y) 连续,则二次积分 dx f (x, y)dy 等于
1998年全国硕士研究生招生考试数学(二)真题(含解析)
0
JC
x-*0
X
x-*o JC
/^(0) = 2,/;(0) = — 2,因为/^(O) H /;(0),所以无=0为/(工)的不可导点;
/(J7 ) — /(I) lim ------------ :------ =
]h. m(/ H +|11、)(/ 工一2c、)・
II
\t \ •
I | 1 I I工一1I | j: + 1 | • --------- ---
x-*0
x2
=
, 1,6
0 ,c
1_
x
(13)【解]y =沖斗込£
COS X
代入并化简得u" + 4% = e°
〃 (/ + %) cosG + 2z/sin jc cos x + 2usm x y =--------------------- cos3 JC
特征方程为A2 +4 = 0,特征根为右,2 = ±2i,
1
3
故
2
1/
-2
-
=—+ ln(2 + V3~).
方法二
=arcsm 2工 f =弓
o
2
• 45
:
In C+ J/_ + ) L = h(l + V3 —In = ln(2 + V3~), 2
故 ~2
dj
=——ln( 2 + .
7 V \ x — x2
(15)【解】 取沉放点为原点O,Oy轴正向为铅直向下,则由牛顿第二定律得
dj:
dx
■i d(7T)
i
=2
■ — x2
1998考研数学真题+答案
1998年全国硕士研究生入学统一考试数学试题参考解答及评分标准数 学(试卷一)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 41211lim20-=--++→xx x x . (2) 设1()()z f xy y x y xϕ=++,其中ϕ,f 具有二阶连续导数,则)('')(')(''2y x y y x xy yf yx z ++++=∂∂∂ϕϕ.(3) 设L 为椭圆13422=+y x ,其周长记为a ,则a ds y x xy L 12)432(22=++⎰.(4) 设A 为n 阶矩阵,*0,A A ≠为A 的伴随矩阵,E 为n 阶单位矩阵,若A 有特征值λ,则E A +2*)(必有特征值2()1Aλ+.(5) 设平面区域D 由曲线y =1x及直线20,1,y x x e ===所围成,二维随机变量(X,Y)在区域D 上服从均匀分布,则(X,Y)关于X 的边缘概率密度在2x =处的值为14.二、选择题:(本题共5小题,每小题3分,满分15分) (1) 设)(x f 连续,则=-⎰dt t x f t dxd x )(220 (A) (A) 2()x f x (B) 2()x f x - (C) 22()x f x (D) 2()x f x -(2) 函数23()(2)f x x x x x =---的不可导点的个数是 (B)(A) 3 (B) 2 (C) 1 (D) 0 (3) 已知函数()y f x =在任意点x 处的增量α,0,12时且当→∆++∆=∆x a xxy y 是x ∆的高阶无穷小量,(0)y π=,则(1)y 等于 (D)(A) 2π (B)π (C) 4e π(D) 4e ππ(4) 设矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333222111c b a c b a c b a 是满秩的,则直线 213a a a x -- = 213b b b y --= 213c c c z --与直线321a a a x -- = 321b b b y --= 321c c c z -- (A)(A) 相交于一点 (B) 重合 (D) 平行但不重合 (D) 异面(5) 设A 、B 是随机事件,且0<P (A )<1,P (B )>0,)()(A B P A B P =,则必有 (C)(A) ()()P A B P A B = (B) ()()P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠ 三、(本题满分5分) 求直线 11111:--==-z y x l 在平面012:=-+-z y x π上的投影直线0l 的方程,并0l 求绕y 轴旋转一周所成的方程.解一:设经过l 且垂直于平面π的平面方程为1:(1)(1)0A x By C z π-++-=, 则由条件可知20,0A B C A B C -+=+-=,由此解得::1:3:2A B C =-. 于是1π的方程为3210x y z --+=.……2分 从而0l 的方程为0l 210:3210x y z x y z -+-=⎧⎨--+=⎩,……3分即02:1(1)2x y l z y =⎧⎪⎨=--⎪⎩. 于是0l 绕y 轴旋转一周所成曲面的方程为222214(1)4x z y y +=+-,即2224174210x y z y -++-=.……5分解二:由于直线l 的方程可写为1010x y y z --=⎧⎨+-=⎩,所以过l 的平面方程可设为1(1)0x y y z λ--++-=,即(1)(1)0x y z λλλ+-+-+=.由它与平面π垂直,得1(1)20λλ--+=,解得2λ=-. 于是经过l 且垂直与π的平面方程为3210x y z --+=. ……2分 从而0l 的方程为0l 210:3210x y z x y z -+-=⎧⎨--+=⎩.……3分(下同解法一)四、(本题满分6分)确定常数λ,使在右半平面0x >上的向量42242(,)2()()A x y xy x y i x x y jλλ=+-+ 为某二元函数(,)u x y 的梯度,并求(,)u x y .解:令422422(),()P xy x y Q x x y λλ=+=-+. 则(,)A x y在右半平面0x >上为某二元函数(,)u x y 的梯度的充要条件是Q Px y∂∂≡∂∂. ……1分 此即444()(1)0x x y λλ++=,解之得1λ=-. ……3分于是,在右半平面内任取一点,例如(1,0)作为积分路径的起点,则得(,)242(1,0)2(,)x y xydx x dy u x y C x y -=++⎛⎜⎠ ……4分242421020yxx dx x dyC x y x y⋅=-+++⎛⎛⎜⎜⎠⎠2arctan y C x =-+. ……6分(注:不加C 不扣分.)五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为k(k>0).试建立y 与v 所满足的微分方程,并求出函数关系式y=y(v),解:取沉放在原点O ,OY 轴正向铅直向下,则由牛顿第二定律得22d ym mg B kv dt ρ=--,……1分 将22d y dy v dt dt =代入以消去t ,得v y 与之间的微分方程dy mv mg B kv dtρ=--, ……2分 即mv dy dv mg B kv ρ=--,积分得2()ln()m m mg B y v mg B kv C k kρρ-=----+. ……4分 由初始条件0|0y v ==定出2()ln()m mg B C mg B kρρ-=-,故所求的函数关系式为2()lnm m mg B mg B kvy v k k mg B ρρρ---=---. ……6分 六、(本题满分7分) 计算⎰⎰∑++++212222)()(z y x dxdy a z axdydz ,其中∑为下半球面222y x a z ---=的上侧,a 为大于零的常数.解一:212222()()axdydz z a dxdy x y z ∑++++⎛⎛⎜⎜⎠⎠21()axdydz z a dxdy a ∑=++⎰⎰. ……1分补一块有向曲面2220:,x y a z S -+≤=⎧⎨⎩,其法向量与z 轴正向相反,从而得到221[()()]S S I axdydz z a dxdy axdydz z a dxdy a --∑+=++-++⎰⎰⎰⎰ ……2分 21(32)D a z dv a dxdy a Ω⎡⎤=-++⎢⎥⎣⎦⎰⎰⎰⎰⎰ ……4分其中Ω为S -∑+围成的空间区域,D 为0z =上的平面区域222x y a +≤. 于是22204440011222a a r I a zdv a a d rdr a a ππππθ-Ω⎡⎤⎡⎤=--+=--⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰32a π=-. ……7分 解二:21()I axdydz z a dxdy a ∑=++⎰⎰. ……1分记222112()yzD I axdydz a y z dydz a ∑==--+⎰⎰,其中yz D 为YOZ 平面上的半圆222,0y z a z +≤≤. 利用极坐标计算,得222310223I d a r rdr a ππθπ=--=-⎰⎰,……4分22222211()[()]xyD I z a dxdy a a x y dxdy a a ∑=+=-+⎰⎰⎰⎰222223001(22)6a d a a a r r rdr a a ππθ=--=⎰⎰,其中xy D 为XOY 平面上的圆域222x y a +≤. 因此3122I I I a π=+=-.……7分七、(本题满分6分)求2sin sin sin lim 1112n n n n n n n πππ→∞⎡⎤⎢⎥+++⎢⎥+⎢⎥++⎣⎦ . 解:2sinsinsin12sin sin sin 1112n n n n n n n n n n n n nππππππ⎛⎫+++<+++ ⎪+⎝⎭++11sinni i n nπ==∑ ……2分而10112lim sin sin n n i i xdx n n πππ→∞===∑⎰.……3分又2sinsinsin 12sin sin sin 11112n n n n n n n n n ππππππ⎛⎫+++>+++ ⎪++⎝⎭++11sin1ni n i n n nπ==⋅+∑ ……5分 而10112lim sin sin 1n n i n i xdx n n n πππ→∞=⋅==+∑⎰.故由夹逼定理知2sin sin sin 2lim 1112n n n n n n n ππππ→∞⎛⎫ ⎪+++= ⎪+ ⎪++⎝⎭ . ……6分八、(本题满分5分)设正项数列}{n a 单减,且级数∑∞=-1)1(n n na 发散,试问级数nn n a ∑∞=+1)11(是否收敛?并说明理由.解: 级数111nn n a ∞=⎛⎫⎪+⎝⎭∑收敛.……1分理由:由于正项数列{}n a 单调减少有下界,故lim n n a →∞存在,记这个极限值为a ,则0a ≥. ……2分若0a =,则由莱布尼兹定理知1(1)nn n a ∞=-∑收敛,与题设矛盾,故0a >.……3分于是11111n a a <<++,从而1111nnn a a ⎛⎫⎛⎫< ⎪ ⎪++⎝⎭⎝⎭.而111nn n a ∞=⎛⎫ ⎪+⎝⎭∑是公比为111a <+的几 何级数,故收敛.因此由比较判别法知原级数收敛.……5分(注:(1) 若未说明0a >,本题至多给2分,(2) 本题也可用根植判别法)九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数(1) 试证:存在0(0,1)x ∈,使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在区间0[,1]x 上以()y f x =为曲边的曲边梯形面积;(2) 又设)(x f 在区间(0,1)内可导,且2()()f x f x x '>-,证明(1)中的0x 是唯一的.证一:(1) 设1()()xF x xf t dt =⎰,……2分则(0)(1)0F F ==,且1()()()x F x f td t x f x '=-⎰. 对()F x 在区间[0,1]上应用罗尔定理知,存在一点0(0,1)x ∈使0()0F x '=,因而0100()()0x f t dt x f x -=⎰. 即矩形面积00()x f x 等于曲边梯形面积1()x f x dx ⎰.……4分 (2) 设1()()()xx f t dt xf x ϕ=-⎰,……5分则当(0,1)x ∈时,有()()()()0x f x f x xf x ϕ''=---<.所以()x ϕ在区间(0,1)内单调减 少,故此时(1)中的0x 是唯一的.……6分(注:在证明(1)时,若对所设辅助函数利用闭区间上连续函数的介值定理仅得出0[0,1]x ∈,但未排除端点,或者排除端点的理由不充分,则只给1分.)十、(本题满分6分) 已知二次曲面方程2222224x ay zbxy xz yz +++++=可以经过正交变换⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛ζηξP z y x 化为椭圆柱面方程4422=+ζη,求,a b 的值和正交矩阵P .解:由111111b b a ⎛⎫ ⎪ ⎪ ⎪⎝⎭与014⎛⎫ ⎪ ⎪⎪⎝⎭相似得11111114b b a λλλλλλ------=-----……1分 解之得到3,1a b ==.……2分对应于特征值10λ=的单位特征向量为122Tx =;对应于特征值21λ=的单位特征向量为2333Tx =;对应于特征值34λ=的单位特征向量为3666T x =; ……5分因此P =236036236⎛⎝. ……6分十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数k ,使线性方程组0k A x =有解向量α,且10k A α-≠, 证明:向量组1,,,k A A ααα- 是线性无关的.解:设有常数12,,,k λλλ ,使得1120k k AA λαλαλα-+++= ,则有1112()0k k k A AA λαλαλα--+++= , ……2分 从而有110k A λα-=.由于10k A α-≠,所以10λ=. 类似可证得230k λλλ==== ,因此向量组1,,,k A A ααα- 线性无关.……4分十二、(本题满分5分)已知线性方程组()I 1111221,222112222,221122,2200n n n n n n n n n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的一个基础解系为 11121,2(,,,)T n b b b ,21222,2(,,,)T n b b b ,…,12,2(,,,)T n n n n b b b试写出线性方程组 1111221,222112222,221122,2200()0n n n n n n n n n b y b y b y b y b y b y b y b y b y +++=⎧⎪+++=⎪II ⎨⎪⎪+++=⎩的通解,并说明理由.解:(II )的通解为11112122212222122(,,,,(,,,,(,,,,T T Tn n n n n n n y c a a a c a a a c a a a =+++)))其中12,,,n c c c 为任意常数.……2分理由:方程组(I )、(II )的系数矩阵分别记为,A B ,则由(I )的已知基础解系可知0T AB =,于是()0T T T BA AB ==,因此可知A 的n 个行向量的转置向量为(II )的n 个解向量.……3分由于B 的秩为n ,故(II )的解空间维数为2n n n -=.又A 的秩为2n 与(I )的解空间 维数之差,即为n ,故A 的n 个行向量线性无关,从而它们的转置向量构成(II )的一个基 础解系,于是得到(II)的上述通解.……5分十三、(本题满分6分)设两个随机变量X ,Y 相互独立,且都服从均值为0、方差为21的正态分布,求随机变量Y X -的方差.解:令Z X Y =-.由于22(0,(),(0,(),22X N Y N ~~且X Y 和相互独立,故(0,1)Z N ~.……2分 因为2222(||)()(||)[(||)]()[(||)]D X Y D Z E Z E Z E Z E Z -==-=-, ……3分而22()()()101E Z D Z EZ =+=+=,22222(||)||22z z E Z z dz zedz πππ+∞+∞---∞===⎛⎜⎠,所以2(||)1D X Y π-=-.……6分十四、(本题满分4分)从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4 ) 内的概率不小于0.95,问样本容量n 至少应取多大?附表:标准正态分布表 dt e z t z2221)(-∞-⎰=Φπ解:以X 3.4(0,1)6X n N -~, ……1分从而有{1.4 5.4}{2 3.42}{| 3.4|2}P X P X P X <<=-<-<=-<| 3.4|2{}6X n P n -=<2(10.95n=Φ-≥.……2分故(0.975n Φ≥ 1.96n ≥,即2(1.963)34.57n ≥⨯≈,所以n 至少应取35.……4分十五、(本题满分4分)设某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.附表:t 分布表 p n t n t P p =≤})()({z1.28 1.645 1.962.33 )(z Φ0.9000.9500.9750.990解:设该次考试的考生成绩为X ,则2(,)X N μσ~. 把从X 中抽取的容量为n 的样本 均值记为X ,样本标准差记为S .本题是在显著性水平0.05α=下检验假设01:70;:70H H μμ=≠,……1分 拒绝域为12||70||-1)x t n t n s α--=≥(. 由0.97536,66.5,15,(361) 2.0301n x s t ===-=,算得|66.570|36|| 1.4 2.030115t -==<,……3分 所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分. ……4分数 学(试卷二)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学一 第一、(1)题 】(2) 曲线322y x x x =-++与x 轴所围成的图形的面积A=3712(3)2lnsin cot lnsin cot sin xdx x x x x C x =---+⎰.(4) 设)(x f 连续,则=-⎰dt t x f t dxd x )(2202()x f x . (5) 曲线)1ln(xe x y +=(0)x >的渐近线方程为1y x e -=+.二、选择题:(本题共5小题,每小题3分,满分15分)(1) 设数列n x 与n y 满足0lim =∞→n n n y x ,则下类断言正确的是 (A )(A) 若n x 发散,则n y 必发散 (B) 若n x 无界,则n y 必有界 (C) 若n x 有界,则n y 必为无穷小(D) 若nx 1为无穷小,则n y 必为无穷小 (2) 【 同数学一 第二、(2)题 】 (选项的排列顺序不同) (3) 【 同数学一 第二、(3)题 】 (选项的排列顺序不同)(4) 设函数()f x 在x a =的某个领域内连续,且()f a 为极大值,则存在0δ>,当(,)x a a δδ∈-+时,必有 (A )(A) 0)]()()[(≥--a f x f a x . (B) 0)]()()[(≤--a f x f a x .(C) )(0)()()(lim 2a x x t x f t f a t ≠≥--→. (D) )(0)()()(lim 2a x x t x f t f a t ≠≤--→. (5) 设A 是任一)3(≥n n 阶方阵,A *是其伴随矩阵,又k 为常数,且1,0±≠k ,则必有(kA)*= (B) (A) kA * (B) k n-1A * (C) k n A * (D) k -1A 三、(本题满分5分)求函数)4tan()1()(π-+=x xx x f 在区间)2,0(π内的间断点,并判断其类型.解:()f x 在(0,2)π内的间断点为357,,,4444x ππππ=. ……1分在4x π=处,(0)4f π+=+∞,在54x π=处,5(0)4f π+=+∞, 故5,44x ππ=为第二类(或无穷)间断点; ……3分在34x π=处,34lim ()1x f x π→=,在74x π=处,74lim ()1x f x π→=,故37,44x ππ=为第一类(或可去)间断点; ……5分四、(本题满分5分)确定常数c b a ,,的值,使)0()1ln(sin lim20≠=+-⎰→c c dt tt xax x b x . 解:由于0x →时,sin 0ax x -→,且极限c 不为0,所以当0x →时,3ln(1)0xbt dt t +→⎛⎜⎠,故必有0b =.……1分又因为3330000sin cos (cos )lim lim lim ln(1)ln(1)ln(1)x x x x ax x a x x a x x x t dtx t →→→---==+++⎛⎜⎠ 3200(cos )cos lim lim (0)x x x a x a x c c x x →→--===≠. ……3分 故必有1a =,从而12c =.……5分五、(本题满分6分) 利用代换x e x y x y x y xuy =+-''=cos 3sin '2cos cos 将方程化简,并求出原方程的通解.解一:由cos u y x =两端对x 求导,得cos sin u y x y x ''=-,cos 2sin cos u y x y x y x '''''=--.……2分 于是原方程化为4xu u e ''+=,……3分其通解为12cos 2sin 25xe u C x C x =++,从而原方程的通解为12cos 22sin cos 5cos xx e y C C x x x=++. ……5分解二:sec y u x =,sec sec tan y u x u x x ''=+,23sec 2sec tan sec tan sec y u x u x x u x x u x '''''=+++,……2分代入原方程得4xu u e ''+=. ……3分以下同解法一.六、(本题满分6分) 计算积分⎰-232121dx x x .解:注意到被积函数内有绝对值且1x =是其无穷间断点,故31222112x x x x=--⎛⎜⎜⎠⎠原式 ……1分而1121212211()42x xx =---⎛⎛⎜⎜⎜⎠⎠112arcsin(21)arcsin12x π=-==, ……3分3322221111()24x xx =---⎛⎛⎜⎜⎜⎠⎠3221111ln ()()ln(23)224x x ⎡⎤=-+--=+⎢⎥⎣⎦.……5分因此3221ln(23)2x xπ=++-⎛⎜⎠. ……6分七、(本题满分6分)【 同数学一 第五题 】 八、(本题满分6分)【 同数学一 第九题 】 九、(本题满分8分) 设有曲线1-=x y ,过原点作其切线,求由此曲线、切线及x 轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.解:设切点为00(1)x x -,则过原点的切线方程为021y x x =-. 再以点00(1)x x -代入,解得0002,11x y x ==-=,则切线方程为12y x =. ……3分 由曲线1(12)y x x =-≤≤绕x 轴一周所得到的旋转面的面积221112143(551)6S y dx x dx πππ'=+=-=⎰⎰;……6分由直线段1(12)2y x x =≤≤绕x 轴一周所得到的旋转面的面积 22015252S ππ=⋅=⎰.因此,所求旋转体的表面积为12(1151)6S S S π=+=.……8分十、(本题满分8分)设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为211y '+,且此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值.解:因曲线向上凸,故0y ''<()32211y y ''='+'+, ……2分即211y y ''=-'+. 令,p y p y ''''==则,从而上述方程化为211p p '=-+,分离变量得21dpdx p =-+,解之得1arctan p C x =-.……4分因为()y y x =在点(0,1)处切线方程为1y x =+,所以00||1x x p y =='==,代入上式得14C π=,故tan()4y x π'=-.积分得2ln |cos()|4y x C π=-+.……6分因为曲线过点(0,1),所以0|1x y ==,代入上式得211ln 22C =+,故所求曲线的方程为13ln |cos()|1ln 2,(,)4244y x x πππ=-++∈-.……7分因为cos()14x π-≤且当4x π=时,cos()14x π-=,所以当4x π=时函数取得极大值11ln 22y =+.……8分十一、(本题满分8分) 设(0,1)x ∈,证明:(1) 22)1(ln )1(x x x <++; (2)211)1ln(112ln 1<-+<-x x . 证:(1) 令22()(1)ln (1)x x x x ϕ=++-,则有(0)0ϕ=,……1分22()ln (1)2ln(1)2,(0)0x x x x ϕϕ''=+++-=.因为当(0,1)x ∈时,2()[ln(1)]01x x x xϕ''=+-<+, 所以()0x ϕ'<,从而()0x ϕ<,即22(1)ln (1)x x x ++<.……3分 (2) 令11(),(0,1]ln(1)f x x x x=-∈+,则有2222(1)ln (1)()(1)ln (1)x x x f x x x x ++-'=++. ……4分由(1)知,()0f x '<(当(0,1)x ∈).于是在(0,1)内()f x 单调减少.又()f x 在区间(0,1]上连续,且1(1)1ln 2f =-, 故当(0,1)x ∈时,111()1ln(1)ln 2f x x x =->-+.……6分又20000ln(1)ln(1)1lim ()lim lim lim ln(1)2(1)2x x x x x x x x x f x x x x x x ++++→→→→-+-+====++, 故当(0,1)x ∈时,111()ln(1)2f x x x =-<+.……8分十二、(本题满分5分)设11(2)T E C B A C ---=,其中E 是4阶单位矩阵,TA 是4阶矩阵A 的转置矩阵,B =1232012300120001--⎛⎫⎪- ⎪ ⎪⎪⎝⎭,C =1201012000120001⎛⎫⎪⎪⎪⎪⎝⎭,求A .解: 由题设得1(2)T C E C B A E --=,即(2)T C B A E -=.……1分由于12340123001200012C B ⎛⎫⎪⎪= ⎪⎪⎝⎭-,|2|10C B -=≠,故2C B -可逆. 于是11[(2)][(2)]T T A C B C B --=-=-……3分110001000210021003210121043210121-⎛⎫⎛⎫⎪⎪- ⎪⎪= ⎪ ⎪- ⎪⎪-⎝⎭⎝⎭=. ……5分十三、(本题满分8分)[],]4,,10,3[,],1,1,0[,]3,1,7,2[,2,0,4,1321T T T T b a a a a =-===β问:(1) b a ,取何值时, β不能由321,,ααα 线性表示?(2) b a ,取何值时, β可由321,,ααα线性表示? 并写出此表示式.解: 因120312031203471100112011201101100102340120002b b a a a b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪----⎪ ⎪ ⎪→→⎪ ⎪ ⎪--- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭, ……2分故 (1) 当2b ≠时,线性方程组123(,,)x αααβ=无解,此时β不能由123,,ααα线性表出;……4分(2) 当2,1b a =≠时,线性方程组123(,,)x αααβ=有唯一解:123(,,)(1,2,0)T T x x x x ==-,于是β可唯一表示为122βαα=-+;……6分当2,1b a ==时,线性方程组123(,,)x αααβ=有无穷多个解:123(,,)(2,1,1)(1,2,0)T T T x x x x k ==-+-,其中k 为任意常数,这时β可由123,,ααα线性表示为123(21)(2)k k k βααα=-++++. ……8分数 学(试卷三)一、填空题:(本题共5小题,每小题3分,满分15分)(1) 设曲线()nf x x =在点(1,1)处的切线与x 轴的交点为,0n ξ(),则1lim ()n n f e ξ-→∞=.(2)⎰=-dx x x 21ln 1ln x c x-+.(3) 差分方程121050t t y y t ++-=的通解为51(5)()126t t y C t =-+-.(4) 设矩阵,A B 满足*28A BA BA E =-,其中A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020001,E 为单位矩阵,*A 为A 的伴随矩阵,A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10020001,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-20040002. (5) 设4321,,,X X X X 是来自正态总体2(0,2)N 的简单随机样本,243221)43()2(X X b X X a X -+-=,则当11,20100a b ==时,统计量X 服从2χ分布,其自由度为 2二、选择题:(本题共5小题,每小题3分,满分15分) (1) 设()f x 为可导函数,且满足条件12)1()1(lim-=--→xx f f x ,则曲线()y f x =在点(1,(1))f 处的切线斜率为 (D) (A)21 (B) 0(C) 1-(D) 2-(2) 设函数nn x xx f 211lim)(++=∞→,讨论函数f (x) 的间断点,其结论为 (B)(A) 不存在间断点. (B) 存在间断点x = 1 (C) 存在间断点x = 0 (D) 存在间断点x = -1(3) 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ 的系数矩阵记为A ,若存在三阶矩阵B ≠0,使得AB = 0,则 (C) (A) 02=-=B 且λ (B) 02≠-=B 且λ (C) 01==B 且λ (D) 01≠=B 且λ (4) 设(3)n n ≥阶矩阵A=1111aaa a a a a a a a a a ⎛⎫⎪⎪⎪⎪⎪ ⎪⎝⎭ ,若矩阵A 的秩为1n -,则a 必为 (B)(A) 1 (B)n-11(C) 1- (D) 11-n(5) 设1()F x 与2()F x 分别为随机变量1X 与2X 的分布函数,为使)()(21x bF x aF x F -=)( 是某一随机变量的分布函数,在下列给定的各组数值中应取 (A ) (A )52,53-==b a ;(B )32,32==b a ;(C )23,21=-=b a ;(D ) 23,21-==b a三、(本题满分5分)设arctan22yxz x y e -=+(),dz 与2.zx y ∂∂∂解:arctan arctan arctan 2222212()()()(2)1y y yx x xz y xe x y e x y e y x x x---∂=-+-=+∂+,……1分arctan arctan arctan 2222112()()()(2)1y y yx x xz ye x y e y x e y y x x---∂=-+=-∂+. ……2分所以arctan[(2)(2)]y xdz ex y dx y x dy -=++-.……3分 222arctan arctan arctan 222211(2)()()1y y y x x x z y xy x e x y e e y x y x x y x---∂-+=-+=∂∂++. ……5分四、(本题满分5分)设22{(,)}D x y x y x =+≤,求.Dxdxdy解一:22{(,)|01,}D x y x x x y x x =≤≤-≤-,所以220x x x x Dxdxdy xdx --=⎰……2分 121x xdx =-⎰……3分1351220081(1)43515t t x t t t dt ⎛⎫-=-=-= ⎪⎝⎭⎰.……5分解二:cos 202cos Dxdxdy d r rdr πθπθθ-=⎰⎰……2分 13cos 2222cos d r dr πθπθθ-=⎰⎰……3分 3204cos 5d πθθ=⎰ ……4分 815=. ……5分五、(本题满分6分)设某酒厂有一批新酿的好酒,如果现在(假定0t =)就售出,总收入为0R (元),如果窖藏起来,待来日按陈酒价格出售,t 年末总收入为250t R R e=.假定银行的年利率为r ,并以连续复利计息,试求窖藏多少年售出可使总收入的现值最大,并求0.06r =时的t 值..解:根据连续复利公式,这批酒在窖藏t 年未售出总收入R 的现值为()Re rt A t -=, 而250t R R e=,所以250()t rt A t R e=. ……2分令25005t rtdA R e r dtt ⎫=-=⎪⎭,得唯一驻点02125t r =. ……3分 又2225023510t rt d A R r dt t t -⎡⎤⎫=-⎢⎪⎭⎢⎣,则有0123250212.50r t t d A R e r dt =⎡⎤=-<⎣⎦. 于是,02125t r =是极大值点即最大值点, 故窖藏2125t r =(年)售出,总收入的现值最大. ……5分当0.06r =时,100119t =≈(年).……6分 六、(本题满分6分)设函数)(x f 在[b a ,]上连续,在(b a ,)内可导, 且0)('≠x f ,试证: 存在,(,),a b ξη∈使得'()'()b a f e e e f b aηξη--=-.证:令()x g x e =,则()()g x f x 与在[,]a b 上满足柯西中值定理条件,故由柯西中值定理, 存在(,)a b η∈,使得()()()b af b f a f e e eηη'-=-, ……2分 即()()()()b a f b f a e e e f b a b aηη---'=⋅--.……3分 又()f x 在[,]a b 上满足拉格朗日中值定理条件,故由拉格朗日中值定理,存在(,)a b ξ∈,使得()()()f b f a f b aξ-'=-.……5分 由题设()0f x '≠知()0f η'≠,从而()()()b a f e e e f b aηξη-'-=⋅'-.……6分七、(本题满分6分)设有两条抛物线11)1(122+++=+=n x n y n nx y 和, 记它们交点的横坐标的绝对值为n a . (1)求这两条抛物线所围成的平面图形的面积n S ;(2)求级数∑∞=1n nn a S 的和.解:由2211(1)1y nx y n x n n =+=+++与得(1)n a n n =+. ……2分因图形关于y 轴对称,所以220112[(1)]1n a n S nx n x dx n n =+-+-+⎰2012[](1)3(1)(1)n a x dx n n n n n n =-=+++⎰.……4分 因此414113(1)31n n S a n n n n ⎛⎫==- ⎪++⎝⎭,……5分 从而11414lim lim 1313nn k n n n k n k S S a a n ∞→∞→∞==⎡⎤⎛⎫==-= ⎪⎢⎥+⎝⎭⎣⎦∑∑. ……6分八、(本题满分7分)设函数)(x f 在 [)+∞,1上连续,若由曲线)(x f y =),直线)1(,1>==t t x x 与x 轴所围成的平面图形绕x 轴旋转一周所成的旋转体体积为)]1()([3)(2f t f t t v -=π,试求)(x f y =所满足的微分方程,并求该微分方程满足条件 922==x y 的解.解:依题意得221()()[()(1)]3tV t f x dx t f t f ππ==-⎰,即2213()()(1)tf x dx t f t f =-⎰.……2分 两边对t 求导,得223()2()()f t tf t t f t '=+.……3分将上式改写为2232x y y xy '=-,即232dy y y dx x x ⎛⎫=-⋅ ⎪⎝⎭(*)令y u x =,则有3(1)du x u u dx=-, ……4分 当0u ≠时,1u ≠时,由3(1)du dx u u x =-两边积分得31u cx u-=.……5分 从而(*)式的通解为3()y x cx y C -=为任意常数.……6分 由已知条件,求得1c =-,从而所求的解为33()1x y x x yy x-=-=+或. ……7分九、(本题满分9分)设向量1212(,,,),(,,,)T T n n a a a b b b αβ== 都是非零向量,且满足条件0=βT a ,记n 阶矩阵T a A β=,求:(1) 2A ; (2) 矩阵A 的特征值和特征向量. 解:(1) 由T a A β=和0=βT a ,有2()()()()T T T T T T A AA αβαβαβαββααβ====……1分 即2A 为n 阶零矩阵.……3分(2) 设λ为A 的任一特征值,A 的属于特征值λ的特征向量为(0)x x ≠,则λ=Ax x ,于是22λλ==A x Ax x .……4分 因为2=A x O ,所以2λ=x O .而≠x O ,故0λ=,即矩阵A 的特征值全为零.……5分不妨设向量,αβ中分量110,0a b ≠≠,对齐次线性方程组(0)-=E A O 的系数矩阵施以初等行变换:11121122122212000000n n n n n n n a b a b a b b b b a b a b a b a b a b a b ---⎛⎫⎛⎫⎪⎪--- ⎪⎪-=→ ⎪ ⎪⎪⎪---⎝⎭⎝⎭A……6分由此可得该方程组的基础解系为:32121111,1,0,,0,,0,1,,0,,,0,0,,1T T Tn n b b b b b b ααα-⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , ……8分于是,A 的属于特征值0λ=的全部特征向量为112211n n c c c ααα--+++ ,(121,,,n cc c - 是不全为0的任意常数.)……9分十、(本题满分7分)设矩阵A =101020101⎛⎫⎪ ⎪ ⎪⎝⎭,矩阵2)(A kE B +=,其中k 为实数,E 为单位阵,求对角矩Λ,使B 与Λ相似,并求k 为何值时,B 为正定矩阵.解:由2||(2)E A λλλ-=-,可得A 的特征值为1232,0λλλ===. ……2分记对角矩阵200020000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭. 因为A 是实对称矩阵,故存在正交矩阵P ,使得TP AP D =. ……4分所以11()T T A P DP PDP --==.于是22()()[()][()]T T T T B kE A kPP PDP P kE D P P kE D P =+=+=++2()T P kE D P =+222(2)(2)Tk P k P k ⎛⎫+⎪=+⎪ ⎪⎝⎭, ……5分可见222(2)(2)k k k ⎛⎫+ ⎪Λ=+ ⎪ ⎪⎝⎭, ……6分因此,当2k ≠-,且0k ≠时B 的全部特征值均为正数,这时B 为正定矩阵.……7分注:考生也可直接由A 的特征值得到矩阵kE A +的特征值为2k +(二重)和k (4分). 进而得到B 的特征值为2(2)k +(二重)和2k (5分),并得到实对称矩阵B ~Λ(6分).十一、(本题满分10分)一商店经销某种商品,每周进货的数量X 与顾客对该种商品的需求量Y 是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品获利润为500元.试计算此商店经销该种商品每周所得利润的期望值.解:设Z 表示商品每周所得的利润,则1000,,1000500()500(),Y Y X Z X Y X X Y Y X≤⎧=⎨+-=+>⎩ ……3分 由于X 与Y 的联合概率密度为:1,1020,1020,(,)1000,x y x y ϕ⎧≤≤≤≤⎪=⎨⎪⎩其它.……5分所以12111000500()100100D D EZ y dxdy x y dxdy =⨯++⨯⎰⎰⎰⎰ ……7分 202020101010105()yydy ydx dy x y dx =++⎰⎰⎰⎰……8分 202021010310(20)5(1050)2y y dy y y dy =-+--⎰⎰……9分 200005150014166.673=+⨯≈(元).……10分十二、(本题满分9分)设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生表的概率p ;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q . 解:设i H ={报名表是第i 区考生的}(1,2,3,i =)j A ={第j 次抽到的报名表是男生的}(1,2j =), 则1231()()()3P H P H P H ===;1112137820(|),(|),(|)101525P A H P A H P A H ===; ……1分(1) 3111137529()()(|)()310152590i i i P P A P H P A H ====++=∑.……3分 (2) 由全概率公式得2122237820(|),(|),(|)101525P A H P A H P A H ===. ……4分 121122123785(|),(|),(|)303030P A A H P A A H P A A H ===.……5分32211782061()()(|)()310152590i i i P A P H P A H ===++=∑. ……6分 31212117852()()(|)()33030309i i i P A A P H P A A H ===++=∑.……7分 因此,12122()20(|)()61P A A q P A A P A ===.……9分数 学(试卷四)一、填空题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学三 第一、(1)题 】 (2) 【 同数学三 第一、(2)题 】 (3) 【 同数学三 第一、(4)题 】(4) 设A ,B 均为n 阶矩阵,21*122,3,23n A B A B--==-=-则.(5) 设一次试验成功的概率为p ,进行100次独立重复试验,当p =12时,成功次数的标准差的值最大;其最大值为 5 .二、选择题:(本题共5小题,每小题3分,满分15分) (1) 【 同数学三 第二、(1)题 】 (2) 【 同数学三 第二、(2)题 】(3) 若向量组 γβα,,线性无关;δβα,,线性相关,则 (C)(A)α 必可由δγβ,,线性表示 (B) β 必不可由δγα,,线性表示(C) δ 必可由γβα,,线性表示 (D) δ 必不可由γβα,,线性表示(4) 设A ,B ,C 是三个相互独立的随机事件,且0 < P (C )<1,则在下列给定的四对事件 中不相互独立的是 (B) (A) C B A 与+ (B) C AC 与 (C) C B A 与- (D) C AB 与. (5) 【 同数学三 第二、(5)题 】三、(本题满分6分) 求21lim(tan )n n n n→∞(n 为自然数).解:因为32tan 1tan 00tan tan lim lim 1x xxx x xx x x x x x x x ++--→→⎡⎤-⎛⎫⎛⎫⎢⎥=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ……2分其中23200tan sec 11lim lim 33x x x x x x x ++→→--==,……4分故21130tan lim x x x e x +→⎛⎫= ⎪⎝⎭. ……5分取1x n=,则原式13e =.……6分(注:对数列极限直接用洛必达法则,扣2分.)四、(本题满分6分)【 同数学三 第三题 分值不同】 五、(本题满分5分)【 同数学三 第四题 】 六、(本题满分6分)【 同数学三 第五题 】 七、(本题满分6分)设函数()f x 在[,]a b 上连续,在(b a ,)内可导,且()()1f a f b ==,试证存在,(,)a b ξη∈,使得[]1)()(='+-ηηξηf f e .证:令()()x F x e f x =,则()F x 在[,]a b 上满足拉格朗日中值定理条件,故存在(,)a b η∈,使得()()[()()]b a e f b e f a e f f b aηηη-'=+-.……3分 由条件()()1f a f b ==,得[()()]b ae e ef f b aηηη-'=+-. (1)……4分 再令()xx e ϕ=,则()x ϕ在[,]a b 上满足拉格朗日中值定理条件,故存在(,)a b ξ∈,使得b ae e e b a ξ-=-. (2) ……5分 综合(1)、(2)两式,有[()()]1ef f ηξηη-'+=.……6分八、(本题满分9分)设直线y ax =与抛物线2y x =所围成图形的面积为1S ,它们与直线1X =所围成的图形面积为2S ,并且1a <.(1) 试确定a 的值,使12S S +达到最小,并求出最小值;(2) 求该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的体积. 解:(1) 当01a <<时,(如图一)122120()()a aS S S ax x dx x ax dx =+=-+-⎰⎰123323012332323aa ax x x ax a a ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. ……2分令2102S a '=-=,得2a =.又(202S ''=>,则(2S 是极小值,即最小值.其值为122(326222S -=+=. ……4分当0a ≤时,(如图二)122120()()aS S S ax x dx x ax dx =+=-+-⎰⎰31623a a =--+.因2211(1)0222a S a '=--=-+<,S 单调减少,故0a =时,S 取得最小值,此时13S =.综上所述,当2a =,(2S 为所求最小值,最小值为226-. ……6分(2) 1244220211())22x V x x dx x x dx ππ=-+-⎰11552331021121655630x x x x πππ⎛⎛=-+-=⎝⎝. ……9分九、(本题满分9分)【 同数学三 第九题 】 十、(本题满分9分)已知下列非齐次线性方程组 )(I 和)(II124123412326():4133x x x x x x x x x x +-=-⎧⎪I ---=⎨⎪--=⎩ , 1234234345():21121x mx x x nx x x x x t +--=-⎧⎪II --=-⎨⎪-=-+⎩(1) 求解方程组()I ,用其导出组的基础解系表示通解.(2) 当方程组()II 中的参数,,m n t 为何值时,方程组()I 与()II 同解.解:(1) 设方程组()I 的系数矩阵为1A ,增广矩阵为1A ,对1A 作初等行变换,得1110261001241111010143110300125A ⎛--⎫⎛--⎫⎪ ⎪=---→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭.由于秩(1A )=秩(1A )34=<,所以方程组有无穷多解,其通解为21415201X k -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭(k 为任意常数). ……3分(2) 将通解X 代入()II 的第一个方程,得(2)(4)(52)5k m k k k -++-+--+-=-,解得2m =.将通解X 代入()II 的第二个方程,得(4)(52)211n k k k -+--+-=-,解得4n =. 将通解X 代入()II 的第三个方程,得(52)21k k t -+-=-+,解得6t =. 因此,方程组()II 的参数为2m =,4n =,6t =.……5分即当2m =,4n =,6t =时,方程组()I 的全部解都是方程组()II 的解.这时,方程组()II 化为()II 12342343425,4211,25,x x x x x x x x x +--=-⎧⎪--=-⎨⎪-=-⎩.又设方程组()II 的系数矩阵为2A ,增广矩阵为2A ,对2A 施以初等行变换,得21211510012041211010140012500125A ⎛---⎫⎛--⎫⎪ ⎪=---→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭……6分于是方程组()II 的通解为21415201X k -⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭(k 为任意常数).显然,方程组()I 与()II 的解完全相同. 即方程组()I 与()II 同解.……7分十一、(本题满分7分)求某种商品每周的需求量X 是服从区间[10,30]上均匀分布的随机变量,而经销商进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商品仅获利300元,为使商品所获利润期望值不小于9280元,试确定最少进货量.解:设进货数量为α,则利润为500()300,30,500()100,10X a a X M X a X X a αα+-<≤⎧=⎨--≤≤⎩300200,30,600100,10X a a X X a X a +<≤⎧=⎨-≤≤⎩……3分期望利润30301010111(600100)(300200)202020a aEM M dx x a dx x a dx αα=⋅=-++⎰⎰⎰ 3022210116001003002007.53505250202202aax x ax ax a a ⎛⎫⎛⎫=⋅-+⋅+=-++ ⎪ ⎪⎝⎭⎝⎭,……6分 依题意,有27.535052509280a a -++≥,……7分 即27.535040300a a -+≤,解得220263a ≤≤. ……8分 故期望利润不少于9280元的最少进货量为21单位.……9分十二、(本题满分7分)某箱装有100件产品,其中一、二、三等品分别为80件、10件和10件,现在从中随机抽取一件,记)3,2,1(01=⎩⎨⎧=i i X i 他其等品若抽到,试求:(1) 随机变量X 1与X 2的联合分布; (2) 随机变量X 1与X 2的相关系数ρ.解:(1) 设事件i A =“抽到i 等品”123i (=,,). 由题意知123,,A A A 两两互不相容.123()0.8,()()0.1P A P A P A ===.……1分易见123{0,0}()0.1P X X P A ====,122{0,1}()0.1P X X P A ====;121{1,0}()0.8P X X P A ====,12{1,1}()0P X X P φ====.……3分故随机变量X 1与X 2的联合分布为2X1X0 1 0 0.1 0.8 10.1(2) 120.8,0.1EX EX ==.120.80.20.16,0.10.90.09DX DX =⨯==⨯=. ……4分 12000.1010.1100.81100EX X =⨯⨯+⨯⨯+⨯⨯+⨯⨯=. ……5分 121212(,)00.80.10.08Cov X X EX X EX EX =-⋅=-⨯=-.……6分 1212230.160.09DX DX ρ===-⋅⨯.……7分。
1998年考研数学二真题及答案解析
f
x f 1 lim (x2 x 2)x(1 x2 ) 0 0 ,
设数列
xn
与
yn
满足
lim
n
xn
yn
0 ,则下列断言正确的是
()
(A) 若 xn 发散,则 yn 发散
(B) 若 xn 无界,则 yn 必有界
(C) 若 xn 有界,则 yn 必为无穷小
(D)
若1 xn
为无穷小,则 yn 必为无穷小
(2) 函数 f (x) (x2 x 2) x3 x 的不可导点的个数是
x0
处有
lim
xx0
f (x) ,则
x x0 是函数的一条铅直渐近线;
水平渐近线:当 lim f (x) a, (a为常数),则 y a 为函数的水平渐近线. x
斜渐近线:若有 a lim f (x) ,b lim[ f (x) ax] 存在且不为 ,则 y ax b 为斜渐近线.
lim x ln(e 1)x 1 t lim ln(e t) 洛 lim 1 0 ,
x0
x
t
t
t e t
所以无铅直渐近线;
因
lim y(x) lim x ln(e 1) lim x ln e ,
x
x
x x
故无水平渐近线.
再考虑斜渐近线:
lim y lim ln(e 1) 1,
n 2k 1, k 1, 2,
n 2k,
,
满足
lim
n
xn
yn
0 ,但
yn 不是有界数列;
(C)的反例:
xn
:1,
1 2
,
1 3
,
,1, n
考研高数二真题及答案97年到12年
又由于 D3 , D4 关于 x 轴对称,可知在 D3 D4 上关于 y 的奇函数为零, 故
D3 D4
x 5 ydxdy 0 。
5 2 因此 x y 1 dxdy dxdy dx D D 2
1
sin x
dy ,故选(D) 。
2 2 2
dx
ey
dy , x 0 、y 0 代入可得, 将 所以 dy dx dx
0 代入可得
x 0
0
x 0
再次求导得 2 d y e y dy e y d y ,再将 x 0 、 y 0 、 dy 2 2
dx dx dx Nhomakorabeadx
d2y dx 2
(A) x1 x2 , y1 y2 (C) x1 x2 , y1 y2 【答案】 :(D) 【解析】 : (B) x1 x2 , y1 y2 (D) x1 x2 , y1 y2
f ( x, y ) f ( x, y ) 0, 0 表示函数 f ( x, y ) 关于变量 x 是单调递增的,关于变量 y 是 x y
1
故选(B) 。 二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上. ... (9)设 y y ( x) 是由方程 x y 1 e 所确定的隐函数,则 d
2 y
2
y
2 x 0
dx
【答案】 1 :
________。
【解析】 :将 x 0 代入原方程可得 y 0 方程 x 2 y 1 e y 两端对 x 求导, 2 x dy 有
1。
x 0
(10)计算 lim n
1998年考研数学二试题答案与解析
dx
1 4
−⎛⎜⎜⎜⎝ x
−
1 2
⎞⎠⎟⎟⎟2
=
lim
ε→0+
arcsin
(2x
−1)
1−ε 1
2
= arcsin1= π . 2
3
∫2 1
∫ dx
= lim
3 2
x2 − x ε→0+ 1+ε
ax −sin x
x ln(1+ t3)
= c(c ≠ 0)。
dt
b
t
NBF 考研辅导,全程包过,不过退款! QQ 客服:296312040
NBF 辅导,真正为考研人着想的辅导!
解 由于 x → 0 时 ax −sin x → 0, 且
∫ lim
x→0
ax −sin x
(A) 项显然是不正确的,因为只需取数列 yn = 0 ,就排除了它。若取数列
xn = ⎧⎪⎪⎨⎪⎪⎩02,kn−=1,2nk=, 2k −1, k = 1, 2,"; yn = ⎧⎪⎪⎨⎪⎪⎩02,kn, n==2k2k−,1, k = 1, 2,"
便排除了(B)项
对于(C)项,若数列 xn = 0 ,则 yn 可为任意数列,所以(C)项也不正确,故
(B)(x − a)⎡⎣ f (x)− f (a)⎤⎦ ≤ 0
(C) lim t→a
f
(t)− f ( (t − x)2
x)
≥
0(
x
≠
a)
(D) lim t→a
f
(t)− f ( (t − x)2
x)
≤
0
(
x
≠
a)
答 应选 C 分析 函数在某点 x=a 处取得极大值,按定义,是存在一个邻域
1998年考研数学2
1998年考研数学2【最新版】目录1.1998 年考研数学 2 的背景和重要性2.1998 年考研数学 2 的主要内容和难点3.考生如何准备 1998 年考研数学 24.1998 年考研数学 2 对当时和现在的影响正文1.1998 年考研数学 2 的背景和重要性1998 年考研数学 2 是中国研究生入学考试中的一门重要科目,它对于考生的录取结果具有决定性的影响。
这一年的数学 2 考试不仅考察了考生的数学基础知识,还测试了他们的解题能力和应试技巧。
因此,1998 年考研数学 2 在当时吸引了大量的考生努力备考,也引起了社会广泛的关注。
2.1998 年考研数学 2 的主要内容和难点1998 年考研数学 2 主要包括了微积分、线性代数、概率论等数学基础知识,以及一些难题和综合性较强的题目。
这些题目要求考生具有扎实的数学基础,熟练掌握各种解题方法,并能在有限的时间内快速准确地解题。
3.考生如何准备 1998 年考研数学 2对于考生来说,准备 1998 年考研数学 2 需要从以下几个方面入手:首先,考生需要系统地复习数学基础知识,加强对微积分、线性代数、概率论等知识点的理解和掌握。
其次,考生需要多做题,通过大量的练习提高解题能力和应试技巧。
同时,考生也要关注历年真题和模拟题,了解考试的题型和难度,有针对性地进行训练。
最后,考生还需要注重培养自己的应试心理素质,学会在压力下保持冷静,发挥出自己的最佳水平。
4.1998 年考研数学 2 对当时和现在的影响1998 年考研数学 2 不仅对当时的考生产生了重要影响,也为后来的考研数学考试提供了重要的参考。
对于当时的考生来说,1998 年考研数学 2 的成绩直接关系到他们的录取结果,因此,这次考试对于他们来说意义重大。
而对于后来的考生,1998 年考研数学 2 的真题和模拟题成为了他们备考的重要参考资料,可以帮助他们更好地了解考试的难度和题型,提高备考效率。
1998年数二难度
1998年数二难度
摘要:
1.1998 年数二难度概述
2.1998 年数二考试的题型和分值分布
3.1998 年数二考试的难度评价
4.对考生准备1998 年数二考试的建议
正文:
1998 年的数学二难度,从整体上来说,是具有一定挑战性的。
这一年的数学二试题,无论是从题量的设置,还是从题目的难度,都对考生提出了较高的要求。
首先,我们来看一下1998 年数二考试的题型和分值分布。
1998 年的数学二考试共分为两部分,选择题和非选择题。
选择题部分共50 题,每题2 分,共计100 分;非选择题部分共10 题,每题25 分,共计250 分。
从分值分布上可以看出,非选择题部分占据了总分的2/3,因此,考生在备考过程中需要特别关注非选择题的解答能力。
其次,我们来评价一下1998 年数二考试的难度。
这一年的试题,知识点覆盖面广泛,既有对基础知识的考查,也有对综合运用能力的考查。
其中,部分题目难度较高,需要考生熟练掌握相关知识点,并能灵活运用。
因此,1998 年数二的难度可以认为是较高的。
最后,给准备1998 年数二考试的考生一些建议。
首先,考生需要扎实掌握数学基础知识,形成系统的知识体系。
其次,考生需要加强练习,提高解题
速度和准确率。
最后,考生在备考过程中,要注重培养自己的应试能力和心理素质,以应对考试的挑战。
总的来说,1998 年的数学二难度较高,对考生的要求也较高。
1988考研数学二真题及答案
r
x2 (1 y)2 .
因引力 f 的方向与 MA 一致,
故
f
k
{x,1
y} .
r3
„„2 分 „„4 分
1988 年 • 第 3 页
从而W
BO
k r3
[xdx
(1
y)dy]
k (1 1 ) . 5
七、(本题满分 6 分)
1 0 0 1 0 0
已知 AP PB ,其中 B 0 0
f (x0 )
1 2
,则当
x
0
时,该函
x=
x0
处的微分
dy
是
(B)
(A) 与 x 等价的无穷小
(B) 与 x 同阶的无穷小
(C) 比 x 低阶的无穷小
(D) 比 x 高阶的无穷小
(2) 设 y f (x) 是方程 y 2 y 4 y 0 的一个解,若 f (x) 0 ,且 f (x0) 0 ,则函数
„„2 分
设原方程的特解为 y* Axex ,
„„3 分
得 A 2 . 故原方程通解为 y(x) C1ex C2e2x 2xe2x .
又已知有公共切线得 y |x0 1, y |x0 1,
„„4 分 „„5 分 „„7 分
即
cc11
c2 1, 2c2 1
解得
c1
1, c2
0
.
„„8 分
(D)
(A) 有一组不全为 0 的数 k1, k2 ,, ks , 使 k1 1 k22 kss 0 .
(B) 1,2,,s 中任意两个向量都线性无关.
(C) 1,2,,s 中存在一个向量,它不能用其余向量线性表出.
(D) 1,2,,s 中任意一个向量都不能用其余向量线性表出.
1998年全国Ⅱ高考数学试题(理).doc
1998年普通高等数学招生全国统一考试(全国II〉理科数学参考公式:三角函数的积化和差公式:sin a cos=—[sin(a+/J) + sin(a-#)] cos a sin p= —[sin((7+J3) - sin(a - J3)] cos a cos fi=—[cos(6r + A) + COS(6Z- (3)\ sinasin々=——[cos(a+cos(a - fi}\正棱台、岡台的侧面积公式=丄((/ + c.)/其中(/、c.分别表示上、下底而周长,/表示斜髙或母线K.4球的体积公式:K=-^r3,其中/?表示球的半径.第I卷(选择题共60分》一、选择题:本大题共15小题,第1 一10题第小题4分,第11 一15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. sin 600°的值是A.x2+(y +2)2=4B. x2 +(y-2)2 =4C. (x-2)2 + y2=4D. (x + 2)2 + / =44.两条直线+ A2x+fi2y + C2=0垂直的充要条件是AA. Aj A,2 + B2= 0 B•— B'B, = 0C. --——=— 1B'B22 2A.金B. -13.曲线的极伞标方程p = 4sin~化成直角坐标方程为D-1=,5. 函数/(x) = l(x 关0)的反函数=A. x(x 0)B.丄(% 关 0)C. -x(x 0)D. - —(x^O)XX6. 己知点/^sinw-cosataim)在第一象限,则在(0,2冗)内6Z 的取位范围是(71 3丌、(71 71^A.UB. —,— U 71:,—U 4>1 4 JU 2>1 4 )B. 50 = yjss fC. 2S 0 = S + S’10. 叫岛为H 的水瓶中注水,注满为止,如果注水与水深/z 的函数关系的图像如右图所示11. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的 分配方法共有A. 90 种B. 180 种C. 270 种D. 540 种12.椭圆Z + [ = 1的焦点为f 和F 2,点P 在椭圆上,如果线段Pf ;的屮点在JV 轴上,那么II12 3A- T 4Z ,B.為丄/2 2c+么27. 已知圆锥的全时积是底时积的3倍,那么该圆锥的侧时展开图扇形的圆心角为A. 120°B. 150°C. 180°D. 240°8. 复数-z*的一个立方根是f ,它的另外两个立方根是9.如果棱台的两底囬积分别是S, S z ,中截lij 的谢积是S Q ,那么D21 • —I 2D. S.2 = 255zroA. 7倍B. 5倍C. 4倍D. 3倍13. 球面上有3个点,其中任意两点的球面距离都等于大圆周长的1,经过这3个点的小圆的周6长为4兀,那么这个球的半径为14. 一个直角三角形三内角的正弦值成等比数列,其S 小内角为15.在等比数列中,> 1 ,且前"项和满足limS,,=丄,那么q 的取值范围是 a xA. (l,+oo)B.(1,4)C. (1,2)D.(1,72)第II 卷《非选择题共90分》注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.x 2 y 216. 设圆过双曲线---1 = 1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中9 16心的距离是 _________________ .17. (x + 2)1Q (x 2-l)的展开式屮x 10的系数为 _______ (用数字作答). 18. 如图,在直四棱柱AfiCD-AACA 中,当底面四边形ABCZ)满足条件 ___________ 时,有AC 丄孕(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)JT19 关于函数/(x) = 4sin(2x + -)(xe/?),有下列命题:①由/(x,) =/(x 2) = 0可得x, —x 2 必TT是;r 的整数倍;®>,= /(x)的表达式可改写为>,= 4cos(2x ——);③y = /(x)的图像关于点A. 4^3B. 2^3C. 2D. 73A. arccos^lB. arcsin^-"1 2 2C. arccos^lD. arcsin^ 2 2jr jr(-一,0)对称;④;v = /(x)的图像关于直线x =-—对称.其中正确的命题的序号6 6是_________ .(注:把你认为正确的命题的序号都填上.)三、解答题:本大题共6小题,共69分,解答应写出文字说明,证明过程或演算步骤.20.(本小题满分10分)在△ AfiC屮,tz、/?、c分别是角A、B、C的对边,设“ + c = 2/?,TTA-C = -.求sinB 的値.3以下公式供解题时参考:.n n 0 0-(p . n n 0 +(p . 0-(psin 0 + sin 识=2sin ------------------------ cos ---2 221.(本小题满分11分)如图,直线/,和/2相交于点M,丄/2,点Nel'.以A、B为端点的曲线段C上的任一点到/2的距离与到点7V的距离相等,若A/u/yv为锐角三角形,\AM |=Vl7 , 且|fi/V|=6.建立适当的坐标系,求曲线段C的方程.22.(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从5孔流岀.设箱体的忪度为米,高度为&米.己知流出的水屮该杂质的质量分数与6/, /?的乘积6^成反比.现有制箱材料60平方米.问当各为多少米时,经常常后流出的水中该杂质的质量分数最小(A、S孔的面积忽略不计).23.(本小题满分12分)己知斜三棱柱ABC —侧面A\JL b ✓2 2G七(P d—(Pcos 8 + cos(p = 2 cos -- cos ---- - ,cos 6 - cos(p = -2 sin + 识 sin ----- -a底面?IBC 垂直,ZABC = 90', BC = 2, AC = 2V3 , (1)求侧棱儿4,与底面ASC所成角的大小;(2)求侧面\ABB,与底面ABC所成二面角的大小;(3)求顶点C到侧而砟ABB,的距离.且A4,丄A,C, AA{ = A,C.B24.(本小题满分12分)设曲线C的方程是y = x,将C沿;v轴、y轴正向分别平行移动/、s单位长度后得到曲线C,.(1)写出曲线(^的方程;(2)证明曲线C与C,关于点A(丄,I)对称;t3(3)如果曲线C与(^有且仅有一个公共点,证明J = I一r且z关0.25.(本小题满分12分)已知数列{么}是等差数列,b t=l,+(1)求数列{/?,,}的通项;(2)设数列{<7"}的通项^ = log“(l+i)(其中6Z〉0,且“关1),记\是数列{<7"}的前"项b n和.试比较S。