七年级上册数学知识结构图04687

合集下载

七年级上册数学知识结构图[1]

七年级上册数学知识结构图[1]

第一章:有理数★知识结构图:正分数负分数 正整数负整数★正数和负数 概念、定义:1.大于0的数叫做正数(positive number)。

2.在正数前面加上负号“-”的数叫做负数(negative number)。

3.整数和分数统称为有理数(rational number)。

4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。

5.在直线上任取一个点表示数0,这个点叫做原点(origin)。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

★有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。

6.有理数减法法则:减去一个数,等于加上这个数的相反数。

★有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。

2. 有理数中仍然有:乘积是1的两个数互为倒数。

3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

★有理数除法法则1.除以一个不等于0的数,等于乘这个数的倒数。

2.两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

★做有理数混合运算时,应注意以下运算顺序:。

(完整版)七年级上册数学知识结构图

(完整版)七年级上册数学知识结构图

1 第一章:有理数★知识结构图:正分数负分数正整数0负整数第二章:整式的加减★知识结构图:2★概念、定义:1.都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient)。

32.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

4.多项式里次数最高项的次数,叫做这个多项式的次数。

5.把多项式中的同类项合并成一项,叫做合并同类项。

6.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

4第三章:一元一次方程知识结构图:概念、定义:1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。

3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

56.把等式一边的某项变号后移到另一边,叫做移项。

7.工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息三:图形的初步认识知识结构图:61.我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

72.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。

3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。

初一数学章节思维导图(全)

初一数学章节思维导图(全)

沪科版初中数学-全章思维导图
5
沪科版初中数学-全章思维导图
• 第 7 章 一元一次不等式与不等式组 • 第 8 章 整式乘法与因式分解
6
• 第 9 章 分式
沪科版初中数学-全章思维导图
• 第 10 章 相交线、平行线和平移
7
初一上·第一学期 • 第 1 章 有理数
沪科版初中数学-全章思维导图
1
沪科版初中数学-全章思维导图
• 第 2 章 整式加减

沪科版初中数学-全章思维导图
• 第 3 章 一次方程与方程组
3
沪科版初中数学-全章思维导图
• 第 4 章 直线与角
• 第 5 章 数据的收集与整理
4
七年级下-第二学期 • 第 6 章 实数

七年级上册数学第一章知识结构图

七年级上册数学第一章知识结构图

1第一章:有理数★知识结构图:正分数负分数 正整数负整数★正数和负数概念、定义:1.大于0的数叫做正数(positive number)。

2.在正数前面加上负号“-”的数叫做负数(negative number)。

3.整数和分数统称为有理数(rational number)。

4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。

5.在直线上任取一个点表示数0,这个点叫做原点(origin)。

6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。

7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

8.正数大于0,0大于负数,正数大于负数。

两个负数,绝对值大的反而小。

★有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

23.一个数同0相加,仍得这个数。

4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。

5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。

6.有理数减法法则:减去一个数,等于加上这个数的相反数。

★有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。

2. 有理数中仍然有:乘积是1的两个数互为倒数。

3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

★有理数除法法则1.除以一个不等于0的数,等于乘这个数的倒数。

2.两数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

3★做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

人教版 七年级数学上册章节思维导图集图片版

人教版 七年级数学上册章节思维导图集图片版

你现在的努力要对得起别人对你的好!
Math 实验室-1-人教版七年级数学上册章节思维导图
共4章
人教版七年级数学上册教材目录
第1章有理数的思维导图
1.1正数和负数
1.2有理数
1.3有理数的加减法
1.4有理数的乘除法
1.5有理数的乘方
第2章整式的加减的思维导图
2.1整式
2.2整式的加减
第3章一元一次方程的思维导图
3.1从算式到方程
3.2解一元一次方程(一)——合并同类项与移项
3.3解一元一次方程(二)——去括号与去分母
3.4实际问题与一元一次方程
第4章几何图形初步的思维导图
4.1几何图形
4.2直线、射线、线段
4.3角
4.4课题学习
设计制作长方体形状的包装纸盒。

七年级上册数学知识结构图

七年级上册数学知识结构图

第一章:有理数★知识结构图:正分数负分数正整数0负整数第二章:整式的加减★知识结构图:★概念、定义:1.都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient)。

2.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

4.多项式里次数最高项的次数,叫做这个多项式的次数。

5.把多项式中的同类项合并成一项,叫做合并同类项。

6.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

第三章:一元一次方程知识结构图:概念、定义:1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。

3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

6.把等式一边的某项变号后移到另一边,叫做移项。

7.工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息三:图形的初步认识知识结构图:1.我们把实物中抽象的各种图形统称为几何图形(geometric figure)。

2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。

3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。

人教版初中数学七年级上册1-4单元知识点思维导图

人教版初中数学七年级上册1-4单元知识点思维导图

人教版初中数学七年级上册第一章 有理数第二章 整式的加减第三章 一元一次方程第四章 几何图形初步1.正数和负数2.有理数3.有理数的加减法4.有理数的乘除法5.有理数的乘方1.整式2.整式的加减1.从算式到方程2.解一元一次方程(一)3.解一元一次方程(二)4.实际问题与一元一次方程1.几何图形2.直线、射线、线段3.角4.课题学习人教版初中数学七年级上册1-4单元知识点导图正数和负数有理数有理数的加减法有理数的乘除法有理数的乘方0既不是正数也不是负数可以用来表示在一个问题中相反意义的量例如:一个物体向左移动记为+1m,向右移动记为-1m温度、海拔、收入增长...增长量是正数,表示真正的增长增长量是负数,表示负增长B.注意A.整数和分数统称为有理数整数分数正整数负整数正分数负分数能约分成整数的数不能算作分数两个整数的比、有限小数、无限循环小数都是分数无限不循环小数不是有理数(1)概念(2)三要素(3)画法画一条水平线,在直线上取一点表示0(这个点叫原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,这样的直线角数轴原点+正方向+单位长度A.画直线,定原点B.规定从原点向右为正方向,并用箭头表示C.根据需要选取适当长度D.标数(1)概念(2)注意像2和-2这样,只有符号不同的两个数叫做互为相反数A.“只有”就是说仅仅只有符号不同B.相反数是成对出现的C.一个数的相反数只有一个D.0的相反数是0(1)概念(2)注意数轴上表示a的点与原点的距离叫做数a的绝对值A.一个正数的绝对值是它本身B.一个负数的绝对值是它的相反数C.零的绝对值是零D.互为相反数的两个数的绝对值相等E.任何一个有理数的绝对值是非负数1.有理数加法法则2.有理数减法法则(1)同号两数相加,取相同的符号,并把绝对值相加(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小绝对值(3)一个数同0相加,仍得这个数(4)互为相反数的两个数相加得0加法交换律加法结合律减去一个数等于加上这个数的相反数a-b=a+(-b)1.有理数乘法法则2.有理数除法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘(2)任何数与0相乘都得0(1)两数相除,同号得正,异号得负,并把绝对值相除(2)0除以任何一个不等于0的数,都得0(3)除以一个不等于0的数等于乘以这个数的倒数注意:A.乘积是1的两个数互为倒数B.几个不等于0的数相乘,积的符号由负因数的个数决定C.几个数相乘,有一个因数为0,积就为0奇数个--积为负偶数个--积为正1.乘方2.科学计数法3.近似数(1)概念(2)性质(3)运算求n个相同因数的积的运算,叫做乘方。

七年级上册数学思维导图

七年级上册数学思维导图

七年级上册数学思维导图七年级上册数学思维导图一、数的认识1.自然数、整数、有理数、无理数、实数的概念及其关系。

2.数轴的概念及其运用,及时了解坐标的表示方法和使用。

二、代数表达1.代数式的概念及其特点,初步建立代数式的意义。

2.多项式的概念及其运算,了解不同的多项式。

三、方程式的求解1.方程式及其根的概念。

了解一次方程、一元二次方程的求解方法。

2.应用题的解题方法。

形成解题思路,熟练掌握应用数学知识。

四、几何图形的初步认识1.平面几何图形的构造。

初步认识直线、射线、线段、角度,掌握角度的度量方法。

2.平面几何图形的性质。

熟练掌握三角形、四边形及其性质。

3.图形的简单变形。

初步认识图形的移动、旋转、翻转等几何变化。

五、测量1.长度、面积、体积、角度等基本测量单位的认识。

2.测量的精确性及其误差。

初步认识误差的来源和计算方法。

六、函数概念1.函数的概念及其表示方法。

初步建立函数图像和函数关系的概念。

2.函数的性质及其应用。

熟练掌握函数的性质和应用方法。

七、数据的处理1.数据的收集、整理、分析方法。

熟练运用各种数据处理方法。

2.图表的应用。

初步认识统计图表的种类及其应用。

八、概率1.概率的概念及其运用。

初步认识事件、样本空间、概率等基本概念。

2.排列与组合的应用。

初步认识排列与组合的基本概念和应用方法。

以上是七年级上册数学思维导图,希望对同学们有所帮助。

七年级上册知识结构图

七年级上册知识结构图

有理数运算规律:先定符号,再求值,第一章有理数有理数定义与分类有关概念与性质有理数的运算定义:整数和分数统称为有理数。

有理数(按定义分)有理数(按性质分)有限小数和无限循环小数统称为有理数正整数负整数分数整数正分数负分数正整数正分数正有理数负有理数负整数负分数数轴:规定了原点、正方向、单位长度的直线叫数轴。

性质:每一个有理数都可以在数轴上找到相应的点;数轴上的点不一定都表示有理数。

相反数:只有符号不同的两个数互为相反数;0的相反数为0;性质:互为相反数的两个数和为0.几何定义:在原点的两侧,到原点的距离相等的两个数互为相反数。

“—”起相反数的作用。

绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣. ∣a∣≧ 0(非负数)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.加减法乘除法有理数比较大小:数轴上右边的数总大于左边的数;正数大于0;0大于负数;正数大于一切负数;两个负数比较大小,绝对值大的反而小。

a a﹥00 a=0-a a﹤0∣a∣=∣a∣=a a≧0-a a≦0乘方科学记数法及近似数两数相加:同号取相同的符号,并把绝对值相加;异号取绝对值较大加数符号,并用较大绝对值减去较小绝对值。

减去一个数等于加上这个数的相反数;省略加号的和的形式。

两数相乘:同号取正,异号取负,并把绝对值相乘。

除以一个数等于乘以这个数的倒数;互为倒数的两数积为1;多个有理数相乘,积的符号由负因数的个数决定(奇数个积为负;偶数个积为正;0与任何数相乘都得0.求几个相同因数的积的运算,叫做有理数的乘方。

即:a n=aa…a(有n个a) a叫底数,n叫指数。

结果叫幂。

正数的任何次幂都是正数,负数的偶次幂为正,负数的奇次幂为负;0的任何次幂为0;任何数的偶次幂为非负数。

★非负数的和等于0,则每个非负数必为0把一个绝对值大于10的数记成a ×10n的形式(其中1≦︱a︱<10),叫做科学记数法.对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

初中数学知识点及结构图

初中数学知识点及结构图

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。

第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;—a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数。

4。

绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5。

有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6。

互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=—1⇔ a 、b 互为负倒数。

7。

有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。

初中数学知识点及结构图

初中数学知识点及结构图

七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1。

有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5。

有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0。

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=—1⇔ a 、b 互为负倒数.7。

有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。

初中数学知识点及结构图(新人教版)

初中数学知识点及结构图(新人教版)

七年级数学〔上〕知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容 .第一章有理数一.知识框架二.知识观点1.有理数:(1)凡能写成q(p,q为整数且 p0) 形式的数,都是有理数.正整数、 0、负整数统称整数;正p分数、负分数统称分数;整数和分数统称有理数.注意: 0 即不是正数,也不是负数;-a 不必定是负数, +a 也不必定是正数;不是有理数;正有理数正整数正整数正分数整数零(2)有理数的分类 :① 有理数零②有理数负整数负有理数负整数分数正分数负分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不一样的两个数,我们说此中一个是另一个的相反数;0 的相反数仍是0;(2)相反数的和为 0a+b=0a、b 互为相反数 .4.绝对值:(1)正数的绝对值是其自己, 0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点走开原点的距离;a (a 0) a( a 0)(2) 绝对值可表示为:a0 (a 0)a或 a (a0) ;绝对值的问题常常分类议论;a ( a 0)5.有理数比大小: 〔 1〕正数的绝对值越大,这个数越大; 〔 2〕正数永久比 0 大,负数永久比 0 小;〔3〕正数大于全部负数; 〔 4〕两个负数比大小,绝对值大的反而小;〔 5〕数轴上的两个数,右侧的数总比左侧的数大;〔 6〕大数 -小数 > 0,小数 -大数 < 0.6.互为倒数: 乘积为 1 的两个数互为倒数; 注意:0 没有倒数; 假定 a ≠0,那么 a 的倒数是1 ;a假定 ab=1 a 、 b 互为倒数;假定ab=-1a 、b 互为负倒数 .7. 有理数加法法那么:( 1〕同号两数相加,取同样的符号,并把绝对值相加;( 2〕异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;( 3〕一个数与 0 相加,仍得这个数 . 8.有理数加法的运算律:〔 1〕加法的互换律: a+b=b+a ;〔 2〕加法的联合律: 〔a+b 〕 +c=a+〔 b+c 〕 . 9.有理数减法法那么:减去一个数,等于加上这个数的相反数;即 a-b=a+〔 -b 〕 .10 有理数乘法法那么:( 1〕两数相乘,同号为正,异号为负,并把绝对值相乘; ( 2〕任何数同零相乘都得零;( 3〕几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定 .11 有理数乘法的运算律:( 1〕乘法的互换律: ab=ba ;〔 2〕乘法的联合律: 〔 ab 〕c=a 〔 bc 〕;( 3〕乘法的分派律: a 〔 b+c 〕 =ab+ac .12 .有理数除法法那么:除以一个数等于乘以这个数的倒数;注意:零不可以做除数,即 a无心义 .13.有理数乘方的法那么:〔 1〕正数的任何次幂都是正数;〔 2〕负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时 : (-a)n =-a n 或 (a-b) n =-(b-a)n , 当 n 为正偶数时 : (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:( 1〕求同样因式积的运算,叫做乘方;( 2〕乘方中,同样的因式叫做底数,同样因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于 10 的数记成 a × 10n 的形式,此中 a 是整数数位只有一位的数,这类记数法叫科学记数法 .16.近似数的精准位:一个近似数,四舍五入到那一位,就说这个近似数的精准到那一位.17.有效数字:从左侧第一个不为零的数字起,到精准的位数止,全部数字,都叫这个近似数的有效数字 .18.混淆运算法那么:先乘方,后乘除,最后加减.本章内容要修业生正确认识有理数的观点,在实质生活和学习数轴的根基上,理解正负数、相反数、绝对值的意义所在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 / 91 / 9
第一章:有理数
★知识结构图:
正分数负分数
正整数0
负整数
第二章:整式的加减★知识结构图:
2 / 92 / 9
3 / 93 /
9
★概念、定义:
1.都是数或字母的积的式子叫做单项式(monomial ),单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数(coefficient )。

2.一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

4.多项式里次数最高项的次数,叫做这个多项式的次数。

5.把多项式中的同类项合并成一项,叫做合并同类项。

6.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。

7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

4 / 94 / 9
第三章:一元一次方程知识结构图:
概念、定义:
1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。

3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

5 / 95 / 9
6.把等式一边的某项变号后移到另一边,叫做移项。

7.工程问题:工作总量=工作效率×时间
盈亏问题:利润=售价-成本利率=利润÷成本×100%
售价=标价×折扣数×10%
储蓄利润问题:利息=本金×利率×时间
本息和=本金+利息
三:图形的初步认识知识结构图:
6 / 96 / 9
7 / 97 /
9
方位角
1.我们把实物中抽象的各种图形统称为几何图形(geometric figure )。

2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。

3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。

4.点动成面,面动成线,线动成体。

8 / 98 / 9
9 / 99 / 9。

相关文档
最新文档