The adsorption and configuration of octyl hydroxamic acid on pyrochlore and calcite

合集下载

材料常用英语词汇

材料常用英语词汇

专业词汇列表晶体结构(structure of crystal)原子质量单位Atomic mass unit (amu)原子量Atomic weight键能Bonding energy共价键Covalent bond电子构型electronic configuration正电的Electropositive氢键Hydrogen bond同位素Isotope摩尔Mole泡利不相容原理Pauli exclusion principle原子atom分子量molecule weight量子数quantum number范德华键van der waals bond点群point group各向异性anisotropy体心立方结构body-centered cubic (BCC)布拉格定律bragg’s law晶体结构crystal structure晶体的crystalline中子衍射neutron diffraction晶界grain boundary鲍林规则Pauling’s rulesCsCl型结构Caesium Chloride structure纤锌矿型结构Wurtzite structure萤石型结构Fluorite structure尖晶石型结构Spinel-type structure岛状结构Island structure层状结构Layer structure滑石talc高岭石kaolinite长石feldspar各向同性的isotropic晶格lattice密勒指数miller indices多晶的polycrystalline原子数Atomic number波尔原子模型Bohr atomic model库仑力Coulombic force分子的构型molecular configuration负电的Electronegative基态Ground state离子键Ionic bond金属键Metallic bond分子Molecule元素周期表Periodic table极性分子Polar molecule价电子valence electron电子轨道electron orbitals对称要素symmetry elements原子堆积因数atomic packing factor(APF)面心立方结构face-centered cubic (FCC)配位数coordination number晶系crystal system衍射diffraction电子衍射electron diffraction六方密堆积hexagonal close-packed (HCP)NaCl型结构NaCl-type structure闪锌矿型结构Blende-type structure金红石型结构Rutile structure钙钛矿型结构Perovskite-type structure硅酸盐结构Structure of silicates链状结构Chain structure架状结构Framework structure叶蜡石pyrophyllite石英quartz美橄榄石forsterite各向异性的anisotropy晶格参数lattice parameters非结晶的noncrystalline多晶形polymorphism单晶single crystal电位electron states电子electrons金属键metallic bonding极性分子polar molecules衍射角diffraction angle粒度,晶粒大小grain size显微照相photomicrograph透射电子显微镜transmission electron microscope (TEM)四方的tetragonal配位数coordination number晶胞unit cell(化合)价valence共价键covalent bonding离子键Ionic bonding原子面密度atomic planar density合金alloy显微结构microstructure扫描电子显微镜scanning electron microscope (SEM) 重量百分数weight percent单斜的monoclinic晶体结构缺陷(defect of crystal structure) 缺陷defect, imperfection线缺陷line defect, dislocation体缺陷volume defect位错线dislocation line螺位错screw dislocation晶界grain boundaries小角度晶界tilt boundary,位错阵列dislocation array位错轴dislocation axis位错爬移dislocation climb位错滑移dislocation slip位错裂纹dislocation crack位错密度dislocation density间隙原子interstitial atom间隙位置interstitial sites弗伦克尔缺陷Frenkel disorder主晶相the host lattice缔合中心Associated Centers.电子空穴Electron Holes克罗各-明克符号Kroger Vink notation固溶体solid solution化合物compound置换固溶体substitutional solid solution不混溶固溶体immiscible solid solution有序固溶体ordered solid solution固溶强化solid solution strengthening点缺陷point defect面缺陷interface defect位错排列dislocation arrangement刃位错edge dislocation混合位错mixed dislocation大角度晶界high-angle grain boundaries 孪晶界twin boundaries位错气团dislocation atmosphere位错胞dislocation cell位错聚结dislocation coalescence位错核心能量dislocation core energy位错阻尼dislocation damping原子错位substitution of a wrong atom晶格空位vacant lattice sites杂质impurities肖脱基缺陷Schottky disorder错位原子misplaced atoms自由电子Free Electrons伯格斯矢量Burgers中性原子neutral atom固溶度solid solubility间隙固溶体interstitial solid solution金属间化合物intermetallics转熔型固溶体peritectic solid solution无序固溶体disordered solid solution取代型固溶体Substitutional solid solutions过饱和固溶体supersaturated solid solution非化学计量化合物Nonstoichiometric compound 表面结构与性质(structure and property of surface)表面surface同相界面homophase boundary晶界grain boundary小角度晶界low angle grain boundary共格孪晶界coherent twin boundary错配度mismatch重构reconstuction表面能surface energy扭转晶界twist grain boundary共格界面coherent boundary非共格界面noncoherent boundary应变能strain energy惯习面habit plane界面interface异相界面heterophase boundary表面能surface energy大角度晶界high angle grain boundary晶界迁移grain boundary migration驰豫relaxation表面吸附surface adsorption倾转晶界titlt grain boundary倒易密度reciprocal density半共格界面semi-coherent boundary界面能interfacial free energy晶体学取向关系crystallographic orientation非晶态结构与性质(structure and property of uncrystalline) 熔体结构structure of melt玻璃态vitreous state粘度viscosity介稳态过渡相metastable phase淬火quenching玻璃分相phase separation in glasses 过冷液体supercooling melt软化温度softening temperature表面张力Surface tension组织constitution退火的softened体积收缩volume shrinkage扩散(diffusion)活化能activation energy浓度梯度concentration gradient菲克第二定律Fick’s second law稳态扩散steady state diffusion扩散系数diffusion coefficient填隙机制interstitalcy mechanism短路扩散short-circuit diffusion下坡扩散Downhill diffusion扩散通量diffusion flux菲克第一定律Fick’s first law相关因子correlation factor非稳态扩散nonsteady-state diffusion 跳动几率jump frequency晶界扩散grain boundary diffusion上坡扩散uphill diffusion互扩散系数Mutual diffusion渗碳剂carburizing浓度分布曲线concentration profile驱动力driving force自扩散self-diffusion空位扩散vacancy diffusion扩散方程diffusion equation扩散特性diffusion property达肯方程Dark equation本征热缺陷Intrinsic thermal defect离子电导率Ion-conductivity浓度梯度concentration gradient扩散流量diffusion flux间隙扩散interstitial diffusion表面扩散surface diffusion扩散偶diffusion couple扩散机理diffusion mechanism无规行走Random walk柯肯达尔效应Kirkendall equation本征扩散系数Intrinsic diffusion coefficient 空位机制Vacancy concentration腐蚀与氧化(corroding and oxidation)氧化反应Oxidation reaction还原反应Reduction reaction价电子Valence electron腐蚀介质Corroding solution电动势Electric potential推动力The driving force腐蚀系统Corroding system腐蚀速度Corrosion penetration rate电流密度Current density电化学反应Electrochemical reaction 极化作用Polarization过电位The over voltage浓差极化Concentration polarization电化学极化Activation polarization极化曲线Polarization curve缓蚀剂Inhibitor原电池galvanic cell电偶腐蚀galvanic corrosion电位序galvanic series应力腐蚀Stress corrosion冲蚀Erosion-corrosion腐蚀短裂Corrosion cracking防腐剂Corrosion remover腐蚀电极Corrosion target隙间腐蚀Crevice corrosion均匀腐蚀Uniform attack晶间腐蚀Intergranular corrosion焊缝破坏Weld decay选择性析出Selective leaching氢脆损坏Hydrogen embitterment阴极保护Catholic protection穿晶断裂Intergranular fracture固相反应和烧结(solid state reaction and sintering) 固相反应solid state reaction烧成fire再结晶Recrystallization成核nucleation子晶,雏晶matted crystal异质核化heterogeneous nucleation铁碳合金iron-carbon alloy铁素体ferrite共晶反应eutectic reaction烧结sintering合金alloy二次再结晶Secondary recrystallization结晶crystallization耔晶取向seed orientation均匀化热处理homogenization heat treatment渗碳体cementite奥氏体austenite固溶处理solution heat treatment相变(phase transformation)过冷supercooling晶核nucleus形核功nucleation energy均匀形核homogeneous nucleation形核率nucleation rate热力学函数thermodynamics function临界晶核critical nucleus枝晶偏析dendritic segregation平衡分配系数equilibrium distribution coefficient 成分过冷constitutional supercooling共晶组织eutectic structure伪共晶pseudoeutectic表面等轴晶区chill zone中心等轴晶区equiaxed crystal zone急冷技术splatcooling单晶提拉法Czochralski method位错形核dislocation nucleation斯宾那多分解spinodal decomposition马氏体相变martensite phase transformation 成核机理nucleation mechanism过冷度degree of supercooling形核nucleation晶体长大crystal growth非均匀形核heterogeneous nucleation长大速率growth rate临界晶核半径critical nucleus radius局部平衡localized equilibrium有效分配系数effective distribution coefficient 引领(领先)相leading phase层状共晶体lamellar eutectic离异共晶divorsed eutectic柱状晶区columnar zone定向凝固unidirectional solidification区域提纯zone refining晶界形核boundary nucleation晶核长大nuclei growth有序无序转变disordered-order transition马氏体martensite成核势垒nucleation barrier相平衡与相图(Phase equilibrium and Phase diagrams)相图phase diagrams组分component相律Phase rule浓度三角形Concentration triangle成分composition相平衡phase equilibrium热力学thermodynamics吉布斯相律Gibbs phase rule吉布斯自由能Gibbs free energy吉布斯熵Gibbs entropy热力学函数thermodynamics function过冷supercooling杠杆定律lever rule相界线phase boundary line共轭线conjugate lines相界反应phase boundary reaction相组成phase composition金相相组织phase constentuent相衬显微镜phase contrast microscope相分布phase distribution相平衡图phase equilibrium diagram相分离phase segregation相phase组元compoonent投影图Projection drawing冷却曲线Cooling curve自由度freedom化学势chemical potential相律phase rule自由能free energy吉布斯混合能Gibbs energy of mixing吉布斯函数Gibbs function热分析thermal analysis过冷度degree of supercooling相界phase boundary相界交联phase boundary crosslinking相界有限交联phase boundary crosslinking 相变phase change共格相phase-coherent相衬phase contrast相衬显微术phase contrast microscopy相平衡常数phase equilibrium constant相变滞后phase transition lag相序phase order相稳定性phase stability相稳定区phase stabile range相变压力phase transition pressure同素异晶转变allotropic transformation显微结构microstructures不混溶性immiscibility相态phase state相变温度phase transition temperature同质多晶转变polymorphic transformation 相平衡条件phase equilibrium conditions。

双氧水车间氧化塔尾气处理流程

双氧水车间氧化塔尾气处理流程

双氧水车间氧化塔尾气处理流程英文回答:Hydrogen Peroxide Plant Oxidation Tower Tail Gas Treatment Process.Introduction.The oxidation tower is a key component in the production of hydrogen peroxide. It is used to remove impurities from the hydrogen peroxide solution and to convert it into a more stable form. The tail gas from the oxidation tower contains a variety of pollutants, including hydrogen peroxide, water vapor, and organic compounds. These pollutants must be removed from the tail gas beforeit can be released into the atmosphere.Tail Gas Treatment Process.The tail gas from the oxidation tower is typicallytreated using a combination of physical and chemical processes. The physical processes include scrubbing, cooling, and condensation. The chemical processes include oxidation, reduction, and adsorption.Scrubbing.Scrubbing is the process of removing pollutants from a gas stream by contacting it with a liquid. In the case of hydrogen peroxide tail gas, the liquid used is typically water. The water absorbs the pollutants, which are then removed from the water.Cooling.Cooling is the process of reducing the temperature of a gas stream. In the case of hydrogen peroxide tail gas, the gas stream is cooled to condense the water vapor. The condensed water vapor is then removed from the gas stream.Condensation.Condensation is the process of converting a gas into a liquid. In the case of hydrogen peroxide tail gas, the gas stream is cooled to condense the hydrogen peroxide. The condensed hydrogen peroxide is then removed from the gas stream.Oxidation.Oxidation is the process of adding oxygen to a compound. In the case of hydrogen peroxide tail gas, the gas streamis oxidized to convert the organic compounds into carbon dioxide and water.Reduction.Reduction is the process of removing oxygen from a compound. In the case of hydrogen peroxide tail gas, thegas stream is reduced to convert the hydrogen peroxide into water.Adsorption.Adsorption is the process of trapping a gas on the surface of a solid. In the case of hydrogen peroxide tail gas, the gas stream is adsorbed onto activated carbon. The activated carbon traps the pollutants, which are then removed from the gas stream.Tail Gas Treatment System Design.The design of a tail gas treatment system for an oxidation tower will vary depending on the specific requirements of the application. However, the system will typically include the following components:Scrubber.Cooler.Condenser.Oxidizer.Reducer.Adsorber.The size and configuration of each component will depend on the flow rate of the tail gas, the concentration of pollutants in the tail gas, and the desired level of treatment.Tail Gas Treatment System Operation.The operation of a tail gas treatment system for an oxidation tower is typically automated. The system will continuously monitor the flow rate of the tail gas and the concentration of pollutants in the tail gas. The systemwill then adjust the operating parameters of the components to ensure that the desired level of treatment is achieved.Tail Gas Treatment System Maintenance.The maintenance of a tail gas treatment system for an oxidation tower is essential to ensure that the system is operating properly. The system should be inspectedregularly for leaks and other problems. The components of the system should also be cleaned and replaced as needed.中文回答:双氧水车间氧化塔尾气处理流程。

关于药物知识医学英语阅读

关于药物知识医学英语阅读

关于药物知识医学英语阅读下面店铺为大家带来关于药物知识医学英语阅读,欢迎大家学习!药物知识医学英语阅读:药物吸收Process of drug movement from the administration site to the systemic circulation.Drug absorption is determined by physicochemical properties of drugs, their formulations, and routes of administration. Drug products--the actual dosage forms (eg, tablets, capsules, solutions), consisting of the drug plus other ingredients--are formulated to be administered by various routes, including oral, buccal, sublingual, rectal, parenteral, topical, and inhalational. A prerequisite to absorption is drug dissolution. Solid drug products (eg, tablets) disintegrate and deaggregate, but absorption can occur only after drugs enter solution.Transport Across Cell MembranesWhen given by most routes (excluding IV), a drug must traverse several semipermeable cell membranes before reaching the systemic circulation. These membranes are biologic barriers that selectively inhibit the passage of drug molecules and are composed primarily of a bimolecular lipid matrix, containing mostly cholesterol and phospholipids. The lipids provide stability to the membrane and determine its permeability characteristics. Globular proteins of various sizes and composition are embedded in the matrix; they are involved in transport and function as receptors for cellular regulation. Drugs may cross a biologic barrier by passive diffusion, facilitated passive diffusion, active transport, or pinocytosis.Passive diffusion: In this process, transport across a cell membrane depends on the concentration gradient of the solute.Most drug molecules are transported across a membrane by simple diffusion from a region of high concentration (eg, GI fluids) to one of low concentration (eg, blood). Because drug molecules are rapidly removed by the systemic circulation and distributed into a large volume of body fluids and tissues, drug concentration in blood is initially low compared with that at the administration site, producing a large gradient.The diffusion rate is directly proportional to the gradient but also depends on the molecule's lipid solubility, degree of ionization, and size and on the area of the absorptive surface. Because the cell membrane is lipoid, lipid-soluble drugs diffuse more rapidly than relatively lipid-insoluble drugs. Small molecules tend to penetrate membranes more rapidly than large ones.Most drugs are weak organic acids or bases, existing in un-ionized and ionized forms in an aqueous environment. The un-ionized form is usually lipid soluble and diffuses readily across cell membranes. The ionized form cannot penetrate the cell membrane easily because of its low lipid solubility and high electrical resistance, resulting from its charge and the charged groups on the cell membrane surface. Thus, drug penetration may be attributed mostly to the un-ionized form. Distribution of an ionizable drug across a membrane at equilibrium is determined by the drug's pKa (the pH at which concentrations of un-ionized and ionized forms of the drug are equal) and the pH gradient, when present. For a weak acid, the higher the pH, the lower the ratio of un-ionized to ionized forms. In plasma (pH, 7.4), the ratio of un-ionized to ionized forms for a weak acid (eg, with a pKa of 4.4) is 1:1000; in gastric fluid (pH, 1.4), the ratio is reversed (1000:1). When the weak acid is given orally, theconcentration gradient for un-ionized drug between stomach and plasma tends to be large, favoring diffusion through the gastric mucosa.At equilibrium, the concentrations of un-ionized drug in the stomach and in the plasma are equal because only un-ionized drug can penetrate the membranes; the concentration of ionized drug in the plasma would then be about 1000 times greater than that in the stomach. For a weak base with a pKa of 4.4, the outcome is reversed. Thus theoretically, weakly acidic drugs (eg, aspirin) are more readily absorbed from an acid medium (stomach) than are weak bases (eg, quinidine). However, whether a drug is acidic or basic, most of its absorption occurs in the small intestine.Facilitated passive diffusion: For certain molecules (eg, glucose), the rate of membrane penetration is greater than expected from their low lipid solubility. One theory is that a carrier component combines reversibly with the substrate molecule at the cell membrane exterior, and the carrier-substrate complex diffuses rapidly across the membrane, releasing the substrate at the interior surface. Carrier-mediated diffusion is characterized by selectivity and saturability: The carrier transports only substrates with a relatively specific molecular configuration, and the process is limited by the availability of carriers. The process does not require energy expenditure, and transport against a concentration gradient does not occur.Active transport: This process is characterized by selectivity and saturability and requires energy expenditure by the cell. Substrates may accumulate intracellularly against a concentration gradient. Active transport appears to be limited to drugs structurally similar to endogenous substances. Thesedrugs are usually absorbed from sites in the small intestine. Active transport processes have been identified for various ions, vitamins, sugars, and amino acids.Pinocytosis: Fluid or particles are engulfed by a cell. The cell membrane invaginates, encloses the fluid or particles, then fuses again, forming a vesicle that later detaches and moves to the cell interior. This mechanism also requires energy expenditure. Pinocytosis probably plays a minor role in drug transport, except for protein drugs.必备医学知识阅读:药物生物利用度The physicochemical properties of a drug govern its absorptive potential, but the properties of the dosage form (which partly depend on its design and manufacture) can largely determine drug bioavailability. Differences in bioavailability among formulations of a given drug can have clinical significance. Thus, the concept of equivalence among drug products is important in making clinical decisions. Chemical equivalence refers to drug products that contain the same compound in the same amount and that meet current official standards; however, inactive ingredients in drug products may differ. Bioequivalence refers to chemical equivalents that, when administered to the same person in the same dosage regimen, result in equivalent concentrations of drug in blood and tissues. Therapeutic equivalence refers to drug products that, when administered to the same person in the same dosage regimen, provide essentially the same therapeutic effect or toxicity. Bioequivalent products are expected to be therapeutically equivalent.Sometimes therapeutic equivalence may be achieved despite differences in bioavailability. For example, the therapeutic index (ratio of the maximum tolerated dose to the minimum effectivedose) of penicillin is so wide that moderate blood concentration differences due to bioavailability differences in penicillin products may not affect therapeutic efficacy or safety. In contrast, bioavailability differences are important for a drug with a relatively narrow therapeutic index.The physiologic characteristics and comorbidities of the patient also affect bioavailability.Absorption rate is important because even when a drug is absorbed completely, it may be absorbed too slowly to produce a therapeutic blood level quickly enough or so rapidly that toxicity results from high drug concentrations after each dose.Causes of Low BioavailabilityWhen a drug rapidly dissolves and readily crosses membranes, absorption tends to be complete, but absorption of orally administered drugs is not always complete. Before reaching the vena cava, a drug must move down the GI tract and pass through the gut wall and liver, common sites of drug metabolism; thus, a drug may be metabolized (first-pass metabolism) before it can be measured in the systemic circulation. Many drugs have low oral bioavailability because of extensive first-pass metabolism. For such drugs (eg, isoproterenol, norepinephrine, testosterone), extraction in these tissues is so extensive that bioavailability is virtually zero. For drugs with an active metabolite, the therapeutic consequence of first-pass metabolism depends on the contributions of the drug and the metabolite to the desired and undesired effects.Low bioavailability is most common with oral dosage forms of poorly water-soluble, slowly absorbed drugs. More factors can affect bioavailability when absorption is slow or incomplete than when it is rapid and complete, so slow or incomplete absorptionoften leads to variable therapeutic responses.Insufficient time in the GI tract is a common cause of low bioavailability. Ingested drug is exposed to the entire GI tract for no more than 1 to 2 days and to the small intestine for only 2 to 4 h. If the drug does not dissolve readily or cannot penetrate the epithelial membrane (eg, if it is highly ionized and polar), time at the absorption site may be insufficient. In such cases, bioavailability tends to be highly variable as well as low. Age, sex, activity, genetic phenotype, stress, disease (eg, achlorhydria, malabsorption syndromes), or previous GI surgery can affect drug bioavailability.Reactions that compete with absorption can reduce bioavailability. They include complex formation (eg, between tetracycline and polyvalent metal ions), hydrolysis by gastric acid or digestive enzymes (eg, penicillin and chloramphenicol palmitate hydrolysis), conjugation in the gut wall (eg, sulfoconjugation of isoproterenol), adsorption to other drugs (eg, digoxin and cholestyramine), and metabolism by luminal microflora.Assessment of BioavailabilityAssessment of bioavailability from plasma concentration-time data usually involves determining the maximum (peak) plasma drug concentration, the time at which maximum plasma drug concentration occurs (peak time), and the area under the plasma concentration-time curve. The plasma drug concentration increases with the extent of absorption; the peak is reached when the drug elimination rate equals absorption rate. Bioavailability determinations based on the peak plasma concentration can be misleading, because drug elimination begins as soon as the drug enters the bloodstream. The mostwidely used general index of absorption rate is peak time; the slower the absorption, the later the peak time. However, peak time is often not a good statistical measure because it is a discrete value that depends on frequency of blood sampling and, in the case of relatively flat concentrations near the peak, on assay reproducibility.AUC is the most reliable measure of bioavailability. It is directly proportional to the total amount of unchanged drug that reaches the systemic circulation. For an accurate measurement, blood must be sampled frequently over a long enough time to observe virtually complete drug elimination. Drug products may be considered bioequivalent in extent and rate of absorption if their plasma-level curves are essentially superimposable. Drug products that have similar AUCs but differently shaped plasma-level curves are equivalent in extent but differ in their absorption rate-time profiles.Single vs. multiple doses: Bioavailability may be assessed after single or repetitive (multiple) dosing. More information about rate of absorption is available after a single dose than after multiple dosing. However, multiple dosing more closely represents the usual clinical situation, and plasma concentrations are usually higher than those after a single dose, facilitating data analysis. After multiple dosing at a fixed-dosing interval for four or five elimination half-lives, the blood drug concentration should be at steady state (the amount absorbed equals the amount eliminated within each dosing interval). The extent of absorption can then be analyzed by measuring the AUC during a dosing interval. Measuring the AUC over 24 h is probably preferable because of circadian variations in physiologic functions and because of possible variations in dosing intervalsand absorption rates during a day.For drugs excreted primarily unchanged in urine, bioavailability can be estimated by measuring the total amount of drug excreted after a single dose. Ideally, urine is collected over a period of 7 to 10 elimination half-lives for complete urinary recovery of the absorbed drug. Bioavailability may also be assessed after multiple dosing by measuring unchanged drug recovered from urine over 24 h under steady-state conditions.。

材料专业英语常见词汇

材料专业英语常见词汇

材料专业英语常见词汇The saying "the more diligent, the more luckier you are" really should be my charm in2006.材料专业英语常见词汇一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵 Non-directional 无方向性Face-centered cubic 面心立方Body-centered cubic体心立方 Hexagonal close-packed 密排六方 Copper 铜Aluminum 铝Chromium 铬 Tungsten 钨Crystallographic Plane晶面 Crystallographic direction 晶向 Property性质 Miller indices米勒指数 Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜 Cadmium 镉 Coordinate system 坐 Point defec点缺陷Lattice 点阵 Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law 菲克第一定律 Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector 柏氏矢量Perpendicular 垂直于Surface defect 面缺陷Grain boundary 晶界Twin boundary 晶界 Shear force 剪应力Deformation 变形Small or low angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡 acid-base indicator酸碱指示剂 acid bath酸槽 acidBessemerconverter 酸性转炉 acid brick酸性耐火砖 acid brittleness酸洗脆性、氢脆性 acid burden酸性炉料acid clay酸性粘土 acid cleaning同pickling酸洗 acid concentration酸浓度 acid converter酸性转炉 acid converter steel酸性转炉钢 acid content酸含量 acid corrosion酸腐蚀 acid deficient弱酸的、酸不足的 acid dip酸浸acid dip pickler沉浸式酸洗装置 aciddiptank酸液浸洗槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料漆acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm转变点渗碳体析出温度acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效或工作开口度active state活性状态active surface有效表面activity coefficient激活系数、活度系数actual diameter钢丝绳实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位 Atomic mass unit amu 原子数 Atomic number 原子量 Atomic weight波尔原子模型 Bohr atomic model 键能 Bonding energy 库仑力 Coulombic force共价键 Covalent bond 分子的构型 molecular configuration电子构型electronic configuration 负电的 Electronegative 正电的 Electropositive基态 Ground state 氢键 Hydrogen bond 离子键 Ionic bond 同位素 Isotope金属键 Metallic bond 摩尔 Mole 分子 Molecule 泡利不相容原理 Pauli exclusion principle 元素周期表 Periodic table 原子 atom 分子 molecule 分子量 molecule weight极性分子 Polar molecule 量子数 quantum number 价电子 valence electron范德华键 van der waals bond 电子轨道 electron orbitals 点群 point group对称要素 symmetry elements 各向异性 anisotropy 原子堆积因数 atomic packing factorAPF 体心立方结构 body-centered cubic BCC 面心立方结构 face-centered cubic FCC布拉格定律bragg’s law 配位数 coordination number 晶体结构 crystal structure晶系 crystal system 晶体的 crystalline 衍射 diffraction 中子衍射 neutron diffraction电子衍射 electron diffraction 晶界 grain boundary 六方密堆积 hexagonal close-packed HCP 鲍林规则 Paulin g’s rules NaCl型结构 NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构 Blende-type structure纤锌矿型结构 Wurtzite structure 金红石型结构 Rutile structure萤石型结构 Fluorite structure 钙钛矿型结构 Perovskite-type structure尖晶石型结构 Spinel-type structure 硅酸盐结构 Structure of silicates岛状结构 Island structure 链状结构 Chain structure 层状结构 Layer structure架状结构 Framework structure 滑石 talc 叶蜡石 pyrophyllite 高岭石 kaolinite石英 quartz 长石 feldspar 美橄榄石 forsterite 各向同性的 isotropic各向异性的 anisotropy 晶格 lattice 晶格参数 lattice parameters 密勒指数 miller indices 非结晶的 noncrystalline多晶的 polycrystalline 多晶形 polymorphism 单晶single crystal 晶胞 unit cell电位 electron states化合价 valence 电子 electrons 共价键 covalent bonding金属键 metallic bonding 离子键Ionic bonding 极性分子 polar molecules原子面密度 atomic planar density 衍射角 diffraction angle 合金 alloy粒度,晶粒大小 grain size 显微结构 microstructure 显微照相 photomicrograph扫描电子显微镜 scanning electron microscope SEM透射电子显微镜 transmission electron microscope TEM 重量百分数 weight percent四方的 tetragonal 单斜的monoclinic 配位数 coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷 defect, imperfection 点缺陷 point defect 线缺陷 line defect, dislocation面缺陷 interface defect 体缺陷 volume defect 位错排列 dislocation arrangement位错线 dislocation line 刃位错 edge dislocation 螺位错 screw dislocation混合位错 mixed dislocation 晶界 grain boundaries 大角度晶界 high-angle grain boundaries 小角度晶界 tilt boundary, 孪晶界 twin boundaries 位错阵列 dislocation array位错气团 dislocation atmosphere 位错轴dislocation axis 位错胞 dislocation cell位错爬移 dislocation climb 位错聚结 dislocation coalescence 位错滑移 dislocation slip位错核心能量 dislocation core energy 位错裂纹 dislocation crack位错阻尼 dislocation damping 位错密度 dislocation density原子错位 substitution of a wrong atom 间隙原子 interstitial atom晶格空位 vacant lattice sites 间隙位置 interstitial sites 杂质 impurities弗伦克尔缺陷 Frenkel disorder 肖脱基缺陷 Schottky disorder 主晶相 the host lattice错位原子 misplaced atoms 缔合中心 Associated Centers. 自由电子 Free Electrons电子空穴Electron Holes 伯格斯矢量 Burgers 克罗各-明克符号 Kroger Vink notation中性原子 neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体 solid solution 固溶度 solid solubility 化合物 compound间隙固溶体 interstitial solid solution 置换固溶体 substitutional solid solution金属间化合物 intermetallics 不混溶固溶体 immiscible solid solution转熔型固溶体 peritectic solid solution 有序固溶体 ordered solid solution无序固溶体 disordered solid solution 固溶强化 solid solution strengthening取代型固溶体 Substitutional solid solutions 过饱和固溶体 supersaturated solid solution非化学计量化合物 Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构 structure of melt过冷液体 supercooling melt 玻璃态 vitreous state软化温度 softening temperature 粘度 viscosity 表面张力 Surface tension介稳态过渡相 metastable phase 组织 constitution 淬火 quenching退火的 softened 玻璃分相 phase separation in glasses 体积收缩 volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面 surface 界面 interface 同相界面 homophase boundary异相界面 heterophase boundary 晶界 grain boundary 表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption表面能 surface energy 倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能 interfacial free energy应变能 strain energy 晶体学取向关系 crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图 phase diagrams 相 phase 组分 component 组元 compoonent相律 Phase rule 投影图 Projection drawing 浓度三角形 Concentration triangle冷却曲线 Cooling curve 成分 composition 自由度 freedom相平衡 phase equilibrium 化学势 chemical potential 热力学 thermodynamics相律 phase rule 吉布斯相律 Gibbs phase rule 自由能 free energy吉布斯自由能 Gibbs free energy 吉布斯混合能 Gibbs energy of mixing吉布斯熵 Gibbs entropy 吉布斯函数 Gibbs function 热力学函数 thermodynamics function 热分析 thermal analysis 过冷 supercooling 过冷度 degree of supercooling杠杆定律 lever rule 相界 phase boundary 相界线 phase boundary line相界交联 phase boundary crosslinking 共轭线 conjugate lines相界有限交联 phase boundary crosslinking 相界反应 phase boundary reaction相变 phase change 相组成 phase composition 共格相 phase-coherent金相相组织 phase constentuent 相衬 phase contrast 相衬显微镜 phase contrast microscope 相衬显微术 phase contrast microscopy 相分布 phase distribution相平衡常数 phase equilibrium constant 相平衡图 phase equilibrium diagram相变滞后 phase transition lag 相分离 phase segregation 相序 phase order相稳定性 phase stability 相态 phase state 相稳定区 phase stabile range相变温度 phase transition temperature 相变压力 phase transition pressure同质多晶转变 polymorphic transformation 同素异晶转变 allotropic transformation相平衡条件 phase equilibrium conditions 显微结构 microstructures 低共熔体 eutectoid不混溶性 immiscibility材料科学基础专业词汇:第六章扩散活化能 activation energy 扩散通量 diffusion flux 浓度梯度 concentration gradient菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子 correlation factor 稳态扩散 steady state diffusion 非稳态扩散 nonsteady-state diffusion扩散系数 diffusion coefficient 跳动几率 jump frequency填隙机制 interstitalcy mechanism 晶界扩散 grain boundary diffusion短路扩散 short-circuit diffusion 上坡扩散 uphill diffusion 下坡扩散 Downhill diffusion互扩散系数 Mutual diffusion 渗碳剂 carburizing 浓度梯度 concentration gradient浓度分布曲线 concentration profile 扩散流量 diffusion flux 驱动力 driving force间隙扩散 interstitial diffusion 自扩散 self-diffusion 表面扩散 surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程 diffusion equation扩散机理 diffusion mechanism 扩散特性 diffusion property 无规行走 Random walk达肯方程 Dark equation 柯肯达尔效应 Kirkendall equation本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic diffusion coefficient离子电导率 Ion-conductivity 空位机制 Vacancy concentration材料科学基础专业词汇:第七章相变过冷 supercooling 过冷度 degree of supercooling 晶核 nucleus 形核 nucleation形核功 nucleation energy 晶体长大 crystal growth 均匀形核 homogeneous nucleation非均匀形核 heterogeneous nucleation 形核率 nucleation rate 长大速率 growth rate热力学函数 thermodynamics function 临界晶核 critical nucleus临界晶核半径 critical nucleus radius 枝晶偏析 dendritic segregation局部平衡 localized equilibrium 平衡分配系数 equilibrium distributioncoefficient有效分配系数 effective distribution coefficient 成分过冷 constitutional supercooling引领领先相 leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic伪共晶 pseudoeutectic 离异共晶 divorsed eutectic 表面等轴晶区 chill zone柱状晶区 columnar zone 中心等轴晶区 equiaxed crystal zone定向凝固 unidirectional solidification 急冷技术 splatcooling 区域提纯 zone refining单晶提拉法 Czochralski method 晶界形核 boundary nucleation位错形核 dislocation nucleation 晶核长大 nuclei growth斯宾那多分解 spinodal decomposition 有序无序转变 disordered-order transition马氏体相变 martensite phase transformation 马氏体 martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应 solid state reaction 烧结 sintering 烧成 fire 合金 alloy 再结晶 Recrystallization 二次再结晶 Secondary recrystallization 成核 nucleation 结晶 crystallization子晶,雏晶 matted crystal 耔晶取向 seed orientation 异质核化 heterogeneous nucleation均匀化热处理 homogenization heat treatment 铁碳合金 iron-carbon alloy渗碳体 cementite 铁素体 ferrite 奥氏体austenite 共晶反应 eutectic reaction 固溶处理 solution heat treatment。

共价修饰与配位组装的协同策略

共价修饰与配位组装的协同策略

共价修饰与配位组装的协同策略1.共价修饰和配位组装是化学反应中常见的两种策略。

Covalent modification and coordination assembly are two common strategies in chemical reactions.2.这两种策略可以相互协同作用,以实现更复杂的化学结构。

These two strategies can work together to achieve more complex chemical structures.3.共价修饰可以增加有机小分子的功能性。

Covalent modification can increase the functionality of organic small molecules.4.配位组装为合成金属有机框架提供了一种有效的策略。

Coordination assembly provides an effective strategy for the synthesis of metal-organic frameworks.5.在有机合成中,共价修饰可以引入新的官能团。

In organic synthesis, covalent modification can introduce new functional groups.6.配位组装可以通过金属离子的配位构建起大块的结构。

Coordination assembly can build large structures through the coordination of metal ions.7.这两种策略的协同作用可以为材料科学和药物设计提供新的思路。

The synergistic effect of these two strategies canprovide new ideas for materials science and drug design.8.共价修饰和配位组装之间的相互作用可以产生复杂的化学平衡。

au(111)表面verdazyl自由基的构象转换

au(111)表面verdazyl自由基的构象转换

物 理 化 学 学 报Acta Phys. -Chim. Sin. 2020, 36 (1), 1907043 (1 of 6)Received: July 15, 2019; Revised: August 19, 2019; Accepted: August 22, 2019; Published online: August 30, 2019. *Corresponding authors. Emails: kaiwu@ (K.W.); jianpei@ (J.P.). Tel.: +86-10-62754005 (K.W.).The project was supported by the National Natural Science Foundation of China (21821004) and the Ministry of Science and Technology of China (2017YFA0204702).国家自然科学基金(21821004)及中华人民共和国科学技术部(2017YFA0204702)资助项目© Editorial office of Acta Physico-Chimica Sinica[Article] doi: 10.3866/PKU.WHXB201907043 Conformational Switching of Verdazyl Radicals on Au(111)Zhichao Huang, Yazhong Dai, Xiaojie Wen, Dan Liu, Yuxuan Lin, Zhen Xu, Jian Pei *, Kai Wu *Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.Abstract: Pure organic radical molecules on metal surfaces are of great significance in exploration of the electron spin behavior. However, only a few of them are investigated in surface studies due to their poor thermal stability. The adsorption and conformational switching of two verdazyl radical molecules, namely, 1,5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2,3-d]thiophen-2-yl)-6-oxoverdazyl (B2P) and 1,5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2,3-d]thiophen-4-yl)-6-oxoverdazyl (B4P), are studied by scanning tunneling microscopy (STM) and density functional theory (DFT). The adsorbed B2P molecules on Au(111) form dimers, trimers and tetramers without any ordered assembly structure in which two distinct appearances of B2Pin STM images are observed and assigned to be its “P” and “T” conformations. The “P” conformation molecules appear in the STM image with a large elliptical protrusion and two small ones of equal size, while the “T” ones appear with a large protrusion and two small ones of different size. Likewise, the B4P molecules on Au(111) form dimers at low coverage, strip structure at medium coverage and assembled structure at high coverage which also consists of above-mentioned two conformations. Both B2P molecules and B4P molecules are held together by weak intermolecular interaction rather than chemical bond. STM tip induced conformational switching of both verdayzl radicals is observed at the bias voltage of +2.0 V. The “T” conformation of B2P can be switched to the “P” while the “P” conformation of B4P can be switched to the “T” one. For both molecules, such a conformational switching is irreversible. The DFT calculations with Perdew-Burke-Ernzerhof version exchange-correlation functional are used to optimize the model structure and simulate the STM images. STM images of several possible molecular conformations with different isopropyl orientation and different tilt angle between verdazyl radical and Au(111) surface are simulated. For conformations with different isopropyl orientation, the STM simulated images are similar, while different tilt angles of verdazyl radical lead to significantly different STM simulated images. Combined STM experiments and DFT simulations reveal that the conformational switching originates from the change of tilting angle between the verdazyl radical and Au(111) surface. The tilt angles in “P” and “T” conformations are 0° and 50°, respectively. In this study, two different adsorption conformations of verdazyl radicals on the Au(111) surface are presented and their exact adsorption structures are identified. This study provides a possible way to study the relationship between the electron spin and configuration conversion of pure organic radical molecules and a reference for designing more conformational switchable radical molecules that can be employed as interesting molecular switches. Key Words: Verdazyl radical; Scanning tunneling microscopy; Density functional theory; Electron spinAu(111)表面Verdazyl自由基的构象转换黄智超,戴亚中,温晓杰,刘丹,林宇轩,徐珍,裴坚*,吴凯*北京分子科学国家研究中心,北京大学化学与分子工程学院,北京 100871摘要:本文使用扫描隧道显微镜(STM)与密度泛函理论(DFT)技术,研究了1,5-二异丙基-3-(苯并[b]苯并[4,5]噻吩并[2,3-d]噻吩-2-基)-6-oxoverdazyl分子(简称B2P分子)与1,5-二异丙基-3-(苯并[b]苯并[4,5]噻吩并[2,3-d]噻吩-4-基)-6-oxoverdazyl分子(简称B4P分子)在Au(111)表面的吸附与构象转换行为。

8-Adsorption汇总

8-Adsorption汇总

• Chemical adsorption: Some degree of chemical bonding between adsorbate and adsorbent characterized by strong attractiveness. Adsorbed molecules are not free to move on the surface. There is a high degree of specificity and typically a monolayer is formed. The process is seldom reversible. Generally some combination of physical and chemical adsorption is responsible for activated carbon adsorption in water and wastewater.
ADSORPTION EQUILIBRIA If the adsorbent and adsorbate are contacted long enough an equilibrium will be established between the amount of adsorbate adsorbed and the amount of adsorbate in solution. The equilibrium relationship is described by isotherms.
These surface molecules have additional energy to balance the forces. It takes energy to put molecules on the surface, since at least one of the interior bonds must be broken to get the molecule to the surface. This excess energy is called surface tension. Since it takes energy to create interfacial surfaces, the system will try to minimize the total interfacial surface area. Hence we see spherical droplet, meniscus etc.

光催化co2还原对照

光催化co2还原对照

光催化co2还原对照英文回答:Photocatalytic CO2 Reduction: Mechanistic Insights and Control Strategies.Photocatalytic CO2 reduction is a promising approachfor converting CO2 into valuable chemicals and fuels, contributing to carbon capture and utilization. Understanding the underlying mechanisms and developing effective control strategies are crucial for optimizing the efficiency and selectivity of the process.Mechanism of Photocatalytic CO2 Reduction.The photocatalytic CO2 reduction process involves a series of complex reactions. Typically, a semiconductor material acts as the photocatalyst, absorbing light energy to generate electron-hole pairs. The electrons are then transferred to CO2, while the holes are consumed bysacrificial electron donors, such as water or methanol.The initial electron transfer step is followed by a series of proton-coupled electron transfer (PCET) reactions, leading to the formation of various intermediates. The nature of these intermediates and the subsequent reaction pathways depend on factors such as the semiconductor properties, co-catalysts, and reaction conditions.Control Strategies for Photocatalytic CO2 Reduction.Tailoring the photocatalyst properties and reaction environment can significantly influence the selectivity and efficiency of photocatalytic CO2 reduction. Here are key control strategies:1. Band Engineering: Modifying the bandgap and band structure of the semiconductor can optimize the light absorption and charge separation efficiency.2. Co-Catalyst Deposition: Incorporating metal or metal oxide co-catalysts can enhance the adsorption andactivation of CO2, promoting specific reaction pathways.3. Reaction Environment: Optimizing the pH, ionic strength, and solvent composition can influence the stability, activity, and selectivity of the photocatalyst.4. Light Source and Irradiation Conditions: The wavelength, intensity, and irradiation time can affect the photocatalytic efficiency and product distribution.5. Reactor Design: The reactor design, including the electrode configuration, flow rate, and mixing conditions, can impact mass transfer and reaction kinetics.Future Directions.Continued research is essential to further advance photocatalytic CO2 reduction. Key areas include:1. Developing efficient and stable photocatalysts with high selectivity for desired products.2. Understanding the detailed reaction mechanisms and determining the key intermediates.3. Designing rational co-catalyst systems to enhance CO2 activation and product selectivity.4. Optimizing the reaction environment for efficient and cost-effective operation.5. Scaling up the photocatalytic process for practical applications.中文回答:光催化CO2还原,机理及调控策略。

化学及化工专业词汇英语翻译a-c

化学及化工专业词汇英语翻译a-c

化学及化工专业词汇英语翻译a-c18 electron rule 18 电子则abbe refractometer 阿贝折射计abbreviated analysis 简略分析abderhalden's dryer 阿布德尔哈尔登干燥器abderhalden's reaction 阿布德尔哈尔登反应abegg's rule 阿贝格规则abel closed tester 阿贝尔氏密闭实验机abel pensky tester 阿贝尔彭斯基试验器abel tester 阿贝尔试验器abelite 阿贝立特aberration 像差abies oil 松节油abietate 松香酯abietic acid 松香酸abietin 松香素abiochemistry 无生化学;无机化学ablation 消融ablution 洗净abnormal setting 反常凝结abnormality 反常abradant 磨料abrader 磨损试验机abrasion 磨耗abrasion loss 磨损量abrasion resistance 耐磨能力abrasion test 磨耗试验abrasion testing machine 磨损试验机abrasive 磨料abrasive grain 磨料颗粒abrasive industry 磨料工业abrasive paper 砂纸abrasiveness 磨损性abrasives 研磨剂abs resin abs 尸abs resins abs尸abscisic acid 阿伯喂酸absinthe oil 洋艾油absolute activity 绝对活性度absolute alcohol 无水酒精absolute calibration 绝对校准absolute configuration 绝对构型absolute dry condition 绝对干燥状态absolute dry weight 绝对干重absolute error 绝对误差absolute humidity 绝对湿度absolute measurement 绝对测量absolute reaction rate 绝对反应速度absolute sensitivity 绝对灵敏度absolute specific gravity 真比重absolute temperature 绝对温度absolute unit 绝对单位absolute value 绝对值absolute viscosity 绝对粘度absolute zero 绝对零度absorbability 吸收性absorbance 吸光度absorbed dose 吸收线量absorbent 吸收剂absorbent paper 吸收纸absorber 吸收器吸收体absorbing power 吸收能力absorptiometer 吸光测定计absorptiometric analysis 吸光分析absorptiometry 吸收分光光度法absorption 吸收absorption band 吸收带absorption cell 吸收池absorption coefficient 吸收系数absorption column 吸收塔absorption curve 吸收曲线absorption edge 吸收端absorption factor 吸收因子absorption heat 吸收热absorption intensity 吸收强度absorption line 吸收线absorption maximum 最大吸收absorption method 吸收法absorption oil 吸收油absorption pipet 吸收管absorption refrigerator 吸收式冷冻器absorption spectrophotometry 吸收分光光度法absorption spectrum 吸收光谱absorption tower 吸收塔absorption tube 吸收管absorptive power 吸收能力absorptivity 吸收率abukumalite 钇硅磷灰石abysmal deposit 深海沉积物abyssal deposit 深海沉积物ac polarography 交莲谱法acacia 阿拉伯屎acaricide 杀螨剂acaroid resin 禾木尸accelerant 促进剂accelerated aging 加速老化accelerated aging test 加速老化试验accelerated weathering test 加速风化试验accelerating agent 促进剂acceleration globulin 促凝血球蛋白acceleration of gravity 重力加速度accelerator 促进剂acceptor 接受体accessory constituent 副成分accetyl value number 乙酰值accidental error 偶然误差acclimatization 驯化accommodation 适应accommodation coeffieient 适应系数accumulator 蓄电池accumulator acid 蓄电池酸液accuracy 准确度acenaphthene 威杀灵acenaphthene quinone 苊醌acenaphthenone 二氢苊酮acenaphthylene 萘嵌戊烯acenocoumarol 苊香豆醇acephate 乙酰甲胺磷acetal 乙缩醛acetal phosphatide 缩醛磷脂acetal resin 缩醛尸acetaldehydase 乙醛酶acetaldehyde 乙醛acetaldehyde ammonia 乙醛合氨acetaldehyde reductase 醇脱氢酶acetaldol 3 羟基丁醛acetaldoxime 乙醛肟acetamide 乙酰胺acetamidine 乙脒acetanilide 乙酰苯胺acetarsol 乙酰胂胺acetate 醋酸盐acetate dye 醋酸染料acetate fiber 醋酸纤维acetate film 醋酸纤维胶片acetate rayon 醋酸丝acetazolamide 乙酰唑胺acetic acid 醋酸acetic acid fermentation 乙酸发酵acetic acid glacial 冰醋酸acetic aldehyde 乙醛acetic anhydride 醋酐acetic bacteria 醋酸菌acetic ester 醋酸酯acetification 醋化酌acetimeter 醋酸计acetine 醋精acetoacetanilide 乙酰乙酰替苯胺acetoacetate 乙酰醋酸盐acetoacetic acid 乙酰醋酸acetoin 醋偶姻acetol 丙酮醇acetolactic acid 乙酰乳酸acetolysis 乙酸水解acetomeroctol 醋汞辛酚acetometry 醋酸测定法acetone 丙酮acetone alcohol 丙酮醇acetone body 酮体acetone butanol fermentation 丙酮丁醇发酵acetone chloroform 三氯叔丁醇acetone cyanhydrin 丙酮合氰化氢acetone dicarboxylic acid 丙酮二羧酸acetone fermentation 丙酮发酵acetone sugar 丙酮糖acetonic acid 醋酮酸acetonitrile 乙腈acetonyl acetone 丙酮基丙酮acetophenetidin n 乙酰乙氧基苯胺acetophenone 苯乙酮acetopurpurin 乙酰替红紫acetoxime 丙酮肟acetoxyl group 乙酰氧基acetoxylation 乙酸化aceturic acid 乙酰甘氨酸acetyl bromide 乙酰溴acetyl chloride 乙酰氯acetyl hydroperoxide 过乙酸acetyl iodide 碘化乙酰acetyl ketene 二酮acetyl peroxide 过氧化乙酰acetyl propionyl 乙酰丙酰acetyl value 乙酰值acetylacetone 乙酰丙酮acetylase 乙酰酯酶acetylating agent 乙酰剂acetylation 乙酰化acetylbenzoyl peroxide 乙酰过氧化苯甲酰acetylcellulose 乙酰纤维素acetylcholine 乙酰胆碱acetylene 乙炔acetylene black 乙炔炭黑acetylene burner 乙炔燃烧器acetylene chemistry 乙炔化学acetylene chloride 乙炔基氯acetylene complex 乙炔络合物acetylene generator 乙炔发生器acetylene linkage 炔键acetylene polymer 乙炔聚合物acetylene tetrachloride 四氯乙炔acetylene welding 气焊acetylenic hydrocarbon 乙炔属烃类acetylide 乙炔化合物acetylisoeugenol 乙酰异丁子香酚acetylphenylhydrazine 乙酰苯肼acetylsalicylic acid 乙酰水杨酸acetylurea 乙酰脲achirality 非手胀achroite 无色电气石achromatic lens 消色差透镜aci form 针形acicular crystal 针状结晶acid 酸acid acceptor 受酸体acid albumin 酸蛋白acid alizarine 酸性茜素acid amide 酸胺acid ammonium sulfate 硫酸氢铵acid ammonium tartrate 酒石酸氢铵acid anhydride 酸酐acid azid 酰基叠acid azo dye 酸性偶氮染料acid base catalysis 酸碱催化acid base equilibrium 酸碱平衡acid base indicator 酸碱指示剂acid base pair 酸碱对acid base titration 酸碱滴定acid bath 酸浴acid black 酸性黑acid carbonate 酸性碳酸盐l acid 醇酸alcohol dehydrogenase 醇脱氢酶alcohol fuel 酒精燃料alcohol lamp 酒精灯alcohol of crystallization 结晶醇alcohol thermometer 酒精温度计alcohol varnish 醇溶清漆alcoholase 醇酶alcoholate 烃氧基金属alcoholic compound 醇化合物alcoholic extract 酒精提出物alcoholic fermentation 酒精发酵alcoholic potash 钾碱醇液alcoholic solution 醇溶液alcoholism 酒中毒alcoholmeter 酒精比重计alcoholometry 酒精测定alcoholysis 醇解alcosol 醇溶胶alcoxyl 烷氧aldehyde 醛aldehyde acid 醛酸aldehyde alcohol 醛醇aldehyde ammonia 醛氨aldehyde dehydrogenase 醛脱氢酶aldehyde resin 聚醛尸aldimine 亚胺醛aldoheptose 庚醛糖aldohexose 乙醛糖aldoketene 醛烯酮aldol 羟醛aldol condensation 醛醇缩合aldol reaction 醇醛缩合反应aldolase 醛缩酶aldolization 缩醛反应aldonic acid 醛糖酸aldopentose 戊醛糖aldose 醛糖aldosterone 醛甾酮aldotriose 丙醛糖aldox process 羰醇法aldoxime 醛肟aldrin 艾氏剂alexandrite 翠绿宝石alfin catalyst 阿尔芬催化剂alfin polymer 阿尔芬聚合物alfin polymerization 阿尔芬聚合algae 藻类algin 藻酸alginate 藻蛋白酸盐alginate fiber 藻酸纤维alginic acid 海藻酸algol blue 阿果蓝algol color 阿果染料algorithm 算法alicyclic 脂环族的alicyclic compound 脂环化合物aliesterase 脂族酯酶aliphatic 无环的aliphatic acid 脂族酸aliphatic alcohol 脂族醇aliphatic amine 脂族胺aliphatic base 脂族碱aliphatic compound 脂族化合物aliphatic ether 脂族醚aliphatic hydrocarbon 脂族烃aliphatic series 脂族系aliphatic unsaturated carboxylic acid 脂族不饱羧酸alite 阿里特alizarin 茜素alizarin blue 茜素蓝alizarin brown 茜素棕alizarin dye 茜素染料alizarin lake 茜素色淀alizarin yellow 茜黄alizarine 茜素alkali 碱alkali blue 碱性蓝alkali cellulose 碱纤维素alkali fusion 碱熔融alkali ion diode 碱离子二极管alkali lignin 碱木素alkali liquor 碱液alkali metal 碱金属alkali resistance 耐碱性alkali rock 碱性岩alkali salt 碱金属盐alkalimeter 碱量计alkalimetry 碱量滴定法alkaline accumulator 减蓄电池alkaline bath 碱浴alkaline cell 碱性电池alkaline cleaner 碱性清洗剂alkaline earth metal 碱土金属alkaline earths 碱土族alkaline hydrolysis 加碱水解alkaline reaction 碱性反应alkaline solution 碱性溶液alkaline storage battery 减蓄电池alkalinity 碱度alkalization 碱化alkaloid 生物碱alkaloid reagent 生物碱试剂alkalosis 碱中毒alkamine 氨基醇类alkane 链烷alkannin 紫草素alkanolamine 烷烃醇胺alkansulfonic acid 链烷磺酸alkene 烯烃alkine 链炔alkyd paint 醇酸涂料alkyd resin 醇酸尸alkyd resin varnish 醇酸清漆alkyl 烷基alkyl cellulose 烷基纤维素alkyl cyanide 烷基氰alkyl group 烷基alkyl halide 烷基卤alkyl sulfate 烷基硫酸盐alkyl sulfide 烷基硫alkyl sulfonic acid 烷基磺酸alkylarsine 烷基胂alkylarsonic acid 烷基胂酸alkylate 烷基化产物alkylating agent 烷化剂alkylation 烷基化alkylbenzene 烷基苯alkylbenzene sulfonate 烷基苯磺酸盐alkylene 烷撑alkylidene 次烷基alkylmagnesium halide 烷基镁化卤alkylnaphthalene 烷基萘alkyne 炔烃alkynol 炔醇allanite 褐帘石allantoic acid 尿囊酸allantoinase 尿囊素酶allantoxanic acid 尿囊毒酸allanturic acid 尿囊脲酸allelochemical 变异化学的allelochemistry 变异化学allene 丙二烯allergy 过敏反应allethrin 丙烯拟除虫菊酯allicin 蒜辣素alligator pear oil 鳄梨油allobarbital 二烯丙巴比妥allochromatic crystal 羼质色晶体allocinnamic acid 别肉桂酸alloisomerism 立体异构现象allomerism 异质同晶allophane水铝英石allophanic acid 脲基甲酸alloprene 阿洛波林allopurinol 别嘌呤醇allose 阿洛糖allosteric effect 别构效应allosteric enzyme 变构酶allosteric transition 变构转变allostery 变构性allothreonine 别苏氨酸allotrope 同素异形体allotropism 同素异形allotropy 同素异形allowable error 容许误差allowed transition 容许跃迁alloxan 阿脲alloxanic acid 阿脲酸alloxazine 咯嗪alloy 合金alloy analysis 合金分析alloy steel 合金钢allulose 阿卢糖alluvial gold 砂金allyl acetate 醋酸丙烯酯allyl alcohol 烯丙醇allyl amine 烯丙胺allyl bromide 烯丙基溴allyl chloride 烯丙基氯allyl complex 烯丙基络合物allyl compound 烯丙基化合物allyl cyanide 烯丙基腈allyl iodide 烯丙基碘allyl isothiocyanate 异硫氰酸烯丙酯allyl mercaptan 烯丙硫醇allyl resin 烯丙尸allyl sulfide 烯丙基硫allylene 丙炔allylic rearrangement 烯丙重排allylmustard oil 烯丙基芥子油allylthiourea 烯丙基硫脲almandine 铁铝榴石almandite 铁铝榴石almond oil 扁桃仁油aloe 芦荟aloin 芦荟素alpha brass 黄铜alpha cellulose 纤维素alpha counter 粒子计数器alpha iron 铁alpha naphthol 萘酚alpha position 位alpha ray spectrometer 射线能谱仪alpha rays 射线alstonine 鸡骨常山碱alternant hydrocarbon 交替烃alternating copolymer 交替共聚物alternating current 交流alternating current polarography 交莲谱alternation 交替altimeter 测高仪altitude 高度altrose 阿卓糖alum 茂alumel 镍基锰合金alumina 氧化铝alumina brick 矾土砖alumina bubble brick 泡沫矾土砖alumina cement 矾土水泥alumina fiber 氧化铝纤维alumina gel 铝凝胶alumina silica refractory 硅酸铝耐火材料aluminate 铝酸盐aluminium 铝aluminium acetate 乙酸铝aluminium alloy 铝合金aluminium ammonium sulfate 硫酸铝铵aluminium boride 硼化铝aluminium bromide 溴化铝aluminium bronze 铝青铜合金aluminium carbide 碳化铝aluminium chlorate 氯酸铝aluminium chloride 氯化铝aluminium ethylate 乙醇铝aluminium fluoride 氟化铝aluminium foil 铝箔aluminium hydroxide 氢氧化铝aluminium nitrate 硝酸铝aluminium oleate 油酸铝aluminium oxide 氧化铝aluminium plate 铝板aluminium potassium sulfate 硫酸铝钾aluminium powder 铝粉aluminium resinate 尸酸铝aluminium silicate 硅酸铝aluminium sulfate 硫酸铝aluminon 铝试剂aluminosilicate 硅铝酸盐aluminothermit process 铝热法aluminothermy 铝热法aluminum 铝alumite 茂石alumstone 茂石alundum 刚铝石alunite 茂石amalgam 汞齐amalgam cell 汞齐电池amalgam electrode 汞齐电极amalgamation 汞齐化amalgamation process 汞齐化过程amanitin 鹅膏菌素amaranth 蓝光酸性红amatol 阿马图amber 琥珀amber glass 琥珀玻璃amberite 琥珀炸药americium 镅americyl ion 镅酰离子amethopterin 氨甲喋呤amicron 次微粒amidase 酰胺酶素amidation 酰胺化amide 酰胺amide chloride 二氯代酰胺amidine 脒amidine hydrochloride 盐酸脒amidohydrolase 氨基水解酶amidol 阿米多amidone 美沙酮amination 胺化amine 胺amine formaldehyde 胺甲醛amine oxidase 胺氧化酶amino acid 氨基酸amino acid sequence 氨基酸顺序amino compound 氨基化合物amino nitrogen 氨基氮amino plastic resin 氨基塑料尸amino resins 氨基尸amino sugar 氨基糖amino terminal 氨基末端aminoacetaldehyde 氨基乙醛aminoacetone 氨基丙酮aminoalcohol 氨基醇aminobenzoic acid 氨基苯甲酸aminobutyric acid 氨基丁酸aminocaproic acid 氨基己酸aminodiborane 氨基乙硼烷aminoglutaric acid 氨基戊二酸aminoglycoside antibiotics 氨基糖苷类抗生物素aminogram 氨基图aminoisovaleric acid 氨基异戊酸aminolysis 氨基分解aminonaphthol 氨基萘酚aminonaphthol sulfonic acid 氨基萘磺酸aminopeptidase 氨基胜胨酵素aminophenol 氨基苯酚aminophenylarsonic acid 氨基苯胂酸aminophosphorylase 淀粉磷酸化酶aminophylline 氨苯碱aminopolypeptidase 氨基多胜酵素aminoprotease 氨蛋白酶aminopterin 氨基蝶呤aminopyridine 氨基吡啶aminopyrin 氨基吡啉aminoquinoline 氨基喹啉aminosalicylic acid 氨基水杨酸aminosuccinic acid 氨基琥珀酸aminosulfonic acid 氨基磺酸aminotoluene 氨基甲苯ammeter 电另ammonal 阿芒拿ammonia 氨ammonia compressor 氨气压缩机ammonia gas 氨气ammonia poisoning 氨中毒ammonia still 氨气塔ammonia synthesis 氨合成ammonia water 氨水ammoniacal brine 氨盐水ammoniacal fermentation 氨发酵ammoniacal latex 氨胶乳ammoniameter 氨量计ammoniasoda process 氨碱法ammoniated superphosphate 含铵过磷酸钙ammoniator 氨化器ammoniometry 氨量测定法ammonite 阿芒炸药ammonium 铵ammonium acetate 乙酸铵ammonium alum 铵茂ammonium benzoate 安息香酸铵ammonium bifluoride 氟化氢铵ammonium borate 硼酸铵ammonium carbamate 氨基甲酸铵ammonium carbonate 碳酸铵ammonium chloride 氯化铵ammonium chromate 铬酸铵ammonium cyanate 氰酸铵ammonium dichromate 重铬酸铵ammonium fluoride 氟化铵ammonium formate 甲酸铵ammonium hydrogen carbonate 碳酸氢铵ammonium hydroxide 氢氧化铵ammonium iodate 碘酸铵ammonium iron sulfate 硫酸铁铵ammonium metavanadate 偏钒酸铵ammonium molybdate 钼酸铵ammonium nitrate 硝酸铵ammonium nitrate explosive 硝铵炸药ammonium nitrate fertilizer 硝铵肥料ammonium oxalate 草酸铵ammonium perchlorate 高氯酸铵ammonium persulfate 过硫酸铵ammonium phosphate 磷酸铵ammonium phosphite 亚磷酸铵ammonium phosphomolybdate 磷钼酸铵ammonium picrate 苦味酸铵ammonium polysulfide 多硫化铵ammonium rhodanide 硫氰酸铵ammonium salt 铵盐ammonium selenate 硒酸铵ammonium stearate 硬脂酸铵ammonium sulfate 硫酸铵ammonium sulfite 亚硫酸铵ammonium thiocyanate 硫氰酸铵ammonium thiosulfate 硫代硫酸铵ammonium uranate 铀酸铵ammonium vanadate 钒酸铵ammonobase 氨基金属ammonolysis 氨解ammophos 安福粉amobarbital 戊巴比妥amodiaquine 阿莫待喹amorphism 无定形amorphous carbon 无定形碳amorphous graphite 无定型石墨amorphous material 无定形材料amorphous metal 无定形金属amorphous phosphorus 无定形磷amorphous polymer 非晶态聚合物amorphous state 无定形状态amorphous sulfur 无定形硫ampere 安amperemeter 电另amperometric titration 电廖定amperometry 电廖定amphetamine 苯异丙胺amphibole 闪石amphipathic molecule 两亲水脂分子amphiphilic molecule 两亲水脂分子ampholyte 两性电解质ampholytic active agent 两性表面活性剂ampholytic surfactant 两性表面活性剂ampholytoid 两性胶体amphoteric 两性的amphoteric character 两性特征amphoteric colloid 两性胶体amphoteric compound 两性化合物amphoteric ion 两性离子amphoteric oxide 两性氧化物amphoteric resin 两性尸amphotericeledrolyte 两性电解质amplifier 放大器ampule 安瓿amygdalin 扁桃苷amyl 戊基amyl acetate 醋酸戊酯amyl alcohol 戊醇amyl bromide 戊基溴amyl butyrate 丁酸戊酯amyl ether 戊醚amyl formate 甲酸戊酯amyl mercaptan 戊硫醇amyl nitrite 亚硝酸戊酯amyl oleate 油酸戊酯amyl propionate 丙酸戊酯amylamine 戊胺amylase 淀粉酶amylbenzene 戊基苯amylene 戊烯amylo process 淀粉发酵法amylodextrin 淀粉糊精amyloid 淀粉状朊amylolysis 淀粉分解amylopectin 支链淀粉amylopsin 胰淀粉酶amylose 直链淀粉amytal 戊巴比妥anabasine 安纳巴松anabolism 同化酌anaerobe 厌氧微生物anaerobic glycolysis 无氧糖酵解analcime 方沸石analgesic 镇痛药analog digital conversion 模拟数字转换analog signal 模拟信号analogue 类似analogue computer 模拟计算机analysis 分析analysis line 分析线analysis with ion selective electrodes 离子选择电极分析法analyte 分析物analytic function 解析函数analytical balance 分析天平analytical chemistry 分析化学analytical extraction 分析抽出analytical method 分析法analytical reaction 分析反应analytically pure 分析纯anapaite 斜磷钙铁矿anaphoresis 阴离子电泳anatase octahedrite 锐钛矿anchor agitator 锚式搅拌器anchor stirrer 锚式搅拌器andalusite 红柱石andesite 安山岩andreasen pipet 安德烈森型吸管androsin 雄素androstane 雄烷androstendione 雄烯二酮androsterone 雄酮andrussow process 安德卢梭法anelasticity 滞弹性anemometer 风速计anemonin 白头翁脑aneroid barometer 空盒气压计anesthesin 氨基苯甲酸乙酯anesthetic 麻醉剂anethole 茴香脑aneurin 硫胺素angelica lactone 当归内酯angelica oil 当归油angiotensin 血管紧张肽angle of polarization 偏振光角angle of refraction 折射角angle of repose 休止角anglesite 硫酸铅矿angstrom 埃angular momentum 角动量anhalonine 老头掌碱anhydride 酐anhydrite 硬石膏anhydrone 无水高氯酸镁anhydrous 无水的anhydrous acid 无水酸anhydrous alcohol 无水酒精anhydrous ammonia 无水氨anhydrous salt 无水盐anileridine 氨苄哌替啶anilide 酰替苯胺aniline 苯胺aniline black 苯胺黑aniline blue 苯胺蓝aniline dye 苯胺染料aniline formaldehyde resin 苯胺甲醛尸aniline hydrochloride 盐酸苯胺aniline point 苯胺点aniline red 苯胺红aniline resin 苯胺尸aniline yellow 苯胺黄anilol 酒精苯胺混合液animal biochemistry 动物生化学animal charcoal 骨炭animal chemistry 动物化学animal dye 动物染料animal fat 动物脂animal fiber 动物纤维animal glue 动物胶animal oil 动物油anime 硬尸anion 阴离子anion active agent 阴离子表面活性剂anion exchange 阴离子交换anion exchange resin 阴离子交换尸anion exchanger 阴离子交换剂anionic polymerization 阴离子聚合anionic surfactant 阴离子表面活性剂anionoid reagent 类阴离子试剂anionotropy 阴离子移变现象anisaldehyde 茴香醛anise oil 茴香油anisic acid 茴香酸anisic alcohol 茴香醇anisidine 茴香胺anisole 茴香醚anisometric crystal 不等轴晶体anisotropic body 蛤异性体anisotropic liquid 蛤异性液体anisotropic membrane 蛤异性膜anisotropy 蛤异性anisoyl chloride 茴香酰氯anisyl acetate 醋酸茴香酯anisyl alcohol 茴香醇ankerite 铁白云石annabergite 镍华annealing 退火annealing furnace 退火窑annealing temperature 退火温度annulene 环轮烯anode 阳极anode effect 阳极效应anode process 阳极过程anode slime 阳极淀渣anodic oxidation 阳极氧化anodic polarization 阳极极化anodic reaction 阳极反应anodization 阳极化anodizing 阳极化anolyte 阳极电解液anomalous dispersion 异常弥散anomalous magnetic moment 异常磁矩anomalous skin effect 反常囚效应anomer 异头物anone 环己酮anorthoclase 钠斜微长石antagonism 拮抗酌antazoline 安他唑啉anthelmintics 驱肠虫剂anthocyan 花青素anthocyanidin 花色素anthocyanin 花色素苷anthophyllite 直闪石anthracene 蒽anthracene oil 蒽油anthracite 无烟煤anthracite duff 无烟煤粉anthralin 蒽啉anthranil 氨茴内酐anthranilate 邻氨基苯甲酸盐anthranilic acid 邻氨基苯酸anthranol 蒽酚anthranone 蒽酮anthrapurpurin 蒽红紫anthraquinone 蒽醌anthraquinone dye 蒽醌染料anthrarufin 蒽绛酚anthraxylon 结焦素anthrone 蒽酮anti allergic drug 抗过敏性药anti fouling paint 防污涂料anti tack agent 防粘剂antiacid 解酸药antiacid additive 抗酸添加剂antiager 抗老剂antiaromaticity 反芳香性antibiosis 抗生antibiotics 抗生物质antibody 抗体antibonding orbital 反键轨道anticarcinogen 抗癌物anticatalyst 抗催化剂anticathode 对阴极antichlor 脱氯剂anticholinesterase 抗胆碱酯酶剂anticoagulant 抗凝剂anticoagulating action 阻凝酌anticonvulsant 镇痉剂anticorrosion 抗腐蚀anticorrosive agent 防腐蚀剂anticorrosive paint 防腐涂料antidetonant 抗爆剂antidote 解毒剂antienzyme 抗酶antifertilizin 抗受精介体antifibrinolysin 抗纤维蛋白酶antifoamer 抗泡剂antifoaming agent 抗泡剂antifouling paint 防污漆antifreezing agent 阻冻剂antigen 抗原antihistamine 抗组胺剂antihistaminic agent 抗组胺剂antiknock agent 抗爆剂antiknock gasoline 抗爆汽油antiknocking fuel 抗爆燃料antimetabolite 抗代谢物antimonate 锑酸盐antimonial lead 锑铅antimonic acid anhydride 锑酸酐antimonide 锑化物antimonite 亚锑酸盐antimony 锑antimony chloride 氯化锑antimony electrode 锑电极antimony hydride 氢化锑antimony oxide 氧化锑antimony pentachloride 五氯化锑antimony potassium tartrate 酒石酸锑钾antimony red 锑红antimony sulfate 硫酸锑antimony sulfide 硫化锑antimony trisulfide 三硫化二锑antimony vermillon 锑朱antimony white 锑白antineuralgic 治神经痛药antinucleon 反核子antioxidant 抗氧化剂antiozonant 抗臭氧剂antiparticle 反粒子antipode 对映体antiproton 反质子antipyretic and analgesic 解热镇痛药antipyrine 安替吡啉antiscorbutic vitamin 抗坏血病维生素antiscorcher 防焦剂antiscorching agent 防焦剂antisepsis 防腐antiseptics 防腐剂antispasmodic 镇痉剂antistat 抗静电剂antistatic agent 抗静电剂antitermination factor 抗终止因素antithrombin 抗凝血酶antitoxin 抗毒素antivitamin 抗维生素apatite 磷灰石aphthitalite 硫酸钾石apiin 芹实苷apiose 洋芹糖aplysiopurpurin 海螺紫apocodeine 阿朴可特因apoenzyme 酶朊apoferritin 脱铁铁蛋白apomorphine 阿朴吗啡apoprotein 脱辅基蛋白apozymase 酒化酶原apparatus 装置apparent activation energy 表观活化能apparent density 表观密度apparent equilibrium 表观平衡apparent specific gravity 表观比重apparent viscosity 表观粘度applied chemistry 应用化学applied thermodynamics 应用热力学approximate calculation 近似计算approximate value 近似值aprotic solvent 非质子溶剂aqua ion 水合离子aqua regia 王水aquagel 水凝胶aquametry 测水法aqueous emulsion 水乳状液aqueous medium 水介质aqueous phase 水相aqueous solution 水溶液aqueous vapor 水蒸汽arabic acid 阿糖酸arabic gum 阿拉伯胶arabinose 阿拉伯糖arabitol 阿糖醇arabonic acid 阿糖酸arachic acid 花生酸arachidonic acid 花生四烯酸arachis oil 花生油aragonite 霰石aralkyl 芳烷arbutin 熊果苷arc furnace 电弧炉arc process 电弧法arc spectrum 弧光谱arch brick 拱砖archeochemistry 考古化学arecoline 槟榔素areometer 比重计areometry 比重测定法argentite 辉银矿argentometry 银量滴定argillaceous sand 粘质砂土argillite 泥质板岩arginase 精氨酸酶arginine 精氨酸argol 粗酒石argon 氩aristolochic acid 马兜铃酸arnicin 由金车苦素aroma 香味aromatic acid 芳族酸aromatic aldehyde 芳族醛aromatic amine 芳香胺aromatic compound 芳族化合物aromatic hydrocarbon 芳香烃aromatic nucleus 芳香环aromatic series 芳香系aromaticity 芳香度aromatization 芳香化aromatization reaction 芳香化反应aroylation 芳酰基化arrhenius equation 阿雷尼厄斯方程arsanilic acid 阿散酸arsenate 砷酸盐arsenazo i 偶氮胂arsenblende 雄黄arsenic 砷arsenic acid 砷酸arsenic butter 三氯化砷arsenic glass 砷玻璃arsenic hydride 砷化三氢arsenic mirror 砷镜arsenic sulfide 硫化砷arsenic trichloride 三氯化砷arsenic trioxide 三氧化二砷arsenic trisulfide 三硫化二砷arsenide 砷化物arsenite 亚砷酸盐arseno compound 偶砷化合物arsenobenzene 偶砷苯arsenometry 亚砷酸滴定法arsenopyrite 砷黄铁矿arsenous anhydride 亚砷酸酐arsine 胂arsonic acid 胂酸arsonium 氢化砷arsonium compound 胂化合物arsphenamine 胂凡纳明art glass 艺术玻璃art paper 加工印刷纸artemisin 蒿属素arthropodin 节肢蛋白artiad 偶价元素artificial abrasive 人造磨料artificial aging 人工老化artificial almond oil 人造扁桃油artificial asphalt 人造地沥青artificial atmospher 人工气氛artificial butter 人造奶油artificial camphor 人造樟脑artificial corundum 人造金刚砂artificial diamond 人造金刚石artificial dye 人造染料artificial fertilizer 人造肥料artificial fiber 人造纤维artificial intelligence 人工智能artificial lattice 人工晶格artificial leather 人造革artificial musk 人造香artificial perfume 人造香料artificial radioactivity 人工放射性artificial resin 人造尸artificial rubber 人造橡胶artificial silk 人造丝artificial stone 人造石aryl compound 芳基化合物aryl halide 芳基卤arylamine 芳基胺arylation 芳基化arylide 芳基化物aryloxy compound 芳氧基化合物arylsulphonate 芳基磺酸盐asarin 细辛脑asarone 细辛脑asbestine 滑石棉asbestos 石棉asbestos board 石棉纸板asbestos cement 石棉水泥asbestos cloth 石棉布asbestos felt 石棉毛毯asbestos fiber 石棉纤维asbestos filter 石棉滤器asbestos insulation 石棉绝热体asbestos paper 石棉纸asbestos powder 石棉粉asbestos slate 石棉板asbestos wire gauze 石棉衬网asbestos yarn 石棉丝asbolane 钴土矿asbolite 钴土矿ascaridol 驱蛔脑ascending method 上行法ascorbic acid 抗坏血酸asepsis 防腐ash 灰ash bath 灰浴ash collector 除尘器ash content 灰分含量ash ejector 灰喷射器ash pit door 灰坑门ash softening point 灰熔温度ashing 灰化ashless filter paper 无灰滤纸asparaginase 天门冬酰胺酶asparagine 天门冬酰胺aspartase 天门冬氨酸酶aspartate 天冬氨酸盐aspartic acid 天冬氨酸aspartokinase 天冬氨酸激酶aspartyl phosphate 天冬氨酰磷酸aspergillic acid 曲霉酸asphalt 沥青asphalt cement 沥青膏asphalt emulsion 地沥青乳液asphalt mastic 地沥青砂胶asphalt varnish 沥青油漆asphaltene 沥青烯asphaltic road oil 沥青质铺路油asphaltogenic acid 沥青酸asphaltous acid 沥青酸asphyxia 窒息asphyxiant 窒息剂asphyxy 窒息aspirator 吸气器aspirin 阿司匹林assay 试金assay balance 试金天平assay flask 试验瓶assayer's tongs 试金钳assili cotton 阿嘻棉assimilation 同化assimilation starch 同化淀粉assistant 助剂associated liquid 缔合液体association 缔合assortment 分类astacin 虾红素astatine 砹astaxanthin 虾青素astringency 收敛性astringent 收敛剂astrochemical 天体化学的astrochemist 天体化学家astrochemistry 天体化学astrogeochemical 天体地球化学的astrogeochemistry 天体地球化学asymmetric atom 不对称原子asymmetric carbon atom 不对称碳原子asymmetric oxidation 不对称氧化asymmetric structure 不对称结构asymmetric synthesis 不对称合成asymmetric system 不对称系asymmetry 不对称asymptotic freedom 渐近自由性atactic 无规立构的atactic polymer 无规聚合物atebrine 疟涤平atmolysis 微孔分气法atmosphere 大气atmospheric air 大气空气atmospheric corrosion 大气腐蚀atmospheric nitrogen 大气氮atmospheric pressure 大气压atom 原子atomic absorption spectrometry原子吸收分光光度法atomic arrangement 原子排列atomic battery 原子电池atomic beam 原子束atomic bomb 原子弹atomic bond 原子键atomic charge 原子电荷atomic clock 原子钟atomic core 原子核atomic dispersion 原子分散atomic energy 原子能atomic fluorescence spectrometry 原子荧光光谱法atomic form factor 原子散射因子atomic group 原子团atomic heat 原子热atomic hydrogen 原子氢atomic hydrogen welding 原子氢焊接atomic hypothesis 原子假说atomic lattice 原子晶格atomic magnetism 原子磁性atomic mass 原子质量atomic mass unit 原子质量单位atomic model 原子模型atomic molecular theory 原子分子论atomic nucleus 原子核atomic number 原子序atomic orbital 原子轨道atomic polarization 原子极化atomic properties 原子特性atomic radius 原子半径atomic refraction 原子折射atomic scattering factor 原子散射因子atomic spectrum 原子光谱atomic structure 原子结构atomic susceptibility 原子磁化率atomic symbol 原子符号atomic theory 原子论atomic unit 原子单位atomic volume 原子体积atomic weight 原子量atomicity 原子数atomism 原子论atomistics 原子论atomization 喷雾atomizer 喷雾器atophan 阿托方atrazine 阿特拉津atropic acid 阿托酸atropine 阿托品atropine sulfate 硫酸阿托品atropisomer 阿托异构体attachment 附件attrition 磨损aufbau principle 构造原理augmentation distance 扩增距离auramine 金胺aurantia 金橙黄aurantin 橙色菌素aurate 金酸盐aureomycin 金霉素aureusidin 金色草素auric acid 金酸auric compound 正金化合物auric oxide 氧化金auric salt 正金盐aurin 金精aurin tricarboxylic acid 铝试剂auripigment 雄黄aurothioglucose 金硫葡萄糖aurous chloride 氯化亚金aurous compound 亚金化合物aurous oxide 氧化亚金aurous salt 亚金盐austenite 奥氏体auto condensation 自动缩合autocatalysis 自动催化autocatalyst 自动催化剂autocatalytic reaction 自动催化反应autoclave 压热器autocomplex 自动合成物autocorrelation function 自相关函数autofermentation 自动发酵autogenous ignition 自动着火autoionization 自电离autolysis 自溶酌autolytic enzyme 自溶酶automatic analyser 自动分析计automatic balance 自动天平automatic buret 自动滴定管automatic control 自动控制automatic regulation 自动控制automatic temperature controller 自动温度控制器automatic thermoregulator 自动温度控制器automatic titration 自动滴定automatic weighing machine 自动秤automation 自动化autometer 汽车速度表autopolymerization 自动聚合autoprotolysis 自质子解autoracemization 自动外消旋autotetraploid 同源四倍体autotransformer 单卷变压器autovulcanization 自动硫化autoxidation 自氧化autunite 钙铀云母auxiliary air 辅助空气auxiliary electrode 辅助电极auxiliary unit 辅助单位auxiliary valency 副价auximone 茁长激素auxin 茁长素auxochrome 助色团availability 有效性available chlorine 有效氯available energy 有效能available phosphoric acid 有效磷酸avenin 燕麦蛋白average boiling point 平均沸点average degree of polymerization 平均聚合度average error 平均误差average life 平均寿命average mean molecular weight 平均分子量average molecular weight 平均分子量average particle diameter 平均粒子直径average sample 平均试样average speed 平均速度average value 平均值aviation gasoline 航空汽油aviation mix 航空汽油抗爆液avidin 抗生物素蛋白avocado oil 鳄梨油avogadro number 阿伏伽德罗数avogadro's hypothesis 阿伏伽德罗假说avogadro's law 阿伏伽德罗定律axial bond 贮axial flow pump 轴撩axiomatic quantum field theory 公理的量子场理论axis 轴axis of rotation 旋转轴azaserine 重氮丝氨酸azelaic acid 杜鹃花酸azeotrope 共沸混合物azeotropic copolymer 共沸共聚物azeotropic distillation 共沸蒸馏azeotropic mixture 共沸混合物azeotropic point 共沸点azeotropy 共沸性azide 叠氮化物azimuthal 方位的azimuthal quantum number 角量子数azine 吖嗪azine dye 吖嗪染料aziridine 氮杂环丙烷azlactone 吖内酯azlon 人造蛋白质纤维azo compound 偶氮化合物azo coupling 偶氮耦合azo dye 偶氮染料azo group 偶氮基azobenzene 偶氮苯azodicarbonamide 偶氮甲酰胺azoimide 叠氮化氢azole 唑azolitmin 石蕊精azotometer 氮素计azoxy compound 氧化偶氮化合物azoxybenzene 氧化偶氮苯azulene 甘菊环烃azurite 蓝铜矿b stage resin b 阶尸baby dryer 小烧缸bacillus 杆菌bacitracin 杆菌肽back bond 反向键back flow condenser 回龄凝器back mixing 逆向混合back pressure 反压back reaction 逆反应back sweetening 返回脱硫法back titration 回滴定backfire 回火backflash 反闪backscattering 后方散射backward motion 反向运动backwash 回洗bacteria 细菌bacterial fertilizer 细菌肥料bacterial incubator 细菌培育箱bactericide 杀细菌剂bacteriochlorophyll 菌叶绿素bacteriolysis 溶菌酌bacteriostasis 抑菌酌baddeleyite 斜锆石baeyer reaction 拜尔反应baeyer reagent 拜尔试药baeyer villiger rearrangement 拜尔维利格重排baffle 挡板bag filter 袋滤器bagasse 甘蔗渣bakelite 酚醛塑料baking 烧制baking enamel 烘烤搪瓷baking powder 发粉baking varnish 烤漆balance 平衡balance bar 平衡杆balance beam 平衡杆balance pan 天平盘balance rider 游码balata 巴拉塔矢ball clay 块状粘土ball hardness 钢球硬度ball mill 球磨机ball valve 球阀ball viscosimeter 落球式粘度计balloon tire 低压轮胎balsam 香脂banana oil 香蕉油band brake 带式制动器band dryer 带式干燥机band spectrum 带光谱barbital 巴比妥barbituric acid 巴比土酸barilla 海草灰苏打barite 重晶石barium 钡barium acetate 醋酸钡barium bioxide 二氧化钡barium carbonate 碳酸钡barium chlorate 氯酸钡。

海洋科学导论名词解释

海洋科学导论名词解释

海洋科学导论名词解释Lithosphere岩石圈:软流圈以上的刚性固体物质层,包括地壳和上地幔顶部的刚性岩层,地壳与地幔的M面夹在岩石圈内部。

2.Mid-ocean ridge and rise systems洋中脊及隆起系统:贯穿洋盆的一系列海底山脉,延伸可达65000km,比临近的隆起高2-3km,一般宽1000-3000km。

若这些山脉陡峭狭窄则称为洋中脊,若平缓且宽则为隆起。

洋中脊有中央裂,而隆起则没有中央裂谷而是延中央抬升。

延洋中脊及隆起轴向有宽约2km的狭窄火山带。

洋中脊是离散型板块边界,板块相互远离形成新的地壳。

3.Ocean trenches海沟:海底狭窄陡峭的深沟。

深6000-11000km,主要分布在太平洋,一些海沟在火山岛链附近,一些则分布在中美及南美边缘。

海沟是汇聚型板块边界,相向运动形成消减带消灭旧地壳。

4.Transform fault(转换断层)Fault with horizontal displacement connecting the ends of an offset in a mid-ocean ridge. Some plates slide past each other along a transform fault.The opposite sides of a transform fault are two different plates that are moving in opposite directions.5.Divergent plate boundaries(离散板块边界):plate boundaries diverge or move apart at the mid-ocean ridge where new lithosphere is formed. Convergent plate boundaries(汇聚板块边界): At the trenches, plate converge, or move toward each other, destroying old lithosphere at subduction zones.6. Hot Spots(热点)Scattered around the Earth are approximately forty fixed areas of isolated volcanic activity.Hot Spots periodically channel hot material to the surface from deep within the mantle, and may form a volcanic peak, or seamount, directly above, or may produce a broad swelling of the ocean floor or the continent.Hot spots may also resupply the asthenosphere, which is constantly cooling and becoming attached to the base of the lithosphere, thickening the plates.7.Rift valleyTrough formed by faulting along a zone in which plates move apart and new crust is created, such as along the crest of a ridge system.8.Rift zoneA region where the lithosphere splits and separates allowing new crustal material to intrude into the crack or rift.9. polar wandering curveA plot of the apparent location of the Earth’s north magnetic pole as a function of geologic time.10.Turbidity currentMoving flows of sediment and water.Travel at speeds up to 90km per hour and carry in suspension up to 300kg of sediment per cubic meterFast-moving avalanches of mud, sand, and water that flow down the slop, eroding and picking up sediment as they gain speed.11.TurbiditeSediment deposited by a turbidity current, showing a pattern of coarse particles at the bottom, grading gradually upward to fine silt.12. GuyotsSubmerged, flat-toped seamounts.Seamounts, Steep-sided volcanoes rising abruptly and sometimes piercing the surface to become islands13. Atoll(环礁)When a seamount pierces the sea surface to form an island, it provides a base on which the coral can grow.If the seamount sinks of subsides slowly enough, the coral continues to grow upward at a rate that is not exceeded by the rising water.If the process continues, eventually the seamount disappears below the surface and the coral reef is left as a ring, or atoll.D (carbonate compensate depth碳酸盐补偿深度)深海底分布着大面积的碳酸盐沉积,但碳酸盐随着水深溶解度加大,在一定的深度上,从上覆水层沉降而供应的碳酸盐和溶解而失去的碳酸盐数量相等,这个深度就称为碳酸盐补偿界面。

Adobe Acrobat SDK 开发者指南说明书

Adobe Acrobat SDK 开发者指南说明书
Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required from the copyright owner.
This guide is governed by the Adobe Acrobat SDK License Agreement and may be used or copied only in accordance with the terms of this agreement. Except as permitted by any such agreement, no part of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe. Please note that the content in this guide is protected under copyright law.

Keysight NFA系列噪声度分析器说明书

Keysight NFA系列噪声度分析器说明书

Noise Figure AnalyzersN8972A N8973A N8974A N8975ANFA SeriesA Flexible and Intuitive User InterfaceThe user interface on the new NFA series of Noise Figure Analyzers is intuitive and easy to use, with easy to find keys, which are sized and then placed in the relevant key group according to function. The soft-key depths have been kept to a minimum and there are clear visual indicators on the screen showing the current machine state.Easy Measurement SetupThe NFA series of Noise Figure Analyzers now takes the pain out of complex measurement setups, with their simple but instructive menus. The built-in help button gives key function and remote pro-gramming commands, that should eliminate the need to carry man-uals when setting up measurements.Low Instrumentation UncertaintyWhen making noise figure measurements, a key parameter to be aware of is measurement uncertainty. The NFA has a low instru-mentation uncertainty to aid in accurate and repeatable measure-ment of manufacturers’ components. In addition, to aid customers in setting their components/systems specifications, Agilent has pro-duced a web-based uncertainty calculator that will give customers information on how to improve and classify their measurement specifications more accurately.For more information, visit our web site at: /find/nfIncrease Measurement ThroughputIn manufacturing environments, fast measurement speed and repeatability are critical. The NFA series of Noise Figure Analyzers now include many features that can reduce your measurement time and increase throughput. The frequency list function allows you to select specific points within a complete measurement span to make your measurement. The Sweep averaging function allows a real-time update to the screen during a measurement, as you adjust the per-formance of the DUT during a sweep. Both these functions, as well as the limit line functionality for quick and easy pass/fail testing and the additional ability to recall complete calibrated instrument states, increase productivity and measurement throughput.Enhanced ConnectivityThe built-in floppy disk drive, GPIB, RS232 serial and Printer port connectors allow quick and easy data transfer between the analyzer and a PC or workstation. There is also a built-in VGA connector for connecting a large-screen monitor.Color Graphical DisplayTo enhance usability, the new Noise Figure Analyzers now come with an integrated 17 cm full color LCD display, for simultaneous viewing of noise figure and gain against frequency. There are three different formats for viewing measurements, the two separate chan-nel or combined graph format, a table format, and a spot frequency noise figure and gain measurement “meter” format.Ease of AutomationThe NFA series of Noise Figure Analyzers include 2 industry-stan-dard GPIB ports and an RS232 serial port, to aid in the automated control of the instrument. The second GPIB port is dedicated to Local oscillator control. The default control language is SCPI, but users can also define custom LO commands.Ease of IntegrationTo aid with the integration of the new analyzer into manufacturing environments, Agilent has produced a Programmers Reference Manual containing example programs to help migrate to the new system. The NFA is not code compatible with the 8970B, nor can it control the 8971C.Full Measurement CapabilityFeatures present in all NFA series noise figure analyzers•ENR data automatically loaded into NFA series noise figure analyzer when using SNS noise source•Floppy disk loading and saving of ENR data when used with a 346 or 347 noise source•Enhanced analysis through Limit lines and Marker functions •Enhanced PC and printer connectivity and VGA output•Internal data storage capable of storing up to 30 different state,trace, and setup files (dependent upon measurement complexity)•4 MHz measurement bandwidth•Frequency list mode, which enables the user to avoid known, polluted frequencies during a measurement or, used tactically to speed up a measurementFeatures only Available on the N8973A, N8974A, N8975A•Lower noise figure measurement uncertainty ±<0.05 dB•Six user selectable bandwidths (100 KHz, 200 KHz, 400 KHz, 1 MHz, 2 MHz, and 4 MHz)• Enhanced speed•A flexible and intuitive user interface •Easy measurement setup •Low instrument uncertainty•Color graphical display of noise figure and gain versus frequency •Enhanced PC and printer connectivity•SNS, 346 and 347 Series noise source compatible•Ability to automatically upload ENR calibration data from SNS Series noise source•Local oscillator control through second dedicated GP-IB •3-year warranty as standardN8973ANoise Figure AnalyzersN8972A N8973A N8974A N8975A NFA Series Key SpecificationsSpecifications apply over 0°C to +55°C unless otherwise noted. Theanalyzer will meet its specifications after 2 hours of storage withinthe operating temperature range, 60 minutes after the analyzer isturned on, with Alignment running. A user calibration is requiredbefore corrected measurements can be made.Frequency RangeNFA Series:N8972A10 MHz to 1.5 GHzN8973A10 MHz to 3 GHzN8974A10 MHz to 6.7 GHzN8975A10 MHz to 26.5 GHzMeasurement Speed (nominal)8 Averages 64 AveragesN8972A:<100 ms/measurement<80 ms/measurementN8973A:<50 ms/measurement<42 ms/measurementN8974A:<70 ms/measurement<50 ms/measurementN8975A:<70 ms/measurement <50 ms/measurementMeasurement Bandwidth (nominal)N8972A:4 MHzN8973A, N8974A, N8975A:4 MHz, 2 MHz, 1 MHz, 400 kHz, 200 kHz, 100 kHzNoise Figure and Gain(Performance is dependent upon ENR of noise source used)N8972A Noise Source ENR4 – 7 dB12 – 17 dB20 – 22 dBNoise FigureMeasurement range0 to 20 dB0 to 30 dB0 to 35 dBInstrument uncertainty±<0.1 dB±<0.1 dB±<0.15 dBGainMeasurement range–20 to +40 dBInstrument uncertainty±<0.17 dBN8973A, N8974A and Noise Source ENRN8975A(10 MHz to 3.0 GHz) 4 – 7 dB12 – 17 dB20 – 22 dBNoise FigureMeasurement range0 to 20 dB0 to 30 dB0 to 35 dBInstrument uncertainty±<0.05 dB±<0.05 dB±<0.1 dBGainMeasurement range –20 to +40 dBInstrument uncertainty±<0.17 dBN8974A and N8975A Noise Source ENR(>3.0 GHz) 4 – 7 dB12 – 17 dB20 – 22 dBNoise FigureMeasurement range0 to 20 dB0 to 30 dB0 to 35 dBInstrument uncertainty±<0.15 dB±<0.15 dB±<0.2 dBGainMeasurement range–20 to +40 dBInstrument uncertainty±<0.17 dBCharacteristic1Noise figure at 23ºC ±3ºC (10 MHz to 3.0 GHz)Characteristic1Noise figure at 23ºC ±3ºC (3.0 GHz to 26.5 GHz)Characteristic values are met or bettered by 90% of instruments with 90%confidence.Frequency ReferenceStandard Opt.1D5Aging±<2 ppm1/year±<0.1 ppm/yearTemperature stability±<6 ppm±<0.01 ppmSettability ±<0.5 ppm±<0.01 ppmTuning Accuracy (Start, Stop, Center, Marker)4 MHz Measurement Bandwidth (default on all models of Noise FigureAnalyzer)Frequency Error10 MHz – 3.0 GHz±<Reference error + 100 kHz3.0 GHz – 26.5 GHz±<Reference error + 400 kHz<4MHz Measurement Bandwidth (functionality not present in N8972A)Frequency Error10 MHz – 3.0 GHz±<Reference error + 20 kHz3.0 GHz – 26.5 GHz±<Reference error + 20% of measurementbandwidthParts Per Million (10e-6)1086421050010001500200025003000Frequency (MHz)NoiseFigure(dB)8911112Frequency (MHz)NoiseFigure(dB)3388347756517418833818791871721956118112724136814492153761626171451829189131879716812156522419233342421251225986265Noise Figure AnalyzersN8972A N8973A N8974A N8975AGeneral SpecificationsDimensionsWithout handle: 222 mm H x 375 mm W x 410 mm D With handle (max): 222 mm H x 409 mm W x 515 mm D Weight (typical, without options)N8972A:15.3 kg N8973A:15.5 kg N8974A:17.5 kg N8975A:17.5 kgData Storage (nominal)Internal drive: 30 traces, states or ENR tables Floppy disk: 30 traces, states or ENR tablesPower RequirementsOn (line 1): 90 to 132 V rms, 47 to 440 Hz, 195 to 250 V rms, 47 to 66 Hz Power consumption: <300 W Standby (line 0): <5 W Temperature RangeOperating: 0ºC to +55ºC Storage: –40ºC to +70ºCHumidity RangeOperating: Up to 95% relative humidity to 40ºC (non-condensing)Altitude range: Operating to 4,600 meters Calibration Interval1-year minimum recommendedElectromagnetic CompatibilityComplies with the requirements of the EMC directive 89/336/EEC. This includes Generic Immunity Standard EN 50082-1:1992 and Radiated Interference Standard CISPR 11:1990/EN 55011:1991, Group 1 Class A.The conducted and radiated emissions performance typically meets CISPR 11:1990/EN 55011:1991 Group 1 Class B limits.Warranty3-Year warranty as standardKey LiteratureNoise Figure Analyzers, NFA Series, Brochure, p/n 5980-0166ENoise Figure Analyzers, NFA Series, Data Sheet, p/n 5980-0164ENoise Figure Analyzers, NFA Series, Configuration Guide, p/n 5980-0163EFundamentals of RF and Microwave Noise Figure Measurements, App note 57-1, p/n 5952-8255E Noise Figure Measurement Accuracy, App note 57-2, p/n 5952-370610 Hints for Making Successful Noise Figure Measurements, p/n 5980-0228E N8972A and N8973A, NFA Series, Noise Figure Analyzer ProgrammingExamples, p/n 5968-9498EOrdering InformationN8972A 10 MHz to 1.5 GHz NFA Series Noise Figure Analyzer N8973A 10 MHz to 3.0 GHz NFA Series Noise Figure Analyzer N8974A 10 MHz to 6.7 GHz NFA Series Noise Figure Analyzer N8975A 10 MHz to 26.5 GHz NFA Series Noise Figure AnalyzerAll options, other than those marked with *, can be ordered at any time for use with an instrument.Frequency ReferenceN897xA-1D5NFA series high stability frequency reference*Calibration DocumentationN897xA-A6J NFA series ANSI Z540 compliant calibration with test data*AccessoriesN897xA-1CP NFA series rackmount and handle kit N897xA-UK9NFA series front panel coverN897xA-1FP NFA series calibration, performance verification and adjustment softwareDocumentationA hard copy and CD version of the English language Quick Reference Guide, User’s Guide, Programmers Reference, and Calibration andPerformance Verification Manual are included with the NFA as standard.Selections can be made to change the localization of the manual set or to delete the hardcopy.N897xA-AB0NFA series manual set for Taiwan – Chinese localization N897xA-AB1NFA series manual set – Korean localization N897xA-AB2NFA series manual set – Chinese localization N897xA-ABE NFA series manual set – Spanish localization N897xA-ABF NFA series manual set – French localization N897xA-ABZ NFA series manual set – Italian localization N897xA-ABD NFA series manual set – German localization N897xA-ABJ NFA series manual set – Japanese localization N897xA-0B0Delete hardcopy manual set*Note: The localized options will include a localized version of the Quick Reference Guide and User Guide, and an English language version of the Programmers Reference, and Calibration and Performance Verification Manual.Additional DocumentationN897xA-0B1NFA series manual set (English version)N897xA-0B2NFA series user manual (English version)N897xA-0BF NFA series programmers reference (English version)Service Options:Warranty and Service Standard warranty is 3 years. For warranty and service of 5 years, please order R-51B-001-5F: “3 year Return-to Agilent warranty extended to 5 years” (quantity = 1).Calibration 2For 3 years, order 36 months of the appropriate calibration plan shown below. For 5 years, specify 60 months.R-50C-001Standard calibration plan*R-50C-002Standard compliant calibration plan*Options not available in all countries。

实用催化(第二版)Chapter2-3

实用催化(第二版)Chapter2-3
注意:在对称性不匹配的情况下 重迭区有一半正重迭,使能量降低; 另一半是正负重迭,使能量升高;
二者效果抵消,不能有效地组成分子轨道。
Chapter 2. Adsorption in Catalysis
d
dxy
dxz
dyz
dx2-y2
dz2
p
px
py
pz
s
(a)
(b)
图. 原子轨道的近似相对能级(a)和(b)形状
注意: 0 K 时,Fermi 能级的位置在电子所占的最高能级;高于0 K时,Fermi能 级是电子填充几率等于1/2的能级。
Chapter 2. Adsorption in Catalysis
能带中能级的密度随能量增加而增加( Level Density of Energy Band Increases with the Rise in Energy)
(c)当两个不同能级的 原子轨道组成分子轨道 时,能级下降的分子轨 道必含有较多成分的低 能级原子轨道,而能级 升高的分子轨道则含有 较多成分的高能级原子 轨道。
2. 轨道最大重迭
在轨道最大重迭(限制两个轨道的重迭方 向)的情况下,成键时体系能量降低较多。
3. 对称性匹配
当原子轨道重迭时,必须有相同的符号。
200
W Re
Ta
Os
180
Nb
160
Hf
Mo
Ir
140
Zr
Ru
V
Rh
Pt
热(kcal/m1o2l0))
100
Y
La
Ti Sc
Fe Co Ni Cr Pd
Au
80
Cu
Mn
Ag
60

(物理化学专业论文)多孔材料中的吸附和扩散

(物理化学专业论文)多孔材料中的吸附和扩散
多孔材料中的吸附和扩散 adsorptionanddiffusioninporous【aterialsabstractporousmaterialsscienceisstillexpanding,andmanykindsofporousmaterialssuchactivatedcarbonsandzeolitesareincreasinglyimportantthemodemchemicalindustry.forlongtime,scientistsandengineershavebeenveryinterestedintheresearchfieldofadsorptionanddiffusioninporousmaterials.withthedevelopmentexperimentaltechniquesaswellastheimprovementofmolecularsimulationstudiesonadsorptionanddiffusionbecomemoreprosperous.indeedadsorptionanddiffusionareveryimportantmanyapplicationssuchasthecharacterizationporousmaterials,adsorption—basedseparationprocesses,catalysis,especiallycatalytickinetics.thismscresearchhasbeenfocusedonadsorptiondiffusioninporousmaterials,andthemainresultsaresummarizedasfollows:combinedwithcarbondioxide(c02)adsorptionandamultiple—processadsorptionequilibrium(mpae)model,activatedcarbonshavebeencharacterizedindetail.singlecomponentadsorptionequilibriaofc02onthreecommercialactivatedcarbonsweresystematicallyinvestigatedbymeansofavolumetricmethodatpressuresupto

锇嵌入石墨烯催化CO_还原NO2_反应机理的密度泛函理论研究

锇嵌入石墨烯催化CO_还原NO2_反应机理的密度泛函理论研究

第34卷第6期化㊀学㊀研㊀究Vol.34㊀No.62023年11月CHEMICAL㊀RESEARCHNov.2023锇嵌入石墨烯催化CO还原N2O反应机理的密度泛函理论研究周㊀健,钟欣欣,张干兵∗(湖北大学化学化工学院,湖北武汉430062)收稿日期:2023-03-28基金项目:国家自然科学基金(21675058,21671061)作者简介:周健(1997-),男,硕士生,研究方向为理论与计算化学㊂∗通信作者,E⁃mail:gbzhang@hubu.edu.cn摘㊀要:N2O和CO都是大气污染物,过渡金属催化CO还原N2O是同时消除它们的有效方法㊂金属分散于或嵌入石墨烯㊁氮化碳等二维材料是提高催化性能的有效手段之一㊂结合相对论赝势,运用UPBE0方法优化了锇单原子嵌入石墨烯催化CO还原N2O循环反应路径上各驻点的几何结构㊁并计算了热力学函数,进而推测了该催化反应的机理㊂结果表明该反应存在N2O先吸附(路径a)和CO先吸附(路径b)两种反应历程㊂路径(a)和路径(b)的表观自由能垒ΔE分别为108.28和135.92kJ/mol㊂其中(a)为优势路径,反应可以沿该路径在比较温和的条件下进行㊂关键词:密度泛函理论;CO还原N2O;锇嵌入石墨烯;催化转换频率中图分类号:O643文献标志码:A文章编号:1008-1011(2023)06-0521-06DensityfunctionaltheoryinvestigationonthemechanismofthereductionofN2ObyCOcatalyzedbyosmiumembeddedingrapheneZHOUJian ZHONGXinxin ZHANGGanbing∗CollegeofChemistryandChemicalEngineering HubeiUniversity Wuhan430062 Hubei ChinaAbstract N2OandCOareatmosphericpollutants.TransitionmetalcatalyzedreductionofN2ObyCOisaneffectivemethodtoeliminateandtransformthemsimultaneously.Itisoneoftheeffectivemeanstoimprovecatalyticperformancewithmetalsdispersingorembeddingintwo-dimensionalmaterialssuchasgrapheneandcarbonnitride.Combiningrelativisticpseudopotentialanddensityfunctionaltheory(DFT)method,thegeometryofeachstationarypointonthecatalyticcycleofthereactionpathwayforthereductionofN2ObyCOcatalyzedbyosmiumsingleatomembeddedingraphenewasoptimizedbyUPBE0method,andthethermodynamicfunctionwascalculated.Thenthemechanismofthereactionwasspeculated.Theresultsshowthattherearetworeactionprocesses:N2Oadsorptionfirst(channela)andCOadsorptionfirst(channelb).TheapparentfreeenergybarriersΔEofthetwochannelsare108.28and135.92kJ/mol,respectively,where(a)isthepreferredpathway,thereactionmayoccuralongthepathway(a)undermildconditions.Keywords:densityfunctionaltheory;COreductionN2O;Osembeddedingraphene;TOF㊀㊀N2O与氟氯烃和二氧化碳一样,是一种温室气体,主要来源于工业排放的尾气和汽车尾气,其在对流层中相当稳定,寿命长达120年㊂且其增温潜值(GWP)分别是二氧化碳的300倍[1]㊁甲烷的21倍㊂CO主要来自化石能源的不充分燃烧,因此,在汽车尾气和焚烧场烟气中浓度较高㊂虽然CO无色㊁无味,但对人体的伤害却很严重㊂例如,CO和人体内血红蛋白结合的能力是氧气的240倍[2],人体误吸入CO后,CO会和人体中的血红蛋白结合生成碳血红蛋白.碳血红蛋白无法携带氧气,导致人体缺氧,产生中毒症状㊂在温和的条件下实现N2O对CO的氧化转化,对大气环境保护和人体健康有重要意义㊂早在1981年Kappes和Staley[3]用ICR质谱检测到常温常压下气相过渡金属阳离子催化CO+N2OңCO2+N2反应㊂此后,有众多关于过渡金属离子或者过渡金属氧化物522㊀化㊀学㊀研㊀究2023年离子与氮氧化物或碳氧化物反应,以及催化CO还原氮氧化物反应的实验和理论研究见诸报道[4-8]㊂2003年Bohme等[9-11]用ICP/SIFT技术对大部分的金属离子催化CO还原N2O的循环反应进行了系统的研究,发现包括Os+在内的十多种气相金属离子在常温常压下对该反应有催化活性㊂这种气相催化反应需要在质谱仪中进行,所以它仍然与现实生产应用有较大的距离㊂寻找能在生产实际中应用的高效催化剂依然是化学工作者需要努力的方向㊂而金属原子分散或嵌入石墨烯[12-13]㊁氮化碳[14-15]等二维材料表面是提高其催化性能的有效手段之一㊂2013年Wannakno等[16]用密度泛函理论(DFT)研究了嵌入石墨烯的铁催化剂催化CO还原N2O的反应机理,理论推测Fe-Graphene具有比气相铁原子催化剂更高的反应活性㊂这为寻找新型高效催化剂提供了思路㊂近年来理论计算发现Al和Ti[17]㊁Si[18]㊁Se[19]㊁Pt[20]㊁Cu[21]等掺杂石墨烯能有效催化CO还原N2O的反应㊂本文用DFT方法对石墨烯锚定的Os催化CO与N2O反应的机理进行了研究,以期对过渡金属掺杂石墨烯催化该反应进行补充,为探索N2O和CO高效转化的催化剂提供帮助㊂1㊀计算细节基于簇模型,与文献方法[22]类似,用C40H20Os簇(Os-Gr)模拟石墨烯锚定锇原子作为催化剂的模型㊂用自旋非限制性密度泛函理论UPBE0[23]和混合基组:Os使用LanL2TZ(f)[24]赝势基组,C㊁H㊁O㊁N元素使用6-311G∗∗基组,对石墨烯锚定的Os催化CO还原N2O循环反应路径上的所有驻点(反应物㊁中间体(IM)㊁过渡态(TS)㊁产物)的几何结构进行全优化㊂对每一个优化的几何结构进行频率分析确证优化出来的结构是局域能量极小点或一级鞍点,并获得零点振动能(ZPVE)及其他热力学函数㊂内禀反应坐标(IRC)[25-26]计算确保过渡态分别连接反应物和产物,同时结合能量跨度模型[27-28]通过计算TOF(转换频率)控制度,找到决速中间体(TDI)和决速过渡态(TDTS)和表观Gibbs能垒㊂为了探究锇原子嵌入石墨烯后的电荷变化,对催化剂做了自然布居分析(NPA)㊂所有计算都采用Gaussian09程序包[29]完成,用CYLview程序[30]展示优化的结构㊂为检验所选方法是否合适,对所使用的方法进行标定㊂用本文所选方法计算得到,在298.15K下Os-O键焓为467.67kJ/mol,与实验值(439.32ʃ83.68)kJ/mol[31]相符㊂因此可以认为所选泛函和基组对本文所研究的反应体系是合适的㊂2㊀结果与讨论通过对锇原子嵌入石墨烯催化反应路径上的驻点进行调查,结果发现单重态的能量始终最低,即没有出现自旋交叉,故讨论时没考虑其他自旋态的反应路径㊂该反应的催化循环示意图如图1所示,优化所得几何构型如图2所示,各驻点的相对能量如表1所示,相应的自由能曲线如图3所示㊂催化剂模型簇的优化结构如图2所示,自然布局分析(NPA)显示,中性的Os原子嵌入石墨烯后电荷为+0.181e,说明此嵌入过程中发生了从Os向石墨烯载体簇的电子转移,Os原子嵌入后带正电将有利于Os原子更好地吸附小分子气体㊂整个催化反应可能因两个反应物分子与催化剂簇结合的先后顺序的不同而呈现不同历程㊂具体分为Channel(a)为N2O先吸附到催化剂上,再与CO结合;Channel(b)为CO先进行吸附,再与N2O结合㊂图1㊀锇原子嵌入石墨烯催化CO还原N2O的催化循环示意图Fig.1㊀CatalyticcyclesofthereductionofN2OwithCOcatalyzedbyosmiumembeddedinGraphene第6期周㊀健等:锇嵌入石墨烯催化CO还原N2O反应机理的密度泛函理论研究523㊀图2㊀势能面上所有驻点的优化结构,键长的单位为0.1nm,键角的单位为度(ʎ)Fig.2㊀Optimizedgeometricconfigurationonthepotentialenergysurface,withbondlengthunitof0.1nmandtheunitofangleisdegree(ʎ)表1㊀Os嵌入石墨烯催化CO还原N2O反应在单重态势能面的所有驻点的能量әEelec(电子能量)әEt(包含零点能)㊁焓әH298和吉布斯自由能әG298(单位:kJ/mol)Table1㊀RelativeenergiesәEelec,әEt(includingZPE),EnthalpyәH298,GibbsfreeenergyәG298(kJ/mol)ofallstationarypointsonthepotentialenergysurfacesofthereductionofN2ObyCOcatalyzedbyOs-grapheneReactionchannel(a)SpeciesәEelecәEtәHәGCat+N2O+CO0.000.000.000.001a+CO-27.48-24.93-23.5011.22TS1/2a+CO20.9715.9616.4655.742a+CO-403.67-408.35-403.02-384.033a+N2+CO-395.88-401.79-399.14-399.224a+N2-360.65-357.78-358.14-308.01TS4/5a+N2-341.31-340.12-341.70-290.935a+N2-427.81-421.25-422.28-373.19Cat+N2+CO2-361.87-359.42-359.54-356.04Reactionchannel(b)Cat+N2O+CO0.000.000.000.001b+N2O-242.25-231.91-234.91-188.482b-253.25-241.61-242.13-166.03TS2/3b-156.71-147.43-152.74-52.553b-369.53-365.15-363.09-291.12TS3/4b+N2-350.58-347.75-346.97-272.834b-435.89-428.03-426.51-355.68Cat+N2+CO2-361.87-359.42-359.54-356.04524㊀化㊀学㊀研㊀究2023年图3㊀路径(a)和路径(b)中锇石墨烯催化CO和N2O的反应的自由能曲线图Fig.3㊀ThefreeenergycurvesofthereactionofN2OandCOcatalyzedbyOs-grapheneviaChannels(a)and(b)㊀㊀如图2所示,Channel(a)中,N2O先吸附在Os-Gr的Os位点,形成吸附复合物中间体1a,其中N2O-Os距离为0.239nm,吸附过程放出热量23.50kJ/mol㊂随后,1a经氧的抽提过程到达中间体2a,此步经由过渡态TS1/2a,需克服44.52kJ/mol的自由能位垒,并放出能量419.48kJ/mol㊂在此过程中,O原子和N原子间距离由0.131nm增加至0.364nm,N-O键断裂;O-Os键长从中间体1a的0.239nm缩短到过渡态的0.201nm再继续缩短到2a的0.170nm,O-Os键形成;与此同时,N-N键长从0.114nm缩短至0.111nm,已经接近游离态N2的0.109nm的N-N键长㊂此时N2分子基本形成,并即将从催化剂上脱附,形成中间体3a㊂形成3a的过程仅吸热3.88kJ/mol,极低的脱附能垒说明N2的脱附极易发生,可避免出现催化剂中毒现象㊂接下来3a吸附CO形成中间体4a㊂4a中OC-Os距离为0.203nm,比CO直接吸附在Os-Gr的Os位点所形成的1b中的OC-Os距离(0.191nm)长,而4a中CO部分的C-O键长较气相中游离CO的C-O键长仅略有增大㊂这些说明4a中CO与Os位点之间的作用较弱,此过程吸收热量41kJ/mol㊂下一步,中间体4a历经过渡态TS4/5a,发生单氧配体的还原消除,并迁移至CO的C位,形成CO2与Os-Gr的复合物5a㊂此步需克服91.21kJ/mol的能垒,放热80.58kJ/mol㊂在这个过程中O-Os键断裂,单氧配体与CO部分中C原子的距离从0.243nm(4a)㊁0.185nm(TS4/5a)至0.127nm(5a)逐渐缩短,C-Os键从OC-Os中的0.203nm拉长至O2C-Os中的0.210nm,表明此时Os原子和CO2之间的作用已经较小,CO2已经趋近于脱附㊂最后脱去CO2吸收热量62.64kJ/mol,完成催化循环㊂此外,这条路径在中间体2a时存在N2不脱附直接到3b的分支,不过因此分支为高能量的路径,不利于后续反应发生㊂整个Channel(a)反应放热359.54kJ/mol㊂用能量跨度模型,确定此循环路径中的决速态分别为中间体3a和过渡态TS4/5a,进而计算得出其表观自由能垒(能量跨度ΔE)为108.28kJ/mol,室温下其TOF值为6.64ˑ10-7/s㊂Channel(b)始于CO在催化剂的Os位点上的吸附,形成吸附复合物中间体1b,其中OC-Os距离为0.191nm,C-O键键长为0.115nm,比气相的CO中C-O键(0.113nm)更长,说明吸附在Os位点的CO分子已被催化剂活化,此过程强放热234.91kJ/mol㊂随后N2O吸附在中间体1b上,形成中间体2b,其中N2O-Os的距离为0.384nm,此过程仅放出热量7.22kJ/mol㊂较远的N2O-Os的距离及较低的吸附热表明此时N2O和Os位点的相互作用微弱㊂中间体2b历经氧的抽提过渡态TS2/3b到达中间体3b,需克服113.48kJ/mol的自由能位垒,同时放出热量210.35kJ/mol㊂此过程中N2O的N-O键断裂和O-Os键形成同时发生㊂随着N2O上的O原子逐渐向Os原子靠近,距离由0.384nm(2b)缩短至0.192nm(TS2/3b)再到中间体3b上的0.177nm;同时O原子与N2的距离则从0.117nm增至0.181nm再增至0.323nm,较大的O-N2距离表明此第6期周㊀健等:锇嵌入石墨烯催化CO还原N2O反应机理的密度泛函理论研究525㊀时O原子和N2的相互作用较弱,中间体3b实为N2吸附在O-Os-Gr的吸附复合物㊂不过,随着中间体3b上N2的脱附与否会导致Channel(b)路径出现分支,分别是3b经由TS3/4b到4b的分支路径和3b到4a分支路径㊂由于TS3/4b的能量高于4a,二者中后一分支路径略优㊂中间体3b微弱吸热4.95kJ/mol脱去N2到达中间体4a,从4a开始,之后的路径在上文中已经讨论过,故在此不再赘述㊂此外,从3b出发经TS3/4b到达4b的分支路径也有可能发生㊂此分支步中需克服18.29kJ/mol的自由能位垒,并放出热量79.54kJ/mol㊂此过程中O-Os键长从0.177nm逐渐增加至0.185nm直至断裂,其单氧原子和CO中C原子的距离由0.243nm缩短至0.185nm再到0.127nm㊂以上数据表明TS3/4b为O-Os键断裂的同时O-C键形成的过渡态㊂中间体4b中N2和Os位点的距离为0.426nm,已经远远超出了Os原子和N原子的范德华半径之和,可以看出,4b中已经形成的N2部分与Os的作用极其微弱㊂O2C-Os距离为0.210nm,和两个氧原子的键长分别为0.127nm和0.119nm,也比较接近游离态的CO2状态㊂从表1数据得出,同时解离N2和CO2仅需66.97kJ/mol能量㊂至此CO先吸附的催化循环路径完成,整个催化循环放热359.54kJ/mol㊂能量跨度分析表明,从中间体3b之后到中间体4a或4b分支路径,并不影响决速态(决速中间体和决速过渡态)的位置㊂Channel(b)的决速态依然分别为1b和TS2/3b,能量跨度ΔE为135.92kJ/mol,TOF值为9.53ˑ10-12/s㊂3㊀结论通过对锇原子嵌入石墨烯催化CO还原N2O反应势能面上各驻点的几何结构分析和能量的计算,探究了相关机理㊂可得出以下结论:1)在锇原子嵌入石墨烯的催化下,反应存在(a)N2O先吸附和(b)CO先吸附两种可能的历程,具体涉及两个步骤:N2O在催化剂上吸附㊁活化㊁氧抽提与CO的氧化㊂2)比较各分支反应路径得出(a)的优势路径为1aңTS1/2aң2aң3aң4aңTS4/5aң5a,其决速中间体和决速过渡态分别为N2O中氧抽提产物3a(Gr-Os=O),和单氧配体在Os上的还原消除形成CO2的过渡态TS4/5a,(b)的优势路径为1bң2bңTS2/3bң3bң4aңTS4/5aң5a,其决速态分别为:CO在催化剂上的吸附物1b和1b中Os对N2O中氧抽提的过渡态TS2/3b㊂能量跨度分析给出,最终室温下(a)的优势路径与(b)的优势路径的TOF比值TOFa/TOFbʈ7ˑ104,反应趋向于以N2O先吸附的优势路径发生㊂参考文献:[1]DAMERISM.Depletionoftheozonelayerinthe21stcentury[J].AngewandteChemieInternationalEdition,2010,49(3):489⁃491.[2]GOLDSMITHJR,LANDAWSA.Carbonmonoxideandhumanhealth[J].Science,1968,162(3860):1352⁃1359.[3]KAPPESMM,STALEYRH.Gas⁃phaseoxidationcatalysisbytransition⁃metalcations[J].JournaloftheAmericanChemicalSociety,1981,103(5):1286⁃1287.[4]SIEVERSMR,ARMENTROUTPB.Gasphaseactivationofcarbondioxidebyniobiumandniobiummonoxidecations[J].InternationalJournalofMassSpectrometry,1998,179/180:103⁃115.[5]SIEVERSMR,ARMENTROUTPB.ReactionsofCOandCO2withgas⁃phaseMo+,MoO+,andMoO+2[J].TheJournalofPhysicalChemistryA,1998,102(52):10754⁃10762.[6]PÁPAII.SCHUBERTG,HANNACHIY.2Aᶄand2AᵡenergysurfacesfortheSc+CO2ңScO+COreaction[J].TheJournalofPhysicalChemistryA,2002,106(41):9551⁃9557.[7]WANGYC,YANGXY,GENGZY.Theoreticalstudyofcarbondioxide⁃carbonmonoxideconversionbyLa+,Hf+andTa+[J].ChemicalPhysicsLetters,2006,431(1/3):39⁃44.[8]STIRLINGA.Oxygen⁃transferreactionsbetween3dtransitionmetalsandN2OandNO2[J].JournaloftheAmericanChemicalSociety,2002,124(15):4058⁃4067.[9]BÖHMEDK,SCHWARZH.Gas⁃phasecatalysisbyatomicandclustermetalions:theultimatesingle⁃sitecatalysts[J].AngewandteChemieInternationalEdition,2005,44(16):2336⁃2354.[10]BLAGOJEVICV,JARVISMJY,FLAIME,etal.Gas⁃phasereductionofoxidesofnitrogenwithCOcatalyzedbyatomictransition⁃metalcations[J].AngewandteChemieInternationalEdition,2003,42(40):4923⁃4927.[11]LAVROVVV,BLAGOJEVICV,KOYANAGIGK,etal.Gas⁃phaseoxidationandnitrationoffirst⁃,second⁃,andthird⁃rowatomiccationsinreactionswithnitrousoxide:periodicitiesinreactivity[J].TheJournalofPhysicalChemistryA,2004,108(26):5610⁃5624.[12]LIUX,XUM,WANLY,etal.SuperiorcatalyticperformanceofatomicallydispersedPalladiumongrapheneinCOoxidation[J].ACSCatalysis,2020,10(5):3084⁃3093.526㊀化㊀学㊀研㊀究2023年[13]杨敬贺,郁清涛,毛立群.钯/石墨烯催化苯醌加氢制备氢醌[J].化学研究,2015,26(5):460⁃463.YANGJH,YUQT,MAOLQ.Pd/Graphenecatalytichydrogenationofbenzoquinonetohydroquinone[J].ChemicalResearch,2015,26(5):460⁃463.[14]FENGJQ,GAOHS,ZHENGLR,etal.AMn⁃N3single⁃atomcatalystembeddedingraphiticcarbonnitrideforefficientCO2electroreduction[J].NatureCommunications,2020,11(1):4341.[15]李鹏,王海燕,朱纯.金属掺杂类石墨相氮化碳的理论研究[J].化学研究,2016,27(2):152⁃160.LIP,WANGHY,ZHUC.Theoreticalinvestigationong⁃C3N4dopedbythedifferentmetalatoms[J].ChemicalResearch,2016,27(2):152⁃160.[16]WANNAKAOS,NONGNUALT,KHONGPRACHAP,etal.ReactionmechanismsforCOcatalyticoxidationbyN2OonFe⁃embeddedgraphene[J].TheJournalofPhysicalChemistryC,2012,116(32):16992⁃16998.[17]ESRAFILIMD,MOHAMMADIAN⁃SABETF,NEMATOLLAHIP.OxidationofCObyN2OoverAl⁃andTi⁃dopedgraphene:acomparativestudy[J].RSCAdvances,2016,6(69):64832⁃64840.[18]ZHAOJX,CHENY,FUHG.Si⁃embeddedgraphene:anefficientandmetal⁃freecatalystforCOoxidationbyN2OorO2[J].TheoreticalChemistryAccounts,2012,131(6):1242.[19]GHOLIZADEHR,YUYX.N2O+COreactionoverSi⁃andSe⁃dopedgraphenes:anabinitioDFTstudy[J].AppliedSurfaceScience,2015,357,PartA:1187⁃1195.[20]TONGYC,WANGYC,WANGQY.TheoreticalinvestigationforthereactionofN2OwithCOcatalyzedbyPt⁃graphene[J].StructuralChemistry,2017,28(6):1679⁃1685.[21]AKÇAA,KARAMANO,KARAMANC.MechanisticinsightsintocatalyticreductionofN2ObyCOoverCu⁃embeddedgraphene:adensityfunctionaltheoryperspective[J].ECSJournalofSolidStateScienceandTechnology,2021,10(4):041003.[22]GECIMG,OZEKMEKCIM,FELLAHMF.GaandGe⁃dopedgraphenestructures:aDFTstudyofsensorapplicationsformethanol[J].ComputationalandTheoreticalChemistry,2020,1180:112828.[23]PERDEWJP,BURKEK,ERNZERHOFM.Generalizedgradientapproximationmadesimple[J].PhysicalReviewLetters,1996,77(18):3865⁃3868.[24]ROYLE,HAYPJ,MARTINRL.RevisedbasissetsfortheLANLeffectivecorepotentials[J].JournalofChemicalTheoryandComputation,2008,4(7):1029⁃1031.[25]FUKUIK.Thepathofchemicalreactions⁃theIRCapproach[J].AccountsofChemicalResearch,1981,14(12):363⁃368.[26]FUKUIK.Formulationofthereactioncoordinate[J].TheJournalofPhysicalChemistry,1970,74(23):4161⁃4163.[27]KOZUCHS,SHAIKS.Acombinedkinetic⁃quantummechanicalmodelforassessmentofcatalyticcycles:applicationtocross⁃couplingandHeckreactions[J].JournaloftheAmericanChemicalSociety,2006,128(10):3355⁃3365.[28]KOZUCHS,SHAIKS.Howtoconceptualizecatalyticcycles?Theenergeticspanmodel[J].AccountsofChemicalResearch,2011,44(2):101⁃110.[29]FRISCHMJ,TRUCKSGW,SCHLEGELHB,etal.Gaussian09[CP].WallingfordCT:Gaussian,Inc.,2009.[30]LEGAULTCY.CYLview20[EB/OL].(2020⁃10⁃31)[2023⁃03⁃22].http://www.cylview.org/download.html.[31]PEDLEYJB,MARSHALLEM.Thermochernicaldataforgaseousmonoxides[J].JournalofPhysicalandChemicalReferenceData,1983,12(4):967⁃1031.[责任编辑:吴文鹏]。

工业空气污染控制:过滤器系统操作指南说明书

工业空气污染控制:过滤器系统操作指南说明书

Air pollution control in the workplaceDuring the last couple of years, utilization of extraction and filtration systems has become standard in many manufacturing companies, in craft businesses as well as in laboratory and research facilities. On the one hand, this is due to legal requirements. On the other hand, it is in the interest of every company to place emphasis on occupational health and plant protection.Extraction systems clean the process air, but they should be applied in a targeted manner so that a) the best filter performance, and b) low-noise and energy-efficient use can be guaranteed.The efficient operation of a fume extraction system is essentially defined by the following important parameters:1.Correct pollutant capturing2.Correct filter configuration3.Extraction performance4.The consideration of the material properties with regard to flammability andthe potential generation of an explosive air-gas mixture.The extraction performance of a filter system is defined by the workplace situation, the type of particles, the transport route (hose, pipe, etc.), potential pre-separators and the filter configuration. Resistances in the suction line (pipe walls, pre-separators, filters, etc.) must be overcome with sufficient negative pressure. The capturing situation as well as the necessary material transport speed determine the necessary air volume flow.Figure 1: Flow velocities of exemplary industrial emissionsThe use of suitable filter modules is defined by the type or composition of the air pollutants. Large amounts of pollutants are separated with cleanable filters (cartridge filters), smaller amounts of pollutants with storage filters. Coarse, fine dust and HEPA filters are used here. An additive may be needed to deal with sticky components. Pre-separators ensure that coarse particles are extracted from the air flow before the fume extractor. Spark separators or spark traps ensure that no fire- or explosion-inducing particles get into the extraction system.In the case of gases, vapors or odors, adsorption (e.g., activated carbon) or chemisorption filters are preferred. With a clever design of the filter configuration, the system can be designed in a situation-appropriate and energy-efficient manner, since every unnecessarily installed filter represents a resistance that the sucked in air flow has to overcome.The capture of air pollutants is essential for the economical and effective use of an extraction and filtration device. In order to effectively remove airborne pollutants such as dust, smoke, vapors, gases or odors, they must be extracted as close as possible to the point of origin. This is the only way to ensure that the largest possible number of particles is captured. The rule of thumb here is that twice the distance between the emission source and the capturing element requires at least four times the vacuum output of the extraction system. Because the level of the degree of capture forms the basis for the subsequent highest possible filtration, which ultimately results in the efficiency of the overall system and therefore the pollutantresidues in the recirculated air. With the correct dimensioning of the extraction and filtration system, users can save a significant amount of energy.Figure 2: Distance vs. degree of capturingThe degree of coverage and the air flow rate play decisive roles in the selection of the ideal collection solution. If this is used after considering all local environmental conditions and influences such as adhesion, air speed of emissions, fluid mechanics or tool movements, the required degree of capturing increases with a minimal air flow. 1Capturing elementsCapturing elements help in the effective removal of air pollutants. They are roughly divided into three types or systems: closed, half-open and open.Closed systems are workplaces that are hermetically sealed from the environment and have connections for air lines.Half-open systems are enclosures for the pollutant source with an open side for handling and with a connection for air ducts.Figure 3: Semi-open extraction cabinet for use, e.g., in laboratoriesOpen systems are form elements that are offered in a wide variety of versions. Their use is defined by shape, geometry, and material. They are usually mounted on extraction arms, the use of which is also defined by the amount and type of pollutant and other parameters such as use under ESD conditions or under fire protection aspects. The diameter of the extraction arms and their installation - directly on the filter system, as table or wall mounting, etc. - results from their practical utilization. Capturing elements can also be attached to suction hoses.Standardized capturing elementsThe following collection elements are primarily applied in industry, trade and research:Flat top hoods are utilized for detection above the pollutant source, for example during soldering, gluing or laser material processing.Round top hoods are used in the event of the possible acute formation of clouds of pollutants and in the event of impulsive pollutants. In addition, they have their advantage in the case of thermal harmful gas flows, since warm air rises as it’s known. Application examples are soldering work, micro welding, spot welding or laboratory applications.Suction nozzles use the Coandă effect, which means that air or gases move along a convex surface instead of detaching and continuing to flow in the original direction of flow. During gluing or cleaning with solvents or when vapors are generated that are heavier than air, these capturing elements are usually positioned flat and to the side of the pollutant source.Figure 4: Suction nozzle uses the Coandă effectSuction pens are suitable for the selective capture of air pollutants.In addition to their use in laser machining processes, they are very often found at hand soldering workstations - especially due to their narrow shape, they are perceived as the least disruptive.Suction funnels are probably the best-known and most universal collection elements.They combine the advantages of round and flat top hoods with regard to different sources of pollution. They are utilized, among others, during welding, soldering, cleaning, or grinding.Individual solutionsHowever, there are also several application scenarios in which standard systems do not achieve the required degree of capture. In these cases, individual solutions mustbe developed and installed. Customer-oriented suppliers of fume extraction systems will find an optimal alternative together with their customers.The following three practical cases are examples of such applications:Table extraction - an integrated capture solution for extracting gases, vapors and ozone was developed for a worktable with ESD protection by means of ionization. Backdraft panel - for use in the laboratory when weighing out fine powders and the associated transferring from one container to the other, a suction cabinet with an extraction system integrated in the rear wall offered the ideal solution.Barrel suction - when filling containers, rising dusts had to be captured. This was done by means of a ring nozzle that surrounds the vessel opening.Figure 5: Barrel suction to capture rising dustsThere are certainly other standardized and application-specific solutions that are not listed here, e.g., suction nozzles on manual soldering systems or welding torches, or detection elements with special geometric shapes, such as suction bells or angular suction funnels.There is a wide variety of capturing elements - as well as the number of providers. Users should nevertheless attach great importance to the importance of the "correct" capturing and leave their selection or interpretation to appropriate experts. This is the only way to ensure that employees, manufacturing equipment and products are effectively protected from the harmful impact of airborne pollutants.Authors:Stefan Meissner, Corporate Communications with ULT AG, Alexander Jakschik, CSO/CTO ULT AGThe article is based on documents and information from Wolfgang Richter, Head of Sales at ULT AG.。

赤铁矿{001}和{012}晶面对Cr(Ⅵ)吸附差异性研究

赤铁矿{001}和{012}晶面对Cr(Ⅵ)吸附差异性研究

第14卷第6期2023年12月有色金属科学与工程Nonferrous Metals Science and EngineeringVol.14,No.6Dec. 2023赤铁矿{001}和{012}晶面对Cr (Ⅵ)吸附差异性研究廖荣a , 罗才贵a ,b, 高琦a , 钟丽娴a , 罗仙平*a(江西理工大学,a.江西省矿冶环境污染控制重点实验室;b.钨资源高效开发及应用教育部工程研究中心,江西 赣州 341000)摘要:赤铁矿是热稳定性最高的铁氧化物,其与环境污染物相互作用(吸附)对污染物的迁移、转化甚至环境归趋均具有重要影响。

前人采用粗制赤铁矿研究其对污染物的吸附作用,所得结果难以准确说明其矿物表面的反应性质。

基于此,采用水热法成功合成了主暴露{001}晶面、{012}晶面的赤铁矿纳米颗粒(HNPs 和 HNCs )。

在此基础上,研究了赤铁矿不同晶面对Cr (Ⅵ)的吸附动力学和热力学特征,并考察了pH 、离子强度等对赤铁矿不同晶面吸附Cr (Ⅵ)的影响。

结果表明,HNPs 与HNCs 对Cr (Ⅵ)的吸附过程均遵循准二级动力学模型,且分别符合Langmuir 和Freundlich 等温吸附模型。

随着温度升高,K L 与K F 均减小,△H ɵ<0,说明吸附过程为放热过程。

HNPs 与HNCs 对Cr (Ⅵ)的吸附量随溶液pH 增大均减小。

结合离子强度实验结果与DFT 计算得出,HNPs 对Cr (Ⅵ)的吸附主要以表面络合为主,推测吸附构型为单齿单核;而HNCs 对Cr (Ⅵ)的吸附主要由表面络合与静电吸附共同主导,推测吸附构型为双齿双核。

上述结果为赤铁矿应用于环境治理提供参考。

关键词:赤铁矿;不同晶面;Cr (Ⅵ);吸附构型中图分类号:TF111.31;TD989 文献标志码:AStudy on the difference of Cr (Ⅵ) adsorption on {001} and{012} facets of hematiteLIAO Rong a , LUO Caigui a, b , GAO Qi a , ZHONG Lixian a , LUO Xianping *a(a. Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control ;b. Engineering Research Center for Efficient Development and Application of Tungsten Resources ,Ministry of Education , Jiangxi University of Science and Technology , Ganzhou 341000, Jiangxi , China )Abstract: Hematite is the most thermally stable iron oxide, and its interaction (adsorption) with environmental pollutants has an important influence on the migration, transformation, and even environmental fate of pollutants. However, crude hematite was used to study its adsorption effect on pollutants, and the results obtained did not accurately indicate its mineral surface reactivity. In this study, hematite nanoparticles (HNPs and HNCs) with {001} and {012} facets were successfully synthesized by employing a hydrothermal method. On this basis, the kinetic and thermodynamic characteristics of Cr(Ⅵ) adsorption on different facets of hematite were investigated, and the收稿日期:2022-11-21;修回日期:2022-12-26基金项目:国家自然科学基金资助项目(41902038);江西理工大学钨资源高效开发及应用教育部工程研究中心开放课题资助项目(W-2021YB002);中国博士后科学基金面上资助项目(2018M6432);江西省研究生创新专项资金资助项目(YC2021-S550)通信作者:罗仙平(1973— ),教授,博士生导师,主要从事金属矿分选与伴生资源综合回收方面的研究。

含氮杂环羧酸类配体配合物的构筑与性能研究.pdf

含氮杂环羧酸类配体配合物的构筑与性能研究.pdf

中图分类号:UDC:1S26334学校代码:10055密级:公开尚蕊大浮博士学位论文含氮杂环羧酸类配体配合物的构筑与性能研究StudyonSynthesisandPropertiesofMetalComplexeswithN.HeterocyclicCarboxylicAcidLigands南开大学研究生院二。

一。

年五月南开大学学位论文使用授权书根据《南开大学关丁研究生学位论文收藏和利用管理办法》,我校的博士、硕士学位获得者均须向南开大学提交本人的学位论文纸质本及相应电子版。

本人完全了解南开大学有关研究生学位论文收藏和利用的管理规定。

南开人学拥有在《著作权法》规定范围内的学位论文使用权,即:(1)学位获得者必须按规定提交学位论文(包括纸质印刷本及电子版),学校可以采用影印、缩印或其他复制手段保存研究生学位论文,并编入《南开大学博硕士学位论文全文数据库》;(2)为教学和科研目的,学校可以将公开的学位论文作为资料在图书馆等场所提供校内师生阅读,在校园网上提供论文目录检索、文摘以及论文全文浏览、下载等免费信息服务;(3)根据教育部有关规定,南开人学向教育部指定单位提交公开的学位论文;(4)学位论文作者授权学校向中国科技信息研究所和中国学术期刊(光盘)电子出版社提交规定范围的学位论文及其电子版并收入相应学位论文数据库,通过其相关网站对外进行信息服务。

同时本人保留在其他媒体发表论文的权利。

非公开学位论文,保密期限内不向外提交和提供服务,解密后提交和服务同公开论文。

论文电子版提交至校图书馆网站:http://202.113.20.161:8001/index.htm。

本人承诺:本人的学位论文是在南开大学学习期间创作完成的作品,并己通过论文答辩;提交的学位论文电子版与纸质本论文的内容一致,如因不同造成不良后果由本人自负。

本人同意遵守上述规定。

本授权书签署一式两份,由研究生院和图书馆留存。

作者暨授权人签字:蛆匾塞20lO年5月31日南开大学研究生学位论文作者信息论文题目含氮杂环羧酸类配体配合物的构筑与性能研究姓名胡博文学号ll20050239答辩日期2010年5月29日论文类别博十√学历硕士口硕士专业学位口高校教师口同等学力硕士口院/系/所化学学院专业物理化学联系电话l3920695251Emailhubowen@mail.nankai.edu.cn通信地址(邮编):天津市南开人学西区公寓8一c一5—101邮编300071备注:是否批准为非公开论文否注:本授权书适用我校授予的所有博士、硕士的学位论文。

CVD综述

CVD综述

Types of CVD reactions • Pyrolysis - thermal decomposition • AB(g) ---> A(s) + B(g) • ex: Si deposition from Silane at 650 C • SiH4(g) ---> Si(s) + 2H2(g) • use to deposit: Al, Ti, Pb, Mo, Fe, Ni, B, Zr, C, Si, Ge, SiO2, Al2O3, MnO2, BN, Si3N4, GaN, Si1-xGex, . . . • Reduction • often using H2 • AX(g) + H2(g) <===> A(s) + HX(g) • often lower temperature than pyrolysis • reversible => can use for cleaning too • ex: W deposition at 300 C • WF6(g) + 3H2(g) <===> W(s) + 6HF(g) • use to deposit: Al, Ti, Sn, Ta, Nb, Cr, Mo, Fe, B, Si, Ge, TaB, TiB2, SiO2, BP, Nb3Ge, Si1xGex, . . . • Oxidation • often using O2 • AX(g) + O2(g) ---> AO(s) + [O]X(g) • ex: SiO2 deposition from silane and oxygen at 450 C (lower temp than thermal oxidation) • SiH4(g) + O2(g) ---> SiO2(s) + 2H2(g) • use to deposit: Al2O3, TiO2, Ta2O5, SnO2, ZnO, . . .

分子模拟技术在高岭石研究中的应用进展

分子模拟技术在高岭石研究中的应用进展

第41卷第1期2022年1月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.41㊀No.1January,2022分子模拟技术在高岭石研究中的应用进展杨有威,罗玉霞,张青青,王春英(江西省矿冶环境污染控制重点实验室,赣州㊀341000)摘要:高岭石是长石和其他硅酸盐矿物天然蚀变的产物,是一种不含水的铝硅酸盐矿物,其层状晶体结构使之具有优异的物理化学性能,从而得到广泛的应用㊂分子模拟技术是一种能在微观层面研究物质性质的科学方法,在材料科学研究中具有重要的作用㊂本文综述了分子模拟技术的基本原理和近年来该技术在高岭石开发应用中的研究进展,主要包含高岭石的理化性质㊁高岭石的掺杂改性对理化性质的影响㊁高岭石对离子/分子的吸附性能规律以及高岭石在矿产开发领域中的一些应用实例㊂根据高岭石的性质特点和实际需要,探讨了高岭石的吸附特性规律,高岭石的改性开发对吸附特性的影响以及理论指导在开发矿产资源方面的应用㊂关键词:高岭石;分子模拟;吸附;改性;密度泛函理论;蒙特卡罗中图分类号:TD985㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2022)01-0153-09Application Progress of Molecular Simulation Technology in Kaolinite ResearchYANG Youwei ,LUO Yuxia ,ZHANG Qingqing ,WANG Chunying(Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control,Ganzhou 341000,China)Abstract :Kaolinite is the product of natural alteration of feldspar and other silicate minerals.It is a kind of aluminosilicate mineral without water content.Its layered crystal structure makes it have excellent physical and chemical properties and it is wide used.Molecular simulation technology is a scientific research method which studies the properties of materials at the micro level and plays an important role in the research of materials science.This paper summarized the basic principle of molecular simulation technology and the application progress of this technology in the development and research of kaolinite in recent years,mainly including the physical and chemical properties of kaolinite,the influence of doping modification of kaolinite on physical and chemical properties,the law of ion /molecular adsorption of kaolinite,and some application examples of kaolinite in the field of mineral development.According to the characteristics and practical needs of kaolinite,the adsorption characteristics of kaolinite,the influence of kaolinite modified development on adsorption characteristics,and the application of theoretical guidance in mineral development were explored.Key words :kaolinite;molecular simulation;adsorption;modification;density functional theory;Monte Carlo 收稿日期:2021-09-04;修订日期:2021-11-09基金项目:国家重点研发计划(2019YFC1805100);江西理工大学清江青年英才支持计划(JXUSTJYX2016003)作者简介:杨有威(1998 ),男,硕士研究生㊂主要从事分子模拟与环境污染控制技术的研究㊂E-mail:1287476942@通信作者:王春英,博士,副教授㊂E-mail:cywang@ 0㊀引㊀言高岭石是高岭土的主要成分[1],得名于江西省景德镇的高岭山,其具有土状光泽,呈白色或灰白色,分子式为Al 4[Si 4O 10](OH)8,化学组分为39.50%(质量分数)AlO 3,46.54%(质量分数)SiO 2,13.96%(质量分数)H 2O,属三斜晶系㊂硅氧四面体(SiO 4)和铝氧八面体(AlO 6)靠O 原子连接成1ʒ1型层状结构,层间的O 原子形成氢键,从而构成了重叠的高岭石层状分子[2-3]㊂作为典型的铝硅酸盐层状黏土矿物[4],高岭石具有良好的电绝缘性㊁耐火性㊁可塑性及一定的白亮度,因此在陶瓷㊁涂料㊁催化剂㊁吸附剂等领域具有广泛的应用[5-9]㊂随着21世纪科学技术不断发展,分子模拟技术作为一种基于经典力学和量子力学等理论的计算模154㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第41卷拟方法已经成为研究物质分子水平性质的有力工具,应用十分广泛[10-13]㊂1㊀分子模拟技术及方法分子模拟技术是一种基于PC 端的计算模拟方法,通过运用一些模拟软件,将试验得到的原始结构数据化,将数据导入软件构建物质模型,验证其合理性后确定物质微观结构㊂分子模拟不仅可以在分子层面模拟物质的结构,还能够模拟物质发生反应前后分子的运动变化,这使其在科学研究中的作用愈加明显[14]㊂目前使用较为广泛的分子模拟软件有Nanoscale Molecular Dynamics(NAMD)㊁Vienna Ab-initio Simulation Package(VASP)和Materials Studio(MS)等㊂NAMD 是在计算机上快速模拟大分子体系并进行动力学模拟的代码包,使用经验力场,通过数值求解运动方程计算原子轨迹㊂NAMD 是众多计算模拟软件中并行处理最好的,可以支持几千个CPU 运算,模拟体系原子数可达103~106个,适合模拟蛋白质㊁核酸㊁细胞膜等体系㊂VASP 是维也纳大学Hafner 小组开发的运用平面波赝势方法进行电子结构计算和量子力学-分子动力学模拟的软件包,通过近似求解Schrödinger 方程得到体系的电子态和能量,既可以在密度泛函理论(DFT)框架内求解Kohn-Sham 方程,也可以在Hartree-Fock(HF)的近似下求解Roothaan 方程;VASP 可以自动确定任意构型的对称性,利用对称性可设定Monkhorst-Pack 特殊点,便于高效计算体材料和对称团簇,不过,软件运行基于Linux 操作系统,操作不及MS 方便㊂MS 是美国Accelrys 公司在2000年专门为材料科学领域研究设计的一款PC 端运行的模拟软件,能够构建分子㊁固体及表面等结构模型,通过运用第一性原理近似求解薛定谔方程,预测材料的物理化学性质,以及模拟催化㊁聚合等化学反应㊂MS 在Windows㊁Linux 操作系统中均可运行,界面友好,包含4大板块23个模块,实用方便,但其开放性不如VASP,且并行效率不高㊂分子模拟方法主要包括量子力学和经典力学㊂量子力学模拟方法包括以DFT 为依据的第一性原理计算法㊁半经验法(Semi-enpirical)和从头算法(Ab initial)㊂经典力学模拟方法主要有分子力学方法(MM)㊁分子动力学方法(MD)和蒙特卡罗方法(MC)等㊂高岭石分子模拟研究中,使用的方法有第一性原理计算法㊁分子力学法㊁分子动力学法和蒙特卡罗方法[15-19]㊂第一性原理计算法根据轨道近似㊁非相对论近似和玻恩近似建立计算模型,并对薛定谔方程作近似处理,只需基本物理量就能用从头算法进行模拟计算,无需任何经验参数对物质体系的性质和结构进行预测和分析,这种计算结果比半经验法应用程度更好㊂通过将多粒子转化成多电子的量子力学方法,帮助解决了许多难以解释的物理化学问题[20]㊂图1㊀分子动力学模拟流程图[22]Fig.1㊀Molecular dynamics simulation flow chart [22]分子动力学方法是一门将数学㊁化学和物理结合成一体的方法㊂以牛顿第二定律为基础,描述模拟分子体系的运动变化,从系统中抽取样本计算构型函数,求解[21]得到模拟体系中原子或分子的位移㊁速度㊁加速度等数据㊂通过对系统内分子运动轨迹进行分析处理,可以得到粒子的径向分布函数㊁均方位移以及自扩散系数等,随后利用得到的数据对粒子的性质进行分析,分子动力学模拟方法的主要流程[22]见图1㊂其中,初始设置的位置和速度是随机选择的,依靠温度和速度大小进行校正,校正结果保证了体系总动量(P )为零(见式(1))㊂P =ðN 1m i v i =0(1)式中:m i 为第i 个原子的质量;v i 为第i 个原子的速度;N 为体系原子数㊂由于Bolzmann 分布随机选取速度为v i 的第i 个原子,当温度为T 时,原子在X 轴上速度v ix 的概率密度ρ(v ix )为:ρ(v ix )=(m i π/PT )1/2exp 12-m i v ix ()(2)其中一定速度下体系的温度(瞬时)可通过公式(3)求得:第1期杨有威等:分子模拟技术在高岭石研究中的应用进展155㊀T =13Nk B ðN i =1|P i |22m i (3)式中:N 为体系原子数;m i 为第i 个原子的质量,g;P i 为第i 个原子的动量,J;k B 为Bolzmann 常数,1.38066ˑ10-23J /K㊂分子力学模拟方法是根据经典力学中的分子力场进行计算模拟的㊂计算时有三个基于核间的近似假设:(1)不考虑电子本身运动和分子力场参数的基础上,根据某一个原子的原子核所在位置,即波恩-奥本海默近似;(2)分子是通过化学键作用聚集起来的原子团;(3)分子的基本单元在不同的分子中仍然具有结构上的相似性㊂只考虑分子中化学键的伸缩㊁旋转和键角的变化,通过能量数值描述变化,寻找合适力场中势能最低的稳定构型,其中力场选择的正确与否决定了计算结果是否可靠㊂蒙特卡罗方法是一种基于热力学进行随机抽样的统计计算方法,抽样是蒙特卡罗方法的核心原理㊂在系统条件下,采用Metropolis 抽样方法,生成微观粒子随机构型,Boltzmann 分布逐渐趋近于平衡后,根据给定的分子位能函数,将粒子间内能加和,得到能量数据㊂具体计算中每产生一个随机状态,粒子都包含3种可能的操作:粒子的插入㊁删除和移动㊂(1)粒子插入㊂在体系中的随机位置插入一个粒子,概率为:p ins (N ңN +1)=min 1,V ∀3(N +1)exp{β[μ-U (N +1)+U (N )]}()(4)(2)粒子删除㊂在体系中随机删除一个粒子,概率为:p del (N ңN -1)=min 1,∀3N V exp{-β[μ+U (N -1)-U (N )]}()(5)(3)粒子移动㊂在体系中随机选取一个粒子移动到另一位置,概率为:p move (s ңsᶄ)=min(1,exp{-β[U (sᶄN )-U (s N )]})(6)式中:U 为构型总势能,J /mol;V 为体系体积,m 3;N 为粒子数;μ为化学势,J /mol;∀为德布罗意波长,m;β=1/k B T ;s 和sᶄ为移动前后粒子在体系中的状态㊂2㊀分子模拟方法在高岭石研究中的应用进展2.1㊀高岭石晶体表面结构特性的模拟研究Gruner [23]于1932年采用X 射线粉末衍射仪对高岭石表面性质进行了分析,发现高岭石晶胞空间群为C c ,属于包含两个结构层的单斜晶系㊂此后,Bish [24]在1993年研究得到了高岭石结构参数(a =0.51535nm,b =0.89419nm,c =0.73906nm,α=91.926ʎ,β=105.046ʎ,γ=89.797ʎ),空间结群C 1最为准确,提出了高岭石属三斜晶系的观点,具体显示见图2,此参数目前被作为研究高岭石的基本标准,并得到广泛的运用㊂高岭石是多晶面矿物,李海普等[25]研究表明,高岭石在(001)面发生的解离只是结构单元层间氢键的断裂,没有化学键的断裂,并且在自然破碎下(001)面的解离相比于其他晶面更加完全,事实上高岭石的(001)面在高岭石颗粒总面积中所占比例也是最大的㊂胡雪飞[26]基于密度泛函理论对高岭石进行研究,证明高岭石(001)面较易解离㊂首先运用MS 软件CASTEP 模块对高岭石晶体模型进行优化,通过收敛性测试确定了模拟的构型参数,在此基础下,选用Buid 功能建立超胞模型改用CASTEP 模块Task 任务优化后计算高岭石晶体结构的能带结构㊁电荷布居㊁态密度等性质,对比后发现O 原子与Si 原子之间的作用强度更强,高岭石晶体易沿着(001)面解离㊂无论是理论模拟还是实验测试,均已对高岭石的结构特性有了充分研究,目前其结构特性已不是研究重点㊂156㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第41卷图2㊀高岭石初始构型三视图Fig.2㊀Three views of initial configuration of kaolinite2.2㊀高岭石改性的模拟研究目前,已有多个研究证明了高岭石对环境污染物的吸附能力[27-29]㊂对于高岭石的吸附原理研究也在不断进行,韩永华等[30]对羟基钙在高岭石表面的吸附机理进行了探索,采用MS软件的CASTEP模块优化,以285eV的截断能㊁LDA(local density approximation)函数和4ˑ2ˑ3的K点为计算条件,优化后建立起2ˑ2ˑ1超胞模型,改用Dmol3模块对已优化的表面模型及Ca(OH)+进行能量计算㊂结果表明,羟基钙吸附可在硅氧面和铝氧面进行,在铝氧面氢原子的1s轨道与羟基钙中氧原子的2p轨道杂化成键,在硅氧面两者以静电吸附的方式结合㊂硅氧面的吸附较为稳定,水分子会影响铝氧面的吸附,说明高岭石虽不是水化膨胀类黏土矿物,但水分子的存在可以影响高岭石对物质的吸附㊂分子模拟技术的另一特点是可以较易满足试验研究所需的条件,如对高岭石进行改性掺杂[31]㊂Zhang等[32]首先合成了煤矸石/g-C3N4催化剂活化过硫酸盐,采用第一性原理计算得出煤矸石中的高岭石降低了过硫酸盐的吸附能,与复合改性前相比,合成的催化剂可以有效地吸附和活化过硫酸盐产生的活性自由基,与试验结果一致㊂Scholtzov 等[33]对高岭石差层复合改性进行了研究,通过第一性原理模拟计算了纯高岭石㊁甲醇插层高岭石㊁甲氧基接枝高岭石㊁混合接枝/插层高岭石和含水混合高岭石的弹性常数㊁体积㊁剪切和杨氏模量等力学参数,分析得到了高岭石最稳定的改性方法为接枝/插层㊂周丽萍[34]通过CASTEP模块优化被掺杂高岭石,优化后的高岭石表面电荷分布㊁态密度和布居分析结果显示高岭石表面的Al原子可以被Fe/Mg/Ca原子单取代或双取代(见图3),从而使高岭石表面具有更多的负电荷,增强了表面共价性,从而增加了成键可能性㊂同时以水合铅离子作为吸附质,研究其在Fe/Mg/Ca掺杂高岭石表面的吸附,与未掺杂的高岭石对比,证实了可以通过掺杂改性提高高岭石的吸附性能㊂实际上,Rybka等[35]合成了零价铁修饰改性高岭石,并将其用作水溶液中Pb(II)和Mo(VI)的吸附剂,试验结果表明,合成的改性高岭石对Pb(II)和Mo(VI)的吸附量相对于未改性高岭石有显著提高,印证了高岭石可通过改性方式提高吸附特性㊂运用密度泛函/第一性原理进行理论计算时,多采用CASTEP模块和Dmol3模块(以MS软件为例),对于能量计算,一般Dmol3模块更为准确,具体计算步骤为,CASTEP模块/Dmol3模块对初始单胞进行结构优化,由Buid模块建立合适的超胞模型并优化,然后进行过渡态搜索或吸附能计算,最后通过模块自带的分析功能选择分析数据,计算参数一般取自经验参数㊂而运用分子力学和分子动力学原理计算时一般以Forcite 模块和Adsorption Locator模块为主,不同的是建立超胞模型后可设置温度㊁压强和孔隙率等参数对模型的淬火㊁退火㊁竞争吸附等行为进行模拟,分子变化能够很直观地在界面体现,具体数据可在返还的文件中找到或在模块分析中导出㊂近年来的研究表明,基于密度泛函理论,分子模拟技术的应用对高岭石的开发研究具有理论指导意义,第1期杨有威等:分子模拟技术在高岭石研究中的应用进展157㊀不但完善了高岭石反应机理,还为高岭石提供了改性方向和方法㊂基于此,未来的模拟技术应用可将其定位为对高岭石变化特征的一种微观研究方法,例如元素插入对高岭石的影响或高岭石与其他材料复合后的变化等,使高岭石材料的研究更富有说服力和可信度㊂图3㊀对高岭石初始结构扩展2ˑ2ˑ1Fig.3㊀Initial structure of kaolinite expanded by 2ˑ2ˑ12.3㊀高岭石对离子/分子吸附的模拟研究已有实验证明高岭石与多数离子相互吸附[36],但离子与高岭石之间的相互作用机理仍需分子层面的理论解释㊂Chen 等[37]通过经典分子动力学模拟研究了Cs +在高岭石中的吸附和扩散行为,结果表明,Cs +优先以表面络合物的形式吸附在硅氧面,并且随着温度的升高,Cs +的扩散系数显著增加㊂然而,不同的高岭石浓度和竞争阳离子对Cs +的扩散系数会有轻微影响;Zhu 等[38]采用分子动力学模拟研究了磺基水杨酸与铝㊁稀土离子(镧和钇)的相互作用以及在高岭石表面的吸附,结果表明,磺基水杨酸和铝之间发生络合反应,形成O Al 共价键,但与稀土离子之间只有弱吸附,因此,磺基水杨酸可以与游离铝离子形成络合物,也可以通过与高岭石(100)面的铝形成氢键吸附在高岭石上,最后通过XPS 和SEM 的检测和分析,验证了分子动力学模拟结果;Zhang 等[39]用密度泛函理论计算和蒙特卡罗方法研究了钙和钾在高岭石表面的微观吸附机理,得到了钙离子和钾离子在高岭石(001)和(001)面上的吸附结构,计算了其结合能,结果显示吸附在高岭石(001)面的主要产物为钙(II)和钾(I),结合穆利肯键电荷和布居数的部分态密度投影表明,吸附产物的钙氧键和钾氧键受离子相互作用支配㊂阳离子水合可以增加吸附发生的概率,增强键间的共价相互作用,之后的吸附实验证明钙离子比钾离子更容易吸附在高岭石上;Chen 等[40]通过第一性原理计算探讨了镉在高岭石基面上的吸附机理㊂结果表明,镉(II)在Kln-Al(001)面的双齿配位优于所有其他研究模型,计算的电子密度差揭示了吸附时表面氧向镉电荷转移,部分态密度分析显示,由于Cd-5p 和O s -2p 轨道在价带中的重叠,Cd-O s 键表现出共价特征㊂此外,利用AIMD 模拟的径向分布函数确定了高岭石-水界面镉配位壳的结构特征㊂杨飞等[41]研究了不同温度下高岭石对重金属离子的吸附,研究表明,在288K 到308K 区间内,随着温度的升高高岭石对Pb 2+㊁Cd 2+的吸附量逐渐降低,密度分布见图4,从吸附量上看,高岭石对吸附图4㊀高岭石吸附Pb 2+密度分布Fig.4㊀Density distribution of Pb 2+adsorbed by kaolinite Pb 2+更有利,且在两种离子的竞争吸附中Pb 2+强于Cd 2+,吸附结果与Sari 等[42]和Zhong 等[43]的实验测试结果基本吻合㊂分子模拟技术目前应用于解释高岭石对离子/分子的吸附机理,对于实验中高岭石去除污染物的现象,直观模型能很好地展示高岭石吸附前后的变化㊂分子模拟方法已经成为研究黏土矿物和其他层状结构材料孔隙中离子/分子能量学㊁结构和动力学的有效工具,为实验结果提供了有价值的补充和指导,是高岭石吸附研究中应用较为广泛的方法之一,未来应用重点依然是对吸附机理的微观变化解释㊂158㊀资源综合利用硅酸盐通报㊀㊀㊀㊀㊀㊀第41卷2.4㊀高岭石在选矿/采矿领域的模拟研究区别于密度泛函理论研究的吸附,分子动力学㊁分子力学和蒙特卡洛方法多组合用于研究高岭石矿物吸附目标矿产/浮选药剂性能㊂在选矿/采矿(主要是采气)领域,Ma等[44]对多种物质分子在高岭石表面的吸附行为进行了模拟研究,结果表明,温度和压力对高岭石(001)面吸附特性有重要影响㊂在较低温度条件下,CO2在高岭石表面的吸附距离小于CH4,但在温度为373K㊁压力为25MPa的条件下,CO2在高岭石表面的吸附距离大于CH4㊂氟碳表面活性剂在高岭石表面的吸附距离远小于H2O㊁CO2㊁CH4㊁N2和C8H18体系,主要是氟碳表面活性剂与高岭石表面具有较强的氢键相互作用,可以改变高岭石表面的润湿性,不仅提高了油气采收率,还削弱了储层亲水性,减弱了高岭石孔隙的锁水效应㊂Liu等[45]和唐巨鹏等[46]还研究了高岭石对页岩气的吸附性能规律,由于页岩气主要存在于页岩层中的有机质和黏土矿物中,占到了总气量的20%~85%(体积分数)[47],因此,两位学者对高岭石吸附页岩气主要成分CH4进行了研究,蒙特卡洛和分子动力学研究表明,高岭石吸附CH4时优先发生在硅氧面上,为物理吸附,但高温不利于其吸附CH4分子,含水率的增加会减少其对CH4的吸附量,研究结果为页岩开采提供了一定的理论支持㊂Han等[48]研究六偏磷酸钠在高岭石颗粒上的分散机理(六偏磷酸钠是浮选工艺和黏土工业中广泛使用的分散剂),应用分子动力学和密度泛函理论模拟了线性聚磷酸盐链与高岭石铝羟基封端表面的相互作用及[HPO4]2-与高岭石铝羟基表面的相互作用,解释了高岭石与分散剂之间的吸附机理㊂黄药作为选矿药剂广泛应用于选矿,Zhang 等[49]考虑到高岭石是采矿中常见的脉石矿物,有必要了解其与黄药的相互作用,因此通过表征手段㊁分子动力学模拟和密度函数理论研究了黄药和高岭土表面的相互作用㊂结果表明,黄药在高岭土表面的吸附符合伪一级(PFO)和朗格缪尔模型,黄药分子以单层吸附在高岭土表面,影响了废水处理过程中高岭土和絮凝剂之间的相互作用㊂Chang等[50]采用实验和分子动力学模拟方法,综合研究了聚丙烯酰胺对铝土矿浮选的影响,发现当聚丙烯酰胺浓度超过临界值时,铝土矿浮选的回收率和选择性迅速下降㊂研究表明,聚丙烯酰胺可以通过其酰胺基与矿物表面的氢氧化铝之间的氢键作用吸附在一水硬铝石和高岭石上㊂低浓度时,聚丙烯酰胺的烃链向外取向,增加了矿物表面的疏水性,而高浓度时,聚丙烯酰胺分子通过分子间作用相互缠结,降低了矿物表面的疏水性,结果与接触角测量结果吻合较好㊂Ziemiański等[51]通过高压和低压气体吸附技术研究了黏土矿物吸附甲烷的影响因素,研究表明,黏土矿物的温度㊁含水量㊁阳离子和孔隙压力等因素都会影响吸附,吸附位点主要位于黏土矿物的层间距表面,不同类型的黏土矿物是控制甲烷吸附的主要因素,佐证了高岭石吸附甲烷的模拟研究结果㊂综合来看,应用分子模拟技术研究与高岭石相关的选矿/浮选领域报道甚广㊂高岭石作为黏土矿物的主要成分之一,在许多矿产中均能发现高岭石的存在㊂因此,高岭石与矿产之间的吸附机理,与浮选药剂之间的作用机理成为研究热点㊂基于矿产资源高效开发利用,未来研究的主要方向依然是与选矿/浮选有关的高岭石改性吸附㊂3㊀结语与展望目前,高岭石吸附离子/分子的模拟研究已从多方面展开㊂近年矿产资源开发利用方面应用模拟技术进行的研究更偏向于外部环境因素(物理㊁化学)对高岭石晶体构型变化规律和对物质吸附特性的影响,如水含量和空隙压力对高岭石吸附CH4的影响或温度㊁金属离子的存在是否会引起高岭石表面的水化等㊂矿产资源开发利用中常能看到高岭石的影子,许多的采矿/浮选实验还留有空白,需要理论计算填补㊂在已有的改性高岭石分子模拟中,国内外对其晶体结构和吸附特性的相关性尚未给出有力证据㊂因而,在实验基础上建立分子模拟研究模型,有利于深入探讨改性高岭石晶体结构和吸附特性的相关性㊂近几年分子模拟技术作为热门的新兴研究方法,广泛应用在材料研究领域㊂分子模拟技术具有指导实验方向,不受实验条件限制,最大限度地避免人为实验所带来的误差等优点㊂综合近年国内外学者的研究,在高岭石开发研究的应用中,国内的计算模拟研究要少于国外,对实验现象的描述以各类表征手段为主㊂因此,国内学者无论是在高岭石吸附㊁改性或是在矿产开发研究中都可将分子模拟技术作为一种可应用的表征手段,以填补理论计算的空白㊂未来高岭石的研究路线应趋向于理论模拟计算指导实验,实验验证模拟计算结果㊂随着模拟方法和实验表征技术的不断发展,分子模拟技术在物质㊀第1期杨有威等:分子模拟技术在高岭石研究中的应用进展159性质研究及开发过程中将发挥重要作用㊂参考文献[1]㊀陆现彩,尹㊀琳,赵连泽,等.常见层状硅酸盐矿物的表面特征[J].硅酸盐学报,2003,31(1):60-65.LU X C,YIN L,ZHAO L Z,et al.Surface characteristics of general phyllosilicate minerals[J].Journal of the Chinese Ceramic Society,2003, 31(1):60-65(in Chinese).[2]㊀YOUNG R A,HEWAT A W.Verification of the triclinic crystal structure of kaolinite[J].Clays and Clay Minerals,1988,36(3):225-232.[3]㊀WHITE C E,PROVIS J L,RILEY D P,et al.What is the structure of kaolinite?reconciling theory and experiment[J].The Journal of PhysicalChemistry B,2009,113(19):6756-6765.[4]㊀江云水,彭红瑞.黏土矿物的X射线衍射分析[J].青岛科技大学学报(自然科学版),2017,38(s1):139-141+146.JIANG Y S,PENG H R.Analysis of clay minerals by X-ray diffraction method[J].Journal of Qingdao University of Science and Technology (Natural Science Edition),2017,38(s1):139-141+146(in Chinese).[5]㊀杜雅琴,张㊀进,赵建国,等.煤系高岭土的制备及其在涂料中的应用研究[J].涂料工业,2019,49(4):53-57.DU Y Q,ZHANG J,ZHAO J G,et al.Preparation of coal-based kaolin and its application in coatings[J].Paint&Coatings Industry,2019,49(4):53-57(in Chinese).[6]㊀李国栋,殷尧禹,卢㊀瑞,等.高岭土提纯工艺及其应用研究进展[J].矿产保护与利用,2018(4):142-150.LI G D,YIN Y Y,LU R,et al.Purification process and application progress of kaolin[J].Conservation and Utilization of Mineral Resources, 2018(4):142-150(in Chinese).[7]㊀李㊀霞,邓昭平,李㊀晶.高岭土在盐湖卤水提锂中的应用[J].化工进展,2017,36(6):2057-2063.LI X,DENG Z P,LI J.Extraction of lithium from salt lake brine with kaolinite[J].Chemical Industry and Engineering Progress,2017,36(6): 2057-2063(in Chinese).[8]㊀饶文秀,吕国诚,廖立兵.高岭石改性及其对流化催化裂化催化剂性能的影响[J].硅酸盐学报,2019,47(6):848-854.RAO W X,LV G C,LIAO L B.Modification of kaolinite and its effect on the catalytic cracking performance of fluid catalytic cracking[J].Journal of the Chinese Ceramic Society,2019,47(6):848-854(in Chinese).[9]㊀KAMBEL R D,ALIYU B A,BARMINAS J T,et al.Synthesis and application of polylactic acid/kaolin nanocomposite as a flame retardant inflexible polyurethane foam[J].International Journal of Materials and Chemistry,2017,7(1):14-19.[10]㊀陈尚斌,张㊀楚,刘㊀宇.页岩气赋存状态及其分子模拟研究进展与展望[J].煤炭科学技术,2018,46(1):36-44.CHEN S B,ZHANG C,LIU Y.Research progress and prospect of shale gas occurrence and its molecular simulation[J].Coal Science and Technology,2018,46(1):36-44(in Chinese).[11]㊀凤孟龙,龙㊀军,周㊀涵,等.分子模拟技术研究烃分子在分子筛吸附研究进展[J].计算机与应用化学,2018,35(3):243-250.FENG M L,LONG J,ZHOU H,et al.The applications of molecular simulation in hydrocarbons adsorption on zeolites[J].Computers and Applied Chemistry,2018,35(3):243-250(in Chinese).[12]㊀FUCHS A H,BOUTIN A,TEULER J M,et al.Development and application of molecular simulation methods for the screening of industrialzeolite adsorbents[J].Oil&Gas Science and Technology-Revue De l IFP,2006,61(4):571-578.[13]㊀朱㊀宇,陆小华,丁㊀皓,等.分子模拟在化工应用中的若干问题及思考[J].化工学报,2004,55(8):1213-1223.ZHU Y,LU X H,DING H,et al.Molecular simulation in chemical engineering[J].Journal of Chemical Industry and Engineering(China), 2004,55(8):1213-1223(in Chinese).[14]㊀张亚云,陈㊀勉,邓㊀亚,等.温压条件下蒙脱石水化的分子动力学模拟[J].硅酸盐学报,2018,46(10):1489-1498.ZHANG Y Y,CHEN M,DENG Y,et al.Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J].Journal of the Chinese Ceramic Society,2018,46(10):1489-1498(in Chinese).[15]㊀AKKERMANS R L C,SPENLEY N A,ROBERTSON S H.Monte Carlo methods in materials studio[J].Molecular Simulation,2013,39(14/15):1153-1164.[16]㊀崔守鑫,胡海泉,肖效光,等.分子动力学模拟基本原理和主要技术[J].聊城大学学报(自然科学版),2005,18(1):30-34.CUI S X,HU H Q,XIAO X G,et al.The basic principles and methods of molecular dynamics simulation[J].Journal of Liaocheng Teachers University,2005,18(1):30-34(in Chinese).[17]㊀张立红,张㊀军.分子动力学模拟方法及其误差分析[J].青岛大学学报(自然科学版),2003,16(2):24-28.ZHANG L H,ZHANG J.Molecular dynamics simulation and its error analyzing[J].Journal of Qingdao University(Natural Science),2003,16(2):24-28(in Chinese).[18]㊀樊康旗,贾建援.经典分子动力学模拟的主要技术[J].微纳电子技术,2005,42(3):133-138.FAN K Q,JIA J Y.An overview on classical molecular dynamics simulation[J].Micronanoelectronic Technology,2005,42(3):133-138(in Chinese).[19]㊀文玉华,朱如曾,周富信,等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Colloids and Surfaces A:Physicochem.Eng.Aspects 411 (2012) 80–86Contents lists available at SciVerse ScienceDirectColloids and Surfaces A:Physicochemical andEngineeringAspectsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r faThe adsorption and configuration of octyl hydroxamic acid on pyrochlore and calciteXiao Ni,Qi Liu ∗Department of Chemical and Materials Engineering,University of Alberta,Edmonton,AB T6G 2V4,Canadah i g h l i g h t sHydroxamic acid chemisorbed on pyrochlore,but physically adsorbed on calcite.At low concentration,hydroxamic acid formed a vertically oriented monolayer on pyrochlore.At low concentration,hydroxamic acid formed a horizontally oriented monolayer on calcite.g r a p h i c a la b s t r a c tAt low concentrations,octyl hydroxamic acid formed a vertically oriented monolayer on pyrochlore surface,but a horizontally oriented monolayer on calcitesurface.a r t i c l ei n f oArticle history:Received 16March 2012Received in revised form 25June 2012Accepted 2July 2012Available online 16 July 2012Keywords:Hydroxamic acid Adsorption density Pyrochlore Calcitea b s t r a c tXPS,adsorption density and ToF-SIMS measurements were performed on pyrochlore and calcite treated with octyl hydroxamic acid (OHA).XPS results indicated a slight shift of the binding energies of the Ca 2p electrons (0.19eV)on calcite after OHA treatment but the N 1s binding energy spectrum of OHA did not change,showing a physical adsorption mechanism.On OHA-treated pyrochlore,the binding energies of both Nb 3d and Ca 2p electrons shifted (0.24and 0.35eV,respectively),and the N 1s electron binding energy peak of OHA split from 400.3eV to 400.7and 398.5eV,representing the neutral R NH OH and the ionized R NH O −groups.The ratio of the integrated areas of the 400.7eV peak to the 398.5eV peak was 3.8to 1.Therefore OHA possibly adsorbed on pyrochlore by both physisorption and chemisorption,with the number of OHA molecules involved in the adsorption at 3.8to 1.The adsorption isotherm of OHA on pyrochlore showed two plateaus,with the first plateau corresponding to a vertically oriented monolayer of OHA.The second plateau was 4times higher than the first plateau.Therefore,the adsorption isotherm was consistent with XPS results,in that the vertically oriented monolayer (first plateau)formed the chemisorbed layer,and the second plateau contained mostly physisorbed OHA.The adsorption isotherm of OHA on calcite showed a lower plateau which corresponded to horizontally oriented OHA.ToF-SIMS positive ion images on OHA treated mixtures of pyrochlore and calcite confirmed that OHA preferentially adsorbed on pyrochlore.© 2012 Elsevier B.V. All rights reserved.∗Corresponding author.Tel.:+17804928628;fax:+17804922881.E-mail address:qi.liu@ualberta.ca (Q.Liu).1.IntroductionAlkyl hydroxamic acid is an effective collector for many oxide minerals in froth flotation including copper [1],iron [2],tin [3],tungsten [4],and rare earth metal minerals [5,6].It is also a selec-tive collector for niobium oxide minerals from carbonatite ores.It has been shown previously that a commercial reagent Aero 6493,0927-7757/$–see front matter © 2012 Elsevier B.V. All rights reserved./10.1016/j.colsurfa.2012.07.005X.Ni,Q.Liu/Colloids and Surfaces A:Physicochem.Eng.Aspects411 (2012) 80–8681Fig.1.Structure of octyl hydroxamic acid and its metal chelates in bulk solution. whose major ingredient is hydroxamic acid,could recover over85% of niobium minerals(mostly pyrochlore)from a mill feed sam-ple taken from an operating mine in eastern Canada at less than 30%mass pull(with carbonate mineral recovery at under30%)[7]. Its natural selectivity between niobium-bearing minerals and car-bonate minerals inflotation is worth studying.Octyl hydroxamic acid(OHA)was subsequently synthesized in our labs and tested in batchflotation of the same ore sample,and similar results as the commercial collector Aero6493were obtained.The hydroxamate group can form chelates with many transi-tion metal cations in bulk solution[8–11].More specifically,the hydroxyl groups and the carbonyl groups in the hydroxamate form a stablefive-membered ring chelate with metal cations[8–11].The carbonyl group participates in the chelation by donating its lone pair electrons[8–11](Fig.1).Research has also shown that they can also form chelates with metal atoms on mineral surface[3,6,12–14]. Thus hydroxamic acid are capable of bonding with mineral surface by“inner sphere adsorption”like carboxylic acid[15,16];but the formed chelates are stronger than the coordination bonded com-plex of corresponding carboxylic acids[8,17,18].Amphiphilic molecules which form chemical bonds(surface anchoring)with atoms or moieties on solid substrate can result in a self-assembled closed packing monolayer significantly increasing the substrate’s hydrophobicity.Chelating reaction formed between polydentate ligand and metal atoms on substrate surface can lead to a closed packed monolayer[19–21].Saturated alkyl chain in surfac-tant is moreflexible than chains with unsaturated bonds,and they tend to form linear conformation due to the hydrophobic inter-action between hydrophobic chains nearby if in a close packed self-assembled monolayer[22].With increasing surfactant concen-tration in the solution,the adsorbed molecules’orientations would gradually change to parallel to each other until the monolayer is formed[23].It is suggested that hydroxamic acid can also form such a monolayer on the metal oxide surface through aforementioned chelating reaction[24–26].However,the reported work concerned the adsorption of alkyl hydroxamic acid on calcium-bearing min-erals such asfluorite or phosphate[26,27].It is interesting to note that hydroxamic acid could adsorb on different mineral surfaces but the resultant imparted hydrophobicity andfloatability could be very different,such as on pyrochlore and calcite[7].This work reports results of a study on the adsorption mechanism of octyl hydroxamic acid(OHA)on the surfaces of pyrochlore and calcite, more importantly,the configuration of the adsorbed molecules on the surfaces and the resultant hydrophobicity of the mineral surface after adsorption.2.Materials and methods2.1.Materialsn-Octyl hydroxamic acid(OHA)was used in this work,and it was synthesized in our lab from the corresponding ester follow-ing the procedures of Devlin et al.and Pirrung and Chau[28,29]. The synthesized octyl hydroxamic acid was precipitated in acidic deionized water(pH=2),washed with acetone/water mixture and dried in a vacuum desiccator.The dried hydroxamic acid was a white and feather like powder,which was kept in a refrigerator. Sodium hexametaphosphate,sodium hydroxide and hydrochloric acid were all purchased from Fisher Scientific.Distilled water was used in all tests.Two high purity mineral samples,pyrochlore and calcite,were employed in this study to represent the niobium containing value mineral and the carbonatite gangue.High purity mineral samples of pyrochlore,in a powder form,was obtained from COREM,Que-bec,Canada,which assayed59.8%Nb2O5,10.5%CaO and2.73% SiO2.Since the theoretical Nb2O5content in pure pyrochlore is 66.55%,this sample contained approximately91%pyrochlore.Cal-cite(58.34%CaO)sample were purchased from Ward’s Scientific Establishment,Ontario,Canada.All the mineral samples were crushed,ground in a mechan-ical agate mortar/pestle grinder and screened to collect the −25␮m fraction for adsorption isotherm measurements.The spe-cific surface areas of the−25␮m pyrochlore and calcite samples were determined on Quantachrome Autosorb1MP(Quantachrome Instruments,USA)using nitrogen as adsorbate based on the BET theory,and the results are0.88and1.27m2/g,respectively.For XPS measurements the−25␮m fraction was further ground to approx-imately2␮m.2.2.X-ray photoelectron spectroscopyThe X-ray photoelectron spectroscopy(XPS)characterization of samples was carried out on a Kratos Axis165spectrometer with monochromatized Al K␣1,2radiation as an excitation source (h =1486.6eV).The analysis area was about400␮m×700␮m. Survey scans were conducted using an electron analyzer with a pass energy of160eV and a step size of0.35eV,and then high resolution scans were carried out within specific binding energy ranges at a constant pass energy of20eV and a step size of0.1eV.All measure-ments were carried out at pressures below10−8Pa.All the spectra obtained were calibrated using C1s at284.8eV.Sample powders were loaded into the sample holder by creating a surface as smooth as possible by unaided eyes.The integral areas of selective peaks on the full survey scan of minerals were divided by relative sen-sitivity factors(RSFs)and normalized,from which relative atomic concentrations was obtained.The OHA treated mineral samples were prepared as follows:first,50mL0.5wt%(31mmol/L)OHA was prepared in a100mL beaker at pH8.5,which was the natural pH in batchflotation.Then 1.5g of the mineral sample was added to the beaker and the mixture was stirred with a magnetic stir bar for1h under room temperature. The conditioned pulp was subsequently centrifuged and decanted. The mineral particle sediments were washedfive times byfive aliquots of50mL deionized water at pH8.5(adjusted by sodium hydroxide)and dried in a vacuum desiccator until analysis.2.3.Adsorption isotherm determinationAdsorption densities of the OHA on the pyrochlore and cal-cite minerals were measured at pH8.5and room temperature (20◦C).One gram of the−25␮m mineral(pyrochlore or calcite)was added to a conicalflask,then150mL solution with different OHA concentrations was added.Control blank was run using150mL 5mmol/L OHA but no mineral was added.Natarajan et al.[13]have shown that usually30min is sufficient for adsorption/desorption of hydroxamic acid to attain equilibrium on mineral surfaces.We used a4h equilibration time to ensure that the adsorption has reached equilibrium.The control blank test indicated that the OHA solution concentration did not detectably change after4h shaking at pH8.5,82X.Ni,Q.Liu/Colloids and Surfaces A:Physicochem.Eng.Aspects411 (2012) 80–86verifying that the concentration difference after adsorption is not caused by decomposition.Theflask was stoppered and agitated in a Jeio Tech SI600shak-ing incubator for4h at180rpm and room temperature.Theflask was then removed and allowed to stand still for2h,and the upper portion of the solution wasfiltered using a0.2␮m pore size syringe filter for colorimetric measurement of the OHA concentration.The colorimetric measurements were carried out on a Jenway6405 UV/vis spectrophotometer.The concentration of OHA was deter-mined by the absorbance of its Fe3+chelates at520nm.Although hydroxamic acid absorbs UV light,direct UV light scanning was found inaccurate.On the other hand,the OHA–ferric chelate shows strong absorbance at visible light region(520nm)andfits well with Beer–Lambert law[30,31].The adsorbed octyl hydroxamic acid was determined by the difference of the initial and equilib-rium OHA concentration.It was verified that calcium ions were not able to form colored chelates or precipitates with hydroxamic acid even at a very high calcium concentration(20mmol/L),so that this method is still valid for semi-soluble carbonate miner-als such as calcite.A standard calibration curve was obtained with R2>0.99within the OHA concentration range of0.3–2.4mmol/L. Dilution was used before absorbance measurement if the solution’s concentration was higher than the aforementioned calibration con-centration range.2.4.ToF-SIMS imagingSecondary ion mass images were obtained from a ToF-SIMS IV instrument(ION-TOF GmbH).Bi+ions were used as an analytical source operated at25kV and a pulsed target current of approxi-mately1.0pA.Low-energy electrons were used to compensate for surface charging caused by primary ion beam on the insulating sur-faces.The mass spectra were calibrated by positive ion peaks of H+, CH3+and Na+.136.2␮m×136.2␮m size images obtained by map-ping specific ion intensity were collected in a burst alignment mode with pixels of128×128per image.Total primary ion beam dose for analyzed area was kept below1×1012ions per cm2,ensuring static conditions.Data analysis was carried out using IonImage(version 4.1)software.Samples tested in ToF-SIMS were prepared as follows:3g of mineral mixture(pyrochlore:calcite at1:1)was agitated in50mL of0.5mmol/L OHA solution for5min at pH8.5,then it wasfiltered and rinsed byfive aliquots of50mL deionized water at pH8.5and dried in a vacuum desiccator.A pellet for analysis was made using 1g of dried mineral mixtures in a mechanical press.3.Results and discussion3.1.X ray photoelectron spectroscopy analysisA stable self-assembled monolayer at low adsorbate concen-tration on a substrate may be facilitated by chemical adsorption of reagents on the surface,i.e.chemical bonds formed between reagent and surface.The chemical shift of the electron binding energy in XPS spectra shows a change in the chemical state of the atoms.Therefore,the obvious shift of the binding energy should be observed after chemical adsorption has occurred.Fig.2shows the binding energies of the Nb3d electrons of pyrochlore before and after treatment by OHA,and the Ca2p electrons of calcite before and after treatment by OHA.As can be seen from Fig.2a,there are two pairs of Nb3d doublets.This may be due to the existence of columbite(which also contains niobium)in the pyrochlore sam-ple.Since pyrochlore is the dominant mineral component of this high purity sample,the larger doublet likely represents pyrochlore. The binding energy of Nb3d5/2on OHA treatedpyrochlore Fig.2.XPS spectra of(a)Nb3d of untreated and OHA treated pyrochlore and(b)Ca 2p of untreated and OHA treated calcite.surface was decreased by0.24eV while that of Ca2p3/2was decreased by0.35eV after OHA adsorption.However,for the cal-cium atoms on the OHA treated calcite surface,the binding energy of the Ca2p3/2electrons dropped by only0.19eV(Fig.2).Therefore, both the calcium and niobium atoms on pyrochlore mineral surface could be active sites for hydroxamic acid to form chemical bonds, while the adsorption of OHA on calcite was of a weaker interaction. The decrease of the electronic binding energies of the respective cations on the mineral surface indicated that these cations accepted electron clouds after OHA adsorption,i.e.that they were reduced. This was likely caused by the donation of the lone pair electrons on the carbonyl oxygen as discussed earlier.The relative atomic ratios on the treated and untreated pyrochlore and calcite surfaces are listed in Table1.The increase of C/Nb and N/Nb ratios on both mineral surfaces after OHA treatment shows that the OHA was adsorbed on the mineral surfaces.X.Ni,Q.Liu/Colloids and Surfaces A:Physicochem.Eng.Aspects411 (2012) 80–8683 Table1Relative atomic ratio on the mineral surfaces.Sample C/Nb N/Nb Sample C/Ca N/CaPyrochlore 6.650.00Calcite 3.200.00OHA treated pyrochlore10.260.66OHA treated calcite8.220.68The presence of adsorbed hydroxamic acid on the mineral sur-face can be best shown by comparing the N1s signals from the XPSspectra.N1s signal is also the best indicator of chemical state ofatoms in OHA molecules since the other two elements,oxygen andcarbon,in OHA is easily overlapped by signals from substrate and/orcontaminants.High resolution spectra of N1s of the OHA as well ason the treated and untreated minerals are shown in Fig.3.As canbe seen,on both untreated pyrochlore and calcite,no obvious N1speaks were detected.However,after treatment by OHA,the N1speaks were observed on both minerals.After the N1s spectra werede-convoluted into components,different adsorption mechanismson the two minerals were revealed.On OHA treated pyrochlore surface,the N1s spectrum was madeof two components:one at398.5eV and the other at400.7eV.The one at400.7eV was attributed to nitrogen atoms in the neu-tral molecules,i.e.the protonated form of the hydroxamic acid,R CO NH OH,and the peak at398.5eV was due to the nitro-gen in the deprotonated hydroxamate groups,R CO NH O−[24].Since deprotonation is thefirst step of chemical adsorption ofthe hydroxamic acid on the mineral surface,the peak at398.5eVwas attributed to chemically adsorbed octyl hydroxamic acidmolecules.The integrated area ratio between these two peaks is3.8:1,indicating that the ratio of physically adsorbed OHA to chemi-cally adsorbed OHA was about3.8to1.XPS analysis[25]ofadsorbedFig.3.N1s spectra of OHA,untreated and treated pyrochlore andcalcite.Fig.4.Adsorption isotherm of OHA on calcite at pH8.5(dashed lines:calculatedhorizontal orientation and vertical orientation saturated adsorption density).hydroxamic acid monolayer on metal oxides indicated that on tita-nium oxide and aluminum oxide,the deprotonated molecules werealso observed,and the ratios of protonated versus deprotonatedOHA were2.5:1and2.3:1,respectively.On the other hand,on thetreated calcite surface,only a single peak was detected at400.3eV,which matches exactly the single N1s peak in the protonated OHA.The peak at398.5eV was absent.Therefore,the XPS spectra of OHA treated pyrochlore indicated chemical shift of binding energies of electrons in the atoms in bothadsorbate(nitrogen in OHA)and adsorbent(niobium and calciumin pyrochlore)after adsorption.In contrast,the chemical shift ofthe N1s in OHA could not be found on treated calcite surface,and the chemical shift of Ca1s on treated calcite was also subtle.This indicated that OHA was likely adsorbed on calcite by physicaladsorption whereas on pyrochlore by chemisorption.3.2.Adsorption isothermThe adsorption isotherm of OHA on calcite is shown in Fig.4.The stepwise increase in the adsorption density was observed for OHAadsorption on calcite at low OHA concentration.It was proposedthat OHA adsorption on calcite could have different orientations[32]:at low concentration,its molecules tend to lieflat on the sur-face whereas at high concentration,they tend to form close-packuntil reaching a dense packing corresponding to an edge-on ver-tical monolayer surface coverage.Based on this hypothesis,theadsorption densities corresponding to a horizontal or a verticalmonolayer orientation were calculated,using the lengthwise andcross-sectional area size of OHA of55and20.5˚A2,respectively.Thecalculated values of horizontal and vertical saturation adsorptiondensities are3and8␮mol/m2,respectively.[Note:as the numberof adsorbed monolayers=molecular size(m2)×adsorption den-sity(mol/m2)×Avogadro number(6.02×1023),it follows that theadsorption density(mol/m2)at one monolayer coverage is theinverse of molecular size(m2)times the Avogadro number,wherethe molecular size is either55or20.5˚A2,for lengthwise and cross-sectional areas of the OHA.]By examining the data in Fig.4it can beseen that the horizontal oriented monolayer of OHA was observedbelow an equilibrium OHA concentration of1mmol/L.However,itis less certain if the vertical oriented monolayer was established oncalcite surface.It is suggested that physically adsorbed surfactantsmay not organize into close-packed vertically oriented monolayerat low concentrations[33–35].At higher OHA concentrations,theadsorption density on calcite increased drastically,indicating ran-dom stacking of OHA molecules on top of the adsorbed layers.The adsorption isotherm of octyl hydroxamic acid on pyrochlore surface is shown in Fig.5.Unlike on calcite surface,there was nohorizontal oriented OHA monolayer on the pyrochlore.Even at84X.Ni,Q.Liu /Colloids and Surfaces A:Physicochem.Eng.Aspects 411 (2012) 80–86Fig.5.Adsorption isotherm of OHA on pyrochlore at pH 8.5(solid lines:averaged adsorption densities at these two plateaus;dashed line:calculated vertical orienta-tion saturation adsorption density for chemically adsorbed monolayer).very low equilibrium OHA concentrations,vertical oriented OHA monolayers formed on the pyrochlore surface.This may be due to the formation of chemical chelates on the pyrochlore,which have greater stability.These stable complexes could be formed even at a low concentration until the active sites on the surface are com-pletely occupied.As OHA concentration increases,a second plateau was observed on the adsorption isotherm.This should be the mul-tilayer formed by the physically adsorbed OHA molecules on top of the first chemically adsorbed monolayer.It is interesting to note that based on the adsorption density data in Fig.5,the ratio of chemically adsorbed OHA to physically adsorbed OHA was 1:4.ThisFig.6.Adsorption isotherm at low OHA dosage on pyrochlore and calcite at pH 8.5(dashed lines:calculated horizontal orientation and vertical orientation saturated adsorption density).number matches with XPS results,which showed that the ratio was 1:3.8as discussed earlier.Fig.6shows a comparison of the adsorption densities of OHA on pyrochlore and calcite at low equilibrium concentration (which was used in the batch flotation tests).A vertical line indicates the exact OHA concentration in the batch flotation tests),and the adsorption density of OHA on pyrochlore was higher than that on calcite at this concentration.The adsorption density difference at low OHA concentration was due to the higher affinity of OHA to pyrochlore which caused a vertical orientation of the OHA on pyrochlore.But they were in a horizontal orientation on the calcite surface,this horizontal ori-entation on calcite surface prevented more OHA molecules from being adsorbed.The vertical orientation on the pyrochloresurfaceFig.7.Proposed self-assembled monolayer of OHA on pyrochlore and horizontal oriented monolayer on calcite at low OHAconcentration.Fig.8.Positive ion intensity images of 136.2␮m ×136.2␮m size on OHA treated pyrochlore and calcite mixture (weight ratio 1:1):(a)Nb +;(b)Ca +;(c)C 8H 17NO 2+.X.Ni,Q.Liu/Colloids and Surfaces A:Physicochem.Eng.Aspects411 (2012) 80–8685not only led to higher adsorption density,but also to higher sur-face hydrophobicity as the hydrocarbon tail of the OHA is oriented outwards to the bulk aqueous solution(Fig.7).At high concentra-tions,the adsorption density of OHA on the calcite surface increased faster than that on pyrochlore surface.This explained why simply increasing OHA dosage would have a negative effect on niobium flotation selectivity previously observed in batchflotation.3.3.ToF-SIMS imaging analysisThe adsorption density measurements were carried out on high purity single minerals and while they showed the relative affinity of OHA to the minerals,they did not show the competitive adsorp-tion when both minerals were present in theflotation pulp where OHA was petitive adsorption of OHA onto the mineral mixtures was studied using time offlight secondary ion mass spec-troscopy(ToF-SIMS).Image acquisitions using spectra of positive ions Ca+,Nb+,C8H17NO2+were carried out(Fig.8).Positive ion Nb+(Fig.8a)was selected to identify pyrochlore distribution in the mineral mixtures since it was the only source of niobium in the mix-ture.Signals of Ca+ion(Fig.8b)can be detected on both pyrochlore and calcite surface since they both contain calcium.However,its intensity was higher on calcite as calcite(58.34%CaO)had higher content of calcium than that of pyrochlore(10.5%CaO).Positive ion C8H17NO2+(Fig.8c)was used to determine the distribution of OHA on the mineral mixtures.It can be seen that the pattern of Fig.8c is very similar to Fig.8a,indicating that higher OHA fragment ion intensity corresponded to higher Nb intensity,which shows that OHA was adsorbed mostly on the pyrochlore.4.ConclusionsXPS measurements confirmed that the adsorption of octyl hydroxamic acid(OHA)onto pyrochlore surface was through chemisorption.On the other hand,the OHA only adsorbed on calcite surface through weaker physical adsorption.The strong chemisorption of the OHA on pyrochlore surface led to a vertical head-on orientation of the molecules so that the pyrochlore was strongly hydrophobized even at low OHA concentrations,whereas the weak adsorption of OHA on calcite led to a horizontal orienta-tion of the adsorbed OHA molecules with low adsorption density and low imparted surface hydrophobicity.This was confirmed by both adsorption isotherm measurements on the high purity single minerals of pyrochlore and calcite and ToF-SIMS imaging data on the mixtures of the two minerals.The results explain the observed selectivity of hydroxamic acid in theflotation of niobium oxide minerals(mostly pyrochlore)from carbonatite Nb ores. AcknowledgmentsFinancial support to this project is provided by The Natural Sci-ences and Engineering Research Council of Canada(NSERC),COREM and IAMGOLD through a collaborative research and development (CRD)project.PhD student Peng Huang in our group carried out the BET surface area measurement.The XPS and ToF-SIMS analy-ses were carried out at Alberta Centre for Surface Engineering and Science(ACSES),University of Alberta.Appendix A.Supplementary dataSupplementary data associated with this article can be found,in the online version,at /10.1016/ j.colsurfa.2012.07.005.References[1]J.S.Lee,D.R.Nagaraj,J.E.Coe,Practical aspects of oxide copper recovery withalkyl hydroxamates,Miner.Eng.11(1998)929–939.[2]K.B.Quast,A review of hematiteflotation using12-carbon chain collectors,Miner.Eng.13(2000)1361–1376.[3]T.Sreenivas,N.P.H.Padmanabhan,Surface chemistry andflotation of cassiteritewith alkyl hydroxamates,Colloids Surf.A.205(2002)47–59.[4]K.I.Marinakis,G.H.Kelsall,The surface chemical properties of Scheelite(CaWO4).II.Colloids and surfaces,Colloids Surf.26(1987)243–255.[5]Pradip,D.W.Fuerstenau,The role of inorganic and organic reagents in theflotation separation of rare-earth ores,Int.J.Miner.Process.32(1991) 1–22.[6]J.Ren,S.Lu,S.Song,J.Niu,New collector for rare earth mineralflotation,Miner.Eng.10(1997)1395–1404.[7]X.Ni,M.Parrent,M.Cao,L.Huang,A.Bouajila,Q.Liu,Developingflotationreagents for niobium oxide recovery from carbonatite Nb ores,Miner.Eng.,in press.[8]Y.K.Agrawal,Hydroxamic acids and their metal complexes,Russ.Chem.Rev.48(1979)948–963.[9]A.L.Crumbliss,Iron bioavailability and the coordination chemistry of hydrox-amic acid,Coord.Chem.Rev.105(1990)155–179.[10]M.S.Gidwani,H.Kaur,U.Pal,S.K.Menon,A chromogenic calixarene hydroxamicacid for the sequential separation of Ti(IV)and Zr(IV),J.Anal.Chem.64(2009) 104–109.[11]N.Turkel,Stability of metal chelates of some hydroxamic acid ligands,J.Chem.Eng.Data56(2011)2337–2342.[12]Y.Jiang,L.Zhou,X.Zhou,B.Zhao,Novel condensed ring carboxylic acid studiedin theflotation behavior of diaspora and aluminosilicates,Sep.Sci.Technol.45 (2010)2475–2480.[13]R.Natarajan,J.Sharma,I.Nirdosh,Adsorption of N-hydrocinnamoyl-N-phenylhydroxylamine on pure minerals,Adsorption16(2010)541–548.[14]X.Q.Wu,J.G.Zhu,Selectiveflotation of cassiterite with benzohydroxamic acid,Miner.Eng.19(2006)1410–1417.[15]E.B.Gordon,V.E.Henrich,W.H.Casey,D.L.Clark,C.Eggleston,A.Felmy,D.W.Goodman,M.Gratzel,G.Maciel,M.I.McCarthy,K.H.Nealson,D.A.Sverjen-sky,M.F.Toney,J.M.Zachara,Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms,Chem.Rev.99(1999)77–174.[16]M.M.Islam,B.Diawara,P.Marcus,D.Costa,Synergy between iono-covalentbonds and van der Waals interactions in SAMs formation:afirst-principles study of adsorption of carboxylic acids on the Zn–ZnO(0001)surface,Catal.Today117(2011)39–49.[17]Y.K.Agrawal,H.L.Kapoor,Stability constants of rare earths with hydroxamicacids,J.Inorg.Nucl.Chem.39(1977)479–482.[18]Y.K.Agrawal,S.G.Tandon,Metal–ligand stability constants of hydroxamicacids,J.Inorg.Nucl.Chem.36(1974)869–873.[19]G.Dehaen,S.V.Eliseeva,K.Kimpe,urent,L.Vanderelst,R.N.Muller,W.Dehaen,K.Binemans,T.N.Parac-Vogt,A self-assembled complex with a tita-nium(IV)catecholate core as potential bimodal contrast agent,Chem.Eur.J.18 (2012)293–302.[20]T.Hauffman,L.V.Lokeren,R.Willem,A.Hubin,T.Herman,In situ study ofthe deposition of(ultra)thin organic phosphonic acid layers on the oxide of aluminum,Langmuir28(2012)3167–3173.[21]Y.Pan,W.Ying,L.Xue,X.Guo,H.Yang,Adsorption behavior of methimazolemonolayer on a copper surface and its corrosion inhibition,J.Phys.Chem.C 116(2012)3532–3538.[22]I.Liascukiene,N.Aissaoui,S.J.Asadauskas,ndoulsi,mbert,Orderednanostructures on a hydroxylated aluminum surface through the self-assembly of fatty acids,Langmuir28(2012)5116–5124.[23]M.L.Sushko,J.Liu,Structural rearrangement in self-assembled surfactant layersat surfaces,J.Phys.Chem.B114(2010)3847–3854.[24]A.Alagta,I.Felhosi,I.Bertoti,E.Kalman,Corrosion protection properties ofhydroxamic acid self-assembled monolayer on carbon steel,Corros.Sci.50 (2008)1644–1649.[25]J.P.Folkers,C.B.Gorman,ibinis,S.Buchholz,G.M.Whitesides,Self-assembled monolayers of long-chain hydroxamic acids on native oxides of metals,Langmuir11(1995)813–824.[26]X.Wang,J.Liu,ler,Adsorption and self-assembly of octyl hydroxamicacid at afluorite surface as revealed by sum-frequency vibrational spec-troscopy,J.Colloid Interface Sci.325(2008)398–403.[27]X.Wang, A.V.Nguyen,ler,Selective attachment and spreading ofhydroxamic acid-alcohol collector mixtures in phosphateflotation,Int.J.Miner.Process.78(2006)122–130.[28]J.P.Devlin,W.D.Ollis,J.E.Thorpe,Studies concerning the antibiotic actinonin,part V.Synthesis of structural analogues of actinonin by the anhydride-ester method,J.Chem.Soc.Perkin Trans.1(1975)846–848.[29]M.C.Pirrung,J.H.L.Chau,A convenient procedure for the preparation of aminoacid hydroxamates from esters,.Chem.60(1995)8084–8085.[30]A.K.Majumdar,N-Benzoylphenylhydroxylamine and its Analogues,Pergamon,Oxford,1972.[31]H.L.Yale,The hydroxamic acids,Chem.Rev.33(1943)209–256.[32]Pradip,D.W.Fuerstenau,Adsorption of hydroxamate collectors on semi-solubleminerals.Part II:effect of temperature on adsorption,Colloids Surf.15(1985) 137–146.。

相关文档
最新文档