河南省驻马店市汝南县2020-2021学年九年级上学期期末测试数学试题(PDF版含答案)

合集下载

2020-2021学年度第一学期九年级期末质量检测数学试卷 含答案

2020-2021学年度第一学期九年级期末质量检测数学试卷 含答案

一、精心选一选(每小题4分,共40分)1、抛物线y=-2x2开口方向是( ) A .向上 B .向下 C .向左 D .向右2、如果:1:2x y =,那么下列各式中不成立的是( ) A.32x y y +=; B. 12y x y -=; C.21y x =; D.1213x y +=+ 3、已知锐角α满足tan(α-20°)=1,则锐角α的值为( ) A. 50° B. 25° C. 45° D. 65° 4、下列命题正确的是( )A. 所有等腰三角形都相似B. 所有的矩形都相似C. 所有的菱形一定相似D. 有一对锐角相等的直角三角形一定相似 5、 一个斜坡的坡角为30°,则这个斜坡的坡度为( ) A . 1:2 B.3 :2 C. 1: 3 D.3 :16、若关于x 的方程kx2-6x+9=0 有两个不相等的实数根,则k 的取值范围是( )A. k <1B. k ≠0C. k <1且k ≠0D. k >17、两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是 )A .75cm2B . 65cm2C . 50cm2D .45cm28、若3cos 4A =,则下列结论正确的为 ( ) A . 0°<∠A < 30° B. 30°<∠A < 45° C. 45°< ∠A < 60° D.60°< ∠A <90°9、如图,小明在打网球时,使球恰好能打过网,而且落点恰好在离网6米的位置上,则球拍击球的高度h 为( )A.815米 B .1米 C.43米 D.85米 第9题图 第10题图10、如图,一学生要测量校园内一颗水杉树的高度,他站在距离水杉树10m 的B 处,测得树顶的仰角为∠CAD=30°,已知测角仪的架高AB=2 m ,那么这棵水杉树高是 ( ) A .(3310+2) m B .(103+2) m C.3310 m D .7 m 二、耐心填一填(每小题5分,共25分) 11、 如果2X =3Y =4Z ≠0,则ZY X -2= 。

河南省驻马店地区2020年九年级上学期数学期末考试试卷(I)卷

河南省驻马店地区2020年九年级上学期数学期末考试试卷(I)卷

河南省驻马店地区2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·柘城模拟) 如图所示的几何体的俯视图是()A .B .C .D .2. (2分)反比例函数的图象在()A . 第一、三象限B . 第二、四象限C . 第一、二象限D . 第三、四象限3. (2分) (2018九上·灌云月考) 已知则的值为()A .B .C .D .4. (2分) (2020八下·南京期中) 菱形具有而矩形没有的性质是()A . 对角线互相平分B . 对边相等C . 对角线相等D . 对角线互相垂直5. (2分)下列四个命题中,属于真命题的是()A . 若,则a=mB . 若a>b,则am>bmC . 两个等腰三角形必定相似D . 位似图形一定是相似图形6. (2分) (2018九上·安定期末) 如图,已知点A在反比例函数y=的图像上,点B在x轴的正半轴上,且△OAB是面积为的等边三角形,那么这个反比例函数的解析式是()A .B .C .D .7. (2分)将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3 ,则原铁皮的边长为()A . 10cmB . 13cmC . 14cmD . 16cm8. (2分) (2017九上·宛城期中) 如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD=2CD,点E,F分别为AB,AD的中点,则三角形AEF与多边形BCDFE的面积之比为()A . 1:7B . 1:6C . 1:5D . 1:49. (2分)正方形具备而菱形不具备的性质是()A . 对角线互相平分B . 对角线互相垂直C . 对角线相等D . 每条对角线平分一组对角10. (2分)(2020·嘉兴·舟山) 如图,在等腰△ABC中, AB=AC=2 ,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于 EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于 AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点0;③以点为圆心,线段OA长为半径作圆。

2020-2021年九年级上册期末数学试题(含答案)(1)

2020-2021年九年级上册期末数学试题(含答案)(1)

2020-2021年九年级上册期末数学试题(含答案)(1)一、选择题1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .12.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,953.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°4.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .405.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .166.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)-- 7.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .28.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.5 9.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位11.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( ) ①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个12.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1913.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC 的度数等于( )A .50°B .49°C .48°D .47°14.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角D .都含有一个70°的内角15.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( ) A .先向左平移2个单位长度,然后向上平移1个单位长度 B .先向左平移2个单位长度,然后向下平移1个单位长度 C .先向右平移2个单位长度,然后向上平移1个单位长度 D .先向右平移2个单位长度,然后向下平移1个单位长度二、填空题16.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________. 17.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.18.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.19.数据2,3,5,5,4的众数是____.20.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________;21.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.22.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.23.一元二次方程x 2﹣4=0的解是._________24.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.25.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.26.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.27.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).28.如图,⊙O 是正五边形ABCDE 的外接圆,则∠CAD =_____.29.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…30.如图,将二次函数y=12(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.三、解答题31.如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.32.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A .6 cm×4 cmB .6 cm×4.5 cmC .7 cm×4 cmD .7 cm×4.5 cm33.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率. 34.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交抛物线于点D ,交线段AB 于点E .设运动时间为(0)t t >秒. ①当t 为何值时,线段DE 长度最大,最大值是多少?(如图1)②过点D 作DF AB ⊥,垂足为F ,连结BD ,若BOC 与BDF 相似,求t 的值(如图2)35.如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=12AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当35ANAB=且67AMAC=时,求CP的长.四、压轴题36.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.37.如图,已知在矩形ABCD中,AB=2,BC=23.点P,Q分别是BC,AD边上的一个动点,连结BQ,以P为圆心,PB长为半径的⊙P交线段BQ于点E,连结PD.(1)若DQ=3且四边形BPDQ是平行四边形时,求出⊙P的弦BE的长;(2)在点P,Q运动的过程中,当四边形BPDQ是菱形时,求出⊙P的弦BE的长,并计算此时菱形与圆重叠部分的面积.38.如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.39.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.40.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.(1)已知A(﹣2,3),B(5,0),C(t,﹣2).①当t=2时,点A,B,C的最优覆盖矩形的面积为;②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;(2)已知点D(1,1).E(m,n)是函数y=4x(x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.2.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B.3.B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=AC BC,∴∠ADC=12∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.4.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.5.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:21 63 ,故选:B.【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.6.A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 7.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 8.C解析:C【解析】【分析】 因为OCP 和ODQ 为直角三角形,根据勾股定理可得OP 、DQ 、PQ 的长度,又因为CP //DQ ,两直线平行内错角相等,∠PCE=∠EDQ ,且∠CPE=∠DQE=90°,可证CPE ∽DQE ,可得CP DQ =PE EQ,设PE=x ,则EQ=14-x ,解得x 的取值,OE= OP-PE ,则OE 的长度可得.【详解】解:∵在⊙O 中,直径AB=20,即半径OC=OD=10,其中CP ⊥AB ,QD ⊥AB , ∴OCP 和ODQ 为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP ⊥AB ,QD ⊥AB ,垂直于用一直线的两直线相互平行,∴CP //DQ ,且C 、D 连线交AB 于点E ,∴∠PCE=∠EDQ ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°, ∴CPE ∽DQE ,故CP DQ =PE EQ, 设PE=x ,则EQ=14-x , ∴68=x 14-x,解得x=6, ∴OE=OP-PE=8-6=2,故选:C .【点睛】 本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE 与DQE 相似,并得出线段的比例关系.9.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=12AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 12.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.13.A解析:A【解析】【分析】连接OC ,根据等边三角形的性质得到∠BOC =60°,得到∠AOC =100°,根据圆周角定理解答.【详解】连接OC ,由题意得,OB =OC =BC ,∴△OBC 是等边三角形,∴∠BOC =60°,∵∠AOB =40°,∴∠AOC =100°,由圆周角定理得,∠ADC =∠AOC =50°,故选:A .【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.解析:C【解析】试题解析:因为A,B,D 给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A ,B ,D 错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C 正确. 故选C.15.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x 2顶点为(0,0),抛物线y=(x ﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x 2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象. 故选D .点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.二、填空题16.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随解析:-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值.【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3,故答案为:-3.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.17.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM ..故答案为:31【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.18.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.19.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.20.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 21.2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt △OBF 中,即可求解析:2【解析】【分析】首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt △OBF 中,即可求得tan ∠BOF 的值,继而求得答案.【详解】如图,连接BE ,∵四边形BCEK 是正方形,∴KF=CF=12CK ,BF=12BE ,CK=BE ,BE ⊥CK , ∴BF=CF ,根据题意得:AC ∥BK ,∴△ACO ∽△BKO ,∴KO :CO=BK :AC=1:3,∴KO :KF=1:2, ∴KO=OF=12CF=12BF ,在Rt △PBF 中,tan ∠BOF=BFOF=2, ∵∠AOD=∠BOF , ∴tan ∠AOD=2. 故答案为2 【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.22.24 【解析】 【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB 的长,延长BE 交AC 于H 点,作HM⊥AB 于M ,根据圆的性质可知BH 平分∠ABC,故CH=HM,设CH=x=HM ,根解析:24 【解析】 【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积. 【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J . ∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9, ∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2 即AH 2=HM 2+AM 2 (12-x )2=x 2+62 解得x=4.5 ∵EK ∥AC , ∴△BEK ∽△BHC , ∴EK BK HC BC =,即14.59BK=∴EF=KJ=BC-BK-JC=9-2-1=6, ∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB , ∴△EFG ∽△ACB ,故EF FG BC AC =,即6912FG= 解得FG=8∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.23.x=±2 【解析】 移项得x2=4, ∴x=±2. 故答案是:x=±2.解析:x=±2 【解析】 移项得x 2=4, ∴x=±2. 故答案是:x=±2.24.【解析】 【分析】 【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时, 过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点, ∴2解析:272 【解析】【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=1MD=1,2∴FM=DM×cos30°=3,∴2227=+=,MC FM CF∴A′C=MC﹣MA′=272-.-.故答案为272【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.25.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.26.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.27.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).28.36°.【解析】【分析】由正五边形的性质得出∠BAE=(5﹣2)×180°=108°,BC=CD=DE,得出 ==,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,解析:36°.【解析】【分析】由正五边形的性质得出∠BAE=15(5﹣2)×180°=108°,BC=CD=DE,得出BC=CD=DE,由圆周角定理即可得出答案.【详解】∵⊙O是正五边形ABCDE的外接圆,∴∠BAE=15(n﹣2)×180°=15(5﹣2)×180°=108°,BC=CD=DE,∴BC=CD=DE,∴∠CAD=13×108°=36°;故答案为:36°.【点睛】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用;熟练掌握正五边形的性质和圆周角定理是解题的关键.29.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.30.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.三、解答题31.(1)30°;(2)33【解析】【分析】(1)由题意证明△CDE≌△COE,从而得到△OCD是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解.【详解】解:连接OA,OC∵弦AC垂直平分OD∴DE=OE,∠DEC=∠OEC=90°又∵CE=CE∴△CDE≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD是等边三角形∴∠DOC=60°∴∠DAC=30°(2)∵弦AC 垂直平分OD ∴AE=12AC=3 又∵由(1)可知,在Rt △DAE 中,∠DAC =30°∴tan 30DE AE =,即33DE =∴ ∵弦AC 垂直平分OD∴∴直径∴-【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.32.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B. 【解析】 【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径. 【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积 ∴==23=6S rl πππ⨯⨯母侧 即容器盖铁皮的面积为6πcm²; ②解:设圆锥展开扇形的圆心角为n 度, 则2π×2=3180n π⨯ 解得:n=240°, 如图:∠AOB=120°, 则∠AOC=60°, ∵OB=3, ∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm , 故选:B .。

2020-2021河南省驻马店市高级中学九年级数学上期末一模试题带答案

2020-2021河南省驻马店市高级中学九年级数学上期末一模试题带答案

形绿地边长为 xm,下面所列方程正确的是( )
A.x(x-20)=300
B.x(x+20)=300
5.如图中∠BOD 的度数是( )
C.60(x+20)=300
D.60(x-20)=300
A.150°
B.125°
C.110°
D.55°
6.二次函数 y 3x2 6x 变形为 y a x m2 n 的形式,正确的是( )
22.如图,在 ABC 中, AB BC , ABC 120 ,点 D 在边 AC 上,且线段 BD 绕 着点 B 按逆时针方向旋转120 能与 BE 重合,点 F 是 ED 与 AB 的交点.
(1)求证: AE CD ; (2)若 DBC 45 ,求 BFE 的度数.
23.某商场要经营一种新上市的文具,进价为 20 元,试营销阶段发现:当销售单价是 25 元时,每天的销售量为 250 件,销售单价每上涨 1 元,每天的销售量就减少 10 件 (1)写出商场销售这种文具,每天所得的销售利润 (元)与销售单价 (元)之间的 函数关系式; (2)求销售单价为多少元时,该文具每天的销售利润最大; (3)商场的营销部结合上述情况,提出了 A、B 两种营销方案 方案 A:该文具的销售单价高于进价且不超过 30 元; 方案 B:每天销售量不少于 10 件,且每件文具的利润至少为 25 元 请比较哪种方案的最大利润更高,并说明理由 24.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超 市从外地购进一种水果,其进货成本是每吨 0.4 万元,根据市场调查,这种水果在市场上 的销售量 y(吨)与销售价 x(万元)之间的函数关系为 y=-x+2.6 (1)当每吨销售价为多少万元时,销售利润为 0.96 万元? (2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少? 25.如图,⊙O 是△ABC 的外接圆,AB 是直径,OD⊥AC,垂足为 D 点,直线 OD 与⊙O 相交于 E,F 两点,P 是⊙O 外一点,P 在直线 OD 上,连接 PA,PB,PC,且满足∠PCA =∠ABC (1)求证:PA=PC; (2)求证:PA 是⊙O 的切线;

九年级上册驻马店数学期末试卷测试卷(解析版)

九年级上册驻马店数学期末试卷测试卷(解析版)

九年级上册驻马店数学期末试卷测试卷(解析版)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm4.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 725.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.6.抛物线223y x x =++与y 轴的交点为( ) A .(0,2)B .(2,0)C .(0,3)D .(3,0)7.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:1 8.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020 B .﹣2020 C .2021 D .﹣2021 9.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月11.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .2 C .35D .4512.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④二、填空题13.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.14.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______. 15.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.16.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________17.二次函数y=x 2−4x+5的图象的顶点坐标为 .18.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.19.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .20.2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____. 21.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .22.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)23.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.24.如图,一次函数y =x 与反比例函数y =kx(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.26.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?27.某校举行秋季运动会,甲、乙两人报名参加100 m 比赛,预赛分A 、B 、C 三组进行,运动员通过抽签决定分组. (1)甲分到A 组的概率为 ; (2)求甲、乙恰好分到同一组的概率.28.如图,抛物线y=-x 2+bx+3与x 轴交于A ,B 两点,与y 轴交于点C ,其中点A (-1,0).过点A 作直线y=x+c 与抛物线交于点D ,动点P 在直线y=x+c 上,从点A 出发,以每秒2个单位长度的速度向点D 运动,过点P 作直线PQ ∥y 轴,与抛物线交于点Q ,设运动时间为t (s ).(1)直接写出b ,c 的值及点D 的坐标;(2)点 E 是抛物线上一动点,且位于第四象限,当△CBE 的面积为6时,求出点E 的坐标;(3)在线段PQ 最长的条件下,点M 在直线PQ 上运动,点N 在x 轴上运动,当以点D 、M 、N 为顶点的三角形为等腰直角三角形时,请求出此时点N 的坐标.29.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队? 30.解下列方程: (1)()2239x += (2)2430x x --=31.如图,已知⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB .(1)求证:AE 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:△EAF ∽△CBA ; (3)已知AF=4,CF=2,在(2)的条件下,求AE 的长.32.如图,点C 是线段AB 上的任意一点(C 点不与A B 、点重合),分别以AC BC 、为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证: DB AE =; (2)求证: //MN AB ;(3)若AB 的长为12cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D 【解析】【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.B解析:B 【解析】 【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案. 【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M , ∴DM=12CD=4cm ,OM=R-2, 在RT △OMD 中,OD²=DM²+OM²即R²=4²+(R-2)², 解得:R=5,∴直径AB 的长为:2×5=10cm . 故选B . 【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.B解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.5.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.6.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.7.B解析:B【解析】【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选B.8.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键9.B解析:B 【解析】 【分析】利用圆锥面积=Rr 计算. 【详解】Rr =2510,故选:B. 【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.10.D解析:D 【解析】 【分析】 【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产. 故选D11.C解析:C 【解析】 【分析】设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,解直角三角形即可得到结论. 【详解】解:设正方形网格中的小正方形的边长为1, 连接格点BC ,AD ,过C 作CE ⊥AB 于E ,∵AC BC ===BC =AD =,∵S △ABC =12AB •CE =12BC •AD ,∴CE =22BC AD AB ==,∴35CE A sin CAB C ∠===,故选:C .【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误. ②正确.连接OD .GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD=,∴CD AE=,CAD ACE∴∠=∠,∴=,PC PAAB是直径,∴∠=︒,ACQ90∠+∠=︒,∴∠+∠=︒,90CAP CQPACP QCP90∴∠=∠,PCQ PQC∴==,PC PQ PAACQ∠=︒,90∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,∴∆∆∽,APF ABD∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACBCAF BAC∠=∠,90∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,ACQ ACB∠=∠,CAQ ABC∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.二、填空题13.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.15.50【解析】【分析】连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 16.【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵C解析:3 2【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.17.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 18.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接D 解析:45【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED ∽△BDF ,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC 是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED ∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.19.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 20.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键. 21.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.22.>【解析】【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上, 所以有a >0.故填>.【点睛】 本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 23.8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可.由题意得,解得考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x解析:8【解析】试题分析:由题意可得,即可得到关于m 的方程,解出即可. 由题意得,解得 考点:本题考查的是二次根式的性质点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x 轴只有一个公共点;时,抛物线与x 轴没有公共点. 24.或【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为,可知AC 过圆心B 交⊙B 于C ,进而可知AB=5,在Rt △ADB 中,AD=m ,BD=解析:9y x =或16y x= 【解析】【分析】过A 作AD 垂直于x 轴,设A 点坐标为(m ,n ),则根据A 在y=x 上得m=n ,由AC 长的最大值为7,可知AC 过圆心B 交⊙B 于C ,进而可知AB=5,在Rt △ADB 中,AD=m ,BD=7-m ,根据勾股定理列方程即可求出m 的值,进而可得A 点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题25.(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.【解析】【分析】(1)利用顶点式求解即可,(2)将G点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH,交x轴于点R,由平行线的性质得证明△AQR∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m中,即可证明四边形CDPQ为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y轴交于点E(0,3-),顶点为C(1,4-),∴y=a(x-1)2-4,代入E(0,3-),解得a=1,2(1)4y x=--(223y x x=--)(2)设G[a,0.6(a+1)],代入函数关系式,得,2(1)40.6(1)a a --=+,解得a 1=3.6,a 2=-1(舍去),所以点G 坐标为(3.6,2.76).S △FHG =6.348(3)y=mx+m=m (x+1),当x=-1时,y=0,所以直线y=mx+m延长QH ,交x 轴于点R ,由平行线的性质得,QR ⊥x 轴.因为FH ∥x 轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR ∽△PQH, 所以QR QH AR PH= =0.6, 设Q[n,0.6(n+1)],代入y=mx+m 中,mn+m=0.6(n+1),m (n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y 2=(x-1-m )2+0.6m-4,所以点D 由点C 向右平移m 个单位,再向上平移0.6m 个单位所得,过D 作y 轴的平行线,交x 轴与K,再作CT ⊥KD,交KD 延长线与T, 所以KD QR SK AR==0.6, 所以tan ∠KSD=tan ∠QAR ,所以∠KSD=∠QAR ,所以AQ ∥CS ,即CD ∥PQ.因为AQ ∥CS ,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD ,所以四边形CDPQ 为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.26.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.27.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)13(2)甲乙两人抽签分组所有可能出现的结果有:(A ,A )、(A ,B )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(C ,A )、(C ,B )、(C ,C )共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A )的结果有3种,所以P (A )=13. 【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.28.(1)b=2,c=1,D (2,3);(2)E(4,-5) ;(3)N(2,0),N(-4,0),N(-2.5,0),N(3.5,0)【解析】【分析】(1)将点A 分别代入y=-x 2+bx+3,y=x+c 中求出b 、c 的值,确定解析式,再解两个函数关系式组成的方程组即可得到点D 的坐标;(2))过点E 作EF ⊥y 轴,设E (x ,-x 2+2x+3),先求出点B 、C 的坐标,再利用面积加减关系表示出△CBE 的面积,即可求出点E 的坐标.(3)分别以点D 、M 、N 为直角顶点讨论△MND 是等腰直角三角形时点N 的坐标.【详解】(1)将A (-1,0)代入y=-x 2+bx+3中,得-1-b+3=0,解得b=2,∴y=-x 2+2x+3,将点A 代入y=x+c 中,得-1+c=0,解得c=1,∴y=x+1,解2123y x y x x =+⎧⎨=-++⎩,解得1123x y =⎧⎨=⎩,2210x y =-⎧⎨=⎩(舍去), ∴D (2,3).∴b= 2 ,c= 1 ,D (2,3).(2)过点E 作EF⊥y 轴,设E (x ,-x 2+2x+3),当y=-x 2+2x+3中y=0时,得-x 2+2x+3=0,解得x 1=3,x 2=-1(舍去),∴B(3,0).∵C(0,3),∴CBE CBO CFE S S S梯形OFEB -S , ∴22111633(3)(23)(2)222x x x x x x , 解得x 1=4,x 2=-1(舍去),∴E(4,-5).(3)∵A(-1,0),D(2,3),∴直线AD 的解析式为y=x+1,设P (m ,m+1),则Q (m ,-m 2+2m+3),∴线段PQ 的长度h=-m 2+2m+3-(m+1)=219()24m, ∴当12m ==0.5,线段PQ 有最大值. 当∠D 是直角时,不存在△MND 是等腰直角三角形的情形;当∠M 是直角时,如图1,点M 在线段DN 的垂直平分线上,此时N 1(2,0);当∠M 是直角时,如图2,作DE ⊥x 轴,M 2E ⊥HE ,N 2H ⊥HE,∴∠H=∠E=90︒,∵△M 2N 2D 是等腰直角三角形,∴N 2M 2=M 2D,∠N 2M 2D=90︒,∵∠N 2M 2H=∠M 2DE,∴△N 2M 2H ≌△M 2DE,∴N 2H=M 2E=2-0.5=1.5,M 2H=DE ,∴E(2,-1.5),∴M 2H=DE=3+1.5=4.5,∴ON 2=4.5-0.5=4,∴N 2(-4,0);当∠N 是直角时,如图3,作DE ⊥x 轴,∴∠N 3HM 3=∠DEN 3=90︒,∵△M 3N 3D 是等腰直角三角形,∴N 3M 3=N 3D,∠DN 3M 3=90︒,∵∠DN 3E=∠N 3M 3H ,∴△DN 3E ≌△N 3M 3H ,∴N 3H=DE=3,∴N 3O=3-0.5=2.5,∴N 3(-2.5,0);当∠N 是直角时,如图4,作DE ⊥x 轴,∴∠N 4HM 4=∠DEN 4=90︒,∵△M 4N 4D 是等腰直角三角形,∴N 4M 4=N 4D,∠DN 4M 4=90︒,∵∠DN 4E=∠N 4M 4H ,∴△DN 4E ≌△N 4M 4H ,∴N 4H=DE=3,∴N 4O=3+0.5=3.5,∴N 4(3.5,0);综上,N(2,0),N(-4,0),N(-2.5,0),N(3.5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式;根据函数性质得到点坐标,由此求出图象中图形的面积;还考查了图象中构成的等腰直角三角形的情况,此时依据等腰直角三角形的性质,求出点N 的坐标.29.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.30.(1)13x =-,20x =;(2)12x =,22x =【解析】【分析】(1)直接用开平方求解即可.(2)用配方法解方程即可.【详解】(1)解:由()2239x +=得233x +=±即233x +=-或233+=x ∴26x =-,或20x =解得13x =-,20x =(2)解:243x x -=∴24434x x -+=+∴2(2)7x -=∴2x -=∴12x =,22x =.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.31.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似;(3)根据三角形相似得出AB AC AF EF =,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB AC AF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度.【详解】解:(1)如答图1,连接CD ,∵AC 是⊙O 的直径,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC ,∠EAB=∠ADB ,∴∠BAC=∠EAB+∠BAC=90°∴EA 是⊙O 的切线;(2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90°∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF∴∠BAC=∠AFE∴△EAF∽△CBA.(3)∵△EAF∽△CBA,∴AB ACAF EF=∵AF=4,CF=2,∴AC=6,EF=2AB.∴642ABAB=,解得AB=23∴EF=43∴AE=2222-=(43)4=42EF AF-.【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.32.(1)见解析;(2) 见解析;(3) 存在,请确定C点的位置见解析,MN=3.【解析】【分析】(1)根据题意证明△DCB≌△ACE即可得出结论;(2)由题中条件可得△ACE≌△DCB,进而得出△ACM≌△DCN,即CM=CN,△MCN 是等边三角形,即可得出结论;(3)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论.【详解】解:(1)∵△ACD与△BCE是等边三角形,∴AC=CD,CE=BC,∴∠ACE=∠BCD,在△ACE与△DCB中,AC CDACE BCDCE BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACE≌△DCB(SAS),∴DB=AE;(2)∵△ACE≌△DCB,∴∠CAE=∠BDC,在△ACM与△DCN中,CAE BDC AC CDACM DCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ACM ≌△DCN ,∴CM=CN ,又∵∠MCN=180°-60°-60°=60°,∴△MCN 是等边三角形,∴∠MNC=∠NCB=60°即MN ∥AB ;(3)解:假设符合条件的点C 存在,设AC=x ,MN=y ,∵MN ∥AB , ∴MN EN AC EC =, 即1212y x y x x--=-, ()2211631212y x x x =-+=--+, 当x=6时,y max =3cm ,即点C 在点A 右侧6cm 处,且MN=3.【点睛】本题主要考查了全等三角形的判定及性质以及平行线分线段成比例的性质和二次函数问题,能够将所学知识联系起来,从而熟练求解.。

河南省2020-2021年九年级上册期末数学试卷 含解析

河南省2020-2021年九年级上册期末数学试卷  含解析

九年级(上)期末数学试卷一.选择题(共10小题)1.若一元二次方程(2m+6)x2+m2﹣9=0的常数项是0,则m等于()A.﹣3 B.3 C.±3 D.92.下列所给图形既是中心对称图形,又是轴对称图形的是()A.正三角形B.角C.正五边形D.正方形3.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋中摸出2个球,其中2个球颜色不相同的概率是()A.B.C.D.4.用配方法解方程x2﹣10x+9=0,配方后可得()A.(x﹣5)2=16 B.(x﹣5)2=1C.(x﹣10)2=91 D.(x﹣10)2=1095.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°6.将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位7.如图,PA,PB是⊙O的两条切线,切点分别是A,B,如果OP=4,PA=2,那么∠APB 等于()A.90°B.100°C.110°D.60°8.独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2014年人均纯收入为2620元,经过帮扶到2016年人均纯收入为3850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.2620(1﹣x)2=3850 B.2620(1+x)=3850C.2620(1+2x)=3850 D.2620(1+x)2=38509.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③10.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴x=,且经过点(2,0)下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤a+>m(am+b)(其中m≠)其中说法正确的是()A.①②④⑤B.③④C.①③D.①②⑤二.填空题(共5小题)11.若关于x的方程x2﹣mx+m=0有两个相等实数根,则代数式2m2﹣8m+1的值为.12.抛物线y=﹣x2+2x+2的顶点坐标是.13.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒子中随机地取出1个球,则取出的两个球都是黄球的概率是.14.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=.15.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.(结果保留π)三.解答题(共8小题)16.解下列方程.(1)(x+3)2=2(x+3)(2)3x(x﹣1)=2﹣2x17.如图,在平面直角坐标系网格中,△ABC的顶点都在格点上,点C坐标(0,﹣1).(1)作出△ABC关于原点对称的△A1B1C1,并写出点A1的坐标;(2)把△ABC绕点C逆时针旋转90°,得△A2B2C,画出△A2B2C,并写出点A2的坐标;(3)直接写出△A2B2C的面积.18.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机地摸取一个小球.(1)采用树状图法(或列表法)列出两次摸取小球出现的所有可能结果,并回答摸取两球出现的所以可能结果共有几种;(2)求两次摸取的小球标号相同的概率;(3)求两次摸取的小球标号的和等于4的概率;(4)求两次摸取的小球标号的和是2的倍数或3的倍数的概率.19.如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.20.如图,已知AB是半圆O的直径,点P是半圆上一点,连结BP,并延长BP到点C,使PC=PB,连结AC.(1)求证:AB=AC.(2)若AB=4,∠ABC=30°.①求弦BP的长.②求阴影部分的面积.21.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?22.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG =2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.23.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时点P的坐标和四边形ABPC的最大面积.参考答案与试题解析一.选择题(共10小题)1.若一元二次方程(2m+6)x2+m2﹣9=0的常数项是0,则m等于()A.﹣3 B.3 C.±3 D.9【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.【解答】解:由题意,得m2﹣9=0且2m+6≠0,解得m=3,故选:B.2.下列所给图形既是中心对称图形,又是轴对称图形的是()A.正三角形B.角C.正五边形D.正方形【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、正三角形不是中心对称图形,是轴对称图形,故本选项错误;B、角不是中心对称图形,是轴对称图形,故本选项错误;C、正五边形不是中心对称图形,是轴对称图形,故本选项错误;D、正方形既是中心对称图形,又是轴对称图形,故本选项正确.故选:D.3.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋中摸出2个球,其中2个球颜色不相同的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中2个球的颜色不相同的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图得:∵共有20种等可能的结果,其中2个球的颜色不相同的有12种情况,∴其中2个球的颜色不相同的概率是=;故选:D.4.用配方法解方程x2﹣10x+9=0,配方后可得()A.(x﹣5)2=16 B.(x﹣5)2=1C.(x﹣10)2=91 D.(x﹣10)2=109【分析】移项,配方,根据完全平方公式变形,即可得出答案.【解答】解:x2﹣10x+9=0,x2﹣10x=﹣9,x2﹣10x+25=﹣9+25,(x﹣5)2=16,故选:A.5.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°【分析】根据圆周角定理即可求出答案【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.6.将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【解答】解:∵y=﹣3x2的顶点坐标为(0,0),y=﹣3(x﹣1)2﹣2的顶点坐标为(1,﹣2),∴将抛物线y=﹣3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=﹣3(x﹣1)2﹣2.故选:D.7.如图,PA,PB是⊙O的两条切线,切点分别是A,B,如果OP=4,PA=2,那么∠APB 等于()A.90°B.100°C.110°D.60°【分析】由切线长定理可得∠AOP=∠BOP.可求得sin∠AOP的值,所以可知∠AOP=60°,从而求得∠AOB的值,进而可求出∠APB的度数.【解答】解:∵PA,PB是⊙O的两条切线,∴OA⊥AP,OB⊥BP,∠OPA=∠OPB,∴∠AOP=∠BOP,∵OP=4,PA=2,∴sin∠AOP==,∴∠AOP=60°.∴∠AOB=120°,∴∠APB=60°,故选:D.8.独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2014年人均纯收入为2620元,经过帮扶到2016年人均纯收入为3850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.2620(1﹣x)2=3850 B.2620(1+x)=3850C.2620(1+2x)=3850 D.2620(1+x)2=3850【分析】是关于增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该贫困户每年纯收入的平均增长率为x,那么根据题意可用x表示今年纯收入,然后根据已知可以得出方程.【解答】解:如果设该贫困户每年纯收入的平均增长率为x,那么根据题意得:2620(1+x)2,列出方程为:2620(1+x)2=3850.故选:D.9.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③【分析】根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.【解答】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的频率是:308÷500=0.616,但“钉尖向上”的概率不一定是0.616,故①错误,随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,故选:B.10.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴x=,且经过点(2,0)下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤a+>m(am+b)(其中m≠)其中说法正确的是()A.①②④⑤B.③④C.①③D.①②⑤【分析】利用抛物线开口方向得到a<0,利用抛物线的对称轴方程得到b=﹣a>0,利用抛物线与y轴的交点在x轴上方得到c>0,则可对①进行判断;利用抛物线经过点(2,0)得到4a+2b+c=0,则可对③进行判断;同时得到c=﹣2a,加上b=﹣a,则可对②进行判断;通过比较点(﹣,y1)到直线x=的距离与点(,y2)到直线x=的距离的大小可对④进行判断;利用x=时,函数值最大可对⑤进行判断.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=,∴b=﹣a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线经过点(2,0),∴4a+2b+c=0,所以③错误;∴c=﹣2a,∴﹣2b+c=2a﹣2a=0,所以②正确;∵点(﹣,y1)到直线x=的距离比点(,y2)到直线x=的距离大,∴y1<y2;所以④正确;∵抛物线的对称轴为直线x=,∴当x=时,函数值最大,∴a+b+c>am2+bm+c(m≠),即a+b>m(am+b)(m≠),所以⑤正确.故选:A.二.填空题(共5小题)11.若关于x的方程x2﹣mx+m=0有两个相等实数根,则代数式2m2﹣8m+1的值为 1 .【分析】根据方程的系数结合根的判别式即可得出△=m2﹣4m=0,将其代入2m2﹣8m+1中即可得出结论.【解答】解:∵关于x的方程x2﹣mx+m=0有两个相等实数根,∴△=(﹣m)2﹣4m=m2﹣4m=0,∴2m2﹣8m+1=2(m2﹣4m)+1=1.故答案为:1.12.抛物线y=﹣x2+2x+2的顶点坐标是(1,3).【分析】将二次函数化为顶点式后直接确定抛物线的顶点坐标即可.【解答】解:y=﹣x2+2x+2=﹣(x﹣1)2+3,所以顶点坐标为(1,3),故答案为:(1,3).13.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒子中随机地取出1个球,则取出的两个球都是黄球的概率是.【分析】画树状图展示所有36种等可能的结果数,再找出取出的两个球都是黄球的结果数,然后根据概率公式求解.【解答】解:画树状图:共有36种等可能的结果数,其中取出的两个球都是黄球的结果数为6,所以取出的两个球都是黄球的概率==.故答案为.14.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=﹣1 .【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为:﹣1.15.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.(结果保留π)【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB==π,S扇形C′OC==,∵∴阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=π﹣=π;故答案为:π.三.解答题(共8小题)16.解下列方程.(1)(x+3)2=2(x+3)(2)3x(x﹣1)=2﹣2x【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵(x+3)2﹣2(x+3)=0,∴(x+3)(x+1)=0,则x+3=0或x+1=0,解得x=﹣3或x=﹣1;(2)∵3x(x﹣1)=﹣2(x﹣1),∴3x(x﹣1)+2(x﹣1)=0,则(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,解得x=1或x=﹣.17.如图,在平面直角坐标系网格中,△ABC的顶点都在格点上,点C坐标(0,﹣1).(1)作出△ABC关于原点对称的△A1B1C1,并写出点A1的坐标;(2)把△ABC绕点C逆时针旋转90°,得△A2B2C,画出△A2B2C,并写出点A2的坐标;(3)直接写出△A2B2C的面积.【分析】(1)根据关于原点对称点的性质得出A,B,C对应点,进而得出答案;(2)根据平面直角坐标系写出点A2的坐标即可.(3)利用面积的和差求解:把三角形ABC的面积看作一个正方形的面积减去三个直角三角形的面积.【解答】解:(1)如图所示:点A1的坐标为:(1,﹣2);(2)如图所示:点A2的坐标为:(﹣3,﹣2);(3)△A2B2C2的面积=3×3﹣×1×3﹣×2×1﹣×3×2=.18.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机地摸取一个小球.(1)采用树状图法(或列表法)列出两次摸取小球出现的所有可能结果,并回答摸取两球出现的所以可能结果共有几种;(2)求两次摸取的小球标号相同的概率;(3)求两次摸取的小球标号的和等于4的概率;(4)求两次摸取的小球标号的和是2的倍数或3的倍数的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得取两球出现的所以可能结果;(2)由(1)中的树状图,求得两次摸取的小球标号相同的情况,然后利用概率公式求解即可求得答案;(3)由(1)中的树状图,求得两次摸取的小球标号的和等于4的情况,然后利用概率公式求解即可求得答案;(4)由(1)中的树状图,求得两次摸取的小球标号的和是2的倍数或3的倍数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有16种等可能的结果;(2)∵两次摸取的小球标号相同的有4种情况,∴两次摸取的小球标号相同的概率为:=;(3)∵两次摸取的小球标号的和等于4的有3种情况,∴两次摸取的小球标号的和等于4的概率为:;(4)∵两次摸取的小球标号的和是2的倍数或3的倍数的有10种情况,∴两次摸取的小球标号的和是2的倍数或3的倍数的概率为:=.19.如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(2)∵AB=2,∴OC=OB==1.∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.20.如图,已知AB是半圆O的直径,点P是半圆上一点,连结BP,并延长BP到点C,使PC=PB,连结AC.(1)求证:AB=AC.(2)若AB=4,∠ABC=30°.①求弦BP的长.②求阴影部分的面积.【分析】(1)连接AP,由圆周角定理可知∠APB=90°,故AP⊥BC,再由PC=PB即可得出结论;(2)①先根据直角三角形的性质求出AP的长,再由勾股定理可得出PB的长;②连接OP,根据直角三角形的性质求出△PAB的度数,由圆周角定理求出∠POB的长,根据S阴影=S扇形BOP﹣S△POB即可得出结论.【解答】(1)证明:连接AP,∵AB是半圆O的直径,∴∠APB=90°,∴AP⊥BC.∵PC=PB,∴△ABC是等腰三角形,即AB=AC;(2)解:①∵∠APB=90°,AB=4,∠ABC=30°,∴AP=AB=2,∴BP===2;②连接OP,∵∠ABC=30°,∴∠PAB=60°,∴∠POB=120°.∵点O时AB的中点,∴S△POB=S△PAB=×AP•PB=×2×2=,∴S阴影=S扇形BOP﹣S△POB=﹣=π﹣.21.某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价﹣成本)×销售量列出函数关系式,求出最大值.【解答】解:(1)根据题意,得:y=60+10x,由36﹣x≥24得x≤12,∴1≤x≤12,且x为整数;(2)设所获利润为W,则W=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810,∵a<0∴函数开口向下,有最大值,∴当x=3时,W取得最大值,最大值为810,答:超市定价为33元时,才能使每月销售牛奶的利润最大,最大利润是810元.22.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG =2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+2,此时α=315°.【解答】解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=+2,∵∠COE′=45°,∴此时α=315°.23.如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时点P的坐标和四边形ABPC的最大面积.【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相平分,可得P点的纵坐标,根据函数值与自变量的对应关系,可得答案;(3)根据面积的和差,可得二次函数,根据二次函数的性质,可得m的值,根据自变量与函数值的对应关系,可得P点坐标.【解答】解:(1)将B、C两点的坐标代入得,解得.所以二次函数的表达式为y=﹣x2+2x+3;(2)如图,,存在点P,使四边形POP′C为菱形.设P点坐标为(x,﹣x2+2x+3),PP′交CO于E若四边形POPC是菱形,则有PC=PO.连接PP则PE⊥CO于E.∴OE=CE=,∴y=.∴解得x1=,x2=(不合题意,舍去)∴P点的坐标为.(3)如图1,,过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,﹣x2+2x+3)易得,直线BC的解析式为y=﹣x+3.则Q点的坐标为(x,﹣x+3).PQ=﹣x2+3x.S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF=×4×3+(﹣x2+3x)×3=﹣(x﹣)2+,当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC面积的最大值为.。

九年级上册驻马店数学期末试卷测试卷(解析版)

九年级上册驻马店数学期末试卷测试卷(解析版)

九年级上册驻马店数学期末试卷测试卷(解析版)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=03.如图,矩形ABCD 中,3AB =,8BC =,点P 为矩形内一动点,且满足PBC PCD ∠=∠,则线段PD 的最小值为( )A .5B .1C .2D .34.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76° 5.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰16 6.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-27.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=8.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80° B .40°C .50°D .20°9.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠DB .∠C =∠EC .AD ABAE AC= D .AC BCAE DE= 10.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60 C .80 D .10011.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm 12.若关于x 的一元二次方程x 2﹣2x +a ﹣1=0没有实数根,则a 的取值范围是( )A .a <2B .a >2C .a <﹣2D .a >﹣2二、填空题13.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____. 14.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm . 15.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.16.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 17.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 .18.抛物线21(5)33y x =--+的顶点坐标是_______.19.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.20.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____. 21.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…22.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.23.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.24.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题25.某商场以每件42元的价格购进一种服装,由试销知,每天的销量t (件)与每件的销售价x (元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y (元)与每件售价x (元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少? 26.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26,请直接写出点P 的坐标. 27.如图,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点,取EF 中点G ,连接DG 并延长交AB 于点M ,延长EF 交AC 于点N 。

2021-2022学年河南省驻马店市汝南县九年级(上)期末数学试题及答案解析

2021-2022学年河南省驻马店市汝南县九年级(上)期末数学试题及答案解析

2021-2022学年河南省驻马店市汝南县九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.以下有关勾股定理证明的图形中,不是中心对称图形的是( )A. B.C. D.2.一个不透明的袋子中装有2个白球和3个黑球,这些球除了颜色外无其他差别,从中摸出3个球,下列事件属于必然事件的是( )A. 至少有1个球是白色球B. 至少有1个球是黑色球C. 至少有2个球是白球D. 至少有2个球是黑色球3.关于x的一元二次方程−kx2−6x+3=0有两个不相等的实数根,则k的取值范围是( )A. k>−3B. k<3C. k<3且k≠0D. k>−3且k≠04.对于反比例函数y=−3,下列说法错误的是( )xA. 图象经过点(1,−3)B. 图象位于第二、第四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大5.如图,在△AOB中,AO=1,BO=AB=3.将△AOB绕点O2逆时针方向旋转90°,得到△A′OB′,连接AA′.则线段AA′的长为( )A. 1B. √2C. 32D. 3√226.如图,△ABC与△DEF位似,点O是它们的位似中心,其中OE=2OB,则△ABC与△DEF的周长之比是( )A. 1:2B. 1:4C. 1:3D. 1:97.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( )A. √3B. 2C. 2√2D. 2√38.如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为( )A. 1B. 2C. 3D. 49.如图,AB是⊙O的直径,点E,C在⊙O上,点A是EC⏜的中点,过点A画⊙O的切线,交BC的延长线于点D,连接EC.若∠ADB=58.5°,则∠ACE的度数为( )A. 29.5°B. 31.5°C. 58.5°D. 63°10.二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示.已知图象经过点(−1,0),其对称轴为直线x=1.下列结论:①abc<0;②4a+2b+c<0;③8a+c<0;④若抛物线经过点(−3,n),则关于x的一元二次方程ax2+bx+c−n=0(a≠0)的两根分别为−3,5.其中结论正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共15.0分)11.一元二次方程x2−3x=0的根是.12.如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是.13.请写出一个二次函数表达式,使其图象的对称轴为y轴:______.14.如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y=kx (k≠0)的图象上,若在y=kx的图象上另有一点M使得∠MOC=30°,则点M的坐标为______ .15.如图,在直角坐标系中,已知点A(2,0),B(0,4),在x轴上找到点C(1,0)和y轴的正半轴上找到点D,使△AOB与△DOC相似,则D点的坐标是______.三、解答题(本大题共8小题,共70.0分。

驻马店地区2020年九年级上学期数学期末考试试卷(I)卷

驻马店地区2020年九年级上学期数学期末考试试卷(I)卷

驻马店地区2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·涪城月考) 若,则()A .B .C . -2或2D .2. (2分) (2019九上·台州期中) 一元二次方程3x2-6x+4=0根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 有两个实数根D . 没有实数根3. (2分) (2019九上·湖州月考) 将二次函数y=2x2的图象向右平移4个单位,再向上平移5个单位后,所得图象的函数表达式是()A . y=2 -5B . y=2 +5C . y=2 +5D . y=2 -54. (2分)一只蚂蚁在如图所示的树枝上寻找食物,蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是()A .B .C .D .5. (2分) (2017九下·杭州开学考) 如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为()A . 2.5B . 2.8C . 3D . 3.26. (2分) (2016九上·温州期末) 如图,已知直线l∥m∥n,直线a分别与l,m,n交于点A,B,C,过点B作直线b交直线l,n于点D,E,若AB=2,BC=1,BD=3,则BE的长为()A . 4B . 2C .D .7. (2分) (2020八下·重庆期末) 在平行四边形ABCD中,若∠B=135°,则∠D=()A . 45°B . 55°C . 135°D . 145°8. (2分)如图所示,河堤横断面迎水坡AB的坡角是30°,堤高BC=5m,则坡面AB的长度是()A . 10mB . 10mC . 15mD . 5m9. (2分)函数y1=x(x≥0),y2=(x>0)的图象如图所示,则结论①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随x的增大而增大,y2随x的增大而减小.其中正确的结论是()A . ①②B . ①③C . ①③④D . ①②③④10. (2分)(2016·深圳模拟) 如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG= CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A . 只有①②B . 只有①③C . 只有②③D . ①②③二、填空题 (共6题;共6分)11. (1分) (2019九上·襄阳期末) 方程(x+3)(x+2)=x+3的解是________.12. (1分) (2018九上·新乡月考) 已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是________。

驻马店地区2021年九年级上学期数学期末考试试卷(II)卷

驻马店地区2021年九年级上学期数学期末考试试卷(II)卷

驻马店地区2021年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2020·营口模拟) 在实数0,﹣,2π,|﹣6|中,最小的数是()A . 0B . ﹣C . 2πD . |﹣6|2. (1分)(2016·竞秀模拟) 2016年4月6日22:20某市某个观察站测得:空气中pm2.5含量为每立方米23μg,1g=1000000μg,则将23μg用科学记数法表示为()A . 2.3×107gB . 23×10﹣6gC . 2.3×10﹣5gD . 2.3×10﹣4g3. (1分) (2017八上·乌拉特前旗期末) 下列美丽的图案中,是轴对称图形的是()A .B .C .D .4. (1分)计算的结果是()A .B .C .D .5. (1分)(2018·遵义模拟) 如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A . 11B . 12C . 13D . 146. (1分)(2018·安徽模拟) 因干旱影响,市政府号召全市居民节约用水.为了了解居民节约用水的情况,小张在某小区随机调查了五户居民家庭2011年5月份的用水量:6吨,7吨,9吨,8吨,10吨.则关于这五户居民家庭月用水量的下列说法中,错误的是()A . 平均数是8吨B . 中位数是9吨C . 极差是4吨D . 方差是27. (1分) (2020九上·双台子期末) 一元二次方程的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根8. (1分) (2020九下·安庆月考) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a>0。

2022-2023学年河南省驻马店市汝南县九年级(上)期末数学试卷(含解析)

2022-2023学年河南省驻马店市汝南县九年级(上)期末数学试卷(含解析)

2022-2023学年河南省驻马店市汝南县九年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是( )A. ④B. ③C. ②D. ①2.如图,若方格纸中每个小正方形的边长均为1,则S△AOB:S△COD为( )A. 1:2B. 1:4C. 2:1D. 4:13.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是( )A. ①B. ②C. ③D. 均不可能4.已知反比例函数y=kx(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能经过这个函数为( )A. (2,3)B. (−2,3)C. (3,0)D. (−3,0)5.如图,正比例函数y=k1x与反比例函数y=k2x 的图象交于A(1,m)、B两点,当k1x≤k2x时,x的取值范围是( )A. −1≤x<0或x≥1B. x≤−1或0<x≤1C. x ≤−1或x ≥1D. −1≤x <0或0<x ≤16.如图,已知不透明的袋中装有红色、黄色、蓝色的乒乓球共120个,某学习小组做“用频率估计概率”的摸球实验(从中随机摸出一个球,记下颜色后放回),统计了“摸出球为红色”出现的频率,绘制了如图折线统计图,那么估计袋中红色球的数目为( )A. 20B. 30C. 40D. 607.如图,某同学在平地上利用标杆测量一棵大树的高度,移动标杆,使标杆、大树顶端的影子恰好落在地面的同一点A ,标杆EC 的高为2m ,此时测得BC =3m ,CA =1m ,那么树DB 的高度是( )A. 32mB. 8mC. 6mD. 0.125m8.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 和反比例函数y =a x 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9.如图,△ABC 的内切圆⊙O 与AB ,BC ,AC 分别相切于点D ,E ,F ,连接OE ,OF ,∠C =90°,AC =6,BC =8,则阴影部分的面积为( )A. 2−12πB. 4−12πC. 4−πD. 1−14π10.二次函数y =ax 2+bx +c(a ≠0)中的自变量x 与函数值y 的部分对应值如表: x…−4−2−1012…y …5−3−4−305…则下列结论:①a >0;②当函数值y <0时,对应x 的取值范围是−2<x <0;③顶点坐标为(−1,−4);④若点P(−3,y 1),Q(5,y 2)在抛物线上,则y 1>y 2.其中所有正确结论的序号为( )A. ①③B. ②④C. ①④D. ②③二、填空题:本题共5小题,每小题3分,共15分。

河南省驻马店地区九年级上学期数学期末考试试卷

河南省驻马店地区九年级上学期数学期末考试试卷

河南省驻马店地区九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九下·江苏月考) 若式子在实数范围内有意义,则a的取值范围是()A . a>3B . a≥3C . a<3D . a≤32. (2分) (2017九上·河南期中) 一元二次方程的解是()A .B .C .D .3. (2分)如图,菱形ABCD的周长为40cm,对角线AC,BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD= cm;④AC= cm;⑤S菱形ABCD=80cm,正确的有()A . ①②④⑤B . ①②③④C . ①③④⑤D . ①②③⑤4. (2分)如图,△ABC是直角三角形,BC是斜边,现将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度为()A .B .C . 5D . 45. (2分)如图,杭州市郊外一景区内有一条笔直的公路a经过两个景点A,B,景区管委会又开发了风景优美的景点C,经测量景点C位于景点A的北偏东60°方向,又位于景点B的北偏东30°方向,且景点A、B相距200m,则景点B、C相距的路程为()A . 100B . 200C . 100D . 2006. (2分)(2018·市中区模拟) 共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A . 1000(1+x)2=1000+440B . 1000(1+x)2=440C . 440(1+x)2=1000D . 1000(1+2x)=1000+4407. (2分)(2017·青山模拟) 随机掷一枚质地均匀的硬币三次,则至少有一次反面朝上的概率是()A .B .C .D .8. (2分) (2011七下·广东竞赛) 如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为斜边并且在AB的同一侧作等腰直角△ACD和△BCE,连接AE交CD于点M,连接BD交CE于点N,给出以下三个结论:①MN∥AB;② = + ;③MN≤ AB,其中正确结论的个数是()A . 0B . 1C . 2D . 39. (2分)如图,已知O是坐标原点,与是以O点为位似中心的位似图形,且与的相似比为,如果内部一点的坐标为,则在中的对应点的坐标为()A . (-x, -y)B . (-2x, -2y)C . (-2x, 2y)D . (2x, -2y)10. (2分)下列对二次函数y=2(x+4)2的增减性描述正确的是()A . 当x>0时,y随x的增大而增大B . 当x<0时,y随x的增大而增大C . 当x>﹣4时,y随x的增大而减少D . 当x<﹣4时,y随x的增大而减少二、填空题 (共5题;共6分)11. (1分) (2019七下·江门期末) 计算: ________.12. (1分) (2017·苏州模拟) 计算:(x+1)2=________.13. (1分)(2018·武汉) 飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是________m.14. (2分)(2017·义乌模拟) 如图,在菱形ABCD中,∠DAB=120°,点E平分DC,点P在BD上,且PE+PC=1,那么边长AB的最大值是________.15. (1分)(2017·武汉) 如图,在△ABC中,AB=AC=2 ,∠BAC=120°,点D,E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.三、解答题 (共8题;共80分)16. (10分)解方程:(1)(x+3)2=1(2) x2+4x=2.17. (2分) (2019九上·慈溪期中) 三江超市为了吸引顾客,设计了一种促销活动,在一个不透明的箱子里放有4个相同小球,在球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客每消费满298元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).超市根据两小球所标金额的和,返还相应价格的购物券.某顾客正好消费298元.(1)该顾客至少可得到________元购物券,至多可得到________元购物券.(2)请用画树状图或列表的方法,求出该顾客所获得购物券不低于30元的概率.18. (10分) (2017八下·长春期末) 解下列方程:(1).(2).19. (12分) (2019九上·淅川期末) 已知二次函数y=- .(1)将y=- +x+ 用配方法化为y=a(x-h)2+k的形式;(2)求该函数图象与两坐标轴交点的坐标;(3)画出该函数的图象.20. (5分)(2019·天宁模拟) 已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A 处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)21. (15分)(2017·赤峰模拟) 某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.22. (11分) (2020九下·信阳月考) 在中,,以直角边为直径作,交于点,为的中点,连接、 .(1)求证:为切线.(2)若,填空:①当 ________时,四边形为正方形;②当 ________时,为等边三角形.23. (15分) (2019九上·鄞州月考) 如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数表达式及顶点D的坐标;(2)判断三角形ABC的形状,并说明理由;(3)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共80分)16-1、16-2、17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。

河南省汝南县清华园学校2020—2021学年上学期九年级数学期末押题A卷

河南省汝南县清华园学校2020—2021学年上学期九年级数学期末押题A卷

百度文库精品文档清华园学校2020—2021学年度上期期末考试押题A 卷(时间:100分钟,总分120分 )题号 1-10 11-15 16 17 18 19 20 21 22 23 总分 得分一.选择题(共10小题,共30分)1.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是( ) A .14B .15C .16 D .1123.如图,以点O 为位似中心,把ABC ∆放大为原图形的2倍得到△A B C ''',以下说法中错误的是( )A .ABC ∆∽△ABC ''' B .点C 、点O 、点C '三点在同一直线上C .:1:2AO AA '=D .//AB A B ''T3T4T64.如图,已知O 的两条弦AC ,BD 相交于点E ,70A ∠=︒,50C ∠=︒,那么sin AEB ∠的值为( )A .1B .3C .2D .35.关于x 的方程2690kx x -+=有实数根,k 的取值范围是( )A .1k <且0k ≠B .1k <C .1k 且0k ≠D .1k6.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .2180(1)461x -=B .2180(1)461x +=C .2368(1)442x -=D .2368(1)442x +=7.如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k的值为( )A .12-B .42-C .42D .21-T7T8T98.如图,在ABCD 中,10AB =,15AD =,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥于点G ,若8BG =,则CEF ∆的周长为( ) A .16 B .17 C .24 D .259.如图,二次函数2(0)y ax bx c a =++≠的图象的对称轴是直线1x =,则以下四个结论中:①0abc >,②20a b +=,③244a b ac +<,④30a c +<.正确的个数是( )A .1B .2C .3D .4 10.如图,在平面直角坐标系中,四边形OABC 关于x 轴对称,60AOC ∠=︒,90ABC ∠=︒,2OA =,将四边形OABC 绕点O 逆时针旋转90︒后得到四边形111OA B C ,依此方式,绕点O连续旋转71次得到四边形717171OA B C ,那么点71B 的坐标是( ) A .31)B .(3,0)C .(0,31)D .(3,0)-学校:______________ 班级:___________ 姓名:_____________ 考场_____________ 学号:___________........................... 装.......................订.........................线......................T10T12T14T15二.填空题(共5小题,15分)11.已知α为锐角,且满足3sin(15)α+︒=,则tan α= . 12.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得 1.6AB =米,1BD =米,0.2BE =米,那么AC 为 米.13.在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为1y ,2y ,则12y y +的值为 .14.如图,在ABC ∆中,CA CB =,90ACB ∠=︒,2AB =,点D 为AB 的中点,以点D 为圆心作圆心角为90︒的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为 . 15.如图,在Rt ABC ∆的纸片中,90C ∠=︒,5AC =,13AB =.点D 在边BC 上,以AD 为折痕将ADB ∆折叠得到ADB ∆',AB '与边BC 交于点E .若DEB ∆'为直角三角形,则BD 的长是 .三.解答题(共8小题,共75分)16.(8分)化简求值:22122()121a a a aa a a a ----÷+++;其中210a a --=. 17.(9分)共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A 、B 、C 、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是 ;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A 、B 、C 、D 表示)18.(9分)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然暴发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个. (1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?19.(9分)如图,在平面直角坐标系xOy 中,一次函数(0)y ax b a =+≠的图象与反比例函数(0,0)ky k x x=≠>的图象相交于(1,5)A ,(,1)B m 两点,与x 轴,y 轴分别交于点C ,D ,连接OA ,OB .(1)求反比例函数(0,0)ky k x x=≠>和一次函数(0)y ax b a =+≠的表达式;(2)求AOB ∆的面积.20.(9分)如图1,通海桥是座大规模斜拉式大桥,通海桥主塔两侧斜拉链条在夜间亮灯后犹如天鹅之翼,优雅非凡.某数学“综合与实践”小组的同学利用课余时间按照如图2所示的测量示意图对该桥进行了实地测量,测得如下数据:30A∠=︒,45B∠=︒,斜拉主跨度260AB=米.(1)过点C作CD AB⊥,垂足为D,求CD的长(3取1.7);(2)若主塔斜拉链条上的LED节能灯带每米造价800元,求斜拉链条AC上灯带的总造价是多少元?21.(10分)如图,在ABC∆中,AB AC=,BC为O的直径,D为O任意一点,连接AD交BC于点F,EA AD⊥交DB的延长线于E,连接CD.(1)求证:ABE ACD∆≅∆;(2)填空:①当CAD∠的度数为时,四边形ABDC是正方形;②若四边形ABDC的面积为4,则AD的长为.22.(10分)几何探究:【问题发现】(1)如图1所示,ABC∆和ADE∆是有公共顶点的等边三角形,BD、CE的关系是(选填“相等”或“不相等”);(请直接写出答案)【类比探究】(2)如图2所示,ABC∆和ADE∆是有公共顶点的含有30︒角的直角三角形,(1)中的结论还成立吗?请说明理由;【拓展延伸】(3)如图3所示,ADE∆和ABC∆是有公共顶点且相似比为1:2的两个等腰直角三角形,将ADE∆绕点A自由旋转,若22BC=B、D、E三点共线时,直接写出BD的长.23.(11分)如图,在平面直角坐标系中,直线122y x=-+与x轴交于点A,与y轴交于点B,抛物线212y x bx c=-++经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当2ABD BAC∠=∠时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当以B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.百度文库精品文档参考答案一.选择题(共10小题)1.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,也不是中心对称图形,故本选项不合题意;D、既是轴对称图形又是中心对称图形的,故本选项符合题意.故选:D.2.九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是()A.14B.15C.16D.112【解答】解:把小华、小琪、小明、小伟分别记为A、B、C、D,画树状图如图:共有12个等可能的结果,恰好抽到小华和小明的结果有2个,∴恰好抽到小华和小明的概率为21 126=,故选:C.3.如图,以点O为位似中心,把ABC∆放大为原图形的2倍得到△A B C''',以下说法中错误的是()A.ABC∆∽△A B C'''B.点C、点O、点C'三点在同一直线上C.:1:2AO AA'=D.//AB A B''【解答】解:以点O为位似中心,把ABC∆放大为原图形的2倍得到△A B C''',ABC∴∆∽△A B C''',点C、点O、点C'三点在同一直线上,//AB A B'',:1:2AO OA'=,故选项C错误,符合题意.故选:C.4.如图,已知O的两条弦AC,BD相交于点E,70A∠=︒,50C∠=︒,那么sin AEB∠的值为()A.12B3C2D3【解答】解:70A∠=︒,50C∠=︒,50B C∴∠=∠=︒,60AEB∠=︒,3sin AEB∴∠=.故选:D.5.关于x的方程2690kx x-+=有实数根,k的取值范围是()A.1k<且0k≠B.1k<C.1k且0k≠D.1k【解答】解:0k=时,是一元一次方程,有实数根;k不等于0时,是一元二次方程,根据题意,△0,∴△224(6)490b ac k=-=--⨯,解得1k,故选:D.6.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()百度文库精品文档A .2180(1)461x -=B .2180(1)461x +=C .2368(1)442x -=D .2368(1)442x +=【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:2180(1)461x +=, 故选:B .7.如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k的值为( )A .12-B .42-C .42D .21- 【解答】解:当0x =时,044y =+=,(0,4)A ∴, 4OA ∴=;当0y =时,4043x =+,3x ∴=-,(3,0)B ∴-,3OB ∴=;过点C 作CE x ⊥轴于E ,四边形ABCD 是正方形, 90ABC ∴∠=︒,AB BC =,90CBE ABO ∠+∠=︒,90BAO ABO ∠+∠=︒, CBE BAO ∴∠=∠. 在AOB ∆和BEC ∆中,CBE BAO BEC AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOB BEC AAS ∴∆≅∆, 4BE AO ∴==,3CE OB ==, 347OE ∴=+=, C ∴点坐标为(7,3)-,点C 在反比例函数(0)ky x x=<的图象上,7321k ∴=-⨯=-. 故选:D .8.如图,在ABCD 中,10AB =,15AD =,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥于点G ,若8BG =,则CEF ∆的周长为( )A .16B .17C .24D .25 【解答】解:在ABCD 中,10CD AB ==,15BC AD ==,BAD ∠的平分线交BC 于点E , //AB DC ∴,BAF DAF ∠=∠, BAF F ∴∠=∠, DAF F ∴∠=∠, 15DF AD ∴==, 同理10BE AB ==,百度文库精品文档15105CF DF CD ∴=-=-=;∴在ABG ∆中,BG AE ⊥,10AB =,8BG =,在Rt ABG ∆中,22221086AG AB BG =-=-=,212AE AG ∴==,ABE ∴∆的周长等于10101232++=, 四边形ABCD 是平行四边形, //AB CF ∴,CEF BEA ∴∆∆∽,相似比为5:101:2=, CEF ∴∆的周长为16. 故选:A .9.如图,二次函数2(0)y ax bx c a =++≠的图象的对称轴是直线1x =,则以下四个结论中:①0abc >,②20a b +=,③244a b ac +<,④30a c +<.正确的个数是( )A .1B .2C .3D .4【解答】解:①根据抛物线开口向下可知: 0a <,因为对称轴在y 轴右侧, 所以0b >,因为抛物线与y 轴正半轴相交, 所以0c >, 所以0abc <,所以①错误;②因为抛物线对称轴是直线1x =,即12ba-=,所以2b a =-, 所以20b a +=, 所以②正确; ③因为2b a =-, 由244a b ac +<,得 2444a a ac +<,a <,1c a ∴<+,根据抛物线与y 轴的交点,1c >, 所以③错误;④当1x =-时,0y <,即0a b c -+<, 因为2b a =-, 所以30a c +<, 所以④正确.所以正确的是②④2个. 故选:B . 10.如图,在平面直角坐标系中,四边形OABC 关于x 轴对称,60AOC ∠=︒,90ABC ∠=︒,2OA =,将四边形OABC 绕点O 逆时针旋转90︒后得到四边形111OA B C ,依此方式,绕点O连续旋转71次得到四边形717171OA B C ,那么点71B 的坐标是( )A .31)B .(3,0)C .(0,31)D .(3,0)-【解答】解:连接AC 交OB 于E .百度文库精品文档由题意,2OA OC==,60AOC∠=︒,90ABC∠=︒,四边形AOCB关于x轴对称,30AOE∴∠=︒,45ABE∠=︒,cos303OE OA∴=︒=.sin301AE EB OA==︒=,(31B∴+,0),1(0,31)B+,2(31B--,0),3(0,31)B--,观察图象可知,4次一个循环,714173÷=⋯,71B∴的坐标与3B相同,故选:C.二.填空题(共5小题)11.已知α为锐角,且满足3sin(15)2α+︒=,则tanα=1.【解答】解:3sin602︒=,1560α∴+︒=︒,45α∴=︒,tan tan451α∴=︒=,故答案为:1.12.《九章算术》中记载了一种测量井深的方法.如图所示,在井口B处立一根垂直于井口的木杆BD,从木杆的顶端D观察井水水岸C,视线DC与井口的直径AB交于点E,如果测得 1.6AB=米,1BD=米,0.2BE=米,那么AC为7米.【解答】解:BD AB⊥,AC AB⊥,//BD AC∴,ACE BDE∴∆∆∽,∴AC AEBD BE=,∴1.410.2AC=,7AC∴=(米),故答案为:7.13.在平面直角坐标系xOy中,直线y x=与双曲线myx=交于A,B两点.若点A,B的纵坐标分别为1y,2y,则12y y+的值为0.【解答】解:方法一、直线y x=与双曲线myx=交于A,B两点,∴联立方程组得:y xmyx=⎧⎪⎨=⎪⎩,解得:11x my m=⎧⎪⎨=⎪⎩,22x my m⎧=-⎪⎨=-⎪⎩,12y y∴+=,方法二、直线y x=与双曲线myx=交于A,B两点,∴点A,点B关于原点对称,12y y∴+=,故答案为:0.14.如图,在ABC∆中,CA CB=,90ACB∠=︒,2AB=,点D为AB的中点,以点D为圆心作圆心角为90︒的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为142π-.【解答】解:连接CD,CA CB=,90ACB∠=︒,45B∴∠=︒,点D为AB的中点,百度文库精品文档112DC AB BD∴===,CD AB⊥,45DCA∠=︒,CDH BDG∴∠=∠,DCH B∠=∠,在DCH∆和DBG∆中,CDH BDGCD BDDCH B∠=∠⎧⎪=⎨⎪∠=∠⎩,()DCH DBG ASA∴∆≅∆,111112122242BDC ABCDGCHS S S AB CD∆∆∴===⨯⋅=⨯⨯=四边形.290111360242BDCDEFS S Sππ∆⨯∴=-=-=-阴影扇形.故答案为142π-.15.如图,在Rt ABC∆的纸片中,90C∠=︒,5AC=,13AB=.点D在边BC上,以AD为折痕将ADB∆折叠得到ADB∆',AB'与边BC交于点E.若DEB∆'为直角三角形,则BD的长是7或263.【解答】解:在Rt ABC∆中,222213512BC AB AC=-=-=,(1)当90EDB∠'=︒时,如图1,过点B'作B F AC'⊥,交AC的延长线于点F,由折叠得:13AB AB='=,BD B D CF='=,设BD x=,则B D CF x'==,12B F CD x'==-,在Rt AFB∆'中,由勾股定理得:222(5)(12)13x x++-=,即:270x x-=,解得:1x=(舍去),27x=,因此,7BD=.(2)当90DEB∠'=︒时,如图2,此时点E与点C重合,由折叠得:13AB AB='=,则1358B C'=-=,设BD x=,则B D x'=,12CD x=-,在Rt△B CD'中,由勾股定理得:222(12)8x x-+=,解得:263x=,因此263BD=.故答案为:7或263.三.解答题(共8小题)16.化简求值:22122()121a a a aa a a a----÷+++;其中210a a--=.【解答】解:原式2(1)(1)(2)(1)(1)(21)a a a a aa a a a+---+=+-221(1)(1)(21)a aa a a a-+=+-21aa+=,210a a--=.21a a∴=+,∴原式111aa+==+.百度文库精品文档17.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是14;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)【解答】解:(1)有共享出行、共享服务、共享物品、共享知识,共四张卡片,∴小沈从中随机抽取一张卡片是“共享服务”的概率是14,故答案为:14;(2)画树状图如图:共有12种等可能的结果数,其中两张卡片恰好是“共享出行”和“共享知识”的结果数为2,∴抽到的两张卡片恰好是“共享出行”和“共享知识”的概率21 126==.18.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然暴发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?【解答】解:(1)设口罩日产量的月平均增长率为x,根据题意,得220000(1)24200x+=解得12.1x=-(舍去),20.110%x==,答:口罩日产量的月平均增长率为10%.(2)24200(10.1)26620+=(个).答:预计4月份平均日产量为26620个.19.如图,在平面直角坐标系xOy中,一次函数(0)y ax b a=+≠的图象与反比例函数(0,0)ky k xx=≠>的图象相交于(1,5)A,(,1)B m两点,与x轴,y轴分别交于点C,D,连接OA,OB.(1)求反比例函数(0,0)ky k xx=≠>和一次函数(0)y ax b a=+≠的表达式;(2)求AOB∆的面积.【解答】解:(1)将点(1,5)A代入(0,0)ky k xx=≠>得:51k=,解得5k=,故反比例函数的表达式为:5yx=,将点(,1)B m代入5yx=得:5m=,故点(5,1)B,将点(1,5)A,(5,1)B代入y ax b=+得551a ba b+=⎧⎨+=⎩,解得16ab=-⎧⎨=⎩,故一次函数表达式为:6y x=-+;(2)由一次函数6y x=-+可知,(0,6)D,则AOB∆的面积BOD=∆的面积AOD-∆的面积1165611222=⨯⨯-⨯⨯=.20.如图1,通海桥是西宁市海湖新区地标建筑,也是我省首座大规模斜拉式大桥,通海桥主塔两侧斜拉链条在夜间亮灯后犹如天鹅之翼,优雅非凡.某数学“综合与实践”小组的百度文库精品文档同学利用课余时间按照如图2所示的测量示意图对该桥进行了实地测量,测得如下数据:30A ∠=︒,45B ∠=︒,斜拉主跨度260AB =米.(1)过点C 作CD AB ⊥,垂足为D ,求CD 的长(3取1.7);(2)若主塔斜拉链条上的LED 节能灯带每米造价800元,求斜拉链条AC 上灯带的总造价是多少元?【解答】解:(1)CD AB ⊥于点D , 90ADC BDC ∴∠=∠=︒, 设CD x =,在Rt ADC ∆中,90ADC ∠=︒,30A ∠=︒,∴tan30CDAD︒=,即3x AD =, ∴3AD x =,在Rt BDC ∆中,45B ∠=︒, CD BD x ∴==, AB AD BD =+.∴3260x x +=, ∴31x =+,∴130(31)1300.791x =-=⨯=,91CD ∴=米.(2)在Rt ADC ∆中90ADC ∠=︒,30A ∠=︒,2AC CD ∴=(直角三角形中30︒角所对的直角边等于斜边的一半), 182AC ∴=,LED 节能灯带每米造价为800元, 800182145600∴⨯=(元),答:斜拉链条AC 上的LED 节能灯带造价是145600元.21.如图,在ABC ∆中,AB AC =,BC 为O 的直径,D 为O 任意一点,连接AD 交BC 于点F ,EA AD ⊥交DB 的延长线于E ,连接CD .(1)求证:ABE ACD ∆≅∆;(2)填空:①当CAD ∠的度数为 45︒ 时,四边形ABDC 是正方形; ②若四边形ABDC 的面积为4,则AD 的长为 .【解答】(1)证明:BC 为O Θ直径, 90BAC BDC ∴∠=∠=︒, 180ABD ACD ∴∠+∠=︒, 又180ABD ABE ∠+∠=︒, ABE ACD ∴∠=∠,又90BAF CAF BAF BAE ∠+∠=∠+∠=︒, CAF BAE ∴∠=∠, 又AB AC =,()ABE ACD ASA ∴∆≅∆(2)解:①当45CAD ∠=︒时,四边形ABDC 是正方形. 理由:45CAD BAD ∠=∠=︒,∴BD CD =,BD CD ∴=,ABC ∴∆,BCD ∆都是等腰直角三角形, BC BC =,()ABC DBC ASA ∴∆≅∆,AB AC BD CD ∴===, ∴四边形ABDC 是菱形, 90BAC ∠=︒,∴四边形ABDC 是正方形. 故答案为:45︒.②EAB DAC ∆≅∆,AE AD ∴=,ABE ADC S S ∆∆=,4AED ABDC S S ∆∴==四边形,∴2142AD =,百度文库精品文档22AD∴=,故答案为22.22.几何探究:【问题发现】(1)如图1所示,ABC∆和ADE∆是有公共顶点的等边三角形,BD、CE的关系是BD CE=(选填“相等”或“不相等”);(请直接写出答案)【类比探究】(2)如图2所示,ABC∆和ADE∆是有公共顶点的含有30︒角的直角三角形,(1)中的结论还成立吗?请说明理由;【拓展延伸】(3)如图3所示,ADE∆和ABC∆是有公共顶点且相似比为1:2的两个等腰直角三角形,将ADE∆绕点A自由旋转,若22BC=,当B、D、E三点共线时,直接写出BD的长.【解答】解:(1)ADE∆和ABC∆均为等边三角形AD AE∴=,AB AC=,DAE BAC∠=∠,DAE BAE BAC BAE∴∠-∠=∠-∠,BAD CAE∴∠=∠,在ABD∆和ACE∆中,AD AEBAD CAE AB AC=⎧⎪∠=∠⎨⎪=⎩,() ABD ACE SAS ∴∆≅∆BD CE∴=,故答案为:BD CE=;(2)不成立;理由如下:在Rt ADE∆和Rt ABC∆中,30DAE BAC∠=∠=︒,DAE BAE BAC BAE∴∠+∠=∠+∠,BAD CAE∴∠=∠,在Rt ADE∆中,30DAE∠=︒,cos cos30ADADEAE∴∠=︒=,∴3ADAE=同理:3ABAC=,∴AD ABAE AC=,BAD CAE∠=∠,ABD ACE∴∆∆∽,∴3BD ABCE AC==,3BD∴=,故(1)中的结论不成立;(3)①如答图1所示,ADE∆和ABC∆均为等腰直角三角形,AD AE∴=,AB AC=,DAE BAC∠=∠,DAE BAE BAC BAE∴∠-∠=∠-∠,BAD CAE∴∠=∠,在ABD∆和ACE∆中,AD AEBAD CAEAB AC=⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS∴∆≅∆,BD CE∴=,45ADB AEC∠=∠=︒90DEC∴∠=︒,CE BD∴⊥,由题意可知:122DE BC=百度文库精品文档设BD CE x ==,则2BE BD DE x =-=-, 在Rt BCE ∆中,由勾股定理得:222CE BE BC +=,222(2)(22)x x ∴+-=,2142x +∴=或2142x -=(舍去),2142BD +∴=;②如答图2所示,同①的方法得,()ABD ACE SAS ∆≅∆,CE BD ⊥ 设BD CE x ==,则2BE x =+,在Rt BCE ∆中,由勾股定理得:222CE BE BC +=,222(2)(22)x x ∴++=,1422x -∴=或1422x --=(舍去), 1422BD -∴=; 综上所述,2142BD +=或1422-.23.如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =-++经过A ,B 两点且与x 轴的负半轴交于点C .(1)求该抛物线的解析式;(2)若点D 为直线AB 上方抛物线上的一个动点,当2ABD BAC ∠=∠时,求点D 的坐标; (3)已知E ,F 分别是直线AB 和抛物线上的动点,当以B ,O ,E ,F 为顶点的四边形是平行四边形时,直接写出所有符合条件的E 点的坐标.【解答】解:(1)在122y x =-+中,令0y =,得4x =,令0x =,得2y =(4,0)A ∴,(0,2)B把(4,0)A ,(0,2)B ,代入212y x bx c =-++,得2116402c b c =⎧⎪⎨-⨯++=⎪⎩,解得322b c ⎧=⎪⎨⎪=⎩ ∴抛物线得解析式为213222y x x =-++(2)如图,过点B 作x 轴得平行线交抛物线于点E ,过点D 作BE 的垂线,垂足为F//BE x 轴,BAC ABE ∴∠=∠百度文库精品文档2ABD BAC ∠=∠,2ABD ABE ∴∠=∠ 即2DBE ABE ABE ∠+∠=∠ DBE ABE ∴∠=∠ DBE BAC ∴∠=∠设D 点的坐标为213(,2)22x x x -++,则BF x =,21322DF x x =-+tan DF DBE BF ∠=,tan BOBAC AO ∠= ∴DF BO BF AO=,即2132224x xx -+= 解得10x =(舍去),22x =当2x =时,2132322x x -++=∴点D 的坐标为(2,3)(3)当BO 为边时,//OB EF ,OB EF =设1(,2)2E m m -+,213(,2)22F m m m -++2113|(2)(2)|2222EF m m m =-+--++=解得12m =,2222m =-,3222m =+ 当BO 为对角线时,OB 与EF 互相平分过点O 作//OF AB ,直线12OFy x =-交抛物线于点(22,12)F +-和(222,12)--+求得直线EF 解析式为21y =+或21y x + 直线EF 与AB 的交点为E ,点E 的横坐标为222-或222E ∴点的坐标为(2,1)或(22-12)或(222,12)+-或(22,32)--+或(22,32)-+-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档