Acoustic emission characteristics of rock under impact loading

合集下载

复合材料声衬声阻抗性能测试试验研究

复合材料声衬声阻抗性能测试试验研究

Vol.60No.2工程与试验ENGINEERING&TEST Jun.2020复合材料声衬声阻抗性能测试试验研究黄太誉,高翔(中国飞机强度研究所第三十二研究室,陕西西安710065)摘要:声衬是降低发动机噪声的重要组件。

为探索复合材料在声衬上的应用,本文基于Helmholtz原理,采用树脂基复合材料,针对某特定工况设计制备了微穿孔板蜂窝夹层结构声衬,并开展了相应的试验研究。

研究结果表明,按照当前树脂基复合材料良好的加工性能和制备工艺,该声衬能够较好地满足结构参数和声学性能的设计要求。

关键词:树脂基复合材料;声衬;声阻抗中图分类号:V216.5+4文献标识码:A doi:10.3969/j.issn.1674-3407.2020.02.012Experimental Study on Acoustic Impedance of Composite Acoustic LinerHuang Taiyu,Gao Xiang(The32nd Research of China Aircraft Strength Research Institute,Xi an710065,Shaanxi,China)Abstract:Acoustic liner an important component to reduce engine noise.In order to explore the application of composite materials to the acoustic liner,based on the Helmholtz principle,the acoustic liner of micro perforated plate honeycomb sandwich structure is designed and prepared,and the corresponding test research is carried out.The results show that according to the good processing performance and preparation process of resin matrix composite,it can meet the design requirements of structural parameters and acoustic properties.Keywords:resin matrix composite;acoustic liner;acoustic impedance1引言喷气式发动机问世伊始,在噪声传递路径中铺设声衬一直是最主要的噪声控制手段口⑵。

Acoustic-Emission-TestingPPT课件

Acoustic-Emission-TestingPPT课件
声发射技术检测原理
Acoustic Emission Testing
-
1
Introduction to Acoustic Emission Testing
• 材料中因裂缝扩展、塑性变形或相变等引 起应变能快速释放而产生应力波的现象称 为声发射。
-
2
声发射技术

通过接收和分析材料的声发射信号来
评定材料的性能或结构完整性。
• The first difference pertains to the origin of the signal. Instead of supplying energy to the object under examination, AET simply listens for the energy released by the object.
-
10
Attenuation (衰减)
• geometric spreading. • material damping • wave scattering
Geometric discontinuities (e.g. twin boundaries, nonmetallic inclusions, or grain boundaries) and structural boundaries both reflect some of the wave energy that was initially transmitted
-
6
Activity of AE Sources in Structural Loading
Basic AE history plot showing Kaiser effect (BCB), Felicity effect (DEF), and emission during hold (GH ) 2

acoustics的形容词

acoustics的形容词

acoustics的形容词"Acoustics" 是声学的意思,指的是声音的产生、传播、控制和接收等方面的研究。

与"acoustics" 相关的形容词有:1.Acoustic(声学的):描述与声音有关的事物,例如acousticwaves(声波)、acoustic properties(声学特性)等。

2.Acoustic(音响的):与声音系统、音响设备或音响效果相关的,例如acoustic performance(音响性能)、acoustic environment(音响环境)等。

3.Acoustic(声音的):与声音特性、音色等相关的,例如acousticquality(声音质量)、acoustic characteristics(声音特性)等。

例句:1.Acoustic waves propagate through the air.•声波通过空气传播。

2.The concert hall was designed with excellent acousticproperties.•这个音乐厅的设计考虑到了优秀的声学特性。

3.The acoustic performance of the speaker system wasoutstanding.•这个音响系统的声音表现非常出色。

4.Scientists study the acoustic characteristics of differentmaterials.•科学家研究不同材料的声音特性。

5.In an acoustic environment, background noise canaffect concentration.•在一个音响环境中,背景噪音可能会影响集中注意力。

6.The acoustic quality of the recording was crystal clear.•录音的声音质量非常清晰。

基于Virtual.Lab Acoustics的管道壁面声阻抗优化分析

基于Virtual.Lab Acoustics的管道壁面声阻抗优化分析

Optimization and Analysis of Acoustic Impedance of Duct Wall Based on b Acoustics
Weiguang Zheng, Peng Xu, Zeyu Lin, Rongjiang Tang
School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin Guangxi
∫ [ N ] dΩ
其中 [ K ] 为声学刚度矩阵, [C ] 为声学阻尼矩阵, [ F ] 为声学激励。 在得到形函数的情况下,求解式(11)就可以得到节点处的声压。 为验证本文方法的准确性,采用文献[2]同样的模型。管道截面形状为正方形,边长取 0.066 m,管长 度取 1.2 m。管道内壁边存在两种边界条件,即刚性壁面条件与阻抗边界条件。在管道入口处施加单位速 度边界条件,出口施加无反射边界属性。管道壁面为刚性,声衬处采用法向阻抗边界条件。管道采用六 面体声学网格,网格大小为 6 mm,计算频率区间取 500 Hz 到 1500 Hz,网格单元数量为 2.42 万(图 2)。
法向阻抗边界条件 Ω z
(8)
p ∂p = − jρ0ω Zn ∂n

(9)
Ω = Ω r + Ωv + Ω z
(10)
和 p 具有相同的形函数,将式(4)与式(7)至式(10)代入式(6)中,经整理可得 假设 p
2 − jρ0ωun ∫ [ K ] + jρ0ω Z [C ] − k0 [C ] [ pi ] =
3.1. 声学仿真优化计算
模型的边界条件与优化参数的设置直接影响到声学仿真优化的准确性,本文采用 Tester [6]研究所得 的经验公式算出初始阻抗值,并在此基础上进行优化。以下表 1 与表 2 分别对应管内无流与有稳定切向 流两种情况下, 壁面最优声阻抗 Z (Z = Zo/ρ0c0, Zo 为最优阻抗值, ρ0c0 为空气特性阻抗, 本文取 416.5 kg/m2/s) 和传递损失,并将最优阻抗数值解与文献[5]的优化结果进行了对比(图 3)。

声学超结构在车内低频轰鸣声控制中的应用

声学超结构在车内低频轰鸣声控制中的应用

2021年第4期【摘要】针对某款轿车在30km/h 匀速行驶过程中产生明显的低频轰鸣声问题,通过测试和分析,确定了车内35Hz 噪声峰值过高是引发该问题的直接原因,并判断出该频率峰值与尾门薄壁件振动密切相关。

基于局域共振原理,设计了具有轻量化、小型化特征的声学超结构,并完成了谐振单元构型的选择与带隙设计、整车布置规划及谐振单元排布与基体框架设计。

实车测试结果表明:贴附声学超结构后,前排和后排35Hz 车内噪声声压级分别降低了4.23dB(A)、5.77dB(A)。

主题词:声学超结构结构声控制局域共振车内低频轰鸣中图分类号:U461.1文献标识码:ADOI:10.19620/ki.1000-3703.20200952The Application of Acoustic Superstructure on Control of LowFrequency Roaring in VehicleTang Jiyou 1,Ding Weiping 1,Wu Yudong 1,Huang Haibo 1,Luo Deyang 2(1.Southwest Jiao Tong University,Chengdu 610031;2.SAIC GM Wuling Automobile Co.,Ltd.,Liuzhou 545000)【Abstract 】Obvious low-frequency roaring sound is produced by a car model during the constant speed of 30km/h.By testing and analysis,it is determined that the high peak of 35Hz noise inside the car is the direct cause of this problem,and it is judged that the peak frequency is closely related to the vibration of thin-wall parts of the tail door.Furthermore,based on the principle of local resonance,a lightweight and miniaturized acoustic superstructure is developed,which involves the selection of its resonant unit configuration,band-gap design,vehicle layout planning,resonant unitarrangement,matrix frame size design.The real vehicle test shows that after attaching the acoustic superstructure,the noise of 35Hz in the car is reduced by 4.23dB(A)and 5.77dB(A)respectively in the front and rear rows.Key words:Acoustic superstructure,Structural sound control,Local resonance,Low frequencyRoaring in vehicle唐吉有1丁渭平1吴昱东1黄海波1罗德洋2(1.西南交通大学,成都610031;2.上汽通用五菱汽车股份有限公司,柳州545000)*基金项目:国家自然科学基金项目(51775451)。

激光诱导击穿光谱技术及应用研究进展

激光诱导击穿光谱技术及应用研究进展

第6卷 第4期2013年8月  中国光学 Chinese Optics Vol.6 No.4Aug.2013 收稿日期:2013⁃04⁃11;修订日期:2013⁃06⁃13 基金项目:国家自然科学基金面上项目(No.31270680,No.61076064);江苏省“六大高峰人才”资助项目(No.2011⁃XCL⁃018);江苏高校优势学科建设工程资助项目文章编号 1674⁃2915(2013)04⁃0490⁃11激光诱导击穿光谱技术及应用研究进展侯冠宇1,王 平1∗,佟存柱2(1.南京林业大学化学工程学院,江苏南京210037;2.中国科学院长春光学精密机械与物理研究所发光学及应用国家重点实验室,吉林长春130033)摘要:激光诱导击穿光谱(LIBS)技术是一种基于原子发射光谱学的元素定性、定量检测手段。

本文介绍了LIBS 技术的原理、应用方式、检测元素种类及检测极限;综述了该项技术在固体、液体、气体组分检测方面的技术发展,以及在环境检测、食品安全、生物医药、材料、军事、太空领域的应用进展。

最后,提出了高功率、高稳定的激光光源和准确的定量分析方法是LIBS 技术目前所面临的问题和挑战。

关 键 词:激光诱导击穿光谱;激光产生等离子体;元素分析;检测限中图分类号:O433.54;O657.319 文献标识码:A doi:10.3788/CO.20130604.0490Progress in laser⁃induced breakdown spectroscopyand its applicationsHOU Guan⁃yu 1,WANG Ping 1∗,TONG Cun⁃zhu 2(1.College of Chemical Engineering ,Nanjing Forestry University ,Nanjing 210037,China ;2.State Key Laboratory of Luminescence and Applications ,Changchun Institute of Optics ,Fine Mechanics and Physics ,Chinese Academy of Sciences ,Changchun 130033,China )∗Corresponding author ,E⁃mail :wp_lh@ Abstract :Laser⁃induced Breakdown Spectroscopy(LIBS)based on atomic emission spectral technology is a kind of convenient and sensitive approach for the qualitative and quantitative detection of elements.In this pa⁃per,the mechanism,detecting element types,detection limit and the recent progress of LIBS technology are reviewed.The progress of LIBS technology in component testing for solid,liquid and gas samples is expoundedin detail.The applications of LIBS in the environment test,food security,biological and medicines,material sciences,military and space fields are also presented.Finally,the challenges and problems for the LIBS tech⁃nology in high power and stable laser sources and accurately quantitative analysis method are discussed.Key words :laser⁃induced breakdown spectroscopy;laser⁃induced plasmon,element analysis;detection limit1 引 言 激光诱导击穿光谱(Laser⁃Induced Breakdown Spectroscopy,简称LIBS)技术是利用激光照射被测物体表面产生等离子体[1⁃2],通过检测等离子体光谱而获取物质成分和浓度的分析技术。

专业英语词汇大全

专业英语词汇大全

英文专业词汇大全英文翻译常用词汇短语具有:have (has), possess, take on表示为:present (提供、给出), denote, is, express by, figure, show,提出、提议:propose、put forward, bring forward明显地、显然地:evidently, obviously, appearently, distinctly, drastically提高、增加:increase, improve, enhance, heighten, elevate (elevation)减少:decrease, reduce, lessen,减小:minish输入、代入:import(进口), input, introduce, substitute((数)代入,vt代替、取代), substituteA by(with) B(依B代A), substitute for出现、发生:happen(vi), appear(vi), occur(vi), generate, take place, arise, come forth因为、由于:as, because, for, since, because of , by reason of , on account of, due to根据、依照:in terms of, according to,计算、求解:compute, calculate, solve推导:derive, derivation, deduce, deducibility,由:by, from因此:so, thus, hence, therefore, thereby并且:also, and , besides而且:and that, furthermore, moreover,随着:along with, with, accompany一致,与……一致:coincident with, consistent with, in accord with推导:derive, deduce列举:enumerate, list专攻,致力于:specialize, apply oneself to完成,达到:achieve, accomplish, realize描述,描绘:represent,describe加强:intensify, enhance, reinforce, strengthen预见,预估:anticipate, estimate受到,承受:experience, endure, superimpose研究,探索:explore, exploration, investigate, investigation,相当的,比的上的:comparable, equivalent,做...实验, 对...做实验:make (carry out, do, perform, try) an experiment on (upon, in, with)固定,安装:mount, fixed, install, set影响:have(has) an impact on (upon)取决于:depend on, depend upon, have a dependence upon称为,把…称作,叫做:be termed以…为标题,称为:intitule vt求积分:Taking integration与…相反:contrary on , 与…对比:contrast with/to分别的respective,分别地apart respectivelyCompare vt. 比较,对照(with)把...比作;比喻(to)接着next, follow, in succession随后later subsequently whereafter总之anyhow anyway in a word in conclusion on all accounts to sum up 金属切削加工圆周铣削:peripheral milling,端铣削:end milling,(端)面铣(削):face milling,顺铣:Down milling, climb milling逆铣:conventional milling, up milling,平面铣削:slab milling切屑横截面积:chip cross sectional area, area of chip section,单位切削力,比切削力:specific cutting pressure切向力:tangential cutting force径向力:radial cutting force声发射:acoustic emission signal与….联合、与…协作:in conjunction with振动方面的专业英语及词汇参见《工程振动名词术语》1 振动信号的时域、频域描述振动过程(Vibration Process)简谐振动(Harmonic Vibration)周期振动(Periodic Vibration)准周期振动(Ouasi-periodic Vibration)瞬态过程(Transient Process)随机振动过程(Random Vibration Process)各态历经过程(Ergodic Process)确定性过程(Deterministic Process)振幅(Amplitude)相位(Phase)初相位(Initial Phase)频率(Frequency)角频率(Angular Frequency)周期(Period)复数振动(Complex Vibration)复数振幅(Complex Amplitude)峰值(Peak-value)平均绝对值(Average Absolute Value)有效值(Effective Value,RMS Value)均值(Mean Value,Average Value)傅里叶级数(FS,Fourier Series)傅里叶变换(FT,Fourier Transform)傅里叶逆变换(IFT,Inverse Fourier Transform) 离散谱(Discrete Spectrum)连续谱(Continuous Spectrum)傅里叶谱(Fourier Spectrum)线性谱(Linear Spectrum)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)均方值(Mean Square Value)方差(Variance)协方差(Covariance)自协方差函数(Auto-covariance Function)互协方差函数(Cross-covariance Function)自相关函数(Auto-correlation Function)互相关函数(Cross-correlation Function)标准偏差(Standard Deviation)相对标准偏差(Relative Standard Deviation)概率(Probability)概率分布(Probability Distribution)高斯概率分布(Gaussian Probability Distribution) 概率密度(Probability Density)集合平均(Ensemble Average)时间平均(Time Average)功率谱密度(PSD,Power Spectrum Density)自功率谱密度(Auto-spectral Density)互功率谱密度(Cross-spectral Density)均方根谱密度(RMS Spectral Density)能量谱密度(ESD,Energy Spectrum Density)相干函数(Coherence Function)帕斯瓦尔定理(Parseval''''s Theorem)维纳,辛钦公式(Wiener-Khinchin Formula)多阶谐振频率multi-mode resonance frequency多阶频率multiple natural frequnency等效一阶频率equvilent fundamental frequency主振频率main vibration frequency一阶弯曲振动频率First-order Bending Vibration Freguency 低阶固有频率LOW-V ALUE NATURAL FREQUENCY振型分解法Mode Analysis Method振型叠加法Method of Superposition of Vibration Mode2 振动系统的固有特性、激励与响应振动系统(Vibration System)激励(Excitation)响应(Response)单自由度系统(Single Degree-Of-Freedom System)多自由度系统(Multi-Degree-Of- Freedom System)离散化系统(Discrete System)连续体系统(Continuous System)刚度系数(Stiffness Coefficient)自由振动(Free Vibration)自由响应(Free Response)强迫振动(Forced Vibration)强迫响应(Forced Response)初始条件(Initial Condition)固有频率(Natural Frequency)阻尼比(Damping Ratio)衰减指数(Damping Exponent)阻尼固有频率(Damped Natural Frequency)对数减幅系数(Logarithmic Decrement)主频率(Principal Frequency)无阻尼模态频率(Undamped Modal Frequency)模态(Mode)主振动(Principal Vibration)振型(Mode Shape)振型矢量(Vector Of Mode Shape)模态矢量(Modal Vector)正交性(Orthogonality)展开定理(Expansion Theorem)主质量(Principal Mass)模态质量(Modal Mass)主刚度(Principal Stiffness)模态刚度(Modal Stiffness)正则化(Normalization)振型矩阵(Matrix Of Modal Shape)模态矩阵(Modal Matrix)主坐标(Principal Coordinates)模态坐标(Modal Coordinates)模态分析(Modal Analysis)模态阻尼比(Modal Damping Ratio)频响函数(Frequency Response Function)幅频特性(Amplitude-frequency Characteristics)相频特性(Phase frequency Characteristics)共振(Resonance)半功率点(Half power Points)波德图(Bodé Plot)动力放大系数(Dynamical Magnification Factor)单位脉冲(Unit Impulse)冲激响应函数(Impulse Response Function)杜哈美积分(Duhamel‟s Integral)卷积积分(Convolution Integral)卷积定理(Convolution Theorem)特征矩阵(Characteristic Matrix)阻抗矩阵(Impedance Matrix)频响函数矩阵(Matrix Of Frequency Response Function) 导纳矩阵(Mobility Matrix)冲击响应谱(Shock Response Spectrum)冲击激励(Shock Excitation)冲击响应(Shock Response)冲击初始响应谱(Initial Shock Response Spectrum)冲击剩余响应谱(Residual Shock Response Spectrum) 冲击最大响应谱(Maximum Shock Response Spectrum) 冲击响应谱分析(Shock Response Spectrum Analysis)3 模态试验分析模态试验(Modal Testing)机械阻抗(Mechanical Impedance)位移阻抗(Displacement Impedance)速度阻抗(Velocity Impedance)加速度阻抗(Acceleration Impedance)机械导纳(Mechanical Mobility)位移导纳(Displacement Mobility)速度导纳(Velocity Mobility)加速度导纳(Acceleration Mobility)驱动点导纳(Driving Point Mobility)跨点导纳(Cross Mobility)传递函数(Transfer Function)拉普拉斯变换(Laplace Transform)传递函数矩阵(Matrix Of Transfer Function)频响函数(FRF,Frequency Response Function)频响函数矩阵(Matrix Of FRF)实模态(Normal Mode)复模态(Complex Mode)模态参数(Modal Parameter)模态频率(Modal Frequency)模态阻尼比(Modal Damping Ratio)模态振型(Modal Shape)模态质量(Modal Mass)模态刚度(Modal Stiffness)模态阻力系数(Modal Damping Coefficient)模态阻抗(Modal Impedance)模态导纳(Modal Mobility)模态损耗因子(Modal Loss Factor)比例粘性阻尼(Proportional Viscous Damping)非比例粘性阻尼(Non-proportional Viscous Damping) 结构阻尼(Structural Damping,Hysteretic Damping) 复频率(Complex Frequency)复振型(Complex Modal Shape)留数(Residue)极点(Pole)零点(Zero)复留数(Complex Residue)随机激励(Random Excitation)伪随机激励(Pseudo Random Excitation)猝发随机激励(Burst Random Excitation)稳态正弦激励(Steady State Sine Excitation)正弦扫描激励(Sweeping Sine Excitation)锤击激励(Impact Excitation)频响函数的H1 估计(FRF Estimate by H1)频响函数的H2 估计(FRF Estimate by H2)频响函数的H3 估计(FRF Estimate by H3)单模态曲线拟合法(Single-mode Curve Fitting Method) 多模态曲线拟合法(Multi-mode Curve Fitting Method) 模态圆(Mode Circle)剩余模态(Residual Mode)幅频峰值法(Peak Value Method)实频-虚频峰值法(Peak Real/Imaginary Method)圆拟合法(Circle Fitting Method)加权最小二乘拟合法(Weighting Least Squares Fitting method) 复指数拟合法(Complex Exponential Fitting method)1.2 振动测试的名词术语1 传感器测量系统传感器测量系统(Transducer Measuring System)传感器(Transducer)振动传感器(Vibration Transducer)机械接收(Mechanical Reception)机电变换(Electro-mechanical Conversion)测量电路(Measuring Circuit)惯性式传感器(Inertial Transducer,Seismic Transducer)相对式传感器(Relative Transducer)电感式传感器(Inductive Transducer)应变式传感器(Strain Gauge Transducer)电动力传感器(Electro-dynamic Transducer)压电式传感器(Piezoelectric Transducer)压阻式传感器(Piezoresistive Transducer)电涡流式传感器(Eddy Current Transducer)伺服式传感器(Servo Transducer)灵敏度(Sensitivity)复数灵敏度(Complex Sensitivity)分辨率(Resolution)频率范围(Frequency Range)线性范围(Linear Range)频率上限(Upper Limit Frequency)频率下限(Lower Limit Frequency)静态响应(Static Response)零频率响应(Zero Frequency Response)动态范围(Dynamic Range)幅值上限Upper Limit Amplitude)幅值下限(Lower Limit Amplitude)最大可测振级(Max.Detectable Vibration Level)最小可测振级(Min.Detectable Vibration Level)信噪比(S/N Ratio)振动诺模图(Vibration Nomogram)相移(Phase Shift)波形畸变(Wave-shape Distortion)比例相移(Proportional Phase Shift)惯性传感器的稳态响应(Steady Response Of Inertial Transducer) 惯性传感器的稳击响应(Shock Response Of Inertial Transducer)位移计型的频响特性(Frequency Response Characteristics Vibrometer)加速度计型的频响特性(Frequency Response Characteristics Accelerometer) 幅频特性曲线(Amplitude-frequency Curve)相频特性曲线(Phase-frequency Curve)固定安装共振频率(Mounted Resonance Frequency)安装刚度(Mounted Stiffness)有限高频效应(Effect Of Limited High Frequency)有限低频效应(Effect Of Limited Low Frequency)电动式变换(Electro-dynamic Conversion)磁感应强度(Magnetic Induction,Magnetic Flux Density)磁通(Magnetic Flux)磁隙(Magnetic Gap)电磁力(Electro-magnetic Force)相对式速度传(Relative Velocity Transducer)惯性式速度传感器(Inertial Velocity Transducer)速度灵敏度(Velocity Sensitivity)电涡流阻尼(Eddy-current Damping)无源微(积)分电路(Passive Differential (Integrate) Circuit)有源微(积)分电路(Active Differential (Integrate) Circuit)运算放大器(Operational Amplifier)时间常数(Time Constant)比例运算(Scaling)积分运算(Integration)微分运算(Differentiation)高通滤波电路(High-pass Filter Circuit)低通滤波电路(Low-pass Filter Circuit)截止频率(Cut-off Frequency)压电效应(Piezoelectric Effect)压电陶瓷(Piezoelectric Ceramic)压电常数(Piezoelectric Constant)极化(Polarization)压电式加速度传感器(Piezoelectric Acceleration Transducer)中心压缩式(Center Compression Accelerometer)三角剪切式(Delta Shear Accelerometer)压电方程(Piezoelectric Equation)压电石英(Piezoelectric Quartz)电荷等效电路(Charge Equivalent Circuit)电压等效电路(Voltage Equivalent Circuit)电荷灵敏度(Charge Sensitivity)电压灵敏度(Voltage Sensitivity)电荷放大器(Charge Amplifier)适调放大环节(Conditional Amplifier Section)归一化(Uniformization)电荷放大器增益(Gain Of Charge Amplifier)测量系统灵敏度(Sensitivity Of Measuring System)底部应变灵敏度(Base Strain Sensitivity)横向灵敏度(Transverse Sensitivity)地回路(Ground Loop)力传感器(Force Transducer)力传感器灵敏度(Sensitivity Of Force Transducer)电涡流(Eddy Current)前置器(Proximitor)间隙-电压曲线(Voltage vs Gap Curve)间隙-电压灵敏度(Voltage vs Gap Sensitivity)压阻效应(Piezoresistive Effect)轴向压阻系数(Axial Piezoresistive Coefficient)横向压阻系数(Transverse Piezoresistive Coefficient)压阻常数(Piezoresistive Constant)单晶硅(Monocrystalline Silicon)应变灵敏度(Strain Sensitivity)固态压阻式加速度传感器(Solid State Piezoresistive Accelerometer) 体型压阻式加速度传感器(Bulk Type Piezoresistive Accelerometer) 力平衡式传感器(Force Balance Transducer)电动力常数(Electro-dynamic Constant)机电耦合系统(Electro-mechanical Coupling System)2 检测仪表、激励设备及校准装置时间基准信号(Time Base Signal)李萨茹图(Lissojous Curve)数字频率计(Digital Frequency Meter)便携式测振表(Portable Vibrometer)有效值电压表(RMS Value Voltmeter)峰值电压表(Peak-value Voltmeter)平均绝对值检波电路(Average Absolute Value Detector)峰值检波电路(Peak-value Detector)准有效值检波电路(Quasi RMS Value Detector)真有效值检波电路(True RMS Value Detector)直流数字电压表(DVM,DC Digital Voltmeter)数字式测振表(Digital Vibrometer)A/D 转换器(A/D Converter)D/A 转换器(D/A Converter)相位计(Phase Meter)电子记录仪(Lever Recorder)光线示波器(Oscillograph)振子(Galvonometer)磁带记录仪(Magnetic Tape Recorder)DR 方式(直接记录式) (Direct Recorder)FM 方式(频率调制式) (Frequency Modulation)失真度(Distortion)机械式激振器(Mechanical Exciter)机械式振动台(Mechanical Shaker)离心式激振器(Centrifugal Exciter)电动力式振动台(Electro-dynamic Shaker)电动力式激振器(Electro-dynamic Exciter)液压式振动台(Hydraulic Shaker)液压式激振器(Hydraulic Exciter)电液放大器(Electro-hydraulic Amplifier)磁吸式激振器(Magnetic Pulling Exciter)涡流式激振器(Eddy Current Exciter)压电激振片(Piezoelectric Exciting Elements)冲击力锤(Impact Hammer)冲击试验台(Shock Testing Machine)激振控制技术(Excitation Control Technique)波形再现(Wave Reproduction)压缩技术(Compression Technique)均衡技术(Equalization Technique)交越频率(Crossover Frequency)综合技术(Synthesis Technique)校准(Calibration)分部校准(Calibration for Components in system)系统校准(Calibration for Over-all System)模拟传感器(Simulated Transducer)静态校准(Static Calibration)简谐激励校准(Harmonic Excitation Calibration)绝对校准(Absolute Calibration)相对校准(Relative Calibration)比较校准(Comparison Calibration)标准振动台(Standard Vibration Exciter)读数显微镜法(Microscope-streak Method)光栅板法(Ronchi Ruling Method)光学干涉条纹计数法(Optical Interferometer Fringe Counting Method)光学干涉条纹消失法(Optical Interferometer Fringe Disappearance Method) 背靠背安装(Back-to-back Mounting)互易校准法(Reciprocity Calibration)共振梁(Resonant Bar)冲击校准(Impact Exciting Calibration)摆锤冲击校准(Ballistic Pendulum Calibration)落锤冲击校准(Drop Test Calibration)振动和冲击标准(Vibration and Shock Standard)迈克尔逊干涉仪(Michelson Interferometer)摩尔干涉图象(Moire Fringe)参考传感器(Reference Transducer)3 频率分析及数字信号处理带通滤波器(Band-pass Filter)半功率带宽(Half-power Bandwidth)3 dB 带宽(3 dB Bandwidth)等效噪声带宽(Effective Noise Bandwidth)恒带宽(Constant Bandwidth)恒百分比带宽(Constant Percentage Bandwidth)1/N 倍频程滤波器(1/N Octave Filter)形状因子(Shape Factor)截止频率(Cut-off Frequency)中心频率(Centre Frequency)模拟滤波器(Analog Filter)数字滤波器(Digital Filter)跟踪滤波器(Tracking Filter)外差式频率分析仪(Heterodyne Frequency Analyzer) 逐级式频率分析仪(Stepped Frequency Analyzer)扫描式频率分析仪(Sweeping Filter Analyzer)混频器(Mixer)RC 平均(RC Averaging)平均时间(Averaging Time)扫描速度(Sweeping Speed)滤波器响应时间(Filter Response Time)离散傅里叶变换(DFT,Discrete Fourier Transform) 快速傅里叶变换(FFT,Fast Fourier Transform)抽样频率(Sampling Frequency)抽样间隔(Sampling Interval)抽样定理(Sampling Theorem)抗混滤波(Anti-aliasing Filter)泄漏(Leakage)加窗(Windowing)窗函数(Window Function)截断(Truncation)频率混淆(Frequency Aliasing)乃奎斯特频率(Nyquist Frequency)矩形窗(Rectangular Window)汉宁窗(Hanning Window)凯塞-贝塞尔窗(Kaiser-Bessel Window)平顶窗(Flat-top Window)平均(Averaging)线性平均(Linear Averaging)指数平均(Exponential Averaging)峰值保持平均(Peak-hold Averaging)时域平均(Time-domain Averaging)谱平均(Spectrum Averaging)重叠平均(Overlap Averaging)栅栏效应(Picket Fence Effect)吉卜斯效应(Gibbs Effect)基带频谱分析(Base-band Spectral Analysis)选带频谱分析(Band Selectable Sp4ctralAnalysis)细化(Zoom)数字移频(Digital Frequency Shift)抽样率缩减(Sampling Rate Reduction)功率谱估计(Power Spectrum Estimate)相关函数估计(Correlation Estimate)频响函数估计(Frequency Response Function Estimate) 相干函数估计(Coherence Function Estimate)冲激响应函数估计(Impulse Response Function Estimate) 倒频谱(Cepstrum)功率倒频谱(Power Cepstrum)幅值倒频谱(Amplitude Cepstrum)倒频率(Quefrency)4 旋转机械的振动测试及状态监测状态监测(Condition Monitoring)故障诊断(Fault Diagnosis)转子(Rotor)转手支承系统(Rotor-Support System)振动故障(Vibration Fault)轴振动(Shaft Vibration)径向振动(Radial Vibration)基频振动(Fundamental Frequency Vibration)基频检测(Fundamental Frequency Component Detecting) 键相信号(Key-phase Signal)正峰相位(+Peak Phase)高点(High Spot)光电传感器(Optical Transducer)同相分量(In-phase Component)正交分量(Quadrature Component)跟踪滤波(Tracking Filter)波德图(Bode Plot)极坐标图(Polar Plot)临界转速(Critical Speed)不平衡响应(Unbalance Response)残余振幅(Residual Amplitude)方位角(Attitude Angle)轴心轨迹(Shaft Centerline Orbit)正进动(Forward Precession)同步正进动(Synchronous Forward Precession)反进动(Backward Precession)正向涡动(Forward Whirl)反向涡动(Backward Whirl)油膜涡动(Oil Whirl)油膜振荡(Oil Whip)轴心平均位置(Average Shaft Centerline Position) 复合探头(Dual Probe)振摆信号(Runout Signal)电学振摆(Electrical Runout)机械振摆(Mechanical Runout)慢滚动向量(Slow Roll Vector)振摆补偿(Runout Compensation)故障频率特征(Frequency Characteristics Of Fault) 重力临界(Gravity Critical)对中(Alignment)双刚度转子(Dual Stiffness Rotor)啮合频率(Gear-mesh Frequency)间入简谐分量(Interharmonic Component)边带振动(Side-band Vibration)三维频谱图(Three Dimensional Spectral Plot)瀑布图(Waterfall Plot)级联图(Cascade Plot)阶次跟踪(Order Tracking)阶次跟踪倍乘器(Order Tracking Multiplier)监测系统(Monitoring System)适调放大器(Conditional Amplifier)趋势分析(Trend Analysis)倒频谱分析(Cepstrum Analysis)直方图(Histogram)确认矩阵(Confirmation Matrix)通频幅值(Over-all Amplitude)幅值谱(Amplitude Spectrum)相位谱(Phase Spectrum)报警限(Alarm Level)机械相关专业词汇集锦阿基米德蜗杆 Archimedes worm 安全系数 safety factor; factor of safety安全载荷 safe load 凹面、凹度 concavity扳手 wrench 板簧 flat leaf spring半圆键 woodruff key 变形 deformation摆杆 oscillating bar 摆动从动件 oscillating follower摆动从动件凸轮机构 cam with oscillating follower 摆动导杆机构 oscillating guide-bar mechanism摆线齿轮 cycloidal gear 摆线齿形 cycloidal tooth profile摆线运动规律 cycloidal motion 摆线针轮 cycloidal-pin wheel包角 angle of contact 保持架 cage背对背安装 back-to-back arrangement 背锥 back cone ;normal cone背锥角 back angle 背锥距 back cone distance比例尺 scale 比热容 specific heat capacity闭式链 closed kinematic chain 闭链机构 closed chain mechanism臂部 arm 变频器 frequency converters变频调速 frequency control of motor speed 变速 speed change变速齿轮 change gear ; change wheel 变位齿轮 modified gear变位系数 modification coefficient 标准齿轮 standard gear标准直齿轮 standard spur gear 表面质量系数 superficial mass factor表面传热系数 surface coefficient of heat transfer 表面粗糙度 surface roughness并联式组合 combination in parallel 并联机构 parallel mechanism并联组合机构 parallel combined mechanism 并行工程 concurrent engineering并行设计 concurred design, CD 不平衡相位 phase angle of unbalance不平衡 imbalance (or unbalance) 不平衡量 amount of unbalance不完全齿轮机构 intermittent gearing 波发生器 wave generator波数 number of waves 补偿 compensation参数化设计 parameterization design, PD 残余应力 residual stress操纵及控制装置 operation control device 槽轮 Geneva wheel槽轮机构 Geneva mechanism ;Maltese cross 槽数 Geneva numerate槽凸轮 groove cam 侧隙 backlash差动轮系 differential gear train 差动螺旋机构 differential screw mechanism差速器 differential 常用机构 conventional mechanism; mechanism in common use车床 lathe 承载量系数 bearing capacity factor承载能力 bearing capacity 成对安装 paired mounting尺寸系列 dimension series 齿槽 tooth space齿槽宽 spacewidth 齿侧间隙 backlash齿顶高 addendum 齿顶圆 addendum circle齿根高 dedendum 齿根圆 dedendum circle齿厚 tooth thickness 齿距 circular pitch齿宽 face width 齿廓 tooth profile齿廓曲线 tooth curve 齿轮 gear齿轮变速箱 speed-changing gear boxes 齿轮齿条机构 pinion and rack齿轮插刀 pinion cutter; pinion-shaped shaper cutter 齿轮滚刀 hob ,hobbing cutter齿轮机构 gear 齿轮轮坯 blank齿轮传动系 pinion unit 齿轮联轴器 gear coupling齿条传动 rack gear 齿数 tooth number齿数比 gear ratio 齿条 rack齿条插刀 rack cutter; rack-shaped shaper cutter 齿形链、无声链 silent chain齿形系数 form factor 齿式棘轮机构 tooth ratchet mechanism插齿机 gear shaper 重合点 coincident points重合度 contact ratio 冲床 punch传动比 transmission ratio, speed ratio 传动装置 gearing; transmission gear 传动系统 driven system 传动角 transmission angle传动轴 transmission shaft 串联式组合 combination in series串联式组合机构 series combined mechanism 串级调速 cascade speed control创新 innovation ; creation 创新设计 creation design垂直载荷、法向载荷 normal load 唇形橡胶密封 lip rubber seal磁流体轴承 magnetic fluid bearing 从动带轮 driven pulley从动件 driven link, follower 从动件平底宽度 width of flat-face从动件停歇 follower dwell 从动件运动规律 follower motion从动轮 driven gear 粗线 bold line粗牙螺纹 coarse thread 大齿轮 gear wheel打包机 packer 打滑 slipping带传动 belt driving 带轮 belt pulley带式制动器 band brake 单列轴承 single row bearing单向推力轴承 single-direction thrust bearing 单万向联轴节 single universal joint 单位矢量 unit vector 当量齿轮 equivalent spur gear; virtual gear当量齿数 equivalent teeth number; virtual number of teeth当量摩擦系数 equivalent coefficient of friction当量载荷 equivalent load 刀具 cutter导数 derivative 倒角 chamfer导热性 conduction of heat 导程 lead导程角 lead angle 等加等减速运动规律 parabolic motion; constant acceleration and deceleration motion等速运动规律 uniform motion; constant velocity motion 等径凸轮 conjugate yoke radial cam等宽凸轮 constant-breadth cam 等效构件 equivalent link等效力 equivalent force 等效力矩 equivalent moment of force 等效量 equivalent 等效质量 equivalent mass等效转动惯量 equivalent moment of inertia 等效动力学模型 dynamically equivalent model底座 chassis 低副 lower pair点划线 chain dotted line (疲劳)点蚀 pitting垫圈 gasket 垫片密封 gasket seal碟形弹簧 belleville spring 动力学 dynamics顶隙 bottom clearance 定轴轮系 ordinary gear train; gear train with fixed axes动密封 kinematical seal 动能 dynamic energy动力粘度 dynamic viscosity 动力润滑 dynamic lubrication动平衡 dynamic balance 动平衡机 dynamic balancing machine 动态特性 dynamic characteristics 动态分析设计 dynamic analysis design 动压力 dynamic reaction 动载荷 dynamic load端面 transverse plane 端面参数 transverse parameters端面齿距 transverse circular pitch 端面齿廓 transverse tooth profile端面重合度 transverse contact ratio 端面模数 transverse module端面压力角 transverse pressure angle 锻造 forge对称循环应力 symmetry circulating stress 对心滚子从动件 radial (or in-line ) roller follower对心直动从动件 radial (or in-line ) translating follower对心移动从动件 radial reciprocating follower对心曲柄滑块机构 in-line slider-crank (or crank-slider) mechanism多列轴承 multi-row bearing 多楔带 poly V-belt 多项式运动规律 polynomial motion多质量转子 rotor with several masses 惰轮 idle gear额定寿命 rating life 额定载荷 load ratingII 级杆组 dyad 发生线 generating line发生面 generating plane 法面 normal plane法面参数 normal parameters 法面齿距 normal circular pitch法面模数 normal module 法面压力角 normal pressure angle法向齿距 normal pitch 法向齿廓 normal tooth profile法向直廓蜗杆 straight sided normal worm 法向力 normal force反馈式组合 feedback combining 反向运动学 inverse ( or backward) kinematics反转法 kinematic inversion 反正切 Arctan范成法 generating cutting 仿形法 form cutting方案设计、概念设计 concept design, CD 防振装置 shockproof device飞轮 flywheel 飞轮矩 moment of flywheel非标准齿轮 nonstandard gear 非接触式密封 non-contact seal非周期性速度波动 aperiodic speed fluctuation 非圆齿轮 non-circular gear粉末合金 powder metallurgy 分度线 reference line; standard pitch line分度圆 reference circle; standard (cutting) pitch circle分度圆柱导程角 lead angle at reference cylinder分度圆柱螺旋角 helix angle at reference cylinder 分母 denominator分子 numerator 分度圆锥 reference cone; standard pitch cone分析法 analytical method 封闭差动轮系 planetary differential复合铰链 compound hinge 复合式组合 compound combining复合轮系 compound (or combined) gear train 复合平带 compound flat belt复合应力 combined stress 复式螺旋机构 Compound screw mechanism 复杂机构 complex mechanism 杆组 Assur group干涉 interference 刚度系数 stiffness coefficient刚轮 rigid circular spline 钢丝软轴 wire soft shaft刚体导引机构 body guidance mechanism 刚性冲击 rigid impulse (shock)刚性转子 rigid rotor 刚性轴承 rigid bearing刚性联轴器 rigid coupling 高度系列 height series高速带 high speed belt 高副 higher pair格拉晓夫定理 Grashoff`s law 根切 undercutting公称直径 nominal diameter 高度系列 height series功 work 工况系数 application factor工艺设计 technological design 工作循环图 working cycle diagram工作机构 operation mechanism 工作载荷 external loads工作空间 working space 工作应力 working stress工作阻力 effective resistance 工作阻力矩 effective resistance moment公法线 common normal line 公共约束 general constraint公制齿轮 metric gears 功率 power功能分析设计 function analyses design 共轭齿廓 conjugate profiles共轭凸轮 conjugate cam 构件 link鼓风机 blower 固定构件 fixed link; frame固体润滑剂 solid lubricant 关节型操作器 jointed manipulator惯性力 inertia force 惯性力矩 moment of inertia ,shaking moment惯性力平衡 balance of shaking force 惯性力完全平衡 full balance of shaking force惯性力部分平衡 partial balance of shaking force 惯性主矩 resultant moment of inertia 惯性主失 resultant vector of inertia 冠轮 crown gear广义机构 generation mechanism 广义坐标 generalized coordinate轨迹生成 path generation 轨迹发生器 path generator滚刀 hob 滚道 raceway滚动体 rolling element 滚动轴承 rolling bearing滚动轴承代号 rolling bearing identification code 滚针 needle roller滚针轴承 needle roller bearing 滚子 roller滚子轴承 roller bearing 滚子半径 radius of roller滚子从动件 roller follower 滚子链 roller chain滚子链联轴器 double roller chain coupling 滚珠丝杆 ball screw滚柱式单向超越离合器 roller clutch 过度切割 undercutting函数发生器 function generator 函数生成 function generation含油轴承 oil bearing 耗油量 oil consumption耗油量系数 oil consumption factor 赫兹公式 H. Hertz equation合成弯矩 resultant bending moment 合力 resultant force合力矩 resultant moment of force 黑箱 black box横坐标 abscissa 互换性齿轮 interchangeable gears花键 spline 滑键、导键 feather key滑动轴承 sliding bearing 滑动率 sliding ratio滑块 slider 环面蜗杆 toroid helicoids worm环形弹簧 annular spring 缓冲装置 shocks; shock-absorber灰铸铁 grey cast iron 回程 return回转体平衡 balance of rotors 混合轮系 compound gear train积分 integrate 机电一体化系统设计 mechanical-electrical integration system design机构 mechanism 机构分析 analysis of mechanism机构平衡 balance of mechanism 机构学 mechanism机构运动设计 kinematic design of mechanism 机构运动简图 kinematic sketch of mechanism机构综合 synthesis of mechanism 机构组成 constitution of mechanism机架 frame, fixed link 机架变换 kinematic inversion机器 machine 机器人 robot机器人操作器 manipulator 机器人学 robotics技术过程 technique process 技术经济评价 technical and economic evaluation技术系统 technique system 机械 machinery机械创新设计 mechanical creation design, MCD 机械系统设计 mechanical system design, MSD机械动力分析 dynamic analysis of machinery 机械动力设计 dynamic design of machinery机械动力学 dynamics of machinery 机械的现代设计 modern machine design 机械系统 mechanical system 机械利益 mechanical advantage机械平衡 balance of machinery 机械手 manipulator机械设计 machine design; mechanical design 机械特性 mechanical behavior机械调速 mechanical speed governors 机械效率 mechanical efficiency机械原理 theory of machines and mechanisms 机械运转不均匀系数 coefficient of speed fluctuation机械无级变速 mechanical stepless speed changes 基础机构 fundamental mechanism基本额定寿命 basic rating life 基于实例设计 case-based design,CBD基圆 base circle 基圆半径 radius of base circle基圆齿距 base pitch 基圆压力角 pressure angle of base circle基圆柱 base cylinder 基圆锥 base cone急回机构 quick-return mechanism 急回特性 quick-return characteristics急回系数 advance-to return-time ratio 急回运动 quick-return motion棘轮 ratchet 棘轮机构 ratchet mechanism棘爪 pawl 极限位置 extreme (or limiting) position极位夹角 crank angle between extreme (or limiting) positions计算机辅助设计 computer aided design, CAD计算机辅助制造 computer aided manufacturing, CAM计算机集成制造系统 computer integrated manufacturing system, CIMS计算力矩 factored moment; calculation moment 计算弯矩 calculated bending moment加权系数 weighting efficient 加速度 acceleration加速度分析 acceleration analysis 加速度曲线 acceleration diagram尖点 pointing; cusp 尖底从动件 knife-edge follower间隙 backlash 间歇运动机构 intermittent motion mechanism减速比 reduction ratio 减速齿轮、减速装置 reduction gear减速器 speed reducer 减摩性 anti-friction quality渐开螺旋面 involute helicoids 渐开线 involute渐开线齿廓 involute profile 渐开线齿轮 involute gear渐开线发生线 generating line of involute 渐开线方程 involute equation渐开线函数 involute function 渐开线蜗杆 involute worm渐开线压力角 pressure angle of involute 渐开线花键 involute spline简谐运动 simple harmonic motion 键 key键槽 keyway 交变应力 repeated stress交变载荷 repeated fluctuating load 交叉带传动 cross-belt drive交错轴斜齿轮 crossed helical gears 胶合 scoring角加速度 angular acceleration 角速度 angular velocity角速比 angular velocity ratio 角接触球轴承 angular contact ball bearing 角接触推力轴承 angular contact thrust bearing 角接触向心轴承 angular contact radial bearing角接触轴承 angular contact bearing 铰链、枢纽 hinge校正平面 correcting plane 接触应力 contact stress接触式密封 contact seal 阶梯轴 multi-diameter shaft结构 structure 结构设计 structural design截面 section 节点 pitch point节距 circular pitch; pitch of teeth 节线 pitch line节圆 pitch circle 节圆齿厚 thickness on pitch circle节圆直径 pitch diameter 节圆锥 pitch cone节圆锥角 pitch cone angle 解析设计 analytical design紧边 tight-side 紧固件 fastener径节 diametral pitch 径向 radial direction径向当量动载荷 dynamic equivalent radial load 径向当量静载荷 static equivalent radial load 径向基本额定动载荷 basic dynamic radial load rating径向基本额定静载荷 basic static radial load tating径向接触轴承 radial contact bearing 径向平面 radial plane径向游隙 radial internal clearance 径向载荷 radial load径向载荷系数 radial load factor 径向间隙 clearance静力 static force 静平衡 static balance静载荷 static load 静密封 static seal局部自由度 passive degree of freedom 矩形螺纹 square threaded form锯齿形螺纹 buttress thread form 矩形牙嵌式离合器 square-jaw positive-contact clutch绝对尺寸系数 absolute dimensional factor 绝对运动 absolute motion绝对速度 absolute velocity 均衡装置 load balancing mechanism抗压强度 compression strength 开口传动 open-belt drive开式链 open kinematic chain 开链机构 open chain mechanism可靠度 degree of reliability 可靠性 reliability可靠性设计 reliability design, RD 空气弹簧 air spring空间机构 spatial mechanism 空间连杆机构 spatial linkage空间凸轮机构 spatial cam 空间运动副 spatial kinematic pair空间运动链 spatial kinematic chain 框图 block diagram空转 idle 宽度系列 width series雷诺方程Reynolds…s equation 离心力 centrifugal force离心应力 centrifugal stress 理论廓线 pitch curve离合器 clutch 离心密封 centrifugal seal理论啮合线 theoretical line of action 隶属度 membership 力 force力多边形 force polygon 力封闭型凸轮机构 force-drive (or force-closed) cam mechanism力矩 moment 力平衡 equilibrium力偶 couple 力偶矩 moment of couple连杆 connecting rod, coupler 连杆机构 linkage连杆曲线 coupler-curve 连心线 line of centers链 chain 链传动装置 chain gearing链轮 sprocket ; sprocket-wheel ; sprocket gear ; chain wheel 联组V 带 tight-up V belt联轴器 coupling ; shaft coupling 两维凸轮 two-dimensional cam临界转速 critical speed 六杆机构 six-bar linkage龙门刨床 double Haas planer 轮坯 blank轮系 gear train 螺杆 screw螺距 thread pitch 螺母 screw nut螺旋锥齿轮 helical bevel gear 螺钉 screws螺栓 bolts 螺纹导程 lead螺纹效率 screw efficiency 螺旋传动 power screw螺旋密封 spiral seal 螺纹 thread (of a screw)。

2D-CSiC陶瓷基复合材料拉伸试验的声发射特性

2D-CSiC陶瓷基复合材料拉伸试验的声发射特性

试验研究Nirn DOI:10. 11973/wsjc2021010122I>C/SiC陶瓷基复合材料拉伸试验的声发射特性黄豆,吴锦武,汪佳辉(南昌航空大学飞行器工程学院,南昌330063)摘要:对2I>C7SiC'陶瓷基复合材料试样在室温条件下单调拉伸试验和循环拉伸试验的损 伤声发射信号进行研究,利用无监督层次聚类分析方法对单调和循环拉伸试验的声发射信号进行 损伤模式识别,得出了两种拉伸试验下试样都有相同的损伤分类。

对每次单调加/卸栽试验分别进 行应力和声发射信号分析,得到了在循环加栽区间和卸栽区间试样的损伤情况。

对比分析两种拉 伸试验的声发射信号,得到两次试验中首次加栽相同应力时,两个试样有同一种类的声发射损伤信 号,从而说明循环加栽对试样的主要损伤影响较小。

关键词:陶瓷基复合材料;拉伸试验;声发射技术;层次聚类分析中图分类号:TB332;TG115.28 文献标志码:A文章编号:1000-6656(2021)01-0047-06 Acoustic emission characteristics of 2D-C/SiC ceramic matrix composites under tensile testHUANG I)ou. WU Jinwu. WANG Jiahui(School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China) Abstract : Acoustic Emission (AE) signals of 2D-C /SiC ceramic matrix composites under monotonic temsile test and cyclic tensile test at room temperature were studied. The unsupervised hierarchical clustering method was used to identify the damage pattern of AE signals in monotonic and cyclic tensile tests. The stress and acoustic emission signals of each monotonic loading/unloading test were analyzed respectively,and the damage conditions of the samples in the cyclic loading interval and the unloading interval were obtained. By comparing and analyzing the AE signals of the two tensile tests, it is found that when the same stress is first loaded in two tests, the two samples have the same type of AE damage signals, which indicates that the repeated loading has little impact on the main damage of the samples.Key words:ceramic matrix composite;tensile test;acoustic emission technique;hierarchical cluster analysis连续纤维增靭2I>C/SiC陶瓷基复合材料具有 高比强度、高比模量、抗腐蚀、抗氧化和耐高温等特 点,在航空、航天及民用领域应用广泛[12]。

专业音响中英文对照

专业音响中英文对照
ac voltage 交流电压
accentuation 加重、提升
access 接近、入口、存取
accessory 附属的,附件(形容词)
accesspries 附属的、附件、配件、附属设备
accmpanimenl 伴奏
accordion 手风琴
accrescendo 渐强
audio amplifier 音频放大器
audio band 音频段
audio componet 音频成分
andio control cngineer 调音师、录音师
audio cue channel 录象机声频提示通道
audio equipment 声频设备、伴音设备
audio frequency 声频、音频
bi-directional microphone 双向传声器
binary 二进制
binaural 双耳的、立体声的
binaural effect 双耳效应
binaural recorder 双声道录音机
binaural sound 双耳声
bit 比特 BI 双语言
bongos (用手敲击的)小鼓
bass-iefiex enclosure (扬声器)低音反射空腔
basson 巴松管
bassy 低音加重
BAT 电池、蓄电池的缩写
battery 蓄电池、电池组
battery charger 电池充电机
battery pack 电池组
basson 巴松管、大管、低音管
auditorium 观众厅
aural 听觉的
auto-man 自动-人工

岩石破裂过程声发射动态显示虚拟现实实验教学系统

岩石破裂过程声发射动态显示虚拟现实实验教学系统

文章编号:1007-757X(2020)07-0004-04岩石破裂过程声发射动态显示虚拟现实实验教学系统张春明,杨天鸿(东北大学资源与土木工程学院,辽宁沈阳110006)摘要:利用虚拟现实技术将单轴压缩实验采集的应力应变实验数据和声发射系统采集的声发射信息,与岩石试件的三维模型和岩石破裂面的宏观信息全部集成到同一虚拟场景中,不但可以为学生提供观察各种实验数据的一种可视化手段,而且可以对岩石破裂过程中的声发射事件进行形象直观的动态模拟显示。

这将有助于加深学生对岩石破裂实验的理解,对岩石力学课程的教与学具有非常重要的意义。

关键词:岩石力学;声发射;岩石破裂;动态模拟;虚拟现实中图分类号:TP311文献标志码:AVR Experimental Teaching System for Dynamic Demonstration ofAcoustic Emission in Rock Failure ProcessZHANG Chunming,YANG Tianhong(School of Resources and Civil Engineering,Northeastern University,Shenyang,Liaoning110006,China) Abstract:By way of the virtual reality technology,the stress and strain experimental data collected from the uni-axial compres­sion experiment and the acoustic emission information collected by the acoustic emission system are integrated into a virtual scene together with the three-dimensional model of rock specimen and affiliated surface information.It provides students with a visual means to observe various experimental data and implement a dynamic simulation of acoustic emission events during rock failure.It can help students deepen their understanding of rock failure experiments and is of great significance to the teaching and learning of rock mechanics.Key words:rock mechanics&acoustic emission;rock failure;dynamic simulation;virtual reality0引言本文依次介绍了岩石破裂实验的物理实验过程和数值模拟过程。

基于声学指数的神农架国家公园声音多样性动态变化

基于声学指数的神农架国家公园声音多样性动态变化

果显示 ACI 指数不能很好地反映日变化趋势,但 BI 指数和 NDSI 指数具有明显的日变化趋势,且变化趋势符合
物种黎明/ 黄昏合唱的习性;声学指数随海拔梯度的空间变化结果表明,ACI、BI 指数在中海拔区域具有最大值,
且 ACI 指数与海拔相关性较强,NDSI 指数没有显著的变化趋势。【结论】BI、NDSI 指数能较好地反映动物声音
:【 】 Abstract Objective The study aims to evaluate the response of acoustic indices to the dynamic changes of animal , sound diversity further to explore the characteristics of the variation of animal sound diversity in Shennongjia National , , 【 】 Park China in order to provide a quantitative basis for the local ecological protection. Method We deployed nine , sound recording equipments in nine sampling sites in Shennongjia National Park and sound recording data from May to ( ), July 2021 were obtained. A time series of ecoacosutic indices including acoustic complexity index ACI bioacoustic ( ), ( ) index BI normalized difference soundscape index NDSI were extracted from the recording data after noise

水泥水化过程声信号特性研究

水泥水化过程声信号特性研究

0引言混凝土作为土木工程领域中的基石,其广泛的应用和重要性不容忽视。

从支撑城市天际线的桥梁、纵横交错的高速公路,到高耸入云的大型建筑结构,乃至家庭装修中的细微之处,混凝土都发挥着至关重要的作用。

这种材料之所以如此受欢迎,源于其出色的抗压强度、卓越的耐久性以及相对经济的成本。

正是这些特性,使得混凝土在现代社会建设中占据了举足轻重的地位。

在混凝土中,水泥的水化过程对其各种力学性能起着决定性的作用[1]。

水泥的水化是一个复杂的物理化学过程,涉及水泥与水的反应,生成水化产物,这些产物填充混凝土的孔隙,使其逐渐硬化并达到设计强度。

因此,对水泥水化机理的深入研究,对于保证混凝土结构的质量安全至关重要。

目前,混凝土水化研究使用的主要技术有水化热法、电化学交流阻抗法、化学结合水法以及CH 定量测定等[2]。

这些方法各有优势,但也存在一定的局限性。

例如,它们多局限于早期水化阶段的监测,而对于后期水化过程的监测则相对困难。

此外,由于水泥化学成分的复杂性,这些方法的测试结果往往存在波动,影响了数据的准确性和可靠性。

为了克服现有方法的不足,本文提出了一种新的研究方法———使用埋入式传感器对混凝土中的水泥水化过程进行声发射检测和超声检测。

这种方法可以直接在混凝土内部进行监测,避免了传统外贴式传感器只能在结构表面进行监测的局限性。

通过埋入式传感器,我们可以实时获取水泥水化过程中的声信号数据,进而分析水泥水化阶段的声信号特征。

通过这种方法,我们期望能够揭示水泥水化过程中声信号的变化规律,进而实现对水泥水化过程的精确监测。

这将有助于我们更好地了解水泥水化的机理,提高混凝土结构的性能,并推动土木工程领域的技术进步。

通过深入研究水泥水化过程中的声信号特征,我们有望为混凝土结构的质量安全提供更加可靠的保障,推动土木工程领域的持续发展和创新。

1试验设计1.1原材料及配合比混凝土配合比设计见表1,原材料包括水泥、河砂、石子、水,水泥选用华新牌P ·O42.5水泥;细骨料为河砂,细度模数2.6;石子粒径为5-20mm 。

jstd035声学扫描

jstd035声学扫描

JOINT INDUSTRY STANDARDAcoustic Microscopy for Non-HermeticEncapsulatedElectronicComponents IPC/JEDEC J-STD-035APRIL1999Supersedes IPC-SM-786 Supersedes IPC-TM-650,2.6.22Notice EIA/JEDEC and IPC Standards and Publications are designed to serve thepublic interest through eliminating misunderstandings between manufacturersand purchasers,facilitating interchangeability and improvement of products,and assisting the purchaser in selecting and obtaining with minimum delaythe proper product for his particular need.Existence of such Standards andPublications shall not in any respect preclude any member or nonmember ofEIA/JEDEC or IPC from manufacturing or selling products not conformingto such Standards and Publications,nor shall the existence of such Standardsand Publications preclude their voluntary use by those other than EIA/JEDECand IPC members,whether the standard is to be used either domestically orinternationally.Recommended Standards and Publications are adopted by EIA/JEDEC andIPC without regard to whether their adoption may involve patents on articles,materials,or processes.By such action,EIA/JEDEC and IPC do not assumeany liability to any patent owner,nor do they assume any obligation whateverto parties adopting the Recommended Standard or ers are alsowholly responsible for protecting themselves against all claims of liabilities forpatent infringement.The material in this joint standard was developed by the EIA/JEDEC JC-14.1Committee on Reliability Test Methods for Packaged Devices and the IPCPlastic Chip Carrier Cracking Task Group(B-10a)The J-STD-035supersedes IPC-TM-650,Test Method2.6.22.For Technical Information Contact:Electronic Industries Alliance/ JEDEC(Joint Electron Device Engineering Council)2500Wilson Boulevard Arlington,V A22201Phone(703)907-7560Fax(703)907-7501IPC2215Sanders Road Northbrook,IL60062-6135 Phone(847)509-9700Fax(847)509-9798Please use the Standard Improvement Form shown at the end of thisdocument.©Copyright1999.The Electronic Industries Alliance,Arlington,Virginia,and IPC,Northbrook,Illinois.All rights reserved under both international and Pan-American copyright conventions.Any copying,scanning or other reproduction of these materials without the prior written consent of the copyright holder is strictly prohibited and constitutes infringement under the Copyright Law of the United States.IPC/JEDEC J-STD-035Acoustic Microscopyfor Non-Hermetic EncapsulatedElectronicComponentsA joint standard developed by the EIA/JEDEC JC-14.1Committee on Reliability Test Methods for Packaged Devices and the B-10a Plastic Chip Carrier Cracking Task Group of IPCUsers of this standard are encouraged to participate in the development of future revisions.Contact:EIA/JEDEC Engineering Department 2500Wilson Boulevard Arlington,V A22201 Phone(703)907-7500 Fax(703)907-7501IPC2215Sanders Road Northbrook,IL60062-6135 Phone(847)509-9700Fax(847)509-9798ASSOCIATION CONNECTINGELECTRONICS INDUSTRIESAcknowledgmentMembers of the Joint IPC-EIA/JEDEC Moisture Classification Task Group have worked to develop this document.We would like to thank them for their dedication to this effort.Any Standard involving a complex technology draws material from a vast number of sources.While the principal members of the Joint Moisture Classification Working Group are shown below,it is not possible to include all of those who assisted in the evolution of this Standard.To each of them,the mem-bers of the EIA/JEDEC and IPC extend their gratitude.IPC Packaged Electronic Components Committee ChairmanMartin FreedmanAMP,Inc.IPC Plastic Chip Carrier Cracking Task Group,B-10a ChairmanSteven MartellSonoscan,Inc.EIA/JEDEC JC14.1CommitteeChairmanJack McCullenIntel Corp.EIA/JEDEC JC14ChairmanNick LycoudesMotorolaJoint Working Group MembersCharlie Baker,TIChristopher Brigham,Hi/FnRalph Carbone,Hewlett Packard Co. Don Denton,TIMatt Dotty,AmkorMichele J.DiFranza,The Mitre Corp. Leo Feinstein,Allegro Microsystems Inc.Barry Fernelius,Hewlett Packard Co. Chris Fortunko,National Institute of StandardsRobert J.Gregory,CAE Electronics, Inc.Curtis Grosskopf,IBM Corp.Bill Guthrie,IBM Corp.Phil Johnson,Philips Semiconductors Nick Lycoudes,MotorolaSteven R.Martell,Sonoscan Inc. Jack McCullen,Intel Corp.Tom Moore,TIDavid Nicol,Lucent Technologies Inc.Pramod Patel,Advanced Micro Devices Inc.Ramon R.Reglos,XilinxCorazon Reglos,AdaptecGerald Servais,Delphi Delco Electronics SystemsRichard Shook,Lucent Technologies Inc.E.Lon Smith,Lucent Technologies Inc.Randy Walberg,NationalSemiconductor Corp.Charlie Wu,AdaptecEdward Masami Aoki,HewlettPackard LaboratoriesFonda B.Wu,Raytheon Systems Co.Richard W.Boerdner,EJE ResearchVictor J.Brzozowski,NorthropGrumman ES&SDMacushla Chen,Wus Printed CircuitCo.Ltd.Jeffrey C.Colish,Northrop GrummanCorp.Samuel J.Croce,Litton AeroProducts DivisionDerek D-Andrade,Surface MountTechnology CentreRao B.Dayaneni,Hewlett PackardLaboratoriesRodney Dehne,OEM WorldwideJames F.Maguire,Boeing Defense&Space GroupKim Finch,Boeing Defense&SpaceGroupAlelie Funcell,Xilinx Inc.Constantino J.Gonzalez,ACMEMunir Haq,Advanced Micro DevicesInc.Larry A.Hargreaves,DC.ScientificInc.John T.Hoback,Amoco ChemicalCo.Terence Kern,Axiom Electronics Inc.Connie M.Korth,K-Byte/HibbingManufacturingGabriele Marcantonio,NORTELCharles Martin,Hewlett PackardLaboratoriesRichard W.Max,Alcatel NetworkSystems Inc.Patrick McCluskey,University ofMarylandJames H.Moffitt,Moffitt ConsultingServicesRobert Mulligan,Motorola Inc.James E.Mumby,CibaJohn Northrup,Lockheed MartinCorp.Dominique K.Numakura,LitchfieldPrecision ComponentsNitin B.Parekh,Unisys Corp.Bella Poborets,Lucent TechnologiesInc.D.Elaine Pope,Intel Corp.Ray Prasad,Ray Prasad ConsultancyGroupAlbert Puah,Adaptec Inc.William Sepp,Technic Inc.Ralph W.Taylor,Lockheed MartinCorp.Ed R.Tidwell,DSC CommunicationsCorp.Nick Virmani,Naval Research LabKen Warren,Corlund ElectronicsCorp.Yulia B.Zaks,Lucent TechnologiesInc.IPC/JEDEC J-STD-035April1999 iiTable of Contents1SCOPE (1)2DEFINITIONS (1)2.1A-mode (1)2.2B-mode (1)2.3Back-Side Substrate View Area (1)2.4C-mode (1)2.5Through Transmission Mode (2)2.6Die Attach View Area (2)2.7Die Surface View Area (2)2.8Focal Length(FL) (2)2.9Focus Plane (2)2.10Leadframe(L/F)View Area (2)2.11Reflective Acoustic Microscope (2)2.12Through Transmission Acoustic Microscope (2)2.13Time-of-Flight(TOF) (3)2.14Top-Side Die Attach Substrate View Area (3)3APPARATUS (3)3.1Reflective Acoustic Microscope System (3)3.2Through Transmission AcousticMicroscope System (4)4PROCEDURE (4)4.1Equipment Setup (4)4.2Perform Acoustic Scans..........................................4Appendix A Acoustic Microscopy Defect CheckSheet (6)Appendix B Potential Image Pitfalls (9)Appendix C Some Limitations of AcousticMicroscopy (10)Appendix D Reference Procedure for PresentingApplicable Scanned Data (11)FiguresFigure1Example of A-mode Display (1)Figure2Example of B-mode Display (1)Figure3Example of C-mode Display (2)Figure4Example of Through Transmission Display (2)Figure5Diagram of a Reflective Acoustic MicroscopeSystem (3)Figure6Diagram of a Through Transmission AcousticMicroscope System (3)April1999IPC/JEDEC J-STD-035iiiIPC/JEDEC J-STD-035April1999This Page Intentionally Left BlankivApril1999IPC/JEDEC J-STD-035 Acoustic Microscopy for Non-Hermetic EncapsulatedElectronic Components1SCOPEThis test method defines the procedures for performing acoustic microscopy on non-hermetic encapsulated electronic com-ponents.This method provides users with an acoustic microscopy processflow for detecting defects non-destructively in plastic packages while achieving reproducibility.2DEFINITIONS2.1A-mode Acoustic data collected at the smallest X-Y-Z region defined by the limitations of the given acoustic micro-scope.An A-mode display contains amplitude and phase/polarity information as a function of time offlight at a single point in the X-Y plane.See Figure1-Example of A-mode Display.IPC-035-1 Figure1Example of A-mode Display2.2B-mode Acoustic data collected along an X-Z or Y-Z plane versus depth using a reflective acoustic microscope.A B-mode scan contains amplitude and phase/polarity information as a function of time offlight at each point along the scan line.A B-mode scan furnishes a two-dimensional(cross-sectional)description along a scan line(X or Y).See Figure2-Example of B-mode Display.IPC-035-2 Figure2Example of B-mode Display(bottom half of picture on left)2.3Back-Side Substrate View Area(Refer to Appendix A,Type IV)The interface between the encapsulant and the back of the substrate within the outer edges of the substrate surface.2.4C-mode Acoustic data collected in an X-Y plane at depth(Z)using a reflective acoustic microscope.A C-mode scan contains amplitude and phase/polarity information at each point in the scan plane.A C-mode scan furnishes a two-dimensional(area)image of echoes arising from reflections at a particular depth(Z).See Figure3-Example of C-mode Display.1IPC/JEDEC J-STD-035April1999IPC-035-3 Figure3Example of C-mode Display2.5Through Transmission Mode Acoustic data collected in an X-Y plane throughout the depth(Z)using a through trans-mission acoustic microscope.A Through Transmission mode scan contains only amplitude information at each point in the scan plane.A Through Transmission scan furnishes a two-dimensional(area)image of transmitted ultrasound through the complete thickness/depth(Z)of the sample/component.See Figure4-Example of Through Transmission Display.IPC-035-4 Figure4Example of Through Transmission Display2.6Die Attach View Area(Refer to Appendix A,Type II)The interface between the die and the die attach adhesive and/or the die attach adhesive and the die attach substrate.2.7Die Surface View Area(Refer to Appendix A,Type I)The interface between the encapsulant and the active side of the die.2.8Focal Length(FL)The distance in water at which a transducer’s spot size is at a minimum.2.9Focus Plane The X-Y plane at a depth(Z),which the amplitude of the acoustic signal is maximized.2.10Leadframe(L/F)View Area(Refer to Appendix A,Type V)The imaged area which extends from the outer L/F edges of the package to the L/F‘‘tips’’(wedge bond/stitch bond region of the innermost portion of the L/F.)2.11Reflective Acoustic Microscope An acoustic microscope that uses one transducer as both the pulser and receiver. (This is also known as a pulse/echo system.)See Figure5-Diagram of a Reflective Acoustic Microscope System.2.12Through Transmission Acoustic Microscope An acoustic microscope that transmits ultrasound completely through the sample from a sending transducer to a receiver on the opposite side.See Figure6-Diagram of a Through Transmis-sion Acoustic Microscope System.2April1999IPC/JEDEC J-STD-0353IPC/JEDEC J-STD-035April1999 3.1.6A broad band acoustic transducer with a center frequency in the range of10to200MHz for subsurface imaging.3.2Through Transmission Acoustic Microscope System(see Figure6)comprised of:3.2.1Items3.1.1to3.1.6above3.2.2Ultrasonic pulser(can be a pulser/receiver as in3.1.1)3.2.3Separate receiving transducer or ultrasonic detection system3.3Reference packages or standards,including packages with delamination and packages without delamination,for use during equipment setup.3.4Sample holder for pre-positioning samples.The holder should keep the samples from moving during the scan and maintain planarity.4PROCEDUREThis procedure is generic to all acoustic microscopes.For operational details related to this procedure that apply to a spe-cific model of acoustic microscope,consult the manufacturer’s operational manual.4.1Equipment Setup4.1.1Select the transducer with the highest useable ultrasonic frequency,subject to the limitations imposed by the media thickness and acoustic characteristics,package configuration,and transducer availability,to analyze the interfaces of inter-est.The transducer selected should have a low enough frequency to provide a clear signal from the interface of interest.The transducer should have a high enough frequency to delineate the interface of interest.Note:Through transmission mode may require a lower frequency and/or longer focal length than reflective mode.Through transmission is effective for the initial inspection of components to determine if defects are present.4.1.2Verify setup with the reference packages or standards(see3.3above)and settings that are appropriate for the trans-ducer chosen in4.1.1to ensure that the critical parameters at the interface of interest correlate to the reference standard uti-lized.4.1.3Place units in the sample holder in the coupling medium such that the upper surface of each unit is parallel with the scanning plane of the acoustic transducer.Sweep air bubbles away from the unit surface and from the bottom of the trans-ducer head.4.1.4At afixed distance(Z),align the transducer and/or stage for the maximum reflected amplitude from the top surface of the sample.The transducer must be perpendicular to the sample surface.4.1.5Focus by maximizing the amplitude,in the A-mode display,of the reflection from the interface designated for imag-ing.This is done by adjusting the Z-axis distance between the transducer and the sample.4.2Perform Acoustic Scans4.2.1Inspect the acoustic image(s)for any anomalies,verify that the anomaly is a package defect or an artifact of the imaging process,and record the results.(See Appendix A for an example of a check sheet that may be used.)To determine if an anomaly is a package defect or an artifact of the imaging process it is recommended to analyze the A-mode display at the location of the anomaly.4.2.2Consider potential pitfalls in image interpretation listed in,but not limited to,Appendix B and some of the limita-tions of acoustic microscopy listed in,but not limited to,Appendix C.If necessary,make adjustments to the equipment setup to optimize the results and rescan.4April1999IPC/JEDEC J-STD-035 4.2.3Evaluate the acoustic images using the failure criteria specified in other appropriate documents,such as J-STD-020.4.2.4Record the images and thefinal instrument setup parameters for documentation purposes.An example checklist is shown in Appendix D.5IPC/JEDEC J-STD-035April19996April1999IPC/JEDEC J-STD-035Appendix AAcoustic Microscopy Defect Check Sheet(continued)CIRCUIT SIDE SCANImage File Name/PathDelamination(Type I)Die Circuit Surface/Encapsulant Number Affected:Average%Location:Corner Edge Center (Type II)Die/Die Attach Number Affected:Average%Location:Corner Edge Center (Type III)Encapsulant/Substrate Number Affected:Average%Location:Corner Edge Center (Type V)Interconnect tip Number Affected:Average%Interconnect Number Affected:Max.%Length(Type VI)Intra-Laminate Number Affected:Average%Location:Corner Edge Center Comments:CracksAre cracks present:Yes NoIf yes:Do any cracks intersect:bond wire ball bond wedge bond tab bump tab leadDoes crack extend from leadfinger to any other internal feature:Yes NoDoes crack extend more than two-thirds the distance from any internal feature to the external surfaceof the package:Yes NoAdditional verification required:Yes NoComments:Mold Compound VoidsAre voids present:Yes NoIf yes:Approx.size Location(if multiple voids,use comment section)Do any voids intersect:bond wire ball bond wedge bond tab bump tab lead Additional verification required:Yes NoComments:7IPC/JEDEC J-STD-035April1999Appendix AAcoustic Microscopy Defect Check Sheet(continued)NON-CIRCUIT SIDE SCANImage File Name/PathDelamination(Type IV)Encapsulant/Substrate Number Affected:Average%Location:Corner Edge Center (Type II)Substrate/Die Attach Number Affected:Average%Location:Corner Edge Center (Type V)Interconnect Number Affected:Max.%LengthLocation:Corner Edge Center (Type VI)Intra-Laminate Number Affected:Average%Location:Corner Edge Center (Type VII)Heat Spreader Number Affected:Average%Location:Corner Edge Center Additional verification required:Yes NoComments:CracksAre cracks present:Yes NoIf yes:Does crack extend more than two-thirds the distance from any internal feature to the external surfaceof the package:Yes NoAdditional verification required:Yes NoComments:Mold Compound VoidsAre voids present:Yes NoIf yes:Approx.size Location(if multiple voids,use comment section)Additional verification required:Yes NoComments:8Appendix BPotential Image PitfallsOBSERV ATIONS CAUSES/COMMENTSUnexplained loss of front surface signal Gain setting too lowSymbolization on package surfaceEjector pin knockoutsPin1and other mold marksDust,air bubbles,fingerprints,residueScratches,scribe marks,pencil marksCambered package edgeUnexplained loss of subsurface signal Gain setting too lowTransducer frequency too highAcoustically absorbent(rubbery)fillerLarge mold compound voidsPorosity/high concentration of small voidsAngled cracks in package‘‘Dark line boundary’’(phase cancellation)Burned molding compound(ESD/EOS damage)False or spotty indication of delamination Low acoustic impedance coating(polyimide,gel)Focus errorIncorrect delamination gate setupMultilayer interference effectsFalse indication of adhesion Gain set too high(saturation)Incorrect delamination gate setupFocus errorOverlap of front surface and subsurface echoes(transducerfrequency too low)Fluidfilling delamination areasApparent voiding around die edge Reflection from wire loopsIncorrect setting of void gateGraded intensity Die tilt or lead frame deformation Sample tiltApril1999IPC/JEDEC J-STD-0359Appendix CSome Limitations of Acoustic MicroscopyAcoustic microscopy is an analytical technique that provides a non-destructive method for examining plastic encapsulated components for the existence of delaminations,cracks,and voids.This technique has limitations that include the following: LIMITATION REASONAcoustic microscopy has difficulty infinding small defects if the package is too thick.The ultrasonic signal becomes more attenuated as a function of two factors:the depth into the package and the transducer fre-quency.The greater the depth,the greater the attenuation.Simi-larly,the higher the transducer frequency,the greater the attenu-ation as a function of depth.There are limitations on the Z-axis(axial)resolu-tion.This is a function of the transducer frequency.The higher the transducer frequency,the better the resolution.However,the higher frequency signal becomes attenuated more quickly as a function of depth.There are limitations on the X-Y(lateral)resolu-tion.The X-Y(lateral)resolution is a function of a number of differ-ent variables including:•Transducer characteristics,including frequency,element diam-eter,and focal length•Absorption and scattering of acoustic waves as a function of the sample material•Electromechanical properties of the X-Y stageIrregularly shaped packages are difficult to analyze.The technique requires some kind offlat reference surface.Typically,the upper surface of the package or the die surfacecan be used as references.In some packages,cambered packageedges can cause difficulty in analyzing defects near the edgesand below their surfaces.Edge Effect The edges cause difficulty in analyzing defects near the edge ofany internal features.IPC/JEDEC J-STD-035April1999 10April1999IPC/JEDEC J-STD-035Appendix DReference Procedure for Presenting Applicable Scanned DataMost of the settings described may be captured as a default for the particular supplier/product with specific changes recorded on a sample or lot basis.Setup Configuration(Digital Setup File Name and Contents)Calibration Procedure and Calibration/Reference Standards usedTransducerManufacturerModelCenter frequencySerial numberElement diameterFocal length in waterScan SetupScan area(X-Y dimensions)Scan step sizeHorizontalVerticalDisplayed resolutionHorizontalVerticalScan speedPulser/Receiver SettingsGainBandwidthPulseEnergyRepetition rateReceiver attenuationDampingFilterEcho amplitudePulse Analyzer SettingsFront surface gate delay relative to trigger pulseSubsurface gate(if used)High passfilterDetection threshold for positive oscillation,negative oscillationA/D settingsSampling rateOffset settingPer Sample SettingsSample orientation(top or bottom(flipped)view and location of pin1or some other distinguishing characteristic) Focus(point,depth,interface)Reference planeNon-default parametersSample identification information to uniquely distinguish it from others in the same group11IPC/JEDEC J-STD-035April1999Appendix DReference Procedure for Presenting Applicable Scanned Data(continued) Reference Procedure for Presenting Scanned DataImagefile types and namesGray scale and color image legend definitionsSignificance of colorsIndications or definition of delaminationImage dimensionsDepth scale of TOFDeviation from true aspect ratioImage type:A-mode,B-mode,C-mode,TOF,Through TransmissionA-mode waveforms should be provided for points of interest,such as delaminated areas.In addition,an A-mode image should be provided for a bonded area as a control.12Standard Improvement FormIPC/JEDEC J-STD-035The purpose of this form is to provide the Technical Committee of IPC with input from the industry regarding usage of the subject standard.Individuals or companies are invited to submit comments to IPC.All comments will be collected and dispersed to the appropriate committee(s).If you can provide input,please complete this form and return to:IPC2215Sanders RoadNorthbrook,IL 60062-6135Fax 847509.97981.I recommend changes to the following:Requirement,paragraph number Test Method number,paragraph numberThe referenced paragraph number has proven to be:Unclear Too RigidInErrorOther2.Recommendations forcorrection:3.Other suggestions for document improvement:Submitted by:Name Telephone Company E-mailAddress City/State/ZipDate ASSOCIATION CONNECTING ELECTRONICS INDUSTRIESASSOCIATION CONNECTINGELECTRONICS INDUSTRIESISBN#1-580982-28-X2215 Sanders Road, Northbrook, IL 60062-6135Tel. 847.509.9700 Fax 847.509.9798。

完整版日本标准JIS大全

完整版日本标准JIS大全

完整版日本标准JIS大全日本标准JIS大全序号标准号标准名称1 JIS K 8833-1978 糠醛(FURFURAL)2 JIS Z 3233 ERRATUM 1-2001 惰性气体保护弧焊用钨焊条(勘误1)((Erratum 1))3 JIS G 3303 ERRATUM 1-2003 JIS G3303的技术勘误1(ERRA TUM)4 JIS W 0812-1993 飞行设备的环境条件和试验程序(RTCA/DC-160C)(Airborne equipment --Environmental conditions and test procedures (RTCA/DC - 160C))5 JIS B 8367-5-2002 液压气缸的安装尺寸第5部分:单棒10 MPa 系列、方盖、带棒紧型液压气缸(钻孔40 mm 至200 mm) (Mounting dimensions for hydraulic cylinders -- Part 5: Singlerod -- 10 MPa series square cover and tie rod tightend type (Bores from 40 mm to 200 mm))6 JIS K 9517-1992 锌(Zincon)7 JIS K 8370-1992 铜(III)乙酸酯(Copper (II) acetate monohydrate)8 JIS K 4814-1969 苦味酸(246-三硝基苯酚)(Picric acid)9 JIS K 9053-1993 L-赖氨酸-盐酸盐(L(+)-lysine hydrochloride)10 JIS K 8453-1994 二乙醇胺(22-Iminodiethanol)11 JIS K 8695-1981 苯并[F]喹啉(Benzo (f) quinoline)12 JIS H 2105-1955 铅锭(Pig lead)13 JIS K 8824-1992 D(+)葡萄糖(D(+)-glucose)14 JIS L 2401-1992 黄麻纱(Jute yarns)15 JIS X 5101-1982 25路数据电路端接设备与数据终端设备间的接口(The Interface between Data Circuit Terminating Equipment(DCE) and Data Terminal Equipment (DTE) (25-pin Interface))16 JIS F 3425-1999 船用信号旗滑车(Ships steel blocks for signal flags)17 JIS K 8879-1994 试镁灵(Magneson)18 JIS B 1196-2001 焊接螺母(Weld nuts)19 JIS K 9024-1991 磷钨酸(12 TUNGSTO(VI) PHOSPHORIC ACID N-HYDRA TE (PHOSPHOTUNGSTIC ACID))20 JIS K 2219-1993 齿轮油(GEAR OILS)21 JIS B 9650-2 ERRATUM 1-2003 JIS B9650-2的技术勘误1(ERRA TUM)22 JIS L 4112-2000 儿童开襟衬衣及青年开襟衬衣(Boys and youths open shirts)23 JIS F 3436-1980 船用小型钢索卷车(Ships small size wire reels)24 JIS B 9650-1 ERRATUM 1-2003 JIS B9650-1的技术勘误1(ERRA TUM)25 JIS F 3443-1995 船用小型钢制滑轮(Ships small size steel blocks)26 JIS F 3430-1980 船用钢索卷筒(Ships wire reels)27 JIS B 2351-1990 25MPa(250Kgf/cm2)液压用卡套式管接头(25 MPa (250 kgf/cm2) bitetype tube fittings for hydraulic use)28 JIS F 2416-1982 船用灭火器(Ships flame arresters)29 JIS F 2106-1995 船用普通链条(Ships chains for general use)30 JIS Q 10006 ERRATUM 1-2003 JIS Q10006的技术勘误1(ERRA TUM)31 JIS A 1112 ERRATUM 1-2003 JIS A1112的技术勘误1(ERRATUM)32 JIS K 9032-1995 间苯二酚(RESORCINOL)33 JIS T 5601-1993 牙科操作用椅(DENTAL OPERATORS STOOL)1(ERRATUM)的技术勘误TUM 1-2003 JIS C2805JIS C 2805 ERRA3435 JIS A 5422 ERRATUM 1-2003 勘误1((Erratum 1))36 JIS L 0216-1990 羽毛术语集(Glossary of terms used in feathers)37 JIS S 6037-2000 划线笔(Marking pens)38 JIS C 0364-4-41 AMD 2-2002 建筑物的电气装置第4部分:安全防护41章:电冲击防护(修改2)(Electrical installations of buildings -- Part 4: Protection for safety -- Chapter 41: Protection against electric shock (Amendment 2))39 JIS K 2541-1996 原油和石油产品硫含量的测定(Crude oil and petroleum products --Determination of sulfur content)40 JIS R 3418-1991 窗扉和帷幔用玻璃纤维布窗帘(Textile glass fabric curtains for casementand drapery)41 JIS R 5203-1995 水泥的水合热的测试方法(Testing method for heat of hydration of cement)42 JIS Z 8809 ERRATUM 1-2000 校准粘度计用标准液(勘误1)(Standard liquids forcalibrating viscometers (Erratum 1))43 JIS B 9658-1990 精米机械安全及设计卫生标准(Design rules for safety and sanitation ofrice milling machinery)44 JIS B 4142-2002 金刚石/CBN制品安全要求(Diamond/CBN products -- Safety requirements)45 JIS M 8231-1982 锰矿石中化合水含量的测定方法(Methods for determination ofcombined water in manganese ores)46 JIS T 5420-2000 牙周刮器Gr型(Periodontal curettes -- Gr-type)47 JIS T 6116-2000 牙科铸造用金合金(Dental casting gold alloys)48 JIS M 8213-1995 铁矿石酸溶铁(II)含量测定方法(Iron ores -- Method for determination of acid soluble iron (II) content)49 JIS L 2510 ERRATUM 1-2000 尼龙缝纫线(勘误1)(Nylon sewing thread (Erratum 1))50 JIS Z 1703-1976 聚乙烯瓶(Polyethylene bottles)51 JIS R 1632-1998 精细陶瓷静态挠曲疲劳的试验方法(Test methods for static bendingfatigue of fine ceramics)52 JIS P 5102-1992 打字机用复写纸(Stencil paper for typewriter)53 JIS K 2280-1996 石油产品燃料辛烷值、十六烷值的测定和十六烷系数的计算方法(Petroleum products -- Fuels -- Determination of octane number cetane number and calculation ofcetane index)54 JIS T 1190-1987 重心稳定性测定仪(Stabilometers)55 JIS Z 0650-1995 成组货件系统的通用规则(GENERAL RULES FOR UNIT-LOAD SYSTEM)56 JIS Z 1624-1994 国际贸易用罐式液体和气体集装箱(Tank containers for liquids and gasesfor international trade)57 JIS S 5506-1994 办公用卷宗(文件夹和导卡)(Office files (Folder and guide))58 JIS Z 6000-1996 显微学词汇(Micrographics -- V ocabulary)59 JIS Z 4921-1994 X射线管电压测定器(Measuring devices for X-ray tube voltage)60 JIS Z 4819-1995 辐射屏蔽垫(Radiation shielding mats)61 JIS K 5101-1-4-2004 颜料试验方法第1部分:分散特性评估的分散方法第4节:钢珠研磨机(Test methods for pigments -- Part 1: Methods of dispersion for assessment of dispersion characteristics -- Section 4: A bead mill)(Diesel fuel)柴油燃料JIS K 2204-1997 6263 JIS C 0447-1997 人机界面(MMI)驱动原理(Man-machine interface (MMI) -- Actuating principles)64 JIS K 7154-1-2002 塑料热固性粉末模塑复合物(PMCs)试样的注射模塑成形第1部分:一般原则和多用途试样的模塑成形(Plastics -- Injection moulding of test specimens ofthermosetting powder moulding compounds (PMCs) -- Part 1: General principles and moulding of multipurpose test specimens)65 JIS T 1453-1998 高频外科手术(High frequency surgical equipment)66 JIS Z 8202-3-2000 量值和单位第3部分:力学(Quantities and units -- Part 3: Mechanics)67 JIS K 3363-1990 合成洗涤剂生物降解度的试验方法(Testing method for biodegradabilityof synthetic detergent)68 JIS Q 14010-1996 环境审核指南总原则(Guidelines for environmental auditing -- General principles)69 JIS K 8968-1980 硫酸钴(二价)七水化合物(Cobalt(ii) sulfate heptahydrate)70 JIS B 7432-1985 角度标准用多面镜(Optical polygons for angle standards)71 JIS A 5525-1994 钢管桩(Steel pipe piles)72 JIS Z 2342-2003 压力试验过程中压力容器的声波发射试验方法和试验结果的分类(Methods for acoustic emission testing of pressure vessels during pressure tests and classificationof test results)73 JIS C 1010-1-1998 测量、控制和实验室用电气设备的安全要求第1部分:一般要求(Safety requirements for electrical equipment for measurement control and laboratory use -- Part 1: General requirements)74 JIS Q 9004 ERRATUM 2-2001 质量管理体系性能提高导则(勘误2)(Quality management systems -- Guidelines for performance improvements (Erratum 2))75 JIS R 7603-1999 碳纤维密度测定(Carbon fiber -- Determination of density)76 JIS A 1104-1999 集料的单容重和集料实积率的测定方法(Methods of test for bulk densityof aggregates and solid content in aggregates)77 JIS Z 8719 ERRATUM 1-2000 条件配色指数发光物颜色改变的条件配色度评价方法(勘误1)(Metamerism index -- Evaluation method of degree of metamerism for change in illuminant (Erratum 1))78 JIS C 6183-1992 纤维光学波谱分析仪的试验方法(Test methods of fiber-optic spectrum analyzer)79 JIS C 0364-4-473-1999 建筑物的电气安装第4部分:安全防护第47章:安全防护测量的应用第473节:过电流防护测量(Electrical installations of buildings Part 4: Protection for safety Chapter 47: Application of protective measures for safety Section 473: Measures of protection against overcurrent)80 JIS R 3203-1999 压花玻璃(Patterned glass)81 JIS B 7755-1993 金属材料用冲击试验机械装置(Impact testing machines for metallic materials -- Instrumentation)82 JIS A 5451-1995 石棉衬板(Rock wool sheathing boards)83 JIS A 6602-1996 联排式房屋用金属屋顶组件(Metal roof components for terrace)84 JIS K 5600-5-4 ERRATUM 2-2002 涂料试验方法第5部分:膜的机械特性第4节:刮擦硬度(铅笔法)(勘误1)(Testing methods for paints -- Part 5: Mechanical property of film -- Section 4: Scratch hardness (Pencil method) (Erratum 2)))(Building components (Steel panel for roof))钢制屋顶装配板(建筑构件JIS A 6510-1994 8586 JIS A 8421-2-1998 土方机械装载机第2部分:规范的标准格式和试验方法(Earth-moving machinery -- Loaders -- Part 2: Standard form of specifications and testing methods)87 JIS F 7231-2003 造船钢制管形起动用压缩空气储罐(Shipbuilding -- Steel tube starting air reservoirs)88 JIS B 8279-2003 压力容器罩(Jacket for pressure vessels)89 JIS R 3416-2003 成品纺织玻璃纤维织物(Finished textile glass fabrics)90 JIS R 3422-1995 织物加工玻璃带(Textile finished glass tapes)91 JIS X 5802-1994 信息技术报文通信信息定向型文本交换系统(MOTIS)第2部分:整体结构(Information technology -- Text Communication -- Message -- Oriented Text Interchange Systems (MOTIS) -- Part 2: Overall Architecture)92 JIS C 5610-1996 集成电路术语汇编(Glossary of terms used in integrated circuits)93 JIS K 5101-11-2-2004 颜料试验方法第11部分:密度第2节:离心脱气法(Test methods for pigments -- Part 11:Density -- Section 2: Centrifugal degassing method)94 JIS Z 6001 ERRATUM 1-2000 缩微照相透明A6型缩微胶片图像排列(勘误1)(Micrographics -- Transparent A6 microfiche -- Image arrangements (Erratum 1))95 JIS H 4040 ERRATUM 2-2000 铝和铝合金杆材、棒材、丝材(勘误2)(Aluminium and aluminium alloy rods bars and wires(Erratum 2))96 JIS C 0031-1995 环境试验第2部分:试验试验Z/BM:干热、低压复合试验方法(Environmental testing Part 2: Tests test Z/BM: Combined dry heat/low air pressure tests)97 JIS K 6347-3-2003 液化石油气用橡胶软管第3部分:分配软管及软管组合件规范(Rubber hoses for liquefied petroleum gases (LPGs) -- Part 3: Dispensing hoses and hose assemblies --Specification)98 JIS C 5101-18-1999 电子设备用固定电容器第18部分:分规范:用固体(MnO2)和非固体作为电解质的固定式铝电解质片层电容器(Fixed capacitors for use in electronic equipment Part 18: Sectional specification: Fixed aluminium electrolytic chip capacitors with solid (MnO2) andnon-solid electrolyte)99 JIS C 0035-1996 环境试验第2部分:试验方法试验Z//ABDM:气候序列(Environmental testing Part 2: Test methods Test Z/ABDM: Climatic sequence)100 JIS C 8953-1993 光伏特性排列I-V的现场测量(On-site measurements of photovoltaicarray I-V characteristics)序号标准号标准名称1 JIS S 6007-2001 黑板(Chalkboards)2 JIS C 0061-2000 火焰危害试验第2部分:试验方法第2节:针焰(喷射燃烧器)试验(Fire hazard testing -- Part 2: Test methods -- Section 2 --Needle-flame test)3 JIS K0107-2002 废气中氯化氢含量的测定方法(Methods for determination of hydrogen chloride in flue gas)4 JIS B 8656-2002 比例电动液压旁通流量控制阀试验方法(Test methods forelectro-hydraulic proportional bypass flow control valves)5 JIS B 0135-1993 起重机术语分类(GLOSSARY OF TERMS RELATING TO CRANES -KINDS OF CRANES)6 JIS B 8623-2002 冷凝机组的试验方法(Testing methods of refrigerant condensing units) polyethylenefor methods (Testing 金属表面的聚乙烯薄膜的试验方法6766-1977 K JIS 7coatings on metals)8 JIS K 0115-1992 分子吸收光度分析方法通则(General rules for molecular absorptiometric analysis)9 JIS T 7324-1989 医疗用小型高压蒸汽灭菌器(High-pressure steam sterilizers for medicaluse (small size))10 JIS Z 4701-1997 医用X射线装置通则(General rules for medical X-ray equipment)11 JIS B 0176-3-2002 螺纹加工刀词汇第3部分:槽(Threading tools -- V ocabulary Part 3: Chaser)12 JIS G 3352-2003 冷弯波纹钢板(Steel Decks)13 JIS B 7222-1991 16mm电影胶片的卷取装置及影片盘用轴尺寸(Spindles for 16 mmmotion picture film spools and reels -- Dimensions)14 JIS L 1018 ERRATUM 1-2001 针织物试验方法(勘误1)(Test methods for knitted fabrics (Erratum 1))15 JIS C 3662-6-2003 额定电压450/750V及以下的聚氯乙烯绝缘电缆第6部分:电梯电缆和软连接用电缆(Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V -- Part 6: Lift cables and cables for flexible connections)16 JIS B 7110-1993 照相摄影中用玻璃滤色镜通用规范(Photographic glass filters -- General requirement)17 JIS B 7164-1997 16mm电影放映机(16 mm motion-picture projectors)18 JIS A 1129-1993 灰浆和混凝土长度变化的试验方法(Methods of test for length change of mortar and concrete)19 JIS A 1226-2000 土壤灼烧损伤的试验方法(Test method for ignition loss of soils)20 JIS B 1091-2003 紧固件验收检验(Fasteners -- Acceptance inspection)21 JIS Z 8750-1994 真空计校准方法(Methods of calibration for vacuum gauges)22 JIS M 7653-1996 便携式可燃气检测器(Portable type combustible gas detector)23 JIS X 4350-3-2003 信息技术JPEG 2000图像编码系统第3部分:移动JPEG2000(Information technology -- JPEG 2000 Image coding system -- Part 3: Motion JPEG 2000)24 JIS M 7650-1993 测长式一氧化碳探测器(Detector tube type carbon monoxide measuring instruments (Length-of-stain))25 JIS M 8701-1996 铁矿石手工取样方法(Iron ores -- Increment sampling -- Manual method)26 JIS Z 7302-4 ERRATUM 1-2000 来自于密化垃圾的燃料第4部分:灰分的测试方法(勘误1)(Densified refuse derived fuel -- Part 4: Test method for ash (Erratum 1))27 JIS A 8306-1990 土方机械工作部件移动时间的测量方法(Earth-moving machinery -- Test method for measurement of tool movement time)28 JIS A 1455-2002 地板覆盖物和已安装地板的抗静电效果测量和评价方法(Anti-staticeffect of floor coverings and installed floors -- Methods of measurement and evaluation)29 JIS B 7725-1997 维氏硬度试验试验机的验证(Vickershardness test -- Verification oftesting machines)30 JIS B 7410-1997 石油产品试验用玻璃温度计(Liquid-in-glass thermometers for testing of petroleum products)31 JIS C 3005 ERRATUM 1-2001 橡胶或塑料绝缘线及电缆的试验方法(勘误1)(Testmethods for rubber or plastic insulated wires and cables (Erratum 1))32 JIS K 5600-2-4-1999 涂料试验方法第2部分:涂料的特性和稳定性第4节:密度(Testing methods for paints -- Part 2: Characteristics and stability of paints -- Section 4: Density)33 JIS Z 3420-2003 金属材料焊接过程的规范及认可总则(Specification and approval of welding procedures for metallic materials -- General rules)34 JIS K 6890-1995 聚四氟乙烯管材(POLYTETRAFLUOROETHYLENE TUBES)35 JIS A 5361 ERRATUM 1-2000 预制混凝土制品分类、命名和标记的通用规则(勘误1)(Precast concrete products -- General rules for classification designation and marking (Erratum1))36 JIS L 1917-2000 由于织物表面硫的燃烧的试验方法(Testing method for burning due to surface flash of textiles)37 JIS C 8280-2003 爱迪生螺口灯座(Edison screw lampholders)38 JIS K 7557-1996 X射线用测辐射胶片(Badge films for X-rays)39 JIS K 5600-4-2-1999 涂料试验方法第4部分:膜的视觉特性第2节:遮盖力(深色涂料用)(T esting methods for paints -- Part 4: Visual characteristics of film -- Section 2: Hiding power(for dark-coloured paints))40 JIS K 5600-1-1-1999 涂料的试验方法第1部分:一般规则第1节:一般试验方法(调合和方法) (Testing methods for paints -- Part 1: General rule -- Section 1: General test methods(conditions and methods))41 JIS Z 8102 ERRATUM 1-2002 不发光体颜色的名字(勘误1)(Names of non-luminousobject colours (Erratum 1))42 JIS K 7244-6-1999 塑料动态力学性能的测定第6部分:剪力振动非共振法(Plastics --Determination of dynamic mechanical properties -- Part 6: Shear vibration -- Non-resonance method)43 JIS S 0012-2000 包括老年人和残疾人在内的人群指南消费产品的可用性(Guidelines forall people including elderly and people with disabilities -- Usability of consumer products)44 JIS K 5633-2002 浸蚀性底漆(Etching primer)45 JIS K 7384-2002 塑料试验用聚氯乙烯(PVC)糊状物的制备行星式混合器法(Plastics --Preparation of PVC pastes for test purposes -- Planetary-mixer method)46 JIS B 0001 ERRATUM 1-2000 机械工程技术制图(勘误1)(Technical drawings for Mechanical Engineering (Erratum 1))47 JIS K 4126-1995 苯甲醛(Benzaldehyde)48 JIS K1201-2-2000 工业用碳酸钠第2部分:250℃时非挥发性物质质量损失的测定(Sodium carbonate for industrial use -- Part 2: Determination of loss of mass and of non-volatilematter at 250 degree C)49 JIS A 5537 ERRATUM 1-2003 JIS A5537的技术勘误1(JIS A 5537:2003/Erratum)50 JIS K 4135-1995 7-氨基-4-羟基-2-萘磺酸(J-酸) (7-Amino-4-hydroxy-2-naphthalene sulfonic acid (j-acid))51 JIS T 1117-1988 长时间心电图携带式记录装置(电量心电仪)(Ambulatory ECG recording system (holter system))52 JIS D 5712-1973 汽车警报蜂鸣器(Warning buzzers for automobiles)53 JIS K 5600-4-4-1999 涂料试验方法:第4部分:膜的视觉特性第4节:比色法(原理)(Testing methods for paints -- Part 4: Visual characteristics of film -- Section 4: Colorimetry (Principles))54 JIS K 0142-2000 表面化学分析信息格式(Surface chemical analysis -- Information formats)55 JIS L 0868-1995 耐甲醛色牢度试验方法(Test method for colour fastness to formaldehyde)56 JIS M 8100-1992 松散物料取样方法通则(Particulate materials -- General rules for methodsof sampling)57 JIS D 0111-1992 与汽车悬挂装置有关的术语汇编(Glossary of terms relating to suspensionof automobiles)58 JIS B 9514-2002 记时器性能检验方法(Test methods for time recorders)59 JIS Z 4808-2002 操作放射性物质的手套箱(Glove box for handling of radioactive substance)60 JIS H 1067-2002 铜中氧含量的测定方法(Methods for determination of oxygen in copper)61 JIS K 1501-1993 甲醇(Methanol)62 JIS K 5600-3-6-1999 涂料试验方法第3部分:成膜性第6节:涂料弗里试验(Testing methods for paints -- Part 3: Film formability -- Section 6: Print free test)63 JIS K 7139-1996 塑料多用途试样(Plastics -- Multipurpose test specimens)64 JIS S 5002-1995 粗帆布靴和鞋(Canvas boots and shoes)65 JIS B 6157-1993 永磁卡盘(PERMANENT MAGNETIC CHUCKS)66 JIS C 3006 ERRATUM 1-2001 纤维或纸绝缘线的试验方法(勘误1)(Methods of test for fiber or paper insulated wires (Erratum 1))67 JIS K 5552-2002 富锌底漆(Zinc rich primer)68 JIS K 5101-1991 颜料试验方法(Methods of test for pigments)69 JIS C 8432-1999 非塑化聚氯乙烯(PVC-U)导管配件(Fittings of unplasticized polyvinyl chloride (PVC-U) conduits)70 JIS G 7125-2003 机械加工用空心钢棒(ISO规范)(Hollow steel bars for machining (ISO specifications))71 JIS A 1112-2003 新浇混凝土的冲洗分析试验方法(Method of test for washing analysis of fresh concrete)72 JIS X 0811 ERRATUM 1-2002 GEDI通用电子文献交换(勘误1)(GEDI -- Generic Electronic Document Interchange (Erratum 1))73 JIS K 7081-1993 碳纤维增强塑料暴露在自然气候下的试验方法(Testing method for exposure to natural weathering of carbon fibre reinforced plastic)74 JIS K 7240-1999 塑料酚-甲醛模塑游离酚的测定碘量法(Plastics -- Phenol-formaldehyde mouldings -- Determination of free phenols -- Iodometric method)75 JIS L 0212-2-1999 织物术语汇编(不包括衣物)第2部分:室内装饰品(Glossary of textile terms (except clothes) -- Part 2: Textile interior products)76 JIS K 2536-5-2003 液态石油产品成分的测试方法第5部分:用气相色谱法测定氧化物含量(Liquid petroleum products -- Testing method of components Part 5: Determination ofoxygenate compounds by gas chromatography)77 JIS K 5628-2002 铅丹铬酸锌防腐涂料(Red-lead zinc chromate anticorrosive paint)78 JIS Z3198-4-2003 无铅焊剂的试验方法第4部分:用湿平衡法和接触角法测试钎焊性的试验方法(Test methods for lead-free solders -- Part 4: Methods for solderbility test by a wetting balance method and a contact angle method)79 JIS B 2704 ERRATUM 1-2001 螺旋压缩与拉伸弹簧设计要求和性能试验方法(勘误。

海尔 NoFrost 底冻冰箱 KGN36NLEA 产品说明书

海尔 NoFrost 底冻冰箱 KGN36NLEA 产品说明书

Series 2, free-standing fridge-freezer with freezer at bottom, 186 x 60 cm, Stainless steel lookKGN36NLEA The NoFrost bottomfreezer with MultiBox: Has enough room for all your food• Perfect Fit: place your fridge right next to walls or in a niche.• LED interior light: Illuminates the refrigerator evenly and glare-free, and lasts for its entire life.Energy Efficiency Class (Regulation (EU) 2017/1369): .....................E Average annual energy consumption in kilowatt hour per year(kWh/a) (EU) 2017/1369: ..........................................239 kWh/annum Sum of volume of frozen compartments (EU 2017/1369): ............89 l Sum of volume of chill- and unfrozen compartments (EU 2017/1369): ....................................................................................................216 l Airborne acoustical noise emissions (EU 2017/1369): .42 dB(A) re 1 pWAirborne acoustical noise emission class (EU 2017/1369): ..............D Built-in / Free-standing: .................................................Free-standing Number of compressors: . (1)Number of independent cooling systems: (1)Width of the appliance: ..........................................................600 mm Height: .................................................................................1860 mm Depth of the product: ............................................................660 mm Net weight: ..............................................................................60.5 kg Door panel options: ........................................................Not possible Door hinge: ................................................................Right reversible Number of Adjustable Shelves in fridge compartment: (3)Shelves for Bottles: ........................................................................No Frost free system: ...................................................................Freezer Interior ventilator: ..........................................................................No Reversible Door Hinge: ..................................................................Yes Length electrical supply cord: ..............................................240.0 cm Noise level: ..............................................................42 dB(A) re 1 pW Multi-Flow Air Tower: ....................................................................Yes Fast cooling switch: ........................................................................No Fast freezing switch: ......................................................................Yes Temperature Controlled Drawer: ....................................................No Humidity Control Drawer: ...............................................................No Number of Door Bins - Refrigerator: .. (4)Door bin adjustability - Refrigerator: ..............................................No Tilt-out door bins in fridge: .............................................................No Gallon wide door bins: ..................................................................Yes Number of Gallon storage: . (1)Motorized Shelf: .............................................................................No Material ofthe shelves: .....................................................Safety glass Door opened indicator freezer: .......................................................No Automatic motor-driven ice-maker: .................................................No Connection rating: ....................................................................100 W Fuse protection: ...........................................................................10 A Voltage: ...............................................................................220-240 V Frequency: .................................................................................50 Hz Storage Period in Event of Power Failure (h): ..............................12 h Door panel options: ........................................................Not possible Noise level: ..............................................................42 dB(A) re 1 pW Energy Star Qualified: .....................................................................No Plug type: .......................................................Gardy plug w/ earthing Required cutout/niche size for installation (in): .. (x)Dimensions of the packed product: ..................75.70 x 25.74 x 30.31 Net weight: .......................................................................133.000 lbs Gross weight: ...................................................................148.000 lbsSeries 2, free-standing fridge-freezerwith freezer at bottom, 186 x 60 cm, Stainless steel lookKGN36NLEAThe NoFrost bottomfreezer with MultiBox: Has enough room for all your food Performance and consumptionDesign and Styling- Doors Stainless steel look, side panels Pearl grey (VZF 07127)- Integrated horizontal handle- LED with Soft Start in fridge sectionConvenience & Safety- NoFrost - never again defrosting!- LED electronic control- Super Freezing: manual activationFridge Compartment- Multi Airflow-System- 4 safety glass shelves of which 3 are height adjustable- 4 door binsFreshness System- MultiBox: transparent drawer with wave bottom, ideal for the storage of fruits and vegetablesFreezer Section- 3 freezer drawers, incl. 1 EasyAccess Freezer BoxDimensions- Dimensions ( H x W x D): 186.0 cm x 60.0 cm x 66.0 cmTechnical Information- Door right hinged, reversible- Height adjustable front feet- Connected load: 100 W- Nominal voltage: 220 - 240 VAccessories- 1 egg tray- Ice cube trayCountry Specific Options- Based on the results of the standard 24-hour test. Actual consumption depends on usage/position of the appliance.- To achieve the declared energy consumption, the attached distanceholders have to be used. As a result, the appliance depth increases by about 3.5 cm. The appliance used without the distance holder is fully functional, but has a slightly higher energy consumption.Environment and SafetyInstallationGeneral Information- Vario Zone - removable glass shelves for extra space- Super Cooling: No- Freezing possible in all freezer compartmentsSeries 2, free-standing fridge-freezer with freezer at bottom, 186 x 60 cm, Stainless steel lookKGN36NLEA。

新能源常用语中英文对照

新能源常用语中英文对照

新能源常用语中英文对照新能源常用语对照英文传统能源Conventional energy source可再生能源Renewable energy sources高能效技术Energy-efficient technology环境友好型Environmentally friendly可持续性发展Sustainable development生态平衡系统Balanced ecological system生物燃料Biofuel矿物燃料Fossil fuel绿色电力Green power温室气体Greenhouse gases (GHG)温室气体减排GHG emission reduction生态系统Ecosystem全球变暖Global warming京都议定书Kyoto Protocol风力发电场Wind power plant地热发电厂Geothermal power plant光伏发电Photovoltaic power generation水力发电Hydroelectric generation潮汐发电厂Tidal power station核电站Nuclear power plant垃圾电厂Refuse power plant国际固体废物协会International Solid Waste Association (ISWA)0.风力发电Wind Power Generation风力机、风轮机Wind turbine风力发电机Wind-driven generator风力发电机组Wind turbine generator system (WTGS) 风能发电机集群Wind farm风能利用率Utilization rate of wind energy风矢量Wind velocity海上风力发电场Offshore wind farm标准大气压Standard/normal atmospheric pressure 标准风速Standardized wind speed风场布置Wind farm layout风地图Wind atlas电力汇集系统(风力发电机组)Power collection system (for WTGS)电网连接点(风力发电机组)Network connection point ( for WTGS) 电网阻抗相角Network impedance phase angle风力机端口Wind turbine terminal马格努斯效应式风力机Magnus effect type wind turbine风车Windmill风轮实度Rotor solidity风轮尾流Rotor wake风轮偏侧式调速机构Regulating mechanism of turning wind rotor out of the wind sideward尾翼Tail fins顺桨Feathering桨距角Pitch angle节圆Pitch circle, nodal circle节点Pitch point, nodal point变速箱Gearbox旋转采样风矢量Rotationally sampled wind velocity 变速风力发电机Variable speed wind turbine变桨距调节机构Regulating mechanism by adjusting the pitch of blade定桨距失速调节型Constant pitch stall regulated type 变桨距调节型Variable pitch regulated type主动失速调节型Active stall regulated type双馈型风力发电机Double-fed wind turbine generator永磁直驱风力发电机Permanent magnetic direct-driven wind turbine generator恒速恒频Constant speed and frequency变速恒频Variable speed constant frequency 节距角Pitch angle叶尖速比Tip speed ratio叶轮Blade整流罩Spinner, nose cone叶片数Number of blades叶片安装角Blade angle, setting angle of blade 齿数Number of teeth齿市Tooth depth齿面Tooth flank工作齿面Work flank齿槽Tooth space齿根圆Root circle齿顶圆Tip circle柱销套Roller叶根Blade root蜗轮Worm wheel叶片展弦比Aspect ratio叶片根梢比Ratio of tip section chord to root section chord等截面叶片Constant chord blade变截面叶片Variable chord blade叶片扭角Twist of blade增强型玻璃钢翼型叶片Enhanced GRP/FRP airfoil blade叶片几何攻角Angle of attack of blade叶片投影面积Projected area of blade瑞利分布Rayleigh distribution威布尔分布Weibull distribution平均几何弦长Mean geometric chord of airfoil机械寿命Mechanical endurance啮合干涉Meshing interference比恩法Method of bins滑块联接Oldham coupling前缘Leading edge弯度Degree of curvature弯度函数Curvature function of airfoil弯曲刚度Flexural rigidity升力系数Lift coefficient背风Leeward软并网Soft cut-in自动/人工解缆Automatic /manual cable untwisting 停车机构Halt gear风电场Wind farm, wind field, wind power station 风力气象站Wind synoptic station气流Wind stream, airflow气流畸变Flow distortion颤振Flutter外部动力源External power source外推功率曲线Extrapolated power curve自由流风速Free stream wind speed风气候Wind climate风玫瑰图、风向图Wind rose风系、风况Wind regime横向风Cross wind风能潜势Wind energy potential风能密度Wind energy density风功率密度Wind power density风能利用率Utilization rate of wind energy 风资源评估Wind resource assessment启动风速Start-up wind speed切入风速Cut-in wind speed切出风速Cut-out wind speed短时切出风速Short term cut-out wind speed 极端风速Extreme wind speed额定风速Rated wind velocity距离常数Distance constant位移幅值Displacement amplitude对数风切变律Logarithmic wind shear law风廓线风切变律Wind profile wind shear law 对数变幂律Power low for wind shear声的基准风速Acoustic reference wind speed 视在声功率级Apparent sound power level 衰减Attenuation齿啮式联接Dynamic coupling齿宽Face width, tooth width齿廓修形Profile modification齿向修形Axial modification径向销联接Radial pin coupling支撑结构Support structure下风向Downwind direction上风向Upwind direction指向性Directivity (for WTGS)风轮扫掠面积Rotor swept area风剪切Wind shear塔影效应Tower-shadow effect三维旋转效应Three-dimensional (3-D) rotational effect非定常空气动力特征Unsteady aerodynamic characteristic风切变影响Influence by the wind shear风切变指数Wind shear exponent大风安全保护Security protection against gale (strong wind) 迎风机构Orientation mechanism, windward rudder风速表、风速计Anemometer,anemograph风速测定站Anemometry station安全风速Survival wind speed极端风速Extreme wind speed参考风速Reference wind speed水平轴风力机Horizontal axis wind turbine垂直轴风力机Vertical axis wind turbine翼型族The family of airfoil可变几何翼型风力机Variable geometry type wind turbine文丘里管式风力机Venturi tube wind turbine风机控制器Controller for wind turbine全永磁悬浮风力发电机All-permanent magnet suspension wind power generator风场电气设备Site electrical facilities湍流强度、扰动强度、紊流强度Turbulence intensity湍流尺度参数Turbulence scale parameter湍流惯性负区Inertial sub range环境温度Ambient temperature空气动力学Aerodynamics空气制动系统Air braking system室内气候Indoor climate透气性Air permeability防滴Protected against dropping water防溅Protected against splashing防浸水Protected against the effect of immersion 风轮空气动力特性Aerodynamic characteristics of rotor基准粗糙长度Reference roughness length容量可信度Capacity confidence level光电器件Photoelectric device太阳轮Sun gear内齿圈Annulus gear,ring gear内齿轮副Internal gear pair圆柱齿轮Cylindrical gear人字齿轮Double helical gear柔性齿轮Flexible gear刚性齿轮Rigid gear从动齿轮Driven gear主动齿轮Driving gear变位齿轮Gear with addendum modification 小齿轮Pinion大齿轮Gearwheel, main gear行星齿轮Planet gear单级行星齿轮系Single planetary gear train多级行星齿轮系Multiple stage planetary gear train 行星齿轮传动机构Planetary gear drive mechanism 增速齿轮副Speed increasing gear pair非工作齿轮Non working flank齿轮扳手Ratcher spanner柔性滚动试验Flexible rolling bearing空载最大加速度Maximum bare table acceleration 过载度Ratio of overload风力机最大功率Maximum power of wind turbine 最大转速Maximum rotational speed最大系数Maximum torque coefficient风轮最高转速Maximum turning speed of rotor 风轮仰角Angle of rotor shaft空转Idling锁定blocking停机Parking静止Standstill尾迹损失Wake loss轮毂高度Hub height变桨系统Pitch system变桨调节Pitch regulation活动桨Active pitch调向系统Yaw system静音离网型Silent off-network主动偏航Active yawing被动偏航Passive yawing风轮偏航角Yawing angle of rotor shaft气动弦线Aerodynamic chord of airfoil轴向齿距Axial pitch球头挂环Ball eye球头挂钩Ball hook可调钳Adjustable pliers联板Yoke plate接闪器Air termination system发动机舱Engine nacelle微观选址Micro-siting集网风能Central-grid wind energy孤网风能Isolated-grid wind energy 离网风能Off-grid wind energy风柴混合互补系统Wind-diesel hybrid system 潜伏故障Latent fault, dormant failure 严重故障Catastrophic failure使用极限状态Serviceability limit state最大极限状态Ultimate limit state。

基于声发射技术的再生混凝土梁受弯过程的损伤特性研究

基于声发射技术的再生混凝土梁受弯过程的损伤特性研究

理论研究THEORETICAL RESEARCH2020年第8期(总第370期)Number 3 in 2020(Total No.370)混 凝 土Concretedoi :10.3969/j.issn.l002-3550.2020.08.007基于声发射技术的再生混凝土梁受弯过程的损伤特性研究于江,吕旭滨,秦拥军,姜思凡(新疆大学建筑学院, 疆乌鲁木齐830047)摘 要:基于声发射技术对不同再生粗骨料取代率的再生混凝土梁进行四点加载试验,根据试验中所得到的声发射事件数、声发、发等 建立再生混凝土的 ,基 建的 发再生混凝土的 ,一步的 再生混凝土梁受弯破坏的 ™ 表明:再生混凝土的发普通混凝土 趋势相似,再生混凝土的极限承 随着再生料 的增加呈先增大后减小的现象;再生混凝土发效的反映混凝土的,随着再生 料的增大,发前期 积累过 中越大,的 变量D 先减小后增大;基 AE 的,建立再生混凝土声发演化 ,可 好的表征再生混凝土破坏的 演化规律™关键词:再生混凝土; 发; ;损伤模型中图分类号:TU528.01文献标志码:A 文章编号:1002-3550(2020)08-0027-05Acoustic emission characteristics of recycled concrete beams with different substitution rates during bendingYU Jiang, LU Xubin, QIN Yongjun, JIANG SifDn(School of Civil Engineering and Architecture , Xinjiang University , Urumqi 830047, China )Abstract : In order to study the damage characteristics of recycled concrete beams , four-point bending tests were carried out on recycledconcrete beams with different replacement rates of recycled aggregates based on acoustic emission technology.The damage model of therecycled concrete beam was established by the parameters of the number of acoustic emission events , the acoustic emission energy releasevalue , the cumulative number of acoustic emission events and the cumulative energy release value obtained in the experiment.The acousticemission parameters and the recycled concrete beam damage were explained based on the damage model.The results show that the AE characteristics of recycled concrete were similar to the general trend of ordinary concrete.The ultimate load of recycled concrete increasedfirst and then decreased with the increase of the replacement rate of recycled coarse aggregate.The acoustic emission characteristics ofrecycled concrete effectively reflect the damage degree of concrete.With the increased of the replacement rate of regenerated coarseaggregate , the number of acoustic emission events and the release of energy in the process of pre-injury accumulation were larger.Thedamage variable D of the beam was first reduced and then increased.Based on the relationship between the number of AE cumulativeevents and the stress , the acoustic emission damage of recycled concrete is established.The evolution model can better characterize the damage evolution of recycled concrete beams subjected to bending failure.Ke, -or/s : recycled concrete ; acoustic emission ; substitution rate ; damage model0引言随着社会经济的迅速发展,自然资源愈加贫乏,世界各国逐渐把重心从对自然资源的开采转移到对自然资 源的保护,另一方面经济的飞速发展导致社会基础建设 对材料的需求逐步扩大,这时众多学者将目光转移到废弃建筑材料的二次利用上来,再生混凝土也因运而生,再 生混凝土是通过将废弃建筑中的建筑原材料经破碎、筛选、加工二次 重 用 混凝土 料, 一的 石等天然骨料,然加入水、水泥等制成的混凝土叫再生混凝土一经世 众多学者对,多 来经 众多 。

1-s2.0-S0266353800000609-main

1-s2.0-S0266353800000609-main

Acoustic emission characteristics of micro-failure processes inpolymer blends and compositesJ.Bohse *BAM-Federal Institute for Materials Research and Testing,Unter den Eichen 87,12200Berlin,GermanyReceived 12August 1999;received in revised form 20January 2000;accepted 1March 2000AbstractAcoustic emission (AE)characteristics of micro-failure processes in HDPE/PP blends with and without compatibilizer,single-®bre composites (glass/epoxy,carbon/epoxy,glass/polycarbonate)and unidirectionally reinforced multi-®bre composites (glass/polypropylene)were studied.For blends,the number and the elastic fracture energy release of micro-failure processes are theore-tically approximated and correlated with the number of AE signals and the AE energy.A qualitative correlation of the mechanical energy released from ®bre/matrix debonding and ®bre-fracture processes in single-®bre pull-out experiments with the measured AE energy is demonstrated.For the single-®bre fragmentation of glass ®bres and carbon ®bres,a quantitative approximation of the AE amplitudes at locations of the fragmentation sources is achieved.A new method for the selection of single transient acoustic emis-sions and the classi®cation of failure mechanisms in composites is introduced.Selected emissions are classi®ed into matrix cracking,®bre breakage and interface processes (®bre/matrix debonding or ®bre pull-out)from their total power in de®ned frequency inter-vals of the spectral power density.A fracture-mechanics investigation of the delamination behaviour of unidirectional composites accompanied by AE examinations is discussed.The extension of the damage zone around the crack tip is quanti®ed by the location of AE events and compared with the theoretically approximated dimensions.The size of the damage zone is used for theoretical calculations of the mechanical energy release from micro-failure processes.A correlation of the AE energy-release rates with the mechanical energy-release rates from participated failure mechanisms like matrix cacking,®bre/matrix debonding and ®bre break-age is presented.#2000Elsevier Science Ltd.All rights reserved.Keywords:A.Polymer blends;A.Polymer-matrix composites;B.Fracture toughness;C.Delamination;D.Acoustic emission1.IntroductionThe knowledge of the damage behaviour and the transition of damage from a subcritical stage to a cri-tical stage is of considerable interest in materials devel-opment and application.The examination of acoustic emissions (AE)is a very successful tool for the sensitive detection and location of active damages in polymer blends,particle-®lled and ®bre-reinforced polymer composites [1±3].The AE measurement is based on the detection of surface movements caused by stress waves of the fracture processes on a microscopic scale.The interpretation of the signals and,hence,the evaluation of the damage stages is a major problem of the AE method.There is some experience in the qualitative interpreting of correlations between conventional AE features likeamplitude distribution,counts,duration,etc.,and the true damage mechanisms as well as friction or noise [4,5].However,absolute values of all these features are changed by the wave travelling through the test speci-men in consequence of materials and geometric e ects like attenuation,dispersion,re¯ection,etc.Therefore,conventional AE features are often not su cient for the distinguishing of micro-failure mechanisms.Fibrilation processes at the mesoscopic level in con-sequence of the yield and high plastic deformation mainly determine the fracture-toughness behaviour of polymer blends.AE analysis can be used for the detec-tion of partial processes like interphase debonding and breaking of ®brils which release elastic stored energy at the moment of failure.Inter-®bre fracture,delamination growth and ®bre failure,as well as the stress or the stress-intensity levels at the initiation of the processes,are of special importance in composites.The damage behaviour of composite0266-3538/00/$-see front matter #2000Elsevier Science Ltd.All rights reserved.P I I:S 0266-3538(00)00060-9Composites Science and Technology 60(2000)1213±1226*Fax:+49-30-8104-1627.E-mail address:juergen.bohse@bam.dematerials essentially depends on the crack resistance of the matrix,on the debonding energy of the®bre/matrix interface and,in the end,on the delamination resistance of the composite layers.The aim of the DCB fracture-toughness test is to determine the interlaminar fracture energy to the initia-tion and propagation of a delamination in continuous and unidirectional®bre-reinforced composites under Mode I opening load[6].However,some problems con-cerned with the data measurements required for the calcu-lation of the fracture energies exist.For example,a visual determination of the initiation point of the delamination growth and of the exact delamination length is experi-mentally di cult[7]and leads to inaccurate calculation of the fracture toughness.Also,a realistic calculation of the toughness values on the basis of micro-mechanical dis-sipation mechanisms[8±10]needs information about the activated failure mechanisms and about the size of the damage zone near the delamination tip.AE monitoring o ers a solution to these experimental and theoretical problems by the characterization of the failure on microscopic scales,by classifying the mechanisms involved and by quantifying the extension of damage zones[11±14].2.Experimental2.1.BlendsTensile tests of blends from isotactic polypropylene (PP)and high-density polyethylene(HDPE)with and without addition of a compatibilizer were carried out with injection-moulded specimens.All specimens were u-notched(r 3mm)on both narrow sides(residual cross-sectional area4mmÂ4mm)and loaded at cross-head speed of100mm/min.Conventional features of the AE signals were determined using a one-channel AE system SEK3243(EADQ-FhG/Germany).AE mon-itoring was performed with a wideband transducer(type PAC WD)mounted near the notches.A preampli®er (PAC1220A)with a highpass®lter between20and1200 kHz(HP20)has been used.The gain was set to60dB and a®xed threshold of20mV was used.2.2.Single-®bre compositesModel specimens were used for the identi®cation of AE source mechanisms to create an acoustic emission reference pattern in tensile tests.This specimen with well de®ned source mechanisms(Fig.1)was made from pure epoxy(v-notched specimens)and from single glass®bre (d f=20m m)/epoxy or carbon®bre(d f=7m m)/epoxy specimens with simple unnotched plate geometries(55 mmÂ20mmÂ3mm).They were loaded with a cross-head speed of0.2mm/plete AE waveforms were recorded with a transient recorder PC-SCOPE T512(IMTEC/Germany).A wideband transducer PAC WD,a preampli®er PAC1220A with gain60dB and ®lter HP100(100±1200kHz),a®xed threshold of100 mV and a sampling frequency of5MHz were used. 2.3.Multi-®bre compositesTensile tests for the inter-®bre and®bre failure ana-lysis on glass-®bre/polypropylene(GF/PP)laminates (see DCB specimen below)were done at a cross-head speed of2mm/min with a three-channel MISTRAS 2001system(PAC/USA)in a linear location set-up. Three wideband transducer PAC WD,preampli®er PAC1220A with gain40dB and®lter HP20,a®xed threshold of40dB and a transient waveform recording with a sampling frequency of8MHz were used. Fracture mechanics tests on double cantilever beam (DCB)specimens with total length l 120mm,width B 20mm,total thickness2h 4mm and an initial delamination length a0=30mm were performed to measure the critical energy-release rate under Mode I crack opening load.Piano hinges were used as load introduction with a cross-head speed of2mm/min. Initial cracks were produced by a diamond sawblade. Fig.1.Tests and specimens for the identi®cation of AE source mechanisms in(a)model materials and(b)composites.1214J.Bohse/Composites Science and Technology60(2000)1213±1226The delamination growth was measured visually on one edge of the specimen as well as by the located AE sour-ces.Two series of unidirectional continuous reinforced glass-®bre/polypropylene(GF/PP)laminates(0 lay-up) produced by Borealis AG Linz/Austria with®bre volume of20%,®bre diameter of about20m m and varied®bre/matrix adhesion by physical(matrix PP4) or chemical(matrix PP5)coupling with di erent agents were investigated.A two-channel MISTRAS2001sys-tem was used for the determination of AE events(AE sources)in a linear location set-up during DCB tests. AE signals were monitored by two wideband transducer (PAC WD)with a distance of75mm,preampli®er (PAC1220A)with gain40dB and®lter HP20,a®xed threshold of40dB and a transient waveform recording with a sampling frequency of4MHz.3.Results and discussion3.1.Fibrilation behaviour of HDPE/PP blendsOne aim of blending di erent thermoplastics is to improve the impact toughness.The AE analysis was performed to discover the mechanisms causing the increased toughness in this multiphase material[15]. Pure PP emitts only few AE signals under the choosen test conditions[Fig.2(a)].The fracture occurs shortly after the macroscopic yield initiation.Blends,however, show a high AE activity beyond the yield point and the ultimate fracture takes place after a high yield defor-mation[Fig.2(b)].From scanning electron microscopy(SEM)images,a strong change in the®brilation process was observed. The number and energy of interphase debonding pro-cesses and breaks of®brils strongly increase with the increased number of small PE inclusions in the PP matrix (0 i40X6)and additionally by the use of the compati-bilizer.The rupture strain of this PE type is lower than for the PP type used.Therefore,debonding e ects and the failure of®brils are only related to the PE®brils.In the assumption that all debonding and fracture pro-cesses generate AE waves,the number of AE signalsN ei should correlate with the speci®c interphase surface of PE particles A spe X int according to Eq.(1):N ei$A spe Áint 6Á0 id iIwith volume of PE inclusions0 i(40.6)and particle diameter d i which depends on the presence of the com-patibilizer.The mean particle diameter for blends with compatibilizer is about1.7times smaller.Fig.3shows this relationship for both blend systems.The theoreti-cally approximated number of PE particles for one blend (0 i 0X1/point with arrow)does not correlate with the number of AE signals.It is assumed that the mean PE particle diameter analysed from TEM images of the 50HDPE/50PP blend without compatibilizer is smaller than in blends with lower PE contents.Its morphology is coarser and the particle diameter in such blends should be about3times larger.Physically,a relation exists between the mechanical power of AE sources and the power of AE signals monitored by a de®ned transducer.To estimate the mechanical energy release of AE sources from HDPE/ PP blends,only the elastic stored energy of PE®brils in the moment of the interphase debonding and break of®brils is taken into account.Eq.(2)calculates the accumulated AE energyE ei considering this mechanisms byÆE ei$0 id iÁ3ÁG f2Á 1 4f6ÁG int1 4int!V o Pwith energies for the fracture of PE®brils G f and inter-phase debonding G int,it`s corresponding failure strains 4f and4int and the unit deformation volume V o. Results of the approximations based on experimental data are demonstrated in Fig.4.Energies for the inter-phase debonding and fracture of PE were determined in fracture-mechanics tests.Strain values for the initiation of debonding processes at di erent adhesions were derived from the®rst occurrence of signi®cant AE activity.The rupture strain of the®brils corresponds to that point of the stress/strain curve where the stress decreases signi®cantly after a longer period of yielding. An identical tendency but non-realistic large energies are calculated without the consideration of4int and4f that means the true cross-sections of the®brils after yield deformation.Although the interphase debonding energy in blends with compatibilizer is about10times higher than with-out compatibilizer,the break of PE®brils gives the main contribution to the AE energy in these tensile tests.A similar amplitude and energy distribution of the AE signals from both blend systems con®rm the dominance of one and the same source mechanism.3.2.Identi®cation of AE sources in single-®bre composites At tensile loading of single-®bre specimens,various distributions of AE amplitudes from the epoxy cracking and®bre fragmentation were received(Fig.5).The levels of AE amplitudes from matrix cracks and ®bre breaks cover each other.The reasons are,r-ger fracture areas of matrix cracks than of®bre breaks and a somewhat di erent failure behaviour from one ®bre break to another one.Images from the light microscopy demonstrate some fragmentations by a brittle break of the®bres without any other processes. Other®bre fragmentations are accompanied by a matrix cracking around the®bre fracture surface and/or aJ.Bohse/Composites Science and Technology60(2000)1213±12261215®bre/matrix interface debonding.The®bre-strength dis-tribution itself causes®bre failure at di erent stress levels. An approximation of AE amplitudes U f of®bre break sources at the event location is possible under well de®ned geometrical conditions and well-known materi-als and transducer properties according to Eq.(3).U f Peak Sensitivity tr nsdu erÁP fA tGainÁAF mplQwith force of®bre break P f derived from strength andcross-section of the®bre and transducer area A t.The attenuation factor of the amplitude AF mpldepends on the material,wave frequency and travellingdistance between the failure source and the transducerlocation.Theoretical amplitude levels were calculated forthe®bre fragmentation near the AE transducer(lines inFig.5)which re¯ects the experimental conditions.From single-®bre pull-out experiments,a linear cor-relation between the AE energy and the mechanical-energy release of microscopic damage processeslikeFig.2.Acoustic emission behaviour of(a)PP and(b)50HDPE/50PP blend with compatibilizer:time dependence of(a)stress,(b)AE activity and (c)accumulated AE energy.1216J.Bohse/Composites Science and Technology60(2000)1213±1226Fig.3.Correlation of the number of AE signals and the speci®c interphase area of HDPE/PPblends.Fig.4.Correlation of the AE energy with the elastic fracture energy release of micro-failure processes in HDPE/PP blends.J.Bohse /Composites Science and Technology 60(2000)1213±12261217Fig.5.AE amplitudes from epoxy cracks and fragmentation of carbon ®bres and glass®bres.Fig.6.Correlation of the AE energy and the mechanical energy release on a micro-mechanical fracture level.1218J.Bohse /Composites Science and Technology 60(2000)1213±1226single-®bre/matrix debonding and single-®bre break is found(Fig.6).However,as the results demonstrate,the AE amplitude and AE energy are not su cient for dis-tinguishing the failure mechanisms in®bre composites.A new method was introduced to cut out automatically transient acoustic emissions from the variety of wave-form®les measured and saved by commercial AE sys-tems.The procedure for the selection of AE signals is discussed elsewhere[14,16].It is the aim to classify the source mechanisms of the selected emissions. Generally,source mechanisms are wideband excited because of the stochastic processes in the structure.The possibility to distinguish between matrix cracking,®bre breakage and interface debonding relies on di erent visco-elastic relaxation processes near the source itself (see also[17]).Intrinsic frequencies f i and elastic acous-tic velocities c i of relaxation processes di er in the®bre and matrix because of the correlation with the relaxa-tion times(i,elastic moduli E i and densities&i according to Eq.(4).f i$1(i$c i$E i&isRThus,the epoxy-matrix cracking creates lower wide-band frequencies than the glass-®bre breakage in the ratio of nearly1:3.Furthermore,the AE technique used shows a low system attenuation(wideband transdu-cer+pre-ampli®er/®lter+measuring card)in the fre-quency range between50and800kHz.No output is obtained for frequencies of about350,700,F F F kHzwhich corresponds with wavelengths equal1/1,1/2,1/3, F F F of the transducer diameter.Characteristic relaxation frequencies between10kHz to1MHz and the measur-ability of acoustic waves in polymers over short dis-tances in the ranges between100and350kHz(matrix cracking)and350and700kHz(®bre break)yield good interval candidates for distinguishing the mechanisms by a power spectrum analysis of the AE waveforms. However,in most cases di erent relaxation processes are superimposed within a failure process,e.g.a matrix deformation or cracking in the consequence of a®bre break or the®bre vibration in conjunction with the debonding crack growth.This behaviour causes spectra of AE signals only with dominating spectral power densities in the frequency intervals discussed above or comparable parts of the power in both frequency ranges. Experimental results from individual failure mechan-isms(Fig.7)are in agreement with theoretical con-sideration and with results reported in the literature [18].Reference is needed to the problem that the fre-quency spectra are not only in¯uenced by the acoustic properties of the materials.The spectra also depend on the preferred wave modes stimulated by tensile,compression or shear modes of failure.3.3.Micro-failure analysis in multi-®bre composites The AE examination was used successfully in studies of micro-failure processes before the ultimate failure of composites.Agreements exist between theoretically approximated stress levels from inter-®bre failure cri-teria and the onset of the AE activity with di erent levels of the AE intensity[19].However,as discussed above,it is not possible to separate failure mechanisms clearly by the use of con-ventional AE features or AE activity and intensity parameters.This could be achieved by the developed methodology of the power spectra analysis(Section 3.2).Single emissions are selected and failure mechan-isms are classi®ed.Accumulated AE power according to speci®c failure mechanisms are plotted vs time.Strong increases in the accumulated power should give hints to reach a critical damage stage by the detection of a related critical mechanism.Fig.8shows the stress and AE activity vs time depen-dencies of a glass-®bre/polypropylene composite and the accumulated total AE power released from di erent mechanisms under the tensileloading.Fig.7.Averaged power spectra of(a)cracks in pure epoxy and(b) carbon-®bre fragmentation in epoxy matrix.J.Bohse/Composites Science and Technology60(2000)1213±12261219For the assignment of AE waves to single failure mechanisms,a 70%power criterion was applied.It is assumed that matrix cracks have at least 70%of the signal power in the 100to 350kHz frequency interval and also ®bre breaks in the range of 350to 700kHz.All signals in between are expected to be released from ®bre/matrix debonding processes.In the case shown in Fig.8,highest accumulated total AE powers come from matrix and debonding processes and a low part is from the ®bre failure.Another detail about the failure on the micro-scale is that the ®bre breakage already starts at about 50%of the composite strength.This results from di erent local stresses in the ®bres and its strength dis-tribution.Hence,this stage characterizes the transition from a subcritical to a critical damage situation.Such quantitative information about the occurrence and energy release of single failure mechanisms from AE measurements con®rm theoretical mechanical failure criteria and modes.With it,a more objective evaluation of the damage stages becomes possible.The above discussed procedure for the identi®cation of damage mechanisms in composites was successfully applied to specimens and small structures in laboratorymaterials tests with short distances between AE sources and the AE transducer (4100mm).Its application to larger composite structures is problematic,since e ects of wave propagation in¯uence the frequency spectra.This makes the detection of ®bre failure more di cult.3.4.Mode I delamination behaviourThe combination of DCB fracture-toughness tests with simultaneous AE monitoring gives useful informa-tion about microscopic and macroscopic aspects of the delamination behaviour.In Fig.9(a),the measurement arrangement and,in Fig.9(b),the results of a DCB testing are shown.The ®rst AE events located near the delamination tip [Fig.9(b),below,x a 0 30mm]characterize the micro-crack initiation (INIT locAE ).This AE location plot also shows the start of the movement of the AE damage zone before the maximum delamination load is reached.This result can be used for the determination of the initiation of macroscopic delamination growth along the whole crack front by the newly de®ned INI-PROP locAE point.However,the onset of the macroscopicdelaminationFig.8.(a)Composite stress and AE activity and (b)±(d)accumulated AE total power from speci®c failure mechanisms in GF/PP (0 laminate)under tension up to the ultimate specimen fracture.1220J.Bohse /Composites Science and Technology 60(2000)1213±1226growth is detected after the point of deviation from lin-earity (NL)of the load/displacement curve.A reason for the occurrence of the NL-point before the INI-PROP locAE point is reached are damages located in the beams [Fig.9(b),below,x <30mm]which yields a non-linear load/displacement behaviour without dela-mination propagation.Furthermore,AE characterizes the kinetics of pro-gressive delamination propagation.The characterization of the average damage-zone length and the determination of the crack speed is possible by time-dependent linear location of AE sources at the tip of the delamination.Which failure mechanisms cause AE signals in the DCB tests?Fig.10shows the power spectra of two composites with di erent ®bre/matrix adhesion from stages of stable delamination growth.All DCB test results indicate a dominating matrix cracking with varying contribution of the interface energy.Increasing adhesion causes stronger interface debonding processes resulting in higher extensional wave parts of the power spectrum.The break of ®bre bridges are observed,especially in composites with weak ®bre/matrix adhe-sion.Its AE energy contribution is negligible.From the stress-intensity concept of linear-elastic fracture mechanics [8],Eq.(5)calculates the size 2r h ofdamage zones by critical stresses ' ifor initiation of energy-consuming processes i ahead of the crack tip:2r i h 2G s E' iSwith Mode I delamination energy G s and Young'smodulus E of the composite perpendicular to the ®bres and a material speci®c factor 412%.By linear location of AE events only,the damage zone length l h can be determined.However,the height h h perpendicular to the ®bre axis instead of the length is the interesting information for a fracture-toughness modelling.From AE tests and results of ®nite-element (FE)modelling of the damage zone,the correlation for uni-directional ®bre-reinforced composites 2r h h h x Ál h Twith x `1isfound.Fig.9.DCB test and AE analysis on GF/PP (0 )laminate:(a)specimen and AE transducer position and (b)delamination force and AE signal energy (above)and position and size of the damage zone determined by location of AE sources with amplitudes 560dB (below).J.Bohse /Composites Science and Technology 60(2000)1213±12261221Fig.11demonstrates the validity of Eq.(5)for com-posite materials.`Theoretical'values were calculated according to Eq.(5)assuming ®bre/matrix debonding as the process that creates the damage zone.For a theore-tical approximation experimental properties of thecomposites and 140%were used.The critical stress ' for the initiation of ®bre/matrix debonding was deter-mined by AE examination of ud-composites loaded perpendicular to the ®bre axis.At this stress,a sig-ni®cant increase of the AE intensity is detected.`Experimental'values of the damage zone height are derived by Eq.(6)from the damage zone length l h (AE amplitude 546dB)with x 0X 1according to the results of the FE modelling.Agreement of the results supports the validity of the damage zone concept [Eq.(5)]also for highly anisotropic composite materials and the assumption that processes of ®bre/matrix debonding mainly determine its dimension.Plots of accumulated AE energy versus delamination energy release for DCB tests of single specimens (Fig.12)show a linear correlation for stages or times of stable delamination propagation.A similar correlation was found between rates of the AE energy and the delamination energy release in com-parable stages of stable delamination growth for di er-ent composites (Fig.13).However,there are di erent slopes for di erent series of composites with varying ®bre/matrix coupling (PP 4and PP 5).The reason is a di erence in the attenuation factor for AE wave ener-gies which takes into account both the amplitude attenuation and wave dispersion.For our experimental conditions,energy attenuation factors in the direction of the ®bre axis have a ratio of 1.8(PP 5:PP 4).A micro-mechanical fracture model was developed to approximate the contribution of matrix and interface mechanisms to the interlaminar fracture energy [20].Eq.(7)expresses the correlation of the AE energy rate ÁE ei a Át near the AE source with the delamination energy release rate based upon the micro-mechanical fracture model mentioned above:Ái ei a Át sour e ÁE ei a Át tr nsdu er AF energy $2BÁÁa a Át Á0w ÁG w à h h20Ãf d f 2C int 0Ãf 2 D wà 0f ÁG f !U with energy attenuation factor AF energy ,specimen width B ,crack speed Áa a Át ,fracture energy G w Ãand volume 0w Ãof the modi®ed matrix M Ã,fracture energy of the®bre G f ,volume of debonded ®bres 0Ãf 040Ãf 40f ,total ®bre volume 0f ,energy for ®bre/matrix interface debonding 2Àint ,energy dissipation for shear yielding,crazing or micro-crack processes of the modi®ed matrix near the debonded interface areas D w Ã,®bre diameter d f and height of the damage zoneh h where interface debonding and related mechanisms are initiated.The ®bre/matrix debonding energy was estimated from force/displacement functions of single-®bre pull-out experiments with a special test apparatus of high sti ness [21]and an interface failure dominated by Mode I fracture.The term `modi®ed matrix'expresses a varied micro-mechanical behaviour as a result of structural and mor-phological changes of the matrix by ®bre inclusions and coupling agents.Energy contributions caused by the break of ®bre bridges are practically negligible.Fig.14compares the experimentally determined AE energy rate in the region of stable delamination propa-gation with the theoretically approximated delamina-tion energy rate using Eq.(7)and experimental values of Áa a Át ,h h and 2Àint .Theoretical behaviour was cal-culated under the assumption that all ®bre/matrix interfaces take part in debonding processes 0Ãf 0f .The experimental fracture energy shows,however,a transition from a tough to a brittle composite fracture behaviour after exceeding the optimum adhesion.TheFig.10.Averaged power spectra of selected acoustic emissions from DCB tests of GF/PP composites with (a)weak adhesion and (b)strong adhesion.1222J.Bohse /Composites Science and Technology 60(2000)1213±1226。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档