数控机床的发展趋势
数控机床的发展历史及其技术的发展趋势
3、在关键技术的应用方面,伺服驱动技术、数控系统技术和机械结构技术 都在不断发展,其中伺服驱动技术和数控系统技术的数字化、高频化、集成化, 以及机械结构技术的高刚度、高精度、高可靠性都是当前发展的主要方向。
综上所述,数控机床的关键技术和发展趋势对制造业的发展至关重要。未来, 随着科学技术的不断进步和创新,我们有理由相信,数控机床的关键技术和发展 趋势将会有更大的突破和创新。
2、虚拟现实/增强现实技术在数 控机床上的应用
虚拟现实(VR)和增强现实(AR)技术的引入,为数控机床的操作和维护提 供了全新的视角。通过VR技术,可以将加工过程进行模拟仿真,帮助操作人员提 前发现潜在的错误和问题,提高实际加工过程中的安全性。而AR技术则可以将加 工信息实时叠加到实际场景中,使操作人员能够更加直观地了解设备状态和加工 进度,提高生产效率。
高速化指的是数控机床的加工速度不断提高,高精度化则是指数控机床的加 工精度不断提高。复合化是指数控机床具备多种加工功能,能够实现一机多能。 智能化则是指数控机床具备智能化的加工能力和自我诊断修复功能。
三、数控机床关键技术分析
1、伺服驱动技术:伺服驱动技术是数控机床的重要组成部分,其性能直接 影响到数控机床的加工精度和速度。目前,伺服驱动技术正朝着数字化、高频化、 集成化方向发展,其中数字化伺服驱动技术通过提高脉冲频率和采样率,能够大 幅度提高伺服系统的性能。
四、结论
数控机床作为现代制造业的核心设备,其性能和使用寿命直接影响到生产效 率和产品质量。本次演示通过对数控机床的关键技术和发展趋势进行分析,得出 以下结论:
1、数控机床的关键技术包括伺服驱动技术、数控系统技术、机械结构技术 等,这些技术的发展程度直接决定了数控机床的性能和使用寿命。
数控机床的发展历程和趋势
现代数控机床的应用领域拓展
01
02
03
04
航空航天领域
用于加工飞机和航天器的复杂 零部件,如发动机叶片、机翼
等。
汽车制造领域
用于加工汽车零部件,如发动 机缸体、曲轴等。
模具制造领域
用于加工各种模具零部件,如 注塑模、压铸模等。
医疗器械领域
用于加工各种医疗器械零部件 ,如人工关节、牙科种植体等
高精度直线导轨和滚珠丝 杠
高精度直线导轨和滚珠丝杠的 应用提高了数控机床的定位精 度和重复定位精度,进一步提 升了加工质量。
智能化技术
中期发展阶段开始引入智能化 技术,如自适应控制、模糊控 制等,使数控机床能够根据不 同的加工条件自动调整参数, 提高加工过程的稳定性和效率 。
中期发展的主要应用领域
高速发展阶段
21世纪初,中国数控机床 产业进入高速发展阶段, 技术水平不断提高,产品 种类日益丰富。
中国数控机床的产业现状
产业规模
中国数控机床产业规模不断扩大, 已经成为全球最大的数控机床生 产国之一。
技术水平
中国数控机床的技术水平不断提高, 已经具备了国际竞争力。
产品种类
中国数控机床的产品种类日益丰富, 涵盖了各种加工中心、数控车床、 数控铣床等。
新兴领域应用 数控机床在新兴领域如新能源、 新材料、生物医药等领域的应用 不断拓展,为数控机床的发展提 供了新的机遇。
技术创新驱动 数控机床技术的不断创新和发展, 将推动其在高效、高精度、智能 化等方面取得更大突破。
如何应对数控机床发展的挑战和机遇
加强技术研发和创新
企业应加大技术研发和创新投入,提升 数控机床的技术水平和核心竞争力。
简述数控机床的发展趋势
简述数控机床的发展趋势
随着科技的不断发展,数控机床呈现出以下几个发展趋势:
1.高速化。
随着机床控制系统和驱动系统的配套提高,数控机床的加工速度将不断提高,可以满足更高精度和更高效率的生产需求。
2.智能化。
数控机床将向智能化方向发展,实现自动化作业和在线监控。
其系统将集成多种智能技术,如CAD/CAM、人工智能等,提高加工质量和效率。
3.精度提高。
随着制造行业对精度和稳定性的要求越来越高,数控机床将不断提高加工精度,满足高精度零部件的生产需求。
4.节能环保。
数控机床对能源的需求不断增加,环保和节能已经成为制造企业的重要任务。
因此,未来数控机床将偏向发展节能环保的技术和策略。
机床数控技术的现状及发展趋势
机床数控技术的现状及发展趋势1. 引言1.1 机床数控技术的重要性机床数控技术的重要性在现代工业生产中扮演着至关重要的角色。
随着科技的不断进步和工业制造的发展,传统的手工操作已经无法满足复杂、精密的生产需求。
而数控技术的出现,则为实现高效、精准的生产提供了强大的支持。
机床数控技术可以实现生产过程的自动化,大大提高了生产效率。
通过预先编程设定工艺参数,机床可以自动进行加工操作,避免了人工操作中可能出现的偏差和错误,从而确保产品的质量和稳定性。
机床数控技术可以实现生产过程的数字化和信息化管理。
通过数据采集和分析,可以及时了解设备运行状态和产品加工情况,从而进行精细化管理和优化调整,提高生产过程的可控性和可预测性。
机床数控技术还可以实现生产过程的高度灵活性。
通过灵活的程序设计和参数调整,可以快速切换生产任务,适应不同产品的加工需求,提高生产线的适应性和变换性。
机床数控技术的重要性在于它不仅提高了生产效率和产品质量,还推动了工业生产的现代化和智能化发展。
随着技术的不断创新和应用,相信机床数控技术将在工业制造领域继续发挥重要作用。
1.2 机床数控技术的定义机床数控技术是指通过计算机控制系统,实现机床自动化操作的一种先进技术。
它将传统机床替代性能提高到了一个新的高度,极大地提高了机床的精度、效率和稳定性。
机床数控技术采用了数字控制系统,通过预先编程的指令指挥机床进行各种加工工序,实现复杂加工任务的高精度完成。
机床数控技术的核心是数控系统,其包括硬件和软件两部分。
硬件主要由电子设备、传感器和执行机构组成,用于接收和执行指令;软件则是指控制系统的程序,用于实现加工过程的编程和控制。
机床数控技术的出现彻底改变了传统加工方式,极大地提高了生产效率和产品质量。
它也为工业生产带来了更大的灵活性和创新性,能够满足不同行业对加工精度和效率的不同需求。
机床数控技术是一个能够推动工业生产进步的重要技术,它的发展将不断推动传统制造业向智能化、自动化方向迈进。
数控机床发展历程及现状
数控机床发展历程及现状随着工业化进程的推进和自动化生产的需求,数控机床作为高技术装备之一,发挥着越来越重要的作用。
本文将从数控机床发展历程、数控机床种类、数控技术优越性、数控机床技术发展趋势等方面分析探讨数控机床的发展历程及现状。
一、数控机床发展历程数控机床的产生是由于要满足同一零件多品种、小批量生产的需要。
20世纪50年代初,美国、德国、日本等国家相继开始了数控机床的研制。
1952年,美国麻省理工学院研制出了第一个数控铣床。
之后,各国纷纷进入数控机床领域。
20世纪60年代初,世界数控机床生产量已经达到3.3万台,而且呈逐年增长的趋势。
20世纪70年代,我国开展了数控机床的研制工作,形成了以中车、华中机床等为代表的数控机床生产单位。
二、数控机床种类数控机床分为车床、钻床、铣床、镗床、磨床、齿轮加工床等几种主要类型。
每种数控机床都有其特定的用途和特点。
例如,车床是在铁件、铜件、橡胶件等工件表面上切削出各种形状的机器,其特点是在一次装夹下,可完成多道工序的加工。
而铣床则可在工件表面切削出平面、曲面、齿轮等复杂形状,具有高速、高精度、高效率的特点。
三、数控技术优越性与传统机床相比较,数控技术优越性主要表现在以下几个方面:1. 精度高:数控机床精度高,加工精度可达μm级,而传统机床的加工精度普遍在0.1mm以上。
2. 自动化程度高:数控机床可以实现自动加工,只需设置好加工程序,即可完成多种复杂零部件的加工。
3. 生产效率高:数控机床可以按照相应工艺进行自动连续加工,提高了生产效率,节约了生产成本。
4. 高重复性:由于数控机床是按照相应程序操作,所以在生产过程中具有高重复性,有利于保证零件的一致性和稳定性。
四、数控机床技术发展趋势随着科技的不断进步和制造业的不断升级,数控机床技术发展也面临着新的机遇和挑战。
未来,数控机床技术发展趋势主要表现在以下几个方面:1. 智能化:数控机床将越来越发展成为智能化的机床,通过感知技术、控制技术和数据处理技术的应用,实现与人类的交互和协同。
数控车床技术发展现状及趋势
数控车床技术发展现状及趋势一、本文概述数控车床,作为现代制造业的核心设备之一,其技术发展水平直接关系到加工精度、生产效率和产品质量。
随着科技的日新月异,数控车床技术也在持续进步,不断满足复杂多变的制造需求。
本文旨在探讨数控车床技术的当前发展现状,分析其内在的技术特点与优势,并展望未来的发展趋势。
通过深入研究数控车床的控制系统、驱动技术、加工工艺等关键领域,本文期望为相关行业的从业者和技术人员提供有价值的参考信息,推动数控车床技术的进一步创新和应用。
二、数控车床技术发展现状数控车床技术作为现代制造业的核心组成部分,经历了从简单的数控编程到高度集成化和智能化的变革。
目前,数控车床技术的发展现状主要体现在以下几个方面:数控系统智能化:随着人工智能和大数据技术的不断融入,数控车床的控制系统日趋智能化。
现代数控系统能够自动识别材料类型、厚度和硬度,并自动调整切削参数以达到最优的加工效果。
高精度与高效率:随着超精密加工技术和新型切削工具的应用,数控车床的加工精度得到了显著提升。
同时,通过优化数控算法和机床结构,提高了加工效率,减少了非生产时间。
复合加工能力:现代数控车床不仅具备车削、铣削、钻孔等基本功能,还能实现磨削、激光加工等多种加工方式的复合,从而在一台机床上完成复杂零件的多工序加工。
模块化与标准化:数控车床的设计制造越来越倾向于模块化和标准化,这不仅简化了生产流程,降低了制造成本,还有利于机床的维护和升级。
网络安全与远程监控:随着工业0和物联网技术的发展,数控车床的网络安全和远程监控成为新的关注点。
现代数控系统配备了完善的安全防护措施,并通过云平台实现远程故障诊断和监控,大大提高了设备的运行可靠性和维护效率。
绿色环保与节能减排:数控车床在设计和制造过程中越来越注重绿色环保和节能减排。
通过优化机床结构、减少空载时间和使用环保切削液等措施,有效降低了能耗和污染排放。
数控车床技术在高精度、高效率、复合加工、智能化和网络化等方面取得了显著进展,为现代制造业的转型升级提供了有力支撑。
机床数控技术的现状及发展趋势
机床数控技术的现状及发展趋势1. 引言1.1 介绍机床数控技术的重要性机床数控技术的重要性在于其能够提高生产效率、提高产品质量、降低人力成本、减少生产过程中的浪费,并且具有灵活性和自动化程度高的特点。
机床数控技术使得生产过程更加精准和稳定,有效减少了人为因素带来的误差,提高了生产的可靠性和稳定性。
机床数控技术也使得生产过程更加灵活,可以根据不同需求进行快速调整,实现批量生产和个性化定制生产的转换。
这种灵活性和自动化程度的提高,可以更好地满足市场需求,促进企业的竞争力和发展。
机床数控技术的重要性在于其对生产效率、产品质量、人力成本以及生产过程中的优化和改进方面都能够带来明显的提升,这对于推动工业生产的现代化和高效化具有重要的意义。
1.2 探讨机床数控技术的发展历程机床数控技术的发展历程可以追溯到20世纪50年代。
当时,随着电子技术和计算机技术的不断发展,人们开始尝试将这些先进技术应用到机床控制中。
最早的数控机床是由美国麻省理工学院研制成功的,从此拉开了机床数控技术的序幕。
随着时代的发展,机床数控技术经历了多个阶段的演进。
60年代至70年代,数值控制系统逐渐普及,并且出现了专用数控机床。
80年代至90年代,数控技术开始向多轴、高速、高精度和高可靠性方向发展,实现了更加精密和高效的加工。
21世纪以来,随着信息技术和通信技术的飞速发展,机床数控技术进入了全面智能化和网络化时代,实现了智能监控、远程调整和自动化生产。
机床数控技术的发展历程充分展示了人类科技的创新和进步。
通过不断探索和实践,机床数控技术已经成为现代工业生产中不可或缺的重要技术,为提高生产效率、保障产品质量、降低生产成本发挥着重要作用。
2. 正文2.1 机床数控技术的当前应用领域机床数控技术在当前的应用领域非常广泛,涵盖了各个工业领域。
在航空航天领域,随着飞机设计的复杂性和航空发动机的要求越来越高,机床数控技术被广泛运用于航空零部件的加工。
其精密度和效率能够满足航空产品的高要求。
数控技术的现状发展趋势
数控技术的现状发展趋势
一、数控技术的现状
数控技术是将计算机技术和机械技术有机结合起来的一种技术,被广
泛应用于机床的自动化控制,以提高机床的加工精度和生产效率。
近年来,在精密加工、自动化制造等领域的发展,数控技术发挥了重要作用。
随着数控技术已经取得的重大进步,如今主要使用的数控技术有数控
加工中心、数控车床、数控刨削机、数控火花机等等。
这些设备具有自动
化操作、加工精度高、操作安全性好、节省能源、制造效率高等特点。
数控技术在特种机床、智能机床等方面也得到广泛的应用,在气动控制、电动控制、传动控制等多方面的发展,促进了数控机床的精确操作,
在计算机技术、机器人技术、伺服控制技术等方面也取得了很大的进步,
使得数控加工的技术更加成熟可靠。
二、数控技术的发展趋势
(一)智能化加工方面
数控技术在加工过程中,将会朝着更高级,更自动化,更智能化的方
向发展,精度、准确性更高,技术更成熟。
此外,智能化对加工质量的控制,将会发展成多层次的监控,如:传
感器采集参数,在计算机端进行实时监控,直接控制机床端的机器人,准
确控制加工参数,改变机床加工的运行轨迹。
数控机床的发展趋势
数控机床的发展趋势
变频电机技术:
目前,变频电机技术已经成为数控机床的关键技术,可以有效地改善数控机床的性能和效能。
变频电机可以根据工件的特性和处理过程的要求调整所需的转速和扭矩,从而改善数控机床的加工质量,减少运行成本和耗能,有利于节能减排。
智能控制技术:
智能控制技术是未来数控机床的关键技术。
智能控制技术不仅可以实现机床的自动化控制,而且能够根据加工要求实时调整机床的加工运行参数,还能通过建立智能数据库,提升加工的精确度和效率。
机床自动调节技术:
机床自动调节技术可以实现机床的自动调节,并可以根据所处理工件的不同参数进行设定和调节。
这种技术可以有效地降低机床的操作难度,有利于改善加工质量。
智能检测技术:
智能检测技术是数控机床的关键技术。
智能检测技术可以在数控机床的加工过程中实时检测工件的尺寸、形状和表面质量,并可以根据检测结果及时调整机床的加工参数,从而保证机床的加工精度。
伺服驱动技术:
伺服电机是数控机床的重要组成部分,伺服驱动技术能够实现机床运动部件的精确控制,可以大大提高数控机床的加工精度和效率。
专科作业《数控机床》作业答案
读书破万卷下笔如有神《数控机床》作业答案数控机床作业1第1章一、1. 控制介质、数控系统、伺服系统、机床本体、反馈装置2.数字控制3.并联4.自适应控制二、1.A 2.D 3.A 4.D 5.B三、1. ×2. √3.×4.√5.√四、1. 数控机床的发展趋势(1)高速度与高精度化(2)多功能化(3)智能化(4)高的可靠性2. 数控机床一般由控制介质、数控系统、伺服系统、机床本体、反馈装置和各类辅助装置组成。
1、控制介质:信息载体2、数控系统:控制核心3、伺服系统:电传动联系环节4、反馈装置:反馈环节5、辅助装置:包括ATC、APC、工件夹紧放松机构、液压控制机构等6、机床本体:结构实体3. 数控机床的主要工作过程:(1)根据工件加工图样进行工艺分析,确定加工方案、工艺参数和位移数据。
(2)用规定的程序代码和格式编写零件加工程序单;或用自动编程软件进行CAD/CAM工作,直接生成零件的加工程序文件。
(3)程序的输入或输出。
(4)将输入到数控单元的加工程序进行试运行、刀具路径模拟等。
(5)通过对机床的正确操作,运行程序,完成零件的加工。
数控机床作业2第2章一、1. 进给传动系统 2. 电主轴 3.制动 4.消除间隙 5.卸载 6.焊接7.直接驱动的回转工作台8.位置检测9.顺序选刀10.柔性制造单元FMC二、1.C 2.C 3.C4.A 5.C 6.A 7. B三、1. ×2. √3. √4.√5.×6.√7.×四、1. 数控机床机械结构的主要特点(1) 高的静、动刚度及良好的抗振性能(2)良好的热稳定性(3)高的灵敏度(4)高效化装置、高人性化操作2. 数控机床主传动系统的变速方式、特点及应用场合1. 带有变速齿轮的主传动特点:通过少数几对齿轮降速,扩大输出扭矩,以满足主轴低速时对输出扭矩特性的要求。
应用:大、中型数控机床采用这种变速方式。
2. 通过带传动的主传动特点:电动机本身的调速就能够满足要求,不用齿轮变速,可以避免齿轮传动引起的振动与噪声。
数控机床的发展趋势
3 按控制方式分类
(1)开环控制(Open Loop Control)即不带位置测 量元件,数控装置根据控制介质上旳指令信号, 经控制运算发出指令脉冲,使伺服驱动元件转过 一定旳角度,并经过传动齿轮、滚珠丝杠螺母副, 使执行机构(如工作台)移动或转动。特点是没 有来自位置测量元件旳反馈信号,对执行机构旳 动作情况不进行检验,指令流向为单向,控制精 度较低。
CIMS旳构成能够分下列几种部分:
(1)设计过程
(2)加工制造过程
(3)计算机辅助生产管理 (4)集成措施及技术
思索题:
1、 数控机床由哪几部分构成?简述数控机床各构成部分 旳作用。
2 、什么是数字控制、柔性制造单元(FMC)、直接数控 (DNC)?
3、 什么是点位控制?
4、 什么是开环控制、闭环控制和半闭环控制系统?
(9)数控工具磨床(NC Tool Grinding Machine) (10)数控坐标磨床(NC Jig Grinding Machine) (11)数控电火花加工机床(NC Dieseling Electric
Discharge Machine) (12)数控线切割机床(NC Wire Discharge Machine) (13)数控激光加工机床(NC Laser Beam Machine) (14)数控冲床(NC Punching Press) (15)加工中心
(3)柔性制造系统(Flexible Manufacturing System)是 由加工系统(由一组数控机床和其他自动化工艺设备, 如清洗机、成品试验机、喷漆机等构成)、物料自动 储运系统和信息控制系统三者相结合,由中央计算机 管理使之自动运转旳制造系统。
2 计算机集成制造系统(Computer Integrated Manufacturing System)
数控机床的未来发展趋势
数控机床的未来发展趋势目前,数控机床的发展日新月异,高速化、高精度化、复合化、智能化、开放化、并联驱动化、网络化、极端化、绿色化已成为数控机床发展的趋势和方向。
中国作为一个制造大国,主要还是依靠劳动力、价格、资源等方面的比较优势,而在产品的技术创新与自主开发方面与国外同行的差距还很大。
中国的数控产业不能安于现状,应该抓住机会不断发展,努力发展自己的先进技术,加大技术创新与人才培训力度,提高企业综合服务能力,努力缩短与发达国家之间的差距。
力争早日实现数控机床产品从低端到高端、从初级产品加工到高精尖产品制造的转变,实现从中国制造到中国创造、从制造大国到制造强国的转变。
1、高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。
(1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;(2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工;(3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。
由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度;(4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。
德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。
2、高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。
(1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;(2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。
国内外数控技术的发展现状与趋势
国内外数控技术的发展现状与趋势一、本文概述数控技术,即数控加工编程技术,是现代制造业的核心技术之一,它涉及到计算机编程、机械设计、自动控制等多个领域。
随着科技的飞速发展,数控技术在国内外都取得了显著的进步,广泛应用于航空航天、汽车制造、模具加工等各个行业。
本文将对国内外数控技术的发展现状与趋势进行深入探讨,以期了解数控技术的最新发展动态,为相关领域的从业者提供有益的参考。
本文将回顾数控技术的起源与发展历程,从最初的简单数控系统到现在的高度智能化、网络化数控系统,阐述数控技术在国内外的发展历程和主要成就。
接着,本文将重点分析国内外数控技术的现状,包括数控系统、数控机床、数控编程软件等方面的发展情况,以及数控技术在各个行业的应用现状。
同时,本文还将探讨数控技术发展中的关键问题,如精度与效率、智能化与自动化、开放性与标准化等。
在趋势分析方面,本文将关注数控技术的前沿动态,探讨数控技术的未来发展方向。
随着、大数据、云计算等新一代信息技术的快速发展,数控技术将如何实现与这些技术的深度融合,提高加工精度、效率和智能化水平,将是本文关注的重点。
本文还将分析数控技术在绿色制造、智能制造等领域的应用前景,以及国内外数控技术市场竞争格局的变化趋势。
本文旨在全面梳理国内外数控技术的发展现状与趋势,为相关领域的从业者提供有价值的参考信息,推动数控技术的持续创新与发展。
二、数控技术的历史回顾数控技术,即数字控制技术,其发展历程可以追溯到20世纪40年代末。
初期的数控技术主要应用于军事工业,例如美国为了制造飞机叶片而研发的数控铣床。
随着计算机技术的飞速发展和普及,数控技术也逐步实现了电子化、信息化和智能化。
20世纪50年代,数控技术开始进入商业应用领域,主要用于机床加工和自动化生产线。
此时,数控系统多为硬件连线式,编程复杂,灵活性差。
进入60年代,随着计算机软件技术的发展,数控系统开始采用软件编程,大大提高了编程的灵活性和效率。
数控机床的发展历程及未来趋势
(山东建筑大学机电工程学院济南 250101)0前言机床(machine tools)是指用来制造机器的机器。
又被称为“工作母机”或“工具机”。
早在15世纪就已出现了早期的机床,1774年英国人威尔金森发明的一种炮简篷床被认为是世界上第1台真正意义上的机床,它解决了瓦特蒸汽机的气缸加工问题。
至18世纪,各种类型机床相继出现并快速发展,如螺纹车床、龙门式机床、卧式锐床、滚齿机等,为工业革命和建立现代工业奠定了制造工具的基础。
1952年,世界上第1台数字控制机床在美国麻省理工学院问世,标志着机床数控时代的开始。
数控机床是一种装有数字控制系统(简称“数控系统”)的机床数控系统包括数控装置和伺服装置两大部分,当前数控装置主要采用电子数字计算机实现,又称为计算机数控(computerized numerical control,CNC)装置[1]。
1数控机床的发展历程特点1952年世界第1台数控机床在美国麻省理工学院研制成功,这是制造技术的一次革命性跨越。
数控机床采用数字编程、程序执行、伺服控制等技术,实现按照零件图样编制的数字化加工程序自动控制机床的轨迹运动和运行,从此NC技术就使得机床与电子、计算机、控制、信息等技术的发展密不可分。
随后,为了解决NC程序编制的自动化问题,采用计算机代替手工的自动编程工具和方法成为关键技术,计算机辅助设计/制造(CADCAM)技术也随之得到快速发展和普及应用[2]。
可以说,制造数字化肇始于数控机床及其核心数字控制技术的诞生。
正是由于数控机床和数控技术在诞生伊始就具有的几大特点--数字控制思想和方法、“软(件)-硬(件)”相结合、“机(械)-电(子)-控(制)-信(息)”多学科交叉,因而其后数控机床和数控技术的重大进步就一直与电子技术和信息技术的发展直接关联。
最早的数控装置是采用电子真空管构成计算单元,20世纪40年代末晶体管被发明,50年代末推出集成电路,至60年代初期出现了采用集成电路和大规模集成电路的电子数字计算机,计算机在运算处理能力、小型化和可靠性方面的突破性进展,为数控机床技术发展带来第一个拐点一由基于分立元件的数字控制(NC)走向了的计算机数字控制(CNC),数控机床也开始进入实际工业生产应用。
数控技术的发展现状与趋势
数控技术的发展现状与趋势
一、数控技术发展现状
数控技术是指将计算机系统应用于机械的控制,并与机械匹配使用的
技术。
它具有很高的灵活性和可靠性,具有自动操作,智能化,精确度高,多种加工方式,能够实现大批量生产的特点。
数控技术在过去60多年里取得了巨大的发展,在很多领域都得到广
泛应用,比如汽车制造、航空航天、数字化印刷、数字化印刷、数控机床
制造、模具制造、管理和控制等。
现在,数控技术已经发展成为制造业发
展过程中重要的技术平台。
数控技术在推动工业4.0的发展中发挥着关键作用。
现在,数控设备
正在被全面应用于制造工厂,并改变着传统的专业制造模式,它为快速反
应需求提供了可能性,降低了产品开发时间,提高了与市场的配合程度。
二、数控技术发展趋势
1、可编程逻辑控制(PLC)及其应用的普及
PLC是一种可以灵活操作的控制系统,具有良好的性能,可靠性,安
全性,容易操作和使用,可编程逻辑控制器在控制系统自动化、智能化和
信息化过程中发挥了至关重要的作用,未来将成为控制系统的核心技术。
2、自动化软件的发展
数控技术离不开自动化软件的支持。
数控机床的发展与趋势
数控机床的发展与趋势
一、数控机床概述
数控机床(Numerical Control Machine Tool),简称NC,是一种将控制单元(控制器)、转台系统、夹具系统、切削系统、及相应的配套仪表组成一个完整机床的机床类型。
本文会介绍数控机床的发展及趋势,帮助读者更了解数控机床的应用。
二、数控机床的发展
1、首先,数控技术在进一步发展。
数控技术的应用可以追溯到1950年代,当时美国人开发出第一台数控机床。
作为机械零部件加工的一种重要技术,数控加工给人们带来了极大的方便,缩短了加工时间,提高了加工精度,而且比传统机床更加灵活、可靠和安全。
2、其次,数控机床应用领域在不断扩大,并有更多的应用领域。
目前,数控机床的应用不仅仅局限于制造界,而且还扩展到航空航天、汽车制造、化工、能源等行业,以及军工、军品、轻产品等领域,其应用越来越广泛。
3、再次,数控机床的精度在不断提高。
数控机床的精度是制造业的关键指标,现在,数控机床的精度已达到毫米级,甚至微米级,这就使得数控机床在微小复杂的产品加工中有着较高的精度,从而实现复杂的加工任务。
4、此外,数控机床系统中的软件也在不断发展,使得它更加受用户欢迎。
数控机床的发展及应用简述
数控机床的发展及应用简述一、数控机床的定义与发展概况1. 数控机床的概念数控机床是指通过程序控制工件加工过程的机床。
与传统机床相比,数控机床具有自动化程度高、精度高、生产效率高等特点。
其核心是数控系统,通过预先编写工艺程序,实现对工件的精确加工。
2. 数控机床的发展历程数控机床的发展可追溯到20世纪50年代,最早应用于航空航天和国防工业领域。
经过几十年的发展,数控机床技术逐渐成熟,并逐渐应用于汽车制造、船舶制造、模具制造等各个行业。
二、数控机床的应用领域1. 汽车制造在汽车制造领域,数控机床主要应用于汽车车身、发动机零部件、底盘等零部件的加工。
通过数控机床的高精度和高效率加工,可以提高汽车零部件的质量和生产效率。
2. 船舶制造在船舶制造领域,数控机床主要应用于船体结构、船舶零部件和船舶配套设备的加工。
数控机床可以实现对复杂形状的加工,提高船舶的结构强度和航行性能。
3. 模具制造在模具制造领域,数控机床主要应用于高精度、高复杂度的模具制造。
通过数控机床可以实现对各种复杂形状的加工,提高模具的精度和加工效率。
4. 刻字雕刻在刻字雕刻领域,数控机床可以实现对各种材料的刻字和雕刻。
通过数控机床的高精度和高速度加工,可以实现对精细字体和复杂图案的加工。
5. 其他领域除了以上应用领域外,数控机床还广泛应用于航空航天、电子、仪器仪表、医疗器械等领域。
通过数控机床的应用,可以提高产品的质量和生产效率,推动产业的升级。
三、数控机床的发展趋势1. 高速化随着工业自动化的发展,对数控机床加工速度的要求越来越高。
未来数控机床将继续提高加工速度,实现更高的生产效率。
2. 智能化智能化是数控机床发展的重要方向。
未来数控机床将实现自动化调整工艺参数、自动切换加工工具等功能,提高机床的智能化水平。
3. 网络化通过网络连接,数控机床可以实现远程监控和远程操作。
未来数控机床将实现远程故障诊断、远程维护等功能,提高机床的可靠性和可维护性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床的发展趋势【内容摘要】随着科学技术的发展、世界先进制造技术的兴起和不断成熟,对数控加工技术提出了更高的要求,超高速切削、超精密加工等技术的应用,对数控机床的数控系统、伺服性能、主轴驱动、机床结构等提出了更高的性能指标。
制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。
当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。
如今数控机床正在不断采用最新技术成果,朝着高速化、多功能化、智能化、数控系统小型化、数控编程自动化、更高可靠性等方向发展。
【关键词】:数控技术发展趋势机械制造智能功能从1952年美国麻省理工学院研制出第一台试验性数控系统,到现在已走过了半个世纪历程。
随着电子技术和控制技术的飞速发展,当今的数控系统功能已经非常强大,与此同时加工技术以及一些其他相关技术的发展对数控系统的发展和进步提出了新的要求。
一、性能的发展方向1、高速度、高精度化高速化是指数控机床的高速切削和高速插补进给,目标是在保证加工精度的前提下,提高加工速度。
高精度是指数控机床能够达到的分辨率、定位精度、重复定位精度等。
效率、质量是先进制造技术的主体。
高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争力。
近年来,电主轴、直线电机以及新型刀具的应用,使数控机床的加工速度得到了极大的提高,车削和铣削速度已达到5000~8000m/min以上;主轴转数在30000r/min(有的高达100000r/min)以上;进给速度在分辨率为1um时,达到100m/min(有的到200m/min)以上;分辨率为0.1um时,达到24m/min以上;自动换刀速度在1s 以内;小时段插补进给速度达到12m/min。
加工精度方面,普通机床的加工精度已经由10um提高到5um,紧密级加工中心则由3~5um提高到1~1.5um,而超精密加工精度已经开始进入纳米级(0.001um)。
2、更高的可靠性数控机床的可靠性,特别是在长时间无人操作下运行的可靠性更是人们关注的问题。
现代数控系统的平均无故障时间(MTBF)可达到10000~36000h。
在提高数控系统可靠性方面,目前采用的主要措施有:①采用大规模或超大规模集成电路、专用芯片及混合式集成电路,以减少元、器件的数量,精简外部连线并降低功耗。
②建立数控系统和数控机床设计、试制到批址生产的一整套质量保证体系和保障措施。
如严格筛选元器件,采用防干扰电源,输入/输出光电隔离,数控系统模块化、通用化和标准化。
③增强故障自诊断、恢复和自保护功能。
当出现元器件失效、编程及操作错误导致数控系统故障时,及时进行硬件和软件故障诊断.自动显示出现故障的部位及类型、以便快速排除故障。
目前有一些数控系统已具有故障预报和自恢复功能。
④采用硬件功能软件化.以适应各种控制功能的要求,最大限度地减少元器件的数量和种类。
3、高柔性化、功能集成化采用柔性自动化设备或系统,是提高加工精度和效率、缩短生产周期、适应市场变化和提高竞争能力的有效手段。
数控机床在提高单机柔性的同时,正朝着单元柔性化和系统柔性化方向发展,如出现了数控多轴加工中心、换刀换箱式加工中心等具有柔性化的高效加工设备,诞生了由多台数控机床组成底层加工设备的柔性制造单元(Flexible Manufacturing Cell ,FMC)、柔性制造系统(Flexible Manufacturing System,FMS)以及柔性生产线(Flexible Manufacturing Line,FML)。
现代数控机床的自动换刀、自动工作台交换等已成为基本功能。
随着数控机床向着柔性化、无人化的方向发展,功能集成化更多地体现在:工件自动装卸,工件自动定位,工件自动检测与补偿,集钻、车、铣、镗和磨等工序为一体的“万能加工中心”。
4、智能化智能化是21世纪制造技术发展的一个大方向。
随着人工智能在计算机领域的渗透和发展,数控系统引入了自适应控制、模糊系统和神经网络的控制机理,不但具有自动编程、前馈控制、模糊控制、学习控制、自适应控制、工艺参数自动生成、三维刀具补偿、运动参数动态补偿等功能,而且人机界面极为友好,并具有故障诊断专家系统使自诊断和故障监控功能更趋完善。
伺服系统智能化的主轴交流驱动和智能化进给伺服装置,能自动识别负载并自动优化调整参数。
世界上正在进行研究的智能化切削加工系统很多,其中日本智能化数控装置研究会针对钻削的智能加工方案具有代表性。
二、功能的发展方向1、人机界面的友好现代数控机床具有丰富的显示功能,多数系统都具有实时图形显示,PLC梯形图显示和多窗口的其他显示功能。
丰富的编程功能,像会话式自动编程功能、图形输入自动编程功能,有的还具有CAD/CAM功能。
方便的操作,有引导对话方式帮助你很快熟悉操作,设有自动工作手动参与功能。
根据加工的要求,各系统都设了多种方便于编程的固定循环。
伺服系统数据和波形的显示,伺服系统参数的自动设定。
系统具有多种管理功能,刀具及其寿命的管理、故障记录、工作记录等。
PLC程序编制方法增加,目前有梯形图编程(Ladder Language Program)方法、步进顺序流程图编程(Step Sequence Program)方法。
现在越来越广泛地用C语言编写PLC程序。
帮助功能,系统不但显示报警内容,而且能指出解决问题的方法。
2、数控编程自动化由于微处理机的应用,使数控编程从脱机(离线)编程发展到在线编程,实现了人机对话,给程序编辑、调试、修改带来了极大的方便,另外也出现了实物示教编程等。
随着计算机应用技术的发展,目前CAD/CAM图形交互式自动编程已得到较多的应用,即利用CAD绘制的零件加工图样,再经计算机内的刀具轨迹数据计算和后置处理,自动生成NC零件加工程序,以实现CAD与CAM的集成。
3、插补和补偿方式的多样化插补对加工质量、生产效率、数控系统的性能影响很大,完善的插补原理可在源头上克服数控系统的原理误差。
如何建立高效、合理的插补模型一直是人们关注的焦点,它可极大地降低数控系统的制造成本,提高加工精度。
补偿方式的自适应系统(Adaptive Control,AC)可在加工过程中自动调整工件因余量不同、材质与硬度的不均匀、刀具的磨损、温度的变化、切削的波动等造成的对加工精度的影响,制造出高质量的产品。
4、内嵌式高性能的PLC(Programmable Logic Controller)在CNC系统中内嵌高性能的PLC控制模块,可直接用梯形图或高级语言编程,具有直观的在线帮助功能。
编程工具中包含用于加工机床的标准PLC用户程序,用户可直接在其基础上进行编辑修改,能方便快捷地进行应用程序开发。
三、体系结构的发展方向1、小型化、多样化机电一体化设备种类的不断增多以及运动控制技术的进步和普及,进一步扩大了对数系统的需求,同时提出了CNC系统小型化和多样化发展的要求,以便将数控系统嵌入到机电装置中。
为了满足这一要求,国际上出现了三维安装方法,将电子元器件高密度安装,大大缩小了体积空间;在显示部件方面,普遍采用新型薄膜技术(TFT)的彩色液晶显示器;同时,推广应用软PLC,使CNC与PLC 有机地结合成一体。
2、开放式20世纪90年代以来,由于计算机技术的飞速发展,推动数控技术更快的更新换代。
世界上许多数控系统生产厂家利用PC机丰富的软、硬件资源开发开放式体系结构的新一代数控系统.开放式体系结构使数控系统有更好的通用性、柔性、适应性、可扩展性,并可以较容易的实现智能化、网络化。
近几年许多国家纷纷研究开发这种系统,如美国科学制造中心(NCMS)与空军共同领导的“下一代工作站/机床控制器体系结构”NGC,欧共体的“自动化系统中开放式体系结构”OSACA,日本的OSEC计划等。
开放式体系结构可以大量采用通用微机技术,使编程、操作以及技术升级和更新变得更加简单快捷。
开放式体系结构的新一代数控系统,其硬件、软件和总线规范都是对外开放的,数控系统制造商和用户可以根据这些开放的资源进行的系统集成,同时它也为用户根据实际需要灵活配置数控系统带来极大方便,促进了数控系统多档次、多品种的开发和广泛应用,开发生产周期大大缩短。
同时,这种数控系统可随CPU升级而升级,而结构可以保持不变。
3、网络化数控系统的网络化,主要指数控系统与外部的其它控制系统或上位计算机进行网络连接和网络控制。
数控系统一般首先面向生产现场和企业内部的局域网,然后再经由因特网通向企业外部,这就是所谓Internet/工ntranet技术。
随着网络技术的成熟和发展,最近业界又提出了数字制造的概念。
数字制造,又称“e一制造”,是机械制造企业现代化的标志之一,也是国际先进机床制造商当今标准配置的供货方式。
随着信息化技术的大量采用,越来越多的国内用户在进口数控机床时要求具有远程通讯服务等功能。
数控系统的网络化进一步促进了柔性自动化制造技术的发展,现代柔性制造系统从点(数控单机、加工中心和数控复合加工机床)、线((FMC. FITS. FTL. FML)向面(工段车间独立制造岛、FA)、体(CIMS、分布式网络集成制造系统)的方向发展。
柔性自动化技术以易于联网和集成为目标,同时注重加强单元技术的开拓、完善,数控机床及其构成柔性制造系统能方便地与CAD. CAM. CAPP. MIS联结,向信息集成方向发展,网络系统向开放、集成和智能化方向发展。
四、结束语数控机床是当代机械制造业的主流装备,是市场热门商品,部分高档数控机床仍然被当成战略物资在国际市场上受到禁运与限制.我国数控机床的发展经历了30余年的跌宕起伏,己经由成长期进入成熟期。
某些至今仍受到禁运的数控五轴联动产品技术,我国都己陆续掌握,如数控五轴联动的重型落地镬铣床、龙门式铣IT床、加工中心等,十年来已一一推向市场。
CIMT2010展会上,展出了五轴联动机床50多台,包括航空航天、造船、冶矿工业用的重型龙门移动式及各种类型数控五轴联动IT铣床和加工中心。
今后我国要加速发展数控机床产业,既要深入总结过往的经验教训,切实改善存在的问题,又要认真学习国外的先进经验,沿正确的道路前进。
必须狠抓根本,坚持“以人为本”,加速提高人员素质、培养各种专家人才,从根本上改变目前低效、落后的状态。
重视培才、选才、用才,建立学习型企业,树立企业文化,加速培育新人,培训在职人员,建立师徒相传制度,举办各种技术讲座、训练班和专题讨论会,甚至聘请外国专家、顾问等,尽力提高数控的技术水平。
参考文献[1]百度百科:http://[2]赵玉刚、宋现春主编的《数控技术》机械工业出版社2009.[3]欧彦江、李虹霖主编的《机床数控技术》上海科学技术出版社2009.[4]周哲波主编的《机床数控技术与应用》中国矿业大学出版社2009.[5]陈廉清主编的《数控技术》机械工业出版社2008.[6]王爱玲主编的《数控加工技术新篇》电子工业出版社2008.。