成都市东湖中学八上数学《一次函数之全等三角形存在性》专项导练
成都市东湖中学八上数学一次函数与方案设计专项精练.docx
成都市东湖中学八上数学《一次函数与方案设计问题》专项导练题一、生产方案的设计1(镇江市)在举国上下众志成城,共同抗击非典的非常时期,某医药器械厂接受了生产一批高质量医用口罩的任务.要求在8天之内(含8天)生产A型和B型两种型号的口罩共5万只,其中A型口罩不得少于1・8万只,该厂的生产能力是:若生产A型口罩每天能生产0.6万只,若生产B型口罩每天能生产0・8万只,已知生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.设该厂在这次任务中生产了A型口罩x万只.问:(1 )该厂生产A型口罩可获利润_______ 万元,生产B型口罩可获利润 ____ 万元;(2)设该厂这次生产口罩的总利润是y万元,试写出y关于无的函数关系式,并求出自变量兀的取值范围;(3 )如果你是该厂厂长:①在完成任务的前提下,你如何安排生产A型和B型口罩的只数,使获得的总利润最大?最大利润是多少?②若要在最短时间内完成任务,你又如何来安排生产A型和B型口罩的只数?最短时间是多少?二、营销方案的设计2(湖北)一报刊销售亭从报社订购某晚报的价格是每份0・7元,销售价是每份1元,卖不掉的报纸还可以0・20元的价格退回报社.在一个月内(以30天计算),有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同•若以报亭每天从报社订购的份数为自变量兀,每月所获得的利润为函数y・(1 )写出y与兀之间的函数关系式,并指出自变量兀的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?三、优惠方案的设计3(南通市)某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:运输运输速运输费包装与包装与单位度(千用(元装卸时装卸费米 / / 千间(小用(元)时)米)时)甲公司60641500乙公司50821000丙公司100103700解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A, B两市的距离(精确到个位);(2)如果A, B两市的距离为$千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/ 小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?四.调运方案的设计4A城有化肥200吨,B城有化肥300吨,现要把化肥运往C, D两农村,如果从A城运往C, D 两地运费分别是20元/吨与25元/吨,从B城运往C, D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请你帮他算一算,怎样调运花钱最小?练习题:1・(河北)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A, B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A, B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A, B两种产品获总利润是y (元),其中一种的生产件数是x,试写出y与兀之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?2・北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台.如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台, 从上海运往汉口、重庆的运费分别是3百元/台、5百元/台.求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?3.某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元.由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2.表1 表2商品每1万元营业额所需人数商品每1万元营业额所得利润百货类5百货类0. 3万元服装类4服装类0. 5万元家电类2家电类0. 2万元商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x (万元)、y (万元)、z (万元)(x f y f z都是整数).(1)请用含x的代数式分别表示y和z;(2)若商场预计每日的总利润为C (万元),且C满足19WCW19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?。
成都市东湖中学八上数学《一次函数》提升测试题
成都市东湖中学八上数学《一次函数》提升练习题A 卷(100分)一、 选择题1.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为【 】A .m>12B .m=12C .m<12D .m=-122.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为【 】A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1C 】C D 1112221212】C D 】C B8.点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的系数是: 【 】 A 、12y y > B 、12y y < C 、12y y = D 、无法确定.9.一次函数y=ax+b ,若a+b=1,则它的图象必经过点【 】A 、(-1,-1)B 、(-1, 1)C 、(1, -1)D 、(1, 1)10.下面函数图象不经过第二象限的为 【 】(A) y=3x+2 (B) y=3x -2 (C) y=-3x+2 (D) y=-3x -211.要得到y=-32x-4的图像,可把直线y=-32x 【 】. (A )向左平移4个单位 (B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位12.若实数a ,b ,c 满足a+b+c=0,且a <b <c ,则函数y=cx+a 的图象可能是【 】A .B .C .D .二、填空题1.已知正比例函数y =(m -1)25m x -的图象在第二、四象限,则m 的值为_________,函数的解析式为__________2.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.3.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.4.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、 解答题1.已知:一个正比例函数和一个一次函数的图像交于点P (-2、2)且一次函数的图像与y 轴的交点Q 的纵坐标为4。
成都市东湖中学八上数学方程组与一次函数检测试题
.
3.已知函数 y= m 1x m 1 ,当 m 取
2
时,y 是 x 的一次函数,当 m 取
时,y 是 x 的
正比例函数。 4.已知直线 y=kx+b 经过第一、二、四象限,那么直线 y=-bx+k 经过第_______象限. 5.过点 P(-1,3)作直线,使它与两坐标轴围成的三角形面积为 5,这样的直线可以作 二、解答题 1.完成以下 3 道题的分析,总结发现的规律. (1)已知直线 y=kx+b 与直线 y=-3x+6 关于 y 轴对称,求 k、b 的值. 条.
3
2.如图,在平面直角坐标系中,直线 l : y=-2x+4 分别交 x 轴、 y 轴于点 A、B, 将 △ AOB 绕点 O 顺时针旋转 90 ° 后得到 △ AOB . (1)求直线 AB 的解析式; (2)若直线 AB 与直线 l 相交于点 C ,求 △ ABC 的面积.
y B A
3 x 2 y z 13 x y 2z 7 3 y 2 x z 12
四、解答题 2 1.在等式 y=ax +bx+c 中,当 x=1 时,y=0,;当 x=-1 时,y=0;当 x=0 时,y=5.求 a,b,c 的值.
2、若方程组
x y 2 的解 x 与 y 相等,求 k 的值. (k 1) x (k 1) y 4
5.若一次函数 y=kx+b,当-3≤x≤1 时,对应的 y 值为 1≤y≤9,• 求一次函数的解析式.
B 卷(50 分) 一、填空题 1.已知点 P a 3b,3 与点 Q 5, a 2b 关于 x 轴对称,则 a _____b ______. 2.已知方程组
成都市东湖中学八上数学一次函数综合测试题
成都市东湖中学八上数学一次函数综合测试题A 卷(100分)一、 选择题1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为【 】 (A )y=8x (B )y=2x+6 (C )y=8x+6 (D )y=5x+3 2.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过【 】 (A )一象限 (B )二象限 (C )三象限 (D )四象限3.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为【 】 (A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能确定4.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,•则有一组a ,b 的取值,使得下列4个图中的一个为正确的是【 】5.无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在【 】 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 6.要得到y=-32x-4的图像,可把直线y=-32x 【 】. (A )向左平移4个单位 (B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位 7.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是【 】. (A )k<13 (B )13<k<1 (C )k>1 (D )k>1或k<138.在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有【 】 (A )1个 (B )2个 (C )3个 (D )4个9.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取【 】 (A )2个 (B )4个 (C )6个 (D )8个10.甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a<b );乙上山的速度是12a 米/分,下山的速度是2b 米/分.如果甲、乙二人同时从点A 出发,时间为t (分),离开点A 的路程为S (米),•那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t (分)与离开点A 的路程S (米)•之间的函数关系的是【 】二.填空题11.已知一次函数y=-6x+1,当-3≤x ≤1时,y 的取值范围是____________________.12.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是______________. 13.函数y=-3x+2的图像上存在点P ,使得P•到x•轴的距离等于3,•则点P•的坐标为________________. 14.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_______________.15.若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________________________________. 三、解答下列各题1.已知直线经过(30)(02)(3)A B C m ,、,、,三点,求这条直线的表达式及m 的值.2.如图所示,在ABC △中,AB AC =,点A C 、在x 轴正半轴上,点B 在y 轴负半轴上,且A 点横坐标a 和B 点纵坐标b 分别满足34a b ==,.求经过A B 、两点和经过B C 、两点的直线表达式.为(1,0),点D 在x 轴上,且∠BCD=∠ABD ,求图象经过B 、D•两点的一次函数的解析式.4.已知:如图一次函数y=12x-3的图象与x 轴、y 轴分别交于A 、B 两点,过点C (4,0)作AB 的垂线交AB 于点E ,交y 轴于点D ,求点D 、E 的坐标.5.如图,直线y=2x+4与x 轴、y 轴分别交于点C 、A ,B 点坐标为(4,0),过点B 作BD ⊥AC 于D,BD 交OA 于点H.①请求直线BD 的解析式;②有两个动点P 和Q 分别从点C 和点O 同时沿x 轴正方向匀速运动,速度分别为2个单位每秒和1个单位每秒,设△PQD 的面积为S ,点P 、点Q 的运动时间为t 秒,请求S 与t 之间的函数关系式.(请直接写出相应的自变量t 的取值范围);③请问t 为何值时,△PQD 的面积是△BCD 的面积的61.6.如图,直线122y x =+与x 轴、y 轴分别交于A ,B 两点,点C 的坐标为(-3,0),P (x ,y )是直线122y x =+上的一个动点(点P 不与点A 重合). (1)在P 点运动过程中,试写出△OPC 的面积S 与x 的函数关系式; (2)当P 运动到什么位置时,△OPC 的面积为278,求出此时点P 的坐标; (3)过P 作AB 的垂线分别交x 轴、y 轴于E ,F 两点,是否存在这样的点P ,使△EOF ≌△BOA ?若存在,求出点P 的坐标;若不存在,请说明理由.xxB卷(50分)一、填空题1.如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为______.1 2 32.如图,直线483y x=-+交x轴、y轴于A,B两点,线段AB的垂直平分线交x轴于点C,交AB于点D,则点C的坐标为____________.3.如图,已知直线l:y=+x轴交于点A,与y轴交于点B,将△AOB沿直线l折叠,点O 落在点C处,则直线CA的表达式为__________________.4.如图,四边形ABCD是一张矩形纸片,E是AB上的一点,且BE:EA=5:3,EC=BCE沿折痕EC 向上翻折,点B恰好落在AD边上的点F处.若以点A为原点,以直线AD为x轴,以直线BA为y轴建立平面直角坐标系,则直线FC的表达式为__________________.4 55.如图,已知直线l1:2833y x=+与直线l2:y=-2x+16相交于点C,直线l1,l2分别交x轴于A,B两点,矩形DEFG的顶点D,E分别在l1,l2上,顶点F,G都在x轴上,且点G与点B重合,那么S矩形DEFG:S△ABC =_________.二、解答题1.如图,已知直线m的解析式为112y x=-+,与x轴、y轴分别交于A,B两点,以线段AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,点P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC的面积;(2)求点P的坐标.2.如图,在平面直角坐标系中,点A,B的坐标分别为A(4,0),B(0,-4),P为y轴上B点下方一点,PB=m(m>0),以点P为直角顶点,AP为腰在第四象限内作等腰Rt△APM.(1)求直线AB的解析式;(2)用含m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,求点Q的坐标.3、已知直线AB:152y x=-+与x轴、y轴分别交与点A、B,y轴上点C坐标为(0,10)(1)求A、B两点坐标(2)动M从A点出发,以每秒1单位长度的速度,沿x轴向左运动,连接CM.设点M的运动时间为t,△COM的面积为S,求S与t的函数关系式.(并标出自变量的取值范围)(3)直线AB与直线CM相交于点;点P为y轴上一点,且始终保持PM+PN最短,当t为何值时,△COM≌△AOB,并求出此时点P的坐标4、如图,直线4+-=x y 与两坐标轴分别相交于A.B 点,点M 是线段AB 上任意一点(A.B 两点除外),过M 分别作MC⊥OA 于点C ,MD⊥OB 于D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.图(1)图(2)图(3)。
成都市东湖中学八上数学一次函数图象与性质同步练习题
成都市东湖中学八上数学一次函数图解与性质同步导练题 姓名:一、作图并总结1、请在同一个平面直角坐标系中画出下列函数的图象: 1、 y =2x -4 x y 21+2观察直线y =2x -4:(1)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 (2)图象经过这些点:(-3, ),(-1, ),(0, ),( ,-2),( , 2) (3)当x 的值越来越大时,y 的值越来越(4)整个函数图象来看,是从左至右向 (填上升或下降)(5)当x 取何值时,y >0? 2、请在同一个平面直角坐标系中画出了下列函数的图象观察直线y=-2x -2:(1)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 (2)图象经过这些点:(-3, ),(-1, ),(0, ),( ,-4),( ,-8) (3)当x 的值越来越大时,y 的值越来越x y=12x+2x y=2x-4y=-13x+1y=-2x-2x y=-2x-2x y=-13x+1(4)整个函数图象来看,是从左至右向 (填上升或下降)(5)当x 取何值时,y <0? 一次函数y =kx +b 有下列性质:(1) 当k >0时,y 随x 的增大而 ,这时函数的图象从左到右 ; (2) 当k <0时,y 随x 的增大而______,这时函数的图象从左到右 . (3)当b >0时,这时函数的图象与y 轴的交点在 (4)当b <0时,这时函数的图象与y 轴的交点在 四、巩固训练:1、一次函数y = -3x +6中,y 的值随x 值增大而 。
2、请写出符合以下两个条件的一个函数解析式 .①过点(-2,1), ②在第二象限内,y 随x 增大而增大 3、函数y =3x -6的图象中:(1)随着x 的增大,y 将 (填“增大”或“减小”) (2)它的图象从左到右 (填“上升”或“下降”)(3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是4、某个一次函数的图象位置大致如下图所示,试分别确定k 、b 的符号,并说出函数的性质.(k 0, b 0) (k 0, b 0)七【巩固提升】1.函数y =-4x 的图象在第( ) 象限,经过点(0, )与点(1, ), y 随x 的增大而 ;2.如果函数y =(m -2)x 的图象经过第一、三象限,那么m 的取值范围是 ;3.如果正比例函数y=(8-2a)x 的图像经过二、四象限,求a 的取值范围。
八年级数学《全等三角形》和《一次函数测试题》含答案
全等三角形单元测试题一.选择题1.如图,下列三角形中全等的是()A.①②B.②③C.③④D.①④2.如图,△ABC≌△CDA,那么下列结论错误的是()A.AB=CD B.∠1=∠2 C.∠B=∠D D.AD=AB3.已知:如图,在ΔABC与ΔAEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF 于点D,下列结论:①∠EAB=∠FAC;②AF=AC;③FA平分∠EFC;④∠BFE=∠FAC中,正确的有()个.A.1 B.2 C.3 D.44.如图,己知AB⊥BD,CD⊥BD,AD=BC.判定Rt△ABD和Rt△CDB全等的依据是()A.AAS B.SAS C.ASA D.HL5.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.S△AEB =S△EDB6.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=10,则点P到AB的距离是()A.15 B.12 C.5 D.107.如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点O,若OD=3cm,则△ABC的面积是()cm2.A.24 B.27 C.30 D.338.具备下列条件的两个三角形一定是全等三角形是()A.有两个角对应相等的两个三角形B.两边及其中一条对应边上的高也对应相等的两个三角形C.两边分别相等,并且第三条边上的中线也对应相等的两个三角形D.有两边及其第三边上的高分别对应相等的两个三角形9.如图,∠C=∠D,BC=DE,下列添加的条件不能使△ADE≌△ACB的是()A.∠BAD=∠EAC B.∠E=∠B C.AD=AC D.AE=AB10.如图,将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由旋转,就做成了一个测量工件,则A'B'的长等于内槽宽AB,那么判定△OAB≌△OA'B'的理由是()A.SSS B.SAS C.AAS D.ASA二.填空题11.如图,∠1=∠2,要利用“SAS”得到△ABC≌△DBC,需要增加的一个条件是.12.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=4,DC=6,则△ABD的面积为.13.如图,OP是∠AOB的平分线,PM⊥OA于点M,PM=3,点N是射线OB上的动点,则线段PN的最小值为.14.如图,在Rt△OCD中,∠C=90°,OP平分∠DOC交DC于点P,若PC=2,OD=8,则△OPD的面积为.15.如图,已知△ABC的周长是8,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.三.解答题16.如图,A,C,F,D在同一直线上,AB∥DE,AB=DE,AF=DC,求证:BC∥EF.17.填空:把下面的推理过程补充完整,并在括号内注明理由.已知:如图,BC∥EF,AB=DE,BC=EF,试说明∠C=∠F.解:∵BC∥EF(已知),∴∠ABC=().在△ABC与△DEF中,∵AB=DE,,,∴△ABC≌△DEF().∴∠C=∠F().18.小明采用如图所示的方法作∠AOB的平分线OC:将带刻度的直角尺DEMN按如图所示摆放,使EM边与OB边重合,顶点D落在OA边上并标记出点D的位置,量出OD的长,再重新如图放置直角尺,在DN边上截取DP=OD,过点P画射线OC,则OC平分∠AOB.请判断小明的做法是否可行?并说明理由.19.如图,已知AC,BD相交于点O,AD=BC,AE⊥BD于点E,CF⊥BD于点F,BE=DF.(1)求证:△ADE≌△CBF.(2)试猜想OA与OC的大小关系,并说明理由.参考答案与试题解析一.选择题1.【解答】解:根据“SAS”可判断图①的三角形与图②的三角形全等.②③,③④,①④均不符合题意,故选:A.2.【解答】解:A、∵△ABC≌△CDA,∴AB=CD,本选项说法正确,不符合题意;B、∵△ABC≌△CDA,∴∠1=∠2,本选项说法正确,不符合题意;C、∵△ABC≌△CDA,∴∠B=∠D,本选项说法正确,不符合题意;D、当△ABC≌△CDA时,AD与AB不一定相等,本选项说法错误,符合题意;故选:D.3.【解答】解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EFA,∴∠EAB=∠FAC,∠AFC=∠C,∴∠EFA=∠AFC,即FA平分∠EFC.又∵∠AFB=∠C+∠FAC=∠AFE+∠BFE,∴∠BFE=∠FAC.故①②③④正确.故选:D.4.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt △ABD ≌Rt △CDB (HL ),故选:D .5.【解答】解:A .∵AE =DE ,∴BE 是△ABD 的中线,故本选项不符合题意;B .∵BD 平分∠EBC ,∴BD 是△BCE 的角平分线,故本选项不符合题意;C .∵BD 平分∠EBC ,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D .∵S AEB =AE ×BC ,S △EDB =DE ×BC ,AE =DE ,∴S △AEB =S △EDB ,故本选项不符合题意;故选:C .6.【解答】解:过P 点作PF ⊥AB 于F ,如图,∵AD 平分∠BAC ,PE ⊥AC ,PF ⊥AB ,∴PF =PE =10,即点P 到AB 的距离为10.故选:D .7.【解答】解:过O 点作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,如图,∵OB 平分∠ABC ,OD ⊥BC ,OE ⊥AB ,∴OE =OD =3,同理可得OF =OD =3,∴S △ABC =S △OAB +S △OBC +S △OAC=×OE ×AB +×OD ×BC +×OF ×AC=(AB +BC +AC ),∵△ABC的周长是18,∴S△ABC=×18=27(cm2).故选:B.8.【解答】解:A、有两个角对应相等的两个三角形不一定全等,可能相似,选项不符合题意;B、此题忽略了锐角和钝角三角形高的位置不相同的情况,不一定全等,选项不符合题意;C、两边分别相等,并且第三条边上的中线也对应相等的两个三角形一定全等,选项符合题意;D、不正确,举一反例说明,如图:在钝角△ABC与锐角△ABC1中,AB=AB,AC=AC1,AD⊥BC1,AD=AD.但△ABC与△ABC1显然是不全等的,选项不符合题意;故选:C.9.【解答】解:A、已知∠C=∠D,BC=DE,添加∠BAD=∠EAC,利用AAS能使△ADE≌△ACB,选项不符合题意;B、已知∠C=∠D,BC=DE,添加∠E=∠B,利用ASA能使△ADE≌△ACB,选项不符合题意;C、已知∠C=∠D,BC=DE,添加AD=AC,利用SAS能使△ADE≌△ACB,选项不符合题意;D、已知∠C=∠D,BC=DE,添加AE=AB,不能使△ADE≌△ACB,选项符合题意;故选:D.10.【解答】解:△OAB与△OA′B′中,∵AO=A′O,∠AOB=∠A′OB′,BO=B′O,∴△OAB≌△OA′B′(SAS).故选:B.二.填空题11.【解答】解:需要增加的一个条件是BC=BD.∵∠1=∠2,∴180°﹣∠1=180°﹣∠2,即∠ABC=∠ABD,在△ABC和△DBC中,,∴△ABC≌△DBC(SAS).故答案为:BC=BD.12.【解答】解:过D作DE⊥BA,交BA的延长线于E,∵∠BCD=90°,∠ABD=∠DBC,∴DE=DC,∵DC=6,∴DE=6,∵AB=4,∴△ABD的面积是==12,故答案为:12.13.【解答】解:当PN ⊥OB 时,线段PN 的值最小,∵OP 是∠AOB 的平分线,PM ⊥OA ,PN ⊥OB ,PM =3, ∴PN =PM =3,即PN 的最小值是3,故答案为:3.14.【解答】解:过P 作PE ⊥OD 于E ,∵OP 平分∠DOC ,∠C =90°,PC =2,∴PE =PC =2,∵OD =8,∴△OPD 的面积是==8,故答案为:8. 15.【解答】解:连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,∵OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,OD =3, ∴OE =OD =3,OF =OD =3,∵△ABC 的周长是8,∴AB +BC +AC =8,∴△ABC 的面积S =S △ABO +S △BCO +S △ACO=AB×OE++==×(AB+BC+AC)==12,故答案为:12.三.解答题16.【解答】证明:∵AF=CD,∴AF﹣FC=CD﹣FC,即AC=DF.∵AB∥DE,∴∠A=∠D.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);∴∠ACB=∠DFE,又∵∠FCB=180°∠ACB,∠CFE=180°﹣∠DFE,∴∠BCF=∠EFC,∴BC∥EF.17.【解答】解:∵BC∥EF(已知),∴∠ABC=∠E(两直线平行,同位角相等).在△ABC与△DEF中,∵AB=DE,∠ABC=∠E,BC=EF,∴△ABC≌△DEF(SAS).∴∠C=∠F(全等三角形对应角相等).故答案为:∠E,两直线平行,同位角相等;∠ABC=∠E,BC=EF;SAS;全等三角形对应角相等.18.【解答】解:小明的做法可行.理由如下:在直角尺DEMN中,DN∥EM,∴∠DPO=∠POM,∵DP=OD,∴∠DPO=∠DOP,∴∠POM=∠DOP,∴OC平分∠AOB.19.【解答】证明:(1)∵BE=DF,∴BE+EF=DF+EF,∴BF=DE,在Rt△ADE和Rt△CBF中,,∴Rt△ADE≌Rt△CBF(HL),(2)OA=OC,理由如下:∵Rt△ADE≌Rt△CBF,∴AE=CF《一次函数》单元测试卷满分120分题号一二三总分得分一.选择题(共12小题,满分36分,每小题3分)1.在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.速度v是变量B.时间t是变量C.速度v和时间t都是变量D.速度v、时间t、路程s都是常量2.下面坐标平面中所反映的图象中,不是函数图象的是()A.B.C.D.3.函数①y=πx;②y=2x﹣1;③y=,④y=x2﹣1中,y是x的一次函数的有()A.1个B.2个C.3个D.4个4.函数y=中,自变量x的取值范围是()A.x<B.x≤﹣C.x≤D.x≠5.将水匀速滴进如图所示的容器时,能正确反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A.B.C.D.6.变量x,y的一些对应值如下表:x…﹣2﹣10123…y…﹣8﹣101827…根据表格中的数据规律,当x=﹣5时,y的值是()A.75B.﹣75C.125D.﹣1257.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.8.某通讯公司推出三种上网月收费方式.这三种收费方式每月所收的费用y(元)与上网时间x(小时)的函数关系如图所示,则下列判断错误的是()A.每月上网不足25小时,选择A方式最省钱B.每月上网时间为30小时,选择B方式最省钱C.每月上网费用为60元,选择B方式比A方式时间长D.每月上网时间超过70小时,选择C方式最省钱9.已知方程ax+b=0的解为x=﹣,则一次函数y=ax+b图象与x轴交点的横坐标为()A.3B.C.﹣2D.10.如图,一次函数y=kx+b的图象交y轴于点A(0,2),则不等式kx+b<2的解集为()A.x<0B.x>0C.x<﹣1D.x>﹣111.如图所示,货车匀速通过隧道,隧道长大于货车长,从货车进入隧道开始,货车在隧道内的长度y与行驶的时间x之间的关系用图象描述大致是()A.B.C.D.12.一次函数y1=kx+b与y2=mx+n的图象如图所示,则以下结论:①k>0;②b>0;③m >0;④n>0;⑤当x=3时:y1>y2.正确的个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)13.当m=时,函数y=(m+1)x+5是一次函数.14.若y关于x的函数y=﹣7x+2+m是正比例函数,则m=.15.购买单价为每支2元的圆珠笔,总金额y(元)与铅笔数n(支)的关系式可表示为,其中,是变量.16.函数的图象如图所示,当y=0时,x=.17.已知函数,则当x时,y1<0.18.“赛龙舟”是我国的一个传统运动项目.某天,甲乙两队在一个笔直的湖面进行“赛龙舟”比赛,全程300米.两队同时出发,刚出发,乙队就以明显优势领先,甲队发现形式不利,迅速调整比赛状态,把速度提升了,并以提升后的速度赛完全程,假设乙队全程是匀速比赛状态,甲队提速前和提速后也分别是匀速运动,甲、乙两队之间的距离y (米)与乙队行驶x(秒)之间的关系如图所示,则甲队到达终点时,乙队离终点还有米.三.解答题(共7小题,满分60分)19.(6分)画出下列正比例函数和一次函数的图象:(1)y=2x;(2)y=﹣2x﹣4.20.(6分)根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.21.(6分)如图,直线l1:y=x﹣1与直线l2:y=﹣x+2在同一直角坐标系中交于点A(2,1).(1)直接写出方程组的解是.(2)请判断三条直线y=x﹣1,y=﹣x+2,y=x+是否经过同一个点,请说明理由.22.(8分)李老师周末骑自行车去郊游,如图是他离家的距离y(千米)与时间t(时)之间关系的函数图象,李老师9时离开家,15时到家,根据这个函数图象,请你回答下列问题:(1)到达离家最远的地方是时,离家多远千米.(2)他时开始了第二次休息,在整个骑行过程中,一共休息了小时.(3)他从离家最远的地方回家用了多长时间?速度是多少?23.(10分)在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售80只A 型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A 型口罩的进货量且不超过它的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式,并求出自变量x的取值范围;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?24.(12分)某草莓生产基地在气温较低时,用装有恒温系统的大棚栽培一种新草莓.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段OA,AB表示恒温系统开启阶段,线段BC表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天大棚内的温度y与时间x(0≤x≤24)之间的函数关系式;(2)求恒温系统设定的恒定温度是多少度?(3)若大棚内的温度低于15℃时,草莓会受到伤害.问在这天内恒温系统最多可以关闭多长时间就必须重新启动,才能避免草莓受到伤害.25.(12分)如图,直线y=﹣x﹣4交x轴和y轴于点A和点C,点B(0,2)在y轴上,连接AB,点P为直线AB上一动点.(1)直线AB的解析式为;(2)若S△APC=S△AOC,求点P的坐标;(3)当∠BCP=∠BAO时,求直线CP的解析式及CP的长.参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则速度v和时间t是变量,行进路程s是常量,故选:C.2.解:函数是指给定一个自变量的取值,都有唯一确定的函数值与其对应,即垂直x轴的直线与函数的图象只能有一个交点,结合选项可知,只有选项D中是一个x对应1或2个y,故D选项中的图象不是函数图象,故选:D.3.解:①y=πx;②y=2x﹣1是一次函数;③y=是反比例函数,不是一次函数;④y=x2﹣1是二次函数,不是一次函数,因此一次函数共2个,故选:B.4.解:根据题意得:2﹣3x>0,解得:x<.故选:A.5.解:由于容器的形状是下宽上窄,所以水的深度上升是先慢后快.表现出的函数图形为先缓,后陡.故选:D.6.解:根据表格数据画出图象如图:由图象可知,函数的解析式为y=x3,把x=﹣5代入得,y=﹣125.故选:D.7.解:由一次函数y=kx+b的图象可知k>0,b>0,所以一次函数y=﹣bx+k的图象应该见过一、二、四象限,故选:A.8.解:由题意可知:A、每月上网不足25小时,选择A方式最省钱,故本选项不合题意;B、每月上网时间为30小时,选择A方式的费用为:30+5×[(120﹣30)÷(50﹣25)]=48(元),B方式为50元,C方式为120元,所以选择A方式最省钱,故本选项符合题意;C、每月上网费用为60元,选择B方式比A方式时间长,故本选项不合题意;D、每月上网时间超过70小时,选择C方式最省钱,故本选项不合题意;故选:B.9.解:方程ax+b=0的解为x=﹣,则一次函数y=ax+b的图象与x轴交点的坐标为(﹣,0),即一次函数y=ax+b图象与x轴交点的横坐标为﹣.故选:D.10.解:根据图象得,当x<0时,kx+b<2,所以不等式kx+b<2的解集为x<0.故选:A.11.解:根据题意可知货车进入隧道的时间x与货车在隧道内的长度y之间的关系具体可描述为:当货车开始进入时y逐渐变大,货车完全进入后一段时间内y不变,当货车开始出来时y 逐渐变小,∴反映到图象上应选A.故选:A.12.解:∵一次函数y1=kx+b的图象经过第一、三象限,∴k>0,所以①正确;∵一次函数y1=kx+b的图象与y轴的交点在y轴的负半轴上,∴b<0,所以②错误;∵一次函数y2=mx+n的图象经过第二、四象限,∴m<0,所以③错误;∵一次函数y2=mx+n的图象与y轴的交点在y轴的正半轴上,∴n>0,所以④正确;∵x>2时,y1>y2,∴当x=3时:y1>y2.所以⑤正确.故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:根据一次函数的定义,可知:m2=1,m+1≠0,解得:m=±1且m≠﹣1,∴m=1.故答案为:1.14.解:∵y关于x的函数y=﹣7x+2+m是正比例函数,∴2+m=0,解得m=﹣2.故答案为﹣2.15.解:总金额y(元)与铅笔数n(支)的关系式可表示为y=2n,其中y,n为变量,故答案为:y=2n;n,y.16.解:y=0时,即与x轴的交点,自变量x的值是2.故答案为:2.17.解:∵函数y1=x+3中y1<0,∴x+3<0,解得x<﹣6.故答案为:<﹣6.18.解:由图可得,乙队的速度为300÷100=3(米/秒),设甲队开始的速度为a米/秒,15(3﹣a)=(45﹣15)×[a(1+)﹣3],解得a=2,∴甲队提速后的速度为2×(1+)=3.5(米/秒),∴甲队到达终点用的时间为:15+(300﹣15×2)÷3.5=15+=15+77=92(秒),∴甲队到达终点时,乙队离终点还有3×(100﹣92)=3×7=3×=(米),故答案为:.三.解答题(共7小题,满分60分)19.解:(1)如图所示;(2)如图所示.20.解:(1)当x=2时,y=0,所以方程kx+b=0的解为x=2;(2)当x=2时,y=﹣1,所以代数式k+b的值为﹣1;(3)当x=﹣1时,y=﹣3,所以方程kx+b=﹣3的解为x=﹣1.21.解:(1)由图可得,直线l1:y=x﹣1与直线l2:y=﹣x+2在同一直角坐标中交于点A(2,1),∴方程组的解是,故答案为:;(2)解方程组,可得,把代入y=x+成立,∴三条直线y=x﹣1,y=﹣x+2,y=x+经过同一个点(2,1).22.解:(1)由图象可得,到达离家最远的地方是12时,此时离家30千米,故答案为:12,30;(2)由图象可得,他12时开始了第二次休息,在整个骑行过程中,一共休息了(11﹣10.5)+(13﹣12)=1.5(小时),故答案为:12,1.5;(3)由图象可得,他从离家最远的地方回家用了15﹣13=2(小时),速度是30÷2=15(千米/小时),即他从离家最远的地方回家用了2小时,速度是15千米/小时.23.解:(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)①根据题意得,y=0.15x+0.2(2000﹣x),即y=﹣0.05x+400;根据题意得,,解得500≤x≤1000,∴y=﹣0.05x+400(500≤x≤1000);②∵y=﹣0.05x+400,k=﹣0.05<0;∴y随x的增大而减小,∵x为正整数,∴当x=500时,y取最大值,则2000﹣x=1500,即药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大.24.解:(1)当0≤x≤4时,设y与x的函数关系式为y=kx,2k=10,得k=5,即当0≤x≤4时,y与x的函数关系式为y=5x,当4<x≤14时,y=4×5=20,当14<x≤24时,设y与x的函数关系式为y=ax+b,,解得,,即当14<x≤24时,y与x的函数关系式为y=﹣2x+48,由上可得,y与x的函数关系式为y=;(2)由图象可得,恒温系统设定的恒定温度是20℃;(3)把y=15代入y=﹣2x+48,15=﹣2x+48,解得,x=16.5,∵16.5﹣14=2.5,∴这天内恒温系统最多可以关闭2.5小时就必须重新启动,才能避免草莓受到伤害.25.解:(1)∵直线y=﹣x﹣4交x轴和y轴于点A和点C,∴点A(﹣4,0),点C(0,﹣4),设直线AB的解析式为y=kx+b,由题意可得:,解得:,∴直线AB的解析式为y=x+2,故答案为:y=x+2;(2)∵点A(﹣4,0),点C(0,﹣4),点B(0,2),∴OA=OC=4,OB=2,∴BC=6,设点P(m,m+2),当点P在线段AB上时,∵S△APC=S△AOC,∴S△ABC﹣S△PBC=×4×4,∴×6×4﹣×6×(﹣m)=8,∴m=﹣,∴点P(﹣,);当点P在BA的延长线上时,∵S△APC=S△AOC,∴S△PBC﹣S△ABC=×4×4,∴×6×(﹣m)﹣×6×4=8,∴m=﹣,∴点P(﹣,﹣),综上所述:点P坐标为(﹣,)或(﹣,﹣);(3)如图,当点P在线段AB上时,设CP与AO交于点H,在△AOB和△COH中,,∴△AOB≌△COH(ASA),∴OH=OB=2,∴点H坐标为(﹣2,0),设直线PC解析式y=ax+c,由题意可得,解得:,∴直线PC解析式为y=﹣2x﹣4,联立方程组得:,解得:,∴点P(﹣,),∴CP==,当点P'在AB延长线上时,设CP'与x轴交于点H',同理可求直线P'C解析式为y=2x﹣4,联立方程组,∴点P(4,4),∴CP==4,综上所述:CP的解析式为:y=﹣2x﹣4或y=2x﹣4;CP的长为或4.。
成都市东湖中学八上数学方程组与一次函数检测试题3
成都市东湖中学八上数学方程组与一次函数检测试题班级______姓名_______得分______A 卷(100分)一、 选择题:1.已知关于x 、y 的方程组⎩⎨⎧=+=+.3,0ny x y mx ,解是⎩⎨⎧-==,21y x 则n m +2的值为 ( )A 、3B 、2C 、1D 、0 2.如果5x 3m -2n -2y n -m +11=0是二元一次方程,则( )A.m =1,n =2B.m =2,n =1C.m =-1,n =2D.m =3,n =43、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12(D )124、关于x 、y 的方程组⎩⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( ) (A )2; (B )-1; (C )1;(D )-2;5.关于x 的一次函数y=kx+k 2+1的图象可能正确的是( ) A . B. C . D .6.已知函数y=kx+b 的图象如图,则y=2kx+b 的图象可能是( )A . B. C . D .7.已知函数y kx b =+的图象不经过第二象限,那么k 、b 一定满足( )A .k >0,b <0B .k <0,b <0C .k <0,b >0D .k >0,b ≤08.下列说法正确的是( )A .直线y kx k =+必经过点(-1,0)B .若点1P (1x ,1y )和2P (2x ,2y )在直线y kx b =+(k <0)上,且1x >2x ,那么1y >2yC .若直线y kx b =+经过点A (m ,-1),B (1,m ),当m <-1时,该直线不经过第二象限D .若一次函数()212y m x m =-++的图象与y 轴交点纵坐标是3,则m =±1二、 填空题:1、已知二元一次方程3x+4y=6,当x 、y 互为相反数时,x=_____,y=______;当x 、y 相等时,x=______,y= _______ 。
成都市东湖中学八上数学《一次函数》基础测试题
成都市东湖中学八上数学《一次函数》基础测试题A卷(100分)一、选择题1.函数y=(2﹣a)x+b﹣1是正比例函数的条件是【】A.a≠2 B.b=1 C.a≠2且b=1 D.a,b可取任意实数2.下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有【】A.4个B.3个C.2个D.1个3.已知y=(m﹣3)x|m|﹣2+1是一次函数,则m的值是【】A.﹣3 B.3 C.±3 D.±23.关于一次函数y=﹣2x+3,下列结论正确的是【】A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<04.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是【】A.B.C.D.5.已知直线y=kx﹣4(k<0)与两坐标轴所围成的三角形面积等于4,则直线的解析式为【】A.y=﹣x﹣4 B.y=﹣2x﹣4 C.y=﹣3x+4 D.y=﹣3x﹣46.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是【】A.B.C.D.7.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是【】A. B. C. D.9.直线y=kx+b经过一、三、四象限,则直线y=bx﹣k的图象只能是图中的【】A. B. C. D.10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t (时)的函数关系用图象表示应为下图中的【】11.已知等腰三角形的周长为20cm,底边长为y(cm),腰长为x(cm),y与x的函数关系式为y=20﹣2x,那么自变量x的取值范围是【】A.x>0 B.0<x<10 C.0<x<5 D.5<x<10二、填空题1.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m= .2.若函数y=(a﹣3)x|a|﹣2+2a+1是一次函数,则a= .3.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n 的大小关系是.4.如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是.三、解答题1.已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.2.已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),求此函数的解析式3.求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.4.已知直线y=kx+b 经过点A (5,0),B (1,4).(1)求直线AB 的解析式;(2)若直线y=2x ﹣4与直线AB 相交于点C ,求点C 的坐标;5.在平面直角坐标系xOy 中,将直线y=2x 向下平移2个单位后,与一次函数y=﹣x+3的图象相交于点A .(1)将直线y=2x 向下平移2个单位后对应的解析式为 ;(2)求点A 的坐标;(3)若P 是x 轴上一点,且满足△OAP 是等腰直角三角形,直接写出点P 的坐标.6.已知把直线y=kx+b (k ≠0)沿着y 轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b (k ≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.7.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5).(1)直接写出B点坐标;(2)若过点C的一条直线把矩形OABC的周长分为3:5两部分,求这条直线的解析式.8.如图,直线y=-2x+4分别与x轴、y轴相交于点A和点B,如果线段CD两端点在坐标轴上滑动(C点在y轴上,D点在x轴上),且CD=AB.当△COD和△AOB全等时,求C、D两点的坐标;B 卷(50分)一、 填空题1.若一次函数y=kx+b (k ≠0)与函数y=x+1的图象关于x 轴对称,且交点在x 轴上,则这个函数的表达式为: .2.已知点A (3,y 1)、B (2,y 2)在一次函数y=﹣x+3的图象上,则y 1,y 2的大小关系是y 1 y 2.3.一次函数y=kx+b ,当﹣3≤x ≤1时,1≤y ≤9,则k+b= .4.如图,直线y=﹣x+与x 轴、y 轴分别交于A 、B 两点,O 为原点,若把△AOB 沿着直线AB 翻折,点O 落在点C 处,则点C 的坐标是 .5.如图,点A 的坐标为(﹣1,0),点B (a ,a ),当线段AB 最短时,点B 的坐标为 .二、解答题1.如图,一次函数232+-=x y 的图象分别与x 轴、y 轴交于A 、B ,已线段AB 为边在第一象限内作等腰Rt △ABC ,使∠BAC=90°.(1)分别求点A 、C 的坐标;(2)在x 轴上求一点P ,使它到B 、C 两点的距离之和最小.2.如图,直线l1的函数关系式为,且l1与x轴交于点D,直线l2经过定点A(4,0),B(﹣1,5),直线l1与l2相交于点C,(1)求直线l2的解析式;(2)求△ADC的面积;(3)在直线l2上存在一点F(不与C重合),使得△ADF和△ADC的面积相等,请求出F点的坐标;(4)在x轴上是否存在一点E,使得△BCE的周长最短?若存在请求出E点的坐标;若不存在,请说明理由.3.如图,一次函数y=﹣x+6的图象分别与y轴、x轴交于点A、B,点P从点B出发,沿BA以每秒1个单位的速度向点A运动,当点P到达点A时停止运动,设点P的运动时间为t秒.(1)点P在运动的过程中,若某一时刻,△OPA的面积为12,求此时P点坐标;(2)在(1)的基础上,设点Q为y轴上一动点,当PQ+BQ的值最小时,求Q点坐标;(3)在整个运动过程中,当t为何值时,△AOP为等腰三角形?4.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D 是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=45°,求点D的坐标.5.如图,一次函数y=﹣x+的图象与坐标轴分别交于点 A和B两点,将△AOB沿直线CD折起,使点A与点B重合,直线CD交AB于点D.(1)求点C的坐标;(2)在射线DC上求一点P,使得PC=AC,求出点P的坐标;(3)在坐标平面内,是否存在点Q(除点C外),使得以A、D、Q为顶点的三角形与△ACD全等?若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理.。
成都市东湖中学一次函数的性质及运用
成都市东湖中学《一次函数的性质及运用》专题练习1. 求在直线y =x +上且到x 轴或y 轴距离为1的点的坐标。
2.直线y =kx +b 与直线y =23x -平行,且与直线y =213x +交于y 轴上同一点,求该直线的解析式3. 如图,一个正比例函数与一个一次函数的图像交于点A(4,3),一次函数的图像与y 轴交于点B ,且OA =OB ,求这两个函数的解析式.4.如图, 直线443y x =- 与x 轴、y 轴分别交于A 、B 两点, 把△AOB 以x 轴为对称轴翻折, 再将翻折后的三角形绕点A 顺时针旋转90°, 得到△'''AO B ,求点''B 的坐标.12125.若函数y=kx+b的图象平行于y= -2x的图象且经过点(0,4),求直线y=kx+b与两坐标轴围成的三角形的面积6.如图,在平面直角坐标系中,点A的坐标是(4,0),点P在直线y=-x+m上,且AP=OP=4,求m的值。
7、直线L与直线y=2x+1的交点A的横坐标为2,与直线y=-x+1的交点B的纵坐标为2,求直线L的函数解析式;(2)求三角形AOB的面积8.已知一次函数的图像经过(2,1)和(0,-1)a)求一次函数的解析式;b)若一条直线与此一次函数的图像交于A(-2,a)点,且与坐轴交于点B,若点B到原点的距离为3,求这条直线的解析式。
9.一次函数y =kx +b 的自变量的取值范围是-3≤x ≤6,相应的函数值的取值范围是-5≤y ≤-2,求这个函数的解析式10.如图,直线y =kx -6经过点A(4,0),直线y =-3x +3与x 轴交于点B ,且两直线交于点C 求:(1)k 的值;(2)△ABC 的面积.11.在平面直角坐标系xOy 中,将直线kx y =沿y 轴向上平移2个单位后得到直线l ,已知l 经过点A (-4, 0).(1)求直线l 的解析式;(2)设直线l 与y 轴交于点B ,点P 在坐标轴上,△ABP 与△ABO 的面积之间满足12ABP ABO S S ∆∆=, 求P 的坐标.12. 已知:如图,平面直角坐标系中,A ( 1,0),B (0,1),C (-1,0),过点C 的直线绕C 旋转,交y轴于点D ,交线段AB 于点E.(1)求∠OAB 的度数及直线AB 的解析式;(2)若△OCD 与△BDE 的面积相等,①求直线CE 的解析式;②若y 轴上的一点P 满足∠APE =45°,请直接写出点P 的坐标.13.如图,点B 是直线8+-=x y 在第一象限的一动点A (6,0),设△AOB 的面积为S ,(1)、写出S 与X 之间的函数关系式,并求出x 的取值范围。
10 专题十:一次函数与全等三角形存在性问题(方法专题)
1.如图,点E,F在线段BC上,ABF∆与DCE∆全等,点A与点D,点B与点C是对应顶点,AF与DE 交于点M,则(DCE∠=)A.ABF∠B.BAF∠C.EMF∠D.AFB∠【答案】A.2.如图,ABC∆的顶点分别为(0,3)A,(4,0)B-,(2,0)C,且BCD∆与ABC∆全等,则点D坐标可以是( )A.(2,3)--B.(2,3)-C.(2,3)D.(0,3)【答案】A.3.如图,直线1:33y x=-+与x轴、y轴分别相交于点A、B,AOB∆与ACB∆关于直线l对称,则点C的坐标为.【答案】3(2,3).专题导入一次函数与全等存在性全等三角形存在性问题的处理流程:分析不变特征: 从顶点入手,分析定点、动点,在两个三角形中逐层分析确定的角、边长,把公共边作为对应边. 分析形成因素:根据分析得到的不变特征,结合两个三角形全等的判定,同时考虑两个三角形出现的对应关系,综合在一起分析.画图求解:根据上面的分析,画出符合题意的图形,结合图形特征,设计方案.结果验证:回归点的运动范围进行验证;估算数值,结合图形进行验证.例1、如图,ABC ∆的顶点分别为(0,3)A ,(4,0)B -,(2,0)C ,且BCD ∆与ABC ∆全等,则点D 坐标可以是______________.【答案】解:如图所示,BCD ∆与ABC ∆全等,点D 坐标可以是(2,3)-或(2,3)--或(0,3)-. 故答案为:(2,3)-或(2,3)--或(0,3)-.专题精析解法点睛【举一反三】1.线段AB 的两端点的坐标为(0,3)A ,(2,0)B -,现请你在坐标系中(不能在坐标轴上)找一个格点P ,使得以P 为顶点且与AOB ∆共一边的三角形与AOB ∆全等,则满足条件的P 点的坐标是 ________ (写出所有情况)【答案】解:如图所示:1(2,3)P-,2(2,3)P ,3(2,3)P --, 故答案为:(2,3)-、(2,3)、(2,3)--.2.如图,直线24y x =-+分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在y 轴上,D 点在x 轴上),且CD AB =.(1)当COD ∆和AOB ∆全等时,求C 、D 两点的坐标;(2)是否存在经过第一、二、三象限的直线CD ,使CD AB ⊥?如果存在,请求出直线CD 的解析式;如果不存在,请说明理由.【答案】解:(1)由题意,得(2,0)A ,(0,4)B ,即2AO =,4OB =.①当线段CD 在第一象限时,点(0,4)C ,(2,0)D 或(0,2)C ,(4,0)D .②当线段CD 在第二象限时,点(0,4)C ,(2,0)D -或(0,2)C ,(4,0)D -.③当线段CD 在第三象限时,点(0,4)C -,(2,0)D -或(0,2)C -,(4,0)D -.④当线段CD 在第四象限时,点(0,4)C -,(2,0)D 或(0,2)C -,(4,0)D(2)(0,2)C ,(4,0)D -.直线CD 的解析式为122y x =+.例2、在平面直角坐标系中,点A 的坐标(0,4),点C 的坐标(6,0),点P 是x 轴上的一个动点,从点C 出发,沿x 轴的负半轴方向运动,速度为2个单位/秒,运动时间为t 秒,点B 在x 轴的负半轴上,且3AOC AOB S S ∆∆=.(1)求点B 的坐标;(2)若点D 在y 轴上,是否存在点P ,使以P 、D 、O 为顶点的三角形与AOB ∆全等?若存在,直接写出点D 坐标;若不存在,请说明理由(3)点Q 是y 轴上的一个动点,从点A 出发,向y 轴的负半轴运动,速度为2个单位/秒.若P 、Q 分别从C 、A 两点同时出发,求:t 为何值时,以P 、Q 、O 三点构成的三角形与AOB ∆全等.【答案】解:(1)点A 的坐标(0,4),点C 的坐标(6,0),4OA ∴=,6OC =,11641222AOC S OC OA ∆∴==⨯⨯=, 3AOC AOB S S ∆∆=.4AOB S ∆=,设(,0)B x ,点B 在x 轴的负半轴上,OB x ∴=-,11()4422AOB S OB OA x ∆∴==⨯-⨯=, 2x ∴=-,(2,0)B ∴-;(2)P 在x 轴上,D 在y 轴,90POD AOB ∴∠=∠=︒,以P 、D 、O 为顶点的三角形与AOB ∆全等,∴①POD AOB ∆≅∆,2OD OB ∴==,(0,2)D ∴或(0,2)-②DOP AOB ∆≅∆,4OD OA ∴==,(0,4)D ∴或(0,4)-, 即:满足条件的D 的坐标为(0,4),(0,4)-,(0,2),(0,2)-.(3)P 在x 轴上,Q 在y 轴,90POQ AOB ∴∠=∠=︒,由运动知,2CP t =,2AQ t =,|26|OP t ∴=-,|24|OQ t =-,当02t <<时,62OP t =-,42OQ t =-,以P 、Q 、O 为顶点的三角形与AOB ∆全等,1t ∴=462OP OA t ===-,1t ∴=,∴满足条件,即:1t s =②QOP AOB ∆≅∆,442OQ OA t ∴===-,0t ∴=,262OP OB t ===-,2t ∴=,∴不满足条件,舍去;当23t <<时,62OP t =-,24OQ t =-,以P 、Q 、O 为顶点的三角形与AOB ∆全等,∴①POQ AOB ∆≅∆,224OQ OB t ∴===-,3t ∴=,462OP OA t ===-,1t ∴=,∴不满足条件,舍去;②QOP AOB ∆≅∆,424OQ OA t ∴===-,4t ∴=,262OP OB t ===-,2t ∴=,∴不满足条件,舍去;当3t >时,26OP t =-,24OQ t =-,以P 、Q 、O 为顶点的三角形与AOB ∆全等,3t ∴=426OP OA t ===-,5t ∴=,∴不满足条件,舍去;,②QOP AOB ∆≅∆,424OQ OA t ∴===-,4t ∴=,226OP OB t ===-,4t ∴=,∴满足条件,即:4t s =即:满足条件的时间1t s =或4s .13.直线1l 与x 轴的交点A 的坐标为(2,0)-,与y 轴的交点B 的坐标为(0,1).(1)求这条直线的表达式.(2)直线2l 经过第二、三、四象限,且与x 轴、y 轴分别交于点C ,点D ,如果COD ∆和AOB ∆全等,求直线2l 的表达式.【答案】解:(1)设1l 一次函数表达式为y kx b =+,直线1l 与x 轴的交点A 的坐标为(2,0)-,与y 轴的交点B 的坐标为(0,1).代入可得201k b b -+=⎧⎨=⎩,解得121k b ⎧=⎪⎨⎪=⎩,1l ∴一次函数表达式为112y x =+;(2)点A 的坐标为(2,0)-,点B 的坐标为(0,1).2OA ∴=,1OB =,专题过关COD ∆和AOB ∆全等, 2OC ∴=或1,1OD =或2,(2,0)C ∴-,(0,1)D -或(1,0)C -,(0,2)D -,设2l 一次函数表达式为y mx n =+,∴201m n n -+=⎧⎨=-⎩或02m n n -+=⎧⎨=-⎩ 解得121m n ⎧=-⎪⎨⎪=-⎩或22m n =-⎧⎨=-⎩∴直线2l 的表达式为112y x =--或22y x =--. 2.已知直线25y x =-与x 轴和y 轴分别交于点A 和点B ,点(1,)C n 在直线AB 上,点D 在y 轴的负半轴上,且CD =(1)求点C 、点D 的坐标.(2)若点M 为x 轴上一动点(点M 不与点O 重合),N 为直线25y x =-上一动点,是否存在点M 、N ,使得AMN ∆与AOB ∆全等?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】解:(1)如图1中,点(1,)C n 在直线25y x =-上,3n ∴=-,(1,3)C ∴-,作CF y ⊥轴于F ,10CD =,1CF =,在Rt CDF ∆中,3DF ,(0,6)D ∴-或(0,0)(舍弃)(0,6)D ∴-.(2)如图2中,①当AMN AOB ∆≅∆时, 2.5AM OA ==,5NM OB ==5OM ∴=,(5,5)N ∴.②当△AN M AOB ''≅∆时,52AN OA '==,可得N ',. ③当△AN M AOB ''''≅∆时,52AN OA ''==,可得N '',.综上所述,满足条件的点N 坐标:(5,5)或或 3 3.直线(0)y x b b =+>与x ,y 轴分别交于A ,B 两点,点A 的坐标为(6,0)-,过点B 的另一直线交x 轴正半轴于点C ,且13OC OB =. (1)求点B 的坐标及直线BC 的解析式;(2)在线段OB 上存在点P ,使点P 到点B ,C 的距离相等,求出点P 坐标;(3)在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与ABC ∆全等,画出ABD ∆并请直接写出点D 的坐标.【答案】解:(1)把A 的坐标为(6,0)-代入y x b =+中,得到6b =, (0,6)B ∴,13OC OB =,2OC ∴=,(2,0)C ∴,设直线BC 的解析式为y kx b =+,则有620b k b =⎧⎨+=⎩,解得36k b =-⎧⎨=⎩,∴直线BC 的解析式为36y x =-+.(2)如图1中,由题意PB PC =,设PB PC x ==.在Rt POC ∆中,6OP x =-,PC x =,2OC =,222(6)2x x ∴=-+,103x ∴=,108633OP ∴=-=,8(0,)3P ∴.(3)如图2中,设点C 关于直线AB 的对称点为D ,则ABD ABC ∆≅∆,直线AB 的解析式为6y x =+,∴直线CD 的解析式为2y x =-+,由62y x y x =+⎧⎨=-+⎩,解得24x y =-⎧⎨=⎩,(2,4)H ∴-,DH HC =,(6,8)D ∴-,根据对称性点D 关于直线y x =-的对称点(8,6)D '-也满足条件.综上所述,满足条件的点D 的坐标为(6,8)-或(8,6)-.4.如图,直线124:5l y kx =+与x 轴、y 轴分别相交于A 、B 两点,直线2:2l y x b =-+与x 轴、y 轴、直线1l 分别相交于点C 、D 、P .已知点A 的坐标为(6,0),点D 的坐标为(0,6),点M 是x 轴上的动点.(1)求k ,b 的值及点P 的坐标;(2)当POM ∆为等腰三角形时,求点M 的坐标;(3)是否存在以点M 、O 、D 为顶点的三角形与AOB ∆全等?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】解:(1)直线124:5l y kx =+与x 轴相交于(6,0)A , 24605k ∴+=,45k ∴=-, ∴直线1424:55l y x =-+① 直线2:2l y x b =-+与y 轴相交于点(0,6)D ,6b ∴=,∴直线2:26l y x =-+②,联立①②解得,14x y =⎧⎨=⎩,(1,4)P ∴;(2)点M 是x 轴上的动点,∴设(,0)M m ,(1,4)P ,OP ∴=||OM m =,MP =POM ∆为等腰三角形,∴当OM OP =时,∴||m =,m ∴=(M ∴0)或0)当OM MP =时,||m ∴=172m ∴=,17(2M ∴,0), 当OP MP =时,∴,0m ∴=(舍)或2m =,(2,0)M ∴,即:点M 的坐标为(0)或0)或17(2,0)或(2,0);(3)点A 的坐标为(6,0),点D 的坐标为(0,6),6OA OD ∴==,点M 在x 轴上,90AOB DOM ∴∠=∠=︒,以点M 、O 、D 为顶点的三角形与AOB ∆全等,AOB DOM ∴∆≅∆, OM OB ∴=,直线1424:55l y x =-+与y 轴相交于B , 24(0,)5B ∴,245OB ∴=,245OM ∴=, 24(5M ∴,0)或24(5-,0).5.已知直线443y x =-+与x 轴和y 轴分别交与A 、B 两点,另一直线过点A 和点(7,3)C .(1)求直线AC 对应的函数关系式;(2)求证:AB AC ⊥;(3)若点P 是直线AC 上的一个动点,点Q 是x 轴上的一个动点,且以P 、Q 、A 为顶点的三角形与AOB ∆全等,求点Q 的坐标.【答案】解:(1)在443y x =-+中,令0y =,则4043x =-+,3x ∴=,(3,0)A ∴,设直线AC 对应的函数关系式为y kx b =+,∴0337k b k b =+⎧⎨=+⎩,∴3494k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AC 对应的函数关系式为3944y x =-,(2)在直线443ABy x =-+中,143k =-, 在直线3944ACy x =-中,234k =, 121k k ∴=-,AB AC ∴⊥;(3)在443y x =-+中,令0x =,则4y =,3OA ∴=,4OB =,由勾股定理得5AB =,①当90AQP ∠=︒时,如图1,AOB AQP ∆≅∆,4AQ OB ∴==,1(7,0)Q ∴,2(1,0)Q -,②当90APQ ∠=︒时,如图2,AOB AQP ∆≅∆,5AQ AB ∴==,3(8,0)Q ∴,4(2,0)Q -.③当90PAQ ∠=︒时,这种情况不存在,综上所述:点Q 的坐标为:(7,0)(8,0)(1-,0)(2-,0).6.如图,直线:3l y kx =+与x 轴、y 轴分别交于A 、B 两点,34OB OA =,OM AB ⊥,垂足为点M ,点P 为直线l 上的一个动点(不与A 、B 重合).(1)求直线3y kx =+的解析式;(2)当点P 运动到什么位置时BOP ∆的面积是6;(3)在y 轴上是否存在点Q ,使得以O ,P ,Q 为顶点的三角形与OMP ∆全等,若存在,请求出所有符合条件的点P 的坐标,若不存在,请说明理由.【答案】解:(1)直线:3l y kx =+与y 轴交于点B(0,3)B ∴,3OB =34OB OA =,4OA ∴=,即(4,0)A点A 在直线l 上,430k ∴+= 解得:34k =-∴直线l 的解析式为334y x =-+(2)过P 作PC y ⊥轴于C ,如图1,162BOP S OB PC ∆∴==4PC ∴=∴点P 的横坐标为4或4-点P 为直线l 上的一个动点且不与A 、B 重合∴横坐标不为4,纵坐标为:3(4)364-⨯-+=∴点P 坐标为(4,6)-时,BOP ∆的面积是6;(3)存在满足条件的P 、QOM AB ⊥,5AB ==90OMP ∴∠=︒ 125OA OB OM AB ==∴以O ,P ,Q 为顶点的三角形与OMP ∆全等时,斜边OP 为对应边,90OQP ∠=︒, ①OMP PQO ∆≅∆125PQ OM ∴==,即P 点横坐标为125-或125,如图2和图3,31224()3455-⨯-+=,31263455-⨯+= ∴点12(5P -,24)5或12(5,65)②OMP OQP ∆≅∆125OQ OM ∴==,即点P 、点Q 纵坐标为125-或125,如图4和图5,312345x -+=- 解得:365x =312345x -+= 解得:45x = ∴点36(5P ,12)5-或4(5,12)5 综上所述,符合条件的点P 的坐标为12(5-,24)5,12(5,6)5,36(5,12)5-,4(5,12)5。
八年级一次函数及全等三角形综合试卷及详细答案
八年级一次函数及全等三角形综合试卷一.选择题(共10小题,每小题4分,共40分)1.如图,在一次函数y=﹣x+3的图象上取点P,作PA⊥x轴,PB⊥y轴;垂足为B,且矩形OAPB的面积为2,则这样的点P个数共有()2.直线y=kx+b不经过第三象限,a>e,且A(a,m)、B(e,n)、C(﹣m,c)、D(﹣n,d)这四点都在直线上,33.(2007•牡丹江)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h(cm)与注水时间t(min)的函数图象大致为().C D.4.(2013•绥化)如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B →C→D→A 运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是().C D.5.(2012•武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()6.(2011•玉溪)如图(1),在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A 运动,设S△DPB=y,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则△ABC的面积为()7.(2011•黄石)已知梯形ABCD的四个顶点的坐标分別为A(﹣1,0),B(5,0),C(2,2),D(0,2),直线.C D.8.(2013•哈尔滨模拟)甲乙两人在一个400米的环形跑道上练习跑步.两人同时、同向出发,两人之间的距离s (单位:米)与两人跑步的时问t(单位:分)之间的函数关系图象如图所示.下列四种说法:①l5分时两人之间距离为50米;②跑步过程中两人休息了5分;③20~30分之间一个人的速度始终是另一个人速度的2倍;③40分时一个人比另一个人多跑了400米.其中一定正确的个数是()9.(2013•长春一模)一次函数y=﹣x+b的图象如图所示,则b的值可能是()10.(2012•义乌市模拟)A、B两地相距360km,甲车以100km/h的速度从A地驶往B地,乙车以80km/h的速度从B地驶往A地,两车同时出发.设乙车行驶的时间为x(h),两车之间的距离为y(km),则y与x之间的函数.C D.二.填空题(共6小题,每小题5分共30分)11.如图,直线y=kx+b和y=mx+n交于点P(1,1),直线y=mx+n交x轴于点(2,0),那么不等式组0<mx+n <kx+b的解集是_________.12.甲、乙两人在一段长为1200米的笔直路上匀速跑步,甲、乙的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处.若同时起跑,甲、乙两人在从起跑至其中一人先到达终点的过程中,他们之间的距离y(m)与时间t(s)的函数图象如图所示.则t1=_________s,y2=_________m.13.在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示),点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交点D,连接OD,设P在x轴的正半轴上,若△POD为等腰三角形,则点P的坐标为_________.14.已知函数y=(m﹣1)+1是一次函数,则m=_________.15.若f(x)=2x﹣1,如[f(﹣2)=2×(﹣2)﹣1],则=_________.16.(2005•包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+= _________.三.解答题(共7小题,共80分)17.(12分)甲、乙两车分别从相距350千米的A、B两地同时出发相向而行,两车在途中S城相遇后,甲车接到返城通知,于是按原路返回A地,乙车在S城停留一会儿后,继续向A地行驶.设甲、乙两车在行驶过程中速度保持不变,两车离A地距离y(千米)与时间x(小时)之间的函数关系如图所示,根据所提供的信息,回答下列问题:(1)甲、乙两车的行驶速度各是多少?(2)乙车出发几小时后到达A地?(3)两车出发后几小时第二次相遇?18.(12分)已知△ABC中,∠A=60°.(1)如图①,∠ABC、∠ACB的角平分线交于点D,则∠BOC=_________°.(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C=_________°.(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1(内部有n﹣1个点),求∠BO n﹣1C(用n 的代数式表示).(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…O n﹣1,若∠BO n﹣1C=90°,求n的值.19.(10分)已知:△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD⊥AP于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.20.(12分)如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.21.(12分)已知,直线与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°.且点P(1,a)为坐标系中的一个动点.(1)求三角形ABC的面积S△ABC;(2)请说明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值.22、(10分)已知,如图,给出以下五个论断:①∠D=∠E;②CD=BE;③AM=AN;④∠DAB=∠EAC;⑤AB=AC.以其中三个论断作为题设,另外两个中的一个论断作为结论.(1)请你写出一个满足条件的真命题(书写形式如:如果×××,那么×××),并加以证明;(2)请你再写出至少两个满足上述条件的真命题,并加以证明。
成都市东湖中学八上数学一次函数应用专项精练
成都市东湖中学八上数学一次函数应用专项导练题姓名:一.解答题1.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.2.某电信公司提供了A,B两种通讯方案,其通讯费用y(元)与通话时间x(分)之间的关系如图所示,观察图象,回答下列问题:(1)某人若按A方案通话时间为150分钟时通讯费用为元;若通讯费用为60元,则B方案比A方案的通话时间多分钟;(2)求B方案的通讯费用y(元)与通话时间x(分)之间的函数关系式;(3)当B方案的通讯费用为50元,通话时间为170分钟时,若两种方案的通讯费用相差10元,求通话时间相差多少分钟.3.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?4.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.6.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.7.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.8.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?。
八年级数学上册全等三角形单元达标训练题(Word版 含答案)
八年级数学上册全等三角形单元达标训练题(Word 版 含答案)一、八年级数学轴对称三角形填空题(难)1.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.2.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形(1)如图,在ABC∆中,25,105A ABC∠=︒∠=︒,过B作一直线交AC于D,若BD 把ABC∆分割成两个等腰三角形,则BDA∠的度数是______.(2)已知在ABC∆中,AB AC=,过顶点和顶点对边上一点的直线,把ABC∆分割成两个等腰三角形,则A∠的最小度数为________.【答案】130︒1807︒⎛⎫⎪⎝⎭【解析】【分析】(1)由题意得:DA=DB,结合25A∠=︒,即可得到答案;(2)根据题意,分4种情况讨论,①当BD=AD,CD=AD,②当AD=BD,AC=CD,③AB=AC,当AD=BD=BC,④当AD=BD,CD=BC,分别求出A∠的度数,即可得到答案.【详解】(1)由题意得:当DA=BA,BD=BA时,不符合题意,当DA=DB时,则∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为:130°;(2)①如图1,∵AB=AC,当BD=AD,CD=AD,∴∠B=∠C=∠BAD=∠CAD,∵∠BAC+∠B+∠C=180°,∴4∠B=180°,∴∠BAC=90°.②如图2,∵AB=AC,当AD=BD,AC=CD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,∵∠CDA=∠B+∠BAD=2∠B,∴∠BAC=3∠B,∵∠BAC+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°,∴∠BAC=108°.③如图3,∵AB=AC,当AD=BD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠BDC=∠C,∵∠BDC=∠A+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∵∠BAC+∠ABC+∠C=180°,∴5∠BAC=180°,∴∠BAC=36°.④如图4,∵AB=AC,当AD=BD,CD=BC,∴∠ABC=∠C,∠BAC=∠ABD,∠CDB=∠CBD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=3∠BAC,∵∠BAC+∠ABC+∠C=180°,∴7∠BAC=180°,∴∠BAC=180 ()7︒.综上所述,∠A的最小度数为:180 ()7︒.故答案是:180 ()7︒.【点睛】本题主要考查等腰三角形的性质定理以及三角形内角和定理与外角的性质,根据等腰三角形的性质,分类讨论,是解题的关键.3.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.4.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O P''、P' P''交OB、OA于M、N,则可证明此时△PMN周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°.【详解】解:如图:分别作点P关于OB、AO的对称点P'、P'',分别连OP'、O 、P' 交OB、OA于M、N,由轴对称△PMN周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°.故答案为30°.【点睛】本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.5.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD =DF ,CE =EF ,则△ADE 的周长=AB +AC =14.【详解】∵BF 平分∠ABC ,∴∠DBF =∠CBF ,∵DE ∥BC ,∴∠CBF =∠DFB ,∴∠DBF =∠DFB ,∴BD =DF ,同理FE =EC ,∴△AED 的周长=AD +AE +ED =AB +AC =8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.6.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【分析】 根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:012122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】 解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上 又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2,∴012122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.7.△ABC中,最小内角∠B=24°,若△ABC被一直线分割成两个等腰三角形,如图为其中一种分割法,此时△ABC中的最大内角为90°,那么其它分割法中,△ABC中的最大内角度数为_____.【答案】117°或108°或84°.【解析】【分析】根据等腰三角形的性质进行分割,写出△ABC中的最大内角的所有可能值.【详解】①∠BAD=∠BDA=12(180°﹣24°)=78°,∠DAC=∠DCA=12∠BDA=39°,如图1所示:∴∠BAC=78°+39°=117°;②∠DBA=∠DAB=24°,∠ADC=∠ACD=2∠DBA=48°,如图2所示:∴∠DAC=180°﹣2×48°=84°,∴∠BAC=24°+84°=108°;③∠DBA=∠DAB=24°,∠ADC=∠DAC=2∠DBA=48°,如图3所示:∴∠BAC=24°+48°=72°,∠C=180°﹣2×48°=84°;∴其它分割法中,△ABC中的最大内角度数为117°或108°或84°,故答案为:117°或108°或84°.【点睛】本题考查了等腰三角形的性质,解题的关键是根据等腰三角形的性质进行分割找出所有情况.8.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△A n B n A n+1的边长为_____.【答案】2n.【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∵OA2=4,∴OA1=A1B1=2,∴A2B1=2,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=8,A 4B 4=8B 1A 2=16,A 5B 5=16B 1A 2=32,以此类推△A n B n A n +1的边长为 2n .故答案为:2n .【点睛】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA 5=2OA 4=4OA 3=8OA 2=16OA 1是解题的关键.9.如图,已知AB AC =,AD 平分BAC ∠,60DEB EBC ∠=∠=︒,若3BE =,3DE =,则BC =____________.【答案】33+【解析】【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F.由已知条件推出△BEM 是等边三角形,△FDE 是等边三角形,在△DNM 中求出NM 的长度,即可求出BC 的长度.【详解】如图,延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F ,∵AB AC =,AD 平分BAC ∠,∴AN ⊥BC ,BN=CN ,∵60DEB EBC ∠=∠=︒,∴△BEM 是等边三角形,∴△FDE 是等边三角形,∵3BE =,3DE =33DM =-∵△BEM 是等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=30°,∴13322NM DM -==, ∴33333BN BM NM -+=-=-=, ∴233BC BN ==+.【点睛】本题考查了等边三角形的性质,解题的关键是作出辅助线构造等边三角形.10.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.【详解】延长BD 交AC 于点E ,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD 平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC -CE=8-5=3,∵A ABD ∠=∠,∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD 构建全等三角形是证明此题的关键.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .B .(0,4)C .(4,0)D .) 【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且,且点P 在坐标轴上当OM OP ==时P 点坐标为:()(,0,±± ,A 满足;当MO MP ==P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形【答案】C【解析】【分析】根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。
成都市东湖中学八上数学与一次函数有关的三角形面积问题专项训练
成都市东湖中学八上数学与一次函数有关的三角形面积问题专项训练1、已知一次函数y=kx+b 的图像平行于直线y=3x-5 ,且过点(-1,5),求一次函数的 解析式2、求直线 y=3x-6与两坐标轴所围成的三角形的面积3、将直线 平移,使其经过(4,3) (1)、求平移后的函数解析式(2)求平移后的函数图像与两坐标轴围成的三角形面积4.已知直线L 经过点(-2,4),且与坐标轴围成一 个等腰三角形,(1)求直线的函数的解析式(2)求所得三角形的周长及面积343+-=x y5.在直角坐标系中,一次函数的图像与直线y=2x-3 平行,且图像与两坐标轴围成的三角形面积等于4,求一次函数的 解析式。
6.已知正比例函数和一次函数的图像如图所示,其中交点A(3,4),且OA=0.5OB.求(1)正比例函数和一次函数解析式(2)三角形AOB 的面积。
7.求直线 和 y=2x+2 与y 轴所围成的图形的面积8.已知直线 与直线 的交点A 在第四象限 (1)求正整数m 的值; 421-=x y 31++-=m x y m x y 9732+-=(2)求交点A的坐标;(3)求这两条直线与x轴所围成的三角形的面积9.如图所示:直线y=kx+b经过点B (0,1.5)与点C(-1,3)且与x轴交与点A,经过点E(-2,0)的直线与OC平行,并且与直线y=kx+b交与点D,(1)求BC所在直线的函数解析式;(2)求点D的坐标;(3)求四边形CDEO的面积。
10.如图,由x轴,直线y=kx+4及分别过(1,0)(3,0)且平行于y轴的两条直线所围成的梯形ABCD的16面积为,求y=kx+4的解析式。
311、直线 : y=kx+b 过点B(-1,0)与y 轴交于点C,直线 :y=mx+n 与 交于点P (2,5)且过点A(6,0),过点C 与 平行的直线交X 轴于点D (1)求直线CD 的函数解析式;(2)求四边形APCD 的面积12如图,已知长方形ABCD 的边长AB=9,AD=3,现将此长方形置于坐标系中,使AB 在x 轴的正半轴上,经过点C 的直线 与x 轴交与点E ,与Y 轴交与点F 。
成都市东湖中学八上数学《一次函数之等腰三角形存在性》专项导练
成都市东湖中学八上数学《一次函数之等腰三角形存在性》专项导练
1.如图,直线与x轴、y轴分别交于A,B两点,点P是x轴上的动点,若使△ABP为等腰
三角形,求点P的坐标
2.如图,直线y=x+3与y轴交于点A,与直线x=1交于点B,点P是直线x=1上的动点,若使△ABP为等
腰三角形,求点P的坐标
3.如图,直线与x轴、y轴分别交于A,B两点,点P是线段AB上的动点,若使△OAP为等腰三角形,求点P的坐标
4.如图,直线与x轴、y轴分别交于A,B两点,过点O作OC⊥AB于点C,点P是线段OA上的动点,若使△PAC为等腰三角形,求点P的坐标
5.如图,直线y=-x+2与x轴、y轴分别交于A,B两点,点P是直线AB上的动点,若使△BOP为等腰三角形,求点P的坐标
6.如图,直线与x轴、y轴分别交于A,B两点,点P是坐标轴上一动点,若使△ABP为等腰三角形,求符合条件的点P坐标
7.如图,一次函数的图象与x轴、y轴分别交于点A,B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°,则AC所在直线的解析式
8.如图,直线与x轴、y轴分别交于点A,B两点,以AB为直角边在第二象限内作等腰Rt△ABC,
∠BAC=90°,点P为直线x=1上的动点.若,则点P的坐标
9.如图,直线与x轴,y轴分别交于A,B两点,以AB为边在AB上侧作等边△ABC,若平面内有一点P(m,),使得△ABP与△ABC的面积相等,则m的值
10.如图,直线与x轴、y轴分别交于A,B两点,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,点P是直线y=1上一动点,若△ABP的面积与△ABC的面积相等且点P在第二象限,则点P的坐标。
成都市东湖中学八上数学与一次函数有关的三角形面积问题专项训练2
成都市东湖中学八上数学与一次函数有关的三角形面积问题专项训练21.如图:正方形ABCD 边长为4,将此正方形置于坐标系,中点A 的坐标为(1,0)。
(1)过点C 的直线 与X 轴交与E, 求 (2)若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分,求直线l 的解析式。
2. 已知:直线y=2x 和y=kx+b 交于点A(1,m),直线y=kx+b 交x 轴于点B ,且S △AOB =4。
求m,k,b 的值。
3834-=x y AECDS3、P(a,b)是第一象限内在直线y=x-3上一点,已知A(0,4),三角形AOP 的面积为S,(1)用b 表示a ,(2)写出S 关于b 的解析式;(3)若三角形AOP 的面积为10,求点P 的坐标4-1. 若点P 是 x 轴上一个动点,且 ,试确定点P 的位置.4-2 .满足(1)若点P 是y 轴上一动点, 试确定点P 的位置. (2)若点P 是直线 y=2x+4 上一动点,试确定点P 的位置 . (3)若点P 是平面内任意一动点,试确 定点P 的位置.AOB BOPS S ∆∆=21AOB AOPS S ∆∆=214-3. 若点P 的坐标为(-2,m ),且 点P 的位置.5.已知直线y=ax+ 分别与x 轴和y 轴交于B 、C 两点,直线y=- x+b 与 x 轴交于点A ,并且两直线交点P 为(2,2) (1)求两直线表达式; (2)求四边形AOCP 的面积.6.若一次函数的图象交x 轴于点A (-6,0),交正比例函数的图象于点B ,且点B 在第二象限,它的横坐标为- 4,又知:S △AOB =15,求直线AB 的表达式。
ΔΔ1=2ABPAOB S S 2323成都市东湖中学八上数学与一次函数有关的三角形面积问题专项训练7.一次函数图象与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,与正比例函数 的图象交于点C ,若OB=4,C 点横坐标为6,(1)求一次函数的解析式;(2)求△AOB 的面积;(3)求原点O 到直线AB 的距离。
一次函数之存在性(全等三角形)(人教版)(含答案)
一次函数之存在性(全等三角形)(人教版)一、单选题(共3道,每道33分)
1.如图,直线与x轴、y轴分别交于A,B两点,若x轴的负半轴、y轴的负半轴上分别存在点E,F,使得△EOF与△AOB全等,则直线EF的表达式为( )
A.
B.
C.
D.
答案:B
解题思路:
试题难度:三颗星知识点:全等三角形存在性
2.如图,直线y=-2x+4与x轴、y轴分别交于A,B两点,点P(x,y)是直线y=-2x+4上的一个动点,过P作AB的垂线与x轴、y轴分别交于E,F两点,若△EOF与△AOB全等,则点P 的坐标为( )
A.
B.
C.
D.
答案:A
解题思路:
试题难度:三颗星知识点:全等三角形存在性
3.如图,直线与x轴、y轴分别交于A,B两点,点C是直线上不与
A,B重合的动点.过点C的另一直线CD与y轴相交于点D,若使△BCD与△AOB全等,则点C的坐标为( )
A.
B.
C.
D.
答案:C
解题思路:
综上,答案选C.
试题难度:三颗星知识点:全等三角形存在性。
数学八年级上册 全等三角形单元练习(Word版 含答案)
数学八年级上册 全等三角形单元练习(Word 版 含答案) 一、八年级数学轴对称三角形填空题(难)1.在直角坐标系中,O 为坐标原点,已知点 A (1,2),点 P 是 y 轴正半轴上的一点,且△AOP 为等腰三角形,则点 P 的坐标为_____________.【答案】5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭【解析】【分析】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,求出OA 即可;②以A 为圆心,以OA 为半径画弧交y 轴于P ,求出OP 即可;③作OA 的垂直平分线交y 轴于C ,则AC =OC ,根据勾股定理求出OC 即可.【详解】有三种情况:①以O 为圆心,以OA 为半径画弧交y 轴于D ,则OA =OD =22125+=;∴D (0,5);②以A 为圆心,以OA 为半径画弧交y 轴于P ,OP =2×y A =4,∴P (0,4);③作OA 的垂直平分线交y 轴于C ,则AC =OC ,由勾股定理得:OC =AC =()2212OC +-,∴OC =54, ∴C (0,54); 故答案为:5(0,5),(0,4),0,4⎛⎫ ⎪⎝⎭.【点睛】本题主要考查对线段的垂直平分线,等腰三角形的性质和判定,勾股定理,坐标与图形性质等知识点的理解和掌握,能求出符合条件的所有情况是解此题的关键.∥,2.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.∥,若ABC的周长为12cm,则PD PE PFPF AC【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP是平行四边形∴PD=HB∵ABC为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∥∵PE BC∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.3.已知A、B两点的坐标分别为(0,3),(2,0),以线段AB为直角边,在第一象限内作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限内有一点P(a,12),且△ABP和△ABC的面积相等,则a=_____.【答案】-83.【解析】【分析】先根据AB两点的坐标求出OA、OB的值,再由勾股定理求出AB的长度,根据三角形的面积公式即可得出△ABC的面积;连接OP,过点P作PE⊥x轴,由△ABP的面积与△ABC的面积相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=132,故可得出a的值.【详解】∵A、B两点的坐标分别为(0,3),(2,0),∴OA=3,OB=2,∴223+213AB==,∵△ABC是等腰直角三角形,∠BAC=90°,∴1113•1313222 ABCS AB AC⨯⨯===,作PE⊥x轴于E,连接OP,此时BE=2﹣a,∵△ABP的面积与△ABC的面积相等,∴111•••222 ABP POA AOB BOPS S S S OA OE OB OA OB PE ++=﹣=﹣,111113332222222a⨯⨯+⨯⨯⨯⨯=(﹣)﹣=,解得a=﹣83.故答案为﹣83.【点睛】本题考查等腰直角三角形的性质,坐标与图象性质,三角形的面积公式,解题的关键是根据S△ABP=S△POA+S△AOB-S△BOP列出关于a的方程.4.在平面直角坐标系xOy 中,已知点A (2,3),在x 轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有_____个.【答案】4【解析】【分析】以O 为圆心,OA 为半径画弧交x 轴于点P 1、P 3,以A 为圆心,AO 为半径画弧交x 轴于点P 4,作OA 的垂直平分线交x 轴于P 2.【详解】解:如图,使△AOP 是等腰三角形的点P 有4个.故答案为4.【点睛】本题考查了在平面直角坐标系中寻找等腰三角形,掌握两圆一线找等腰三角形是解题的关键.5.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.6.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP,12POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,求出△COD是等边三角形,即可得出答案.【详解】解:如图示:连接OC,OD,∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,∵OP=5cm,∴12COA AOP COP,12POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,∵△PEF的周长是5cm,∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,∴△OCD是等边三角形,∴∠COD=60°,∴11122230 AOB AOP BOP COP DOP COD,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.7.如图,点P是∠AOB内任意一点,OP=5,M,N分别是射线OA和OB上的动点,若△PMN周长的最小值为5,则∠AOB的度数为_____.【答案】30°.【解析】【分析】如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O P''、P' P''交OB 、OA 于M 、N ,则可证明此时△PMN 周长的最小,由轴对称性,可证明△P'O P''为等边三角形,∠AOB=12∠P'O P''=30°. 【详解】解:如图:分别作点P 关于OB 、AO 的对称点P'、P'',分别连OP'、O 、P' 交OB 、OA 于M 、N ,由轴对称△PMN 周长等于PN+NM+MP=P'N+NM+MP"=P'P"∴由两点之间线段最短可知,此时△PMN 周长的最小∴P'P"=5由对称OP=OP'=OP"=5∴△P'OP"为等边三角形∴∠P'OP"=60∵∠P'OB=∠POB ,∠P"OA=∠POA∴∠AOB=12∠P'O P''=30°. 故答案为30°.【点睛】 本题是动点问题的几何探究题,考查最短路径问题,应用了轴对称图形性质和等边三角形性质.8.如图,将ABC ∆沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的1A 处,称为第1次操作,折痕DE 到BC 的距离记为1h ,还原纸片后,再将ADE ∆沿着过AD 中点1D 的直线折叠,使点A 落在DE 边上的2A 处,称为第2次操作,折痕11D E 到BC 的距离记为2h ,按上述方法不断操作下去…经过第2020次操作后得到的折痕20192019D E 到BC 的距离记为2020h ,若11h =,则2020h 的值为______.【答案】2019122-【解析】【分析】根据中点的性质及折叠的性质可得DA=DA ₁=DB,从而可得∠ADA ₁=2∠B,结合折叠的性质可得.,∠ADA ₁=2∠ADE,可得∠ADE=∠B,继而判断DE// BC,得出DE 是△ABC 的中位线,证得AA ₁⊥BC,AA ₁=2,由此发现规律:012122h =-=-₁同理21122h =-3211122222h =-⨯=-…于是经过第n 次操作后得到的折痕Dn-1 En-1到BC 的距离1122n n h -=-,据此求得2020h 的值. 【详解】解:如图连接AA ₁,由折叠的性质可得:AA ₁⊥DE, DA= DA ₁ ,A ₂、A ₃…均在AA ₁上又∵ D 是AB 中点,∴DA= DB ,∵DB= DA ₁ ,∴∠BA ₁D=∠B ,∴∠ADA ₁=∠B +∠BA ₁D=2∠B,又∵∠ADA ₁ =2∠ADE ,∴∠ADE=∠B∵DE//BC,∴AA ₁⊥BC ,∵h ₁=1∴AA ₁ =2,∴01 2122h =-=-₁ 同理:21122h =-; 3211122222h =-⨯=-; …∴经过n 次操作后得到的折痕D n-1E n-1到BC 的距离1122n n h -=-∴20202019122h =-【点睛】本题考查了中点性质和折叠的性质,本题难度较大,要从每次折叠发现规律,求得规律的过程是难点.9.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】7【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC =+=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.10.如图,△ABC 中, AB=11 , AC= 5 ,∠ BAC 的平分线 AD 与边 BC 的垂直平分线 CD 相 交于点 D ,过点 D 分别作 DE ⊥AB ,DF ⊥AC ,垂足分别为 E 、F ,则 BE 的长为_____.【答案】3【解析】【分析】连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF=AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【详解】如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,CD BDDF DE⎧⎨⎩==,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=12(11-5)=3.故答案为:3.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.二、八年级数学轴对称三角形选择题(难)11.如图,坐标平面内一点A(2,-1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( )A.2 B.3 C.4 D.5【答案】C【解析】以O点为圆心,OA为半径作圆与x轴有两交点,这两点显然符合题意.以A点为圆心,OA为半径作圆与x轴交与两点(O点除外).以OA中点为圆心OA长一半为半径作圆与x 轴有一交点.共4个点符合,12.平面直角坐标系中,已知A(2,0),B(0,2)若在坐标轴上取C点,使△ABC为等腰三角形,则满足条件的点C的个数是()A.4 B.6 C.7 D.8【答案】C【解析】【分析】【详解】解:如图,①以A为圆心,AB为半径画圆,交坐标轴于点B,C1,C2,C5,得到以A为顶点的等腰△ABC1,△ABC2,△ABC5;②以B为圆心,AB为半径画圆,交坐标轴于点A,C3,C6,C7,得到以B为顶点的等腰△BAC3,△BAC6,△BAC7;③作AB的垂直平分线,交x轴于点C4,得到以C为顶点的等腰△C4AB∴符合条件的点C共7个故选C13.在Rt ABC ∆中,90ACB ∠=︒,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?( )A .9个B .7个C .6个D .5个【答案】B【解析】【分析】先以Rt ABC ∆三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得. 【详解】解:①如图1,以B 为圆心,BC 长为半径画弧,交AB 于点D ,则∆BCD 就是等腰三角形;②如图2,以A 为圆心,AC 长为半径画弧,交AB 于点E ,则∆ACE 就是等腰三角形;③如图3,以C 为圆心,BC 长为半径画弧,交AB 于M ,交AC 于点F ,则∆BCM 、∆BCF 是等腰三角形;④如图4,作AC 的垂直平分线交AB 于点H ,则∆ACH 就是等腰三角形;⑤如图5,作AB 的垂直平分线交AC 于点G ,则∆AGB 就是等腰三角形;⑥如图6,作BC 的垂直平分线交AB 于I ,则∆BCI 就是等腰三角形.故选:B .【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.14.在坐标平面上有一个轴对称图形,其中A (3,﹣52)和B (3,﹣112)是图形上的一对对称点,若此图形上另有一点C (﹣2,﹣9),则C 点对称点的坐标是( )A .(﹣2,1)B .(﹣2,﹣32)C .(﹣32,﹣9) D .(﹣2,﹣1) 【答案】A【解析】【分析】 先利用点A 和点B 的坐标特征可判断图形的对称轴为直线y=-4,然后写出点C 关于直线y=-4的对称点即可.【详解】解:∵A (3,﹣52)和B (3,﹣112)是图形上的一对对称点, ∴点A 与点B 关于直线y =﹣4对称, ∴点C (﹣2,﹣9)关于直线y =﹣4的对称点的坐标为(﹣2,1).故选:A .【点睛】本题考查了坐标与图形的变化,需要注意关于直线对称:关于直线x=m 对称,则两点的纵坐标相同,横坐标和为2m ;关于直线y=n 对称,则两点的横坐标相同,纵坐标和为2n .15.如图,ABC ∆中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分EDF ∠;④2AB AC AE +=,其中正确的是( )A.①②B.①②③C.①②④D.①②③④【答案】C【解析】【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12 AD.同理:DF=12AD . ∴DE+DF=AD .∴②正确. ③由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°.∴∠ABC=90°.∵∠ABC 是否等于90°不知道,∴不能判定MD 平分∠EDF ,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.综上所述,①②④正确,故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.16.如图,四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数为( )A .130°B .120°C .110°D .100°【答案】B【解析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠BAD=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选B.17.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.18.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.19.如图,已知等边△ABC的面积为43, P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3B.23C.15D.4【答案】B【解析】如图,作△ABC关于AC对称的△ACD,点E与点Q关于AC对称,连接ER,则QR=ER,当点E,R,P在同一直线上,且PE⊥AB时,PE的长就是PR+QR的最小值,设等边△ABC的边长为x,则高为3 x,∵等边△ABC的面积为43,∴12x×32x=43,解得x=4,∴等边△ABC的高为3x=23,即PE=23,所以PR+QR的最小值是23,故选B.【点睛】本题考查了轴对称的性质,最短路径问题等,解题的关键是正确添加辅助线构造出最短路径.20.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.B.1+2C.D-1【答案】B【解析】第一次折叠后,等腰三角形的底边长为1;,腰长为12,所以周长为111 2222 ++=+.故答案为B.。
八年级上数学一次函数与三角形全等专练(含答案)(2套)
⼋年级上数学⼀次函数与三⾓形全等专练(含答案)(2套)⼋年级上数学⼀次函数与三⾓形全等专练及答案(2套)【模拟试题1】 (答题时间:80分钟)⼀、填空题1、把2x +y =1写成y 是x 的函数关系式是.2、已知直线y =kx +b 过(0,1)和(-1,0)两点,则函数关系式为.3、直线y =kx +b 的图像过第⼀、⼆、四象限,且过点(1,-3),则k +b =.4、如图,BAD ABC ,A 和B 是对应点,C 和D 是对应点,若AB =8cm ,BC =13cm ,AC =7cm ,BD =.5、如图,AB 、CD 相交于O ,AO =BO ,要判定图中的两个三⾓形全等,只需再补充⼀个条件,这个条件是,或,或,或.6、等腰三⾓形的周长为10cm ,⼀边长为3cm ,则其他两边长分别为.7、等腰三⾓形的⼀个⾓为70,则其它两个⾓分别是.8、如图,已知?ABC 中,AB =AC ,120=∠BAC ,DE 垂直平分AC 交BC 于D ,垂⾜为E ,DE =2cm ,则BC =.9、⼀次函数y =kx +b )0(≠k 的图像与直线2x +y =5平⾏,且经过点(1,-1),则此⼀次函数的解析式是.10、P (-1,2)关于x 轴的对称点坐标是;关于y 轴对称点的坐标是;关于直线x =1为对称轴的对称点坐标是;关于直线y =-2为对称轴的对称点坐标是.⼆、选择题1、点(1,m ),(2,n )在函数y =-x +1的图像上,则( ) A . m >n B . m2、等腰三⾓形的周长是24cm ,其两边的差是6cm ,则三⾓形的腰长是( ) A . 5cm B .6cm C . 10cm D .6cm 或10cm3、下列各条件中,不能判定两个直⾓三⾓形全等的是( ) A .⼀条直⾓边和⼀个锐⾓分别相等; B .两条直⾓边对应相等;C .斜边和⼀条直⾓边对应相等;D .直⾓和⼀个锐⾓对应相等;4、到三⾓形三个顶点距离相等的点是( )A .三边⾼线的交点B .三个内⾓平分线的交点C .三条中线的交点D .三边中垂线的交点5、⼀次函数y =3x +m -1的图像不经过第⼆象限,则m 的取值范围( )A . 1≤m6、某移动通讯公司推出“⼼灵通”通话收费标准为:前3分钟(不⾜3分钟按3分钟计)为0.2元;3分钟后每分钟收0.1元,则⼀次通话时间为x 分(x >3)与这次通话的费⽤y (元)之间的关系式是( )A . y =0.2+0.1xB . y =0.1xC . y =-0.1+0.1xD . y =0.5+0.1x 7、如图,在ABC ?中,已知∠B 和∠C 的平分线相交于点F ,过点F 作DF //BC ,交AB 于点D ,交AC 于点E ,若BD +CE =9,则线段DE 的长为( )A . 6B . 7C . 8D .98、如图,有⼀块直⾓三⾓形纸⽚,将AC 边沿直线AD 折叠,使它落在斜边AB 上,已知BC =6cm ,且CD :DB =1:2,则D 到AB 的距离为( )A . 1cmB . 2cmC . 3cmD .不确定9、下列图形中,不是轴对称图形的是( ) A .钝⾓ B .正多边形 C .平⾏四边形D .等腰梯形三、解答题1、⼀根弹簧原长13厘⽶,它最多能挂的重物质量为16千克,并且每挂重1千克,就伸长0.5厘⽶.求:(1)挂重后弹簧的长度y (厘⽶)与挂重x (千克)之间的函数关系; (2)⾃变量的取值范围;2、已知⼀次函数的图像经过A (1,2),B (-1,1)两点. (1)求函数解析式并画出图像. (2)x 为何值时,y >0,y =0,y <0?(3)当-33、已知如图AB =DE ,AC =DF ,BF =EC ,求证:AC //DF ,AB //ED .4、(作图题)(1)根据下列语句画图:画锐⾓ABC ?,延长AB ⾄E ,延长AC ⾄D .画∠CBE 、∠BCD 的平分线并交于点F .(2)问度量点F 到∠A 的两边的距离,它们是否相等?(3)根据画图过程和度量的结果,结合图形写出“已知”和“求证”,并加以证明.5、已知,如图AB =AC ,DE //BC ,求证:BD =CE .6、已知如图AD 是∠BAC 的平分线,∠B =∠EAC ,EF ⊥AD 于F .求证:EF 平分∠AED .7、在ABC ?中,AD 是∠A 的平分线,且AB +BD =AC .求证:∠B =2∠C .【试题2、1+=x y3、-34、7cm5、CO =DO ∠A =∠B ∠C =∠DAC //DB6、3cm ,4cm 或3.5cm ,3.5cm .7、55554070,或,. 8、12cm9、y =-2x +1 10、(-1,-2) (1,2) (3,2) (-1,-6)⼆、选择题 1、A 2、C 3、D 4、D 5、A 6、C 7、D 8、B 9、C三、解答题1、(1)y =13+0.5x (2)160≤≤x2、(1)y =0.5x +1.5 图像略(2)x >-3时,y >0;当x =-3时,y =0;当x <-3时,y <0;(3)当-3.//,//.,,DF AC DE AB DFE ACB E B DEFABC DF AC DE AB ∴∠=∠∠=∠∴∴==4、略5、,AC AB = .C B ∠=∠∴CEBD AE AC AD AB AE AD AED ADE C AED B ADE BC DE =∴-=-∴=∴∠=∠∴∠=∠∠=∠∴,..,//6、,BAC AD ∠平分 ,CAD BAD ∠=∠∴AED EF AD EF DEAE DAE ADE EAC B EAC CAD DAE BAD B ADC ∠∴⊥=∴∠=∠∴∠=∠∠+∠=∠∠+∠=∠平分⼜ 7、证明:AB AE AC =上截取在【模拟试题2】⼀.选择题:(共30分)1.下列函数中,是正⽐例函数的是( ) A . y x =2B .12C . y x =2D . y x =-21 2.下列式⼦中正确的是( )A . 22m m m -=B . --=440x xC . ab a b 220-=D . --=-325a a a3.()()-+---+232222x x x 的值是( ) A . -+x x 23 B . -+-x x 334C . ---3342x xD . -+332x x4.若kb <0,且b k ->0,则函数y kx b =+的⼤致图像是( )5.如图,AB//DE,CD=BF,若△ABC?△EDF,还需补充的条件可以是( )A.AC=EF B.AB=DEC.∠B=∠D D.不⽤补充DC AFEB6.下列命题正确的是( )A.有两条边分别相等的两个直⾓三⾓形全等B.有⼀条边相等的两个等腰直⾓三⾓形全等C.有两条直⾓边分别相等的两个直⾓三⾓形全等D.有两边和其中⼀边上的⾼对应相等的两个三⾓形全等7.AD是△ABC的⾓平分线,⾃D向AB、AC两边作垂线,垂⾜为E、F,那么下列结论中错误的是( )A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF8.如下⼏个图形是国际通⽤的交通标志,其中不是轴对称图形的是( )A B C D!9.已知⼀个等腰三⾓形的⼀边长为5,另⼀边长为7,则这个等腰三⾓形的周长为( ) A.12 B.17 C.17或19 D.1910.已知△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.EF=1,则BF=( )A.4 B.6 C.12 D.8AE⼆.填空题:(共30分)1.若函数yxx=+1,则x的⾃变量取值范围是_____________.2.直线y=kx经过点A(-5,3),则k=_____________,如果这条直线上点A的横坐标x A=4,那么它的纵坐标yA=___________.E3.如下左图,AB =CD ,AE =BF =4cm ,CE =6cm ,要使△ACE ?△BDF ,则需DF =___cm .ABC ED F4.如上右图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,AB =CD ,BC =DE ,则∠ACE =____.5.如图:∠B =∠E =90°,EF =AB ,AD =CF ,则CB 和ED 的位置关系是___________,数量关系是___________.F6.在△ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,DE ⊥AB 于E ,若DE =3cm ,则CD =___________,若∠B =50°,则∠EAD =_____________. 7.若△ABC 是轴对称图形,∠A =80°,则∠C =______________. 8.写出六个成轴对称图形的汉字或英⽂字母______________. 9.点P (1,2)关于直线x =-1的对称点的坐标是______________.10.等腰三⾓形⼀腰上的⾼等于这腰的⼀半,则顶⾓的度数为______________.三.解答题:(共40分) 1.先作图,再证明.(1)在给出的图形中,完成以下作图(保留作图痕迹):①作∠ACB 的平分线CD ,交AB 于点D ;②延长BC 到E ,使CE =CA,连接AE .AB C(2)求证:CD //AE . 2.如图:在等腰三⾓形ABC 中,AB =AC ,点D 在BC 上,AD =BD ,AC =DC ,求∠BAC 的度数.AB D C3.如图:在△ABC 中,AC ⊥BC ,AC =BC ,D 为AB 上⼀点,AF ⊥CD 交CD 的延长线于F ,BE ⊥CD 于E ,求证:EF =CF -AF .BFDEA C4.如图,△ACB、△ECD都是等腰直⾓三⾓形,且C在AD上,AE的延长线与BD 交于F.请你在图中找出⼀对全等三⾓形,并写出证明它们全等的过程.AEC BFD5.在三⾓形ABC中,AD平分∠BAC,交BC于D,且∠B=2∠C.求证:AB+BD=AC.AC D B6.如图:在△ABC中,AB=AC,AD是中线,BE=CF.(1)求证:△BDE?△CDF;(2)当∠B=60°时,过AB中点G,作GH//BD交AD于H,求证:GH AB=14.AG HE FB D C7.某⾼速公路收费站预计“⼗·⼀”这天将通过⼤⼩汽车1200辆次,该收费站的收费标准为:⼤车每辆次10元,⼩车每辆次5元,解答下⾯的问题:(1)写出“⼗·⼀”这天该收费站的收费⾦额y(元)与⼩车通过辆次x(辆)之间的函数关系,并指出⾃变量x的取值范围;(2)如果⼩车通过辆次占过车总辆次的65%,请你估计“⼗·⼀”这天此收费站的总收费⾦额.【试题2答案】⼀.1. A 2. D 3. B 4. B 5. B6. D 7. C8. C 9. C10. A⼆. 1. x x ≥-≠10且 2. k y A =-=-0624.., 3. 6cm 4. 90° 5.平⾏,相等 6. 3cm 7. 50°或20°,20°或80° 8.略 9.(-3,2) 10. 30°,150° 三.1.作图略 2.∠BAC =108° 3.可证:△BEC ?△CF A (AAS ) ∴CE =AF⼜∵EF =CF -CE ∴EF =CF -AF 4.△ACE ?△BCD (SAS )5.在AC 上截取AE =AB ,连接DE ,△ABD ?△AED (SAS ) ∴AE =AB ,ED =BD ,∠B =∠AED∵∠AED =∠C +∠CDE ∠B =2∠C ∴2∠C =∠C +∠CDE ∴∠C =∠CDE∴CE =DE ∴CE =BD ∵AE +CE =AC ∴AB +BD =AC6. (1)△BDE ?△CDF (SAS ) (2)∵∠B =60°,AB =AC ∴△ABC 是等边三⾓形⼜∵AD 是中线,∴∠ADB =90°,∠BAD =30° ⼜∵GH //BC ,∴∠GHA =90° ∴GH =0.5AG =0.25AB7. Y x =-+512000(0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市东湖中学八上数学《一次函数之全等三角形存在性》专项导练
1.如图,直线与x轴、y轴分别交于A,B两点,若x轴的负半轴、y轴的负半
轴上分别存在点E,F,使得△EOF与△AOB全等,求直线EF的表达式
2.如图,直线与x轴、y轴分别交于A,B两点,点C是直线上不与A,B重合的动点.过点C的另一直线CD与y轴相交于点D,若使△BCD与△AOB全等,求点C 的坐标
3. 如图,直线y=-2x+4与x轴、y轴分别交于A,B两点,点P(x,y)是直线y=-2x+4上的一个动点,过P作AB的垂线与x轴、y轴分别交于E,F两点,若△EOF与△AOB全等,求点P的坐标.
4.如图,直线y=x+2与x轴、y轴分别交于A,B两点,点C是直线y=x+2上不与A,B重合
的动点.过点C的另一直线CD与x轴相交于点D,若使△ACD与△AOB全等,则点C的坐标
5. 如图,直线AB与x轴、y轴分别交于A,B两点,已知A(2,0),B(0,4),线段CD的两端点在坐标轴上滑动(点C在y轴上,点D在x轴上),且CD=AB.若满足点C在y轴负半轴上,且△COD和△AOB全等,求满足题意的点D坐标.
6.如图,直线
1
2
2
y x
=+与x轴、y轴分别交于A,B两点,点C的坐标为(-3,0),P(x,y)是
直线
1
2
2
y x
=+上的一个动点(点P不与点A重合).
(1)在P点运动过程中,试写出△OPC的面积S与x的函数关系式;
(2)当P运动到什么位置时,△OPC的面积为27
8
,求出此时点P的坐标;
(3)过P作AB的垂线分别交x轴、y轴于E,F两点,是否存在这样的点P,使△EOF≌△BOA?若存在,求出点P的坐标;若不存在,请说明理由.
x
x
7.如图,在平面直角坐标系中,直线y=-x+8与x轴、y轴分别交于点A,B,点P(x,y)是直线AB上一动点(点P不与点A重合),点C(6,0),O是坐标原点,设△PCO的面积为S.
(1)求S与x的函数关系式.
(2)当点P运动到什么位置时,△PCO的面积为15?
(3)过点P作AB的垂线分别交x轴、y轴于点E,F,是否存在这样的点P,使△EOF ≌△BOA?若存在,求出点P的坐标;若不存在,请说明理由.。