8 stereochemistry

合集下载

生物化学(英文版)biochemistry-chapter1英

生物化学(英文版)biochemistry-chapter1英
Secondary structure
Through biochemical research, people can understand the basic processes and mechanisms of organisms, explore the mechanisms of disease occurrence and development, and provide scientific basis for disease prevention, diagnosis, and treatment.
Biochemistry is an interdisciplinary field that aims to reveal the chemical essence behind life phenomena.
Definition of Biochemistry
Biochemistry helps to increase crop yield and improve quality in agriculture, and contributes to the development of nutritious, safe, and reliable new types of food in the food industry.
Large molecules in living organisms, such as proteins, nucleic acids, and polysaccharides, all have carbon as their core.
Carbon atoms can form complex network structures through covalent bonds, which endow biomolecules with high diversity and stability.

Wittig反应介绍及研究状况

Wittig反应介绍及研究状况

学年论文设计(论文)题目:Wittig反应介绍及研究状况学院名称:化学工程学院专业:化学工程与工艺学生姓名:张雅俊学号:*********** ***师:***2011年12月28日一、前言Wittig 反应这是极有价值的合成烯烃的一般方法。

根据中间体叶立德的稳定性可分为不稳定的叶立德的反应和稳定的叶立德的反应。

1.不稳定的叶立德的反应:当RR'CHBr 中,R和R'是氢原子或简单烷基,则烃基三苯基磷盐的α-H酸性较弱,需较强的碱(常用丁基锂或苯基锂)才能生成叶立德,刚生成的叶立德活性很高,是类似格氏试剂那样强的亲核试剂,能迅速地在温和条件下与醛或酮起反应给出加成物,反应不可逆。

加成物可自发分解给出烯烃。

2.稳定的叶立德的反应:当RR'CHBr中,R或R'是一个-M 基团(吸电子基团,如酯基),则烃基三苯基磷盐的去质子化可以在较弱的碱性条件下实现,并且产生的叶立德较稳定,可以分离,其活性相对较弱,一般需与亲电性较强的羰基反应。

本文主要介绍了Wittig反应的内容、反应机理以及在有机合成上的主要应用,并从Wittig-Homer反应、相转移催化Wittig反应和以水为溶剂的水相Wittig反应三方面来阐述Wittig反应的改进及其发展。

二、主题1953年,德国科学家G.Wittig发现了亚甲基化三苯基膦与二苯酮作用,得到几乎定量的偏二苯乙烯。

这个发现引起了有机化学家的重视,并将其命名为Wittig反应[1]。

由于该反应产率较高,条件温和,具有高度的位置选择性,并且在合成最新系列的高级的不同种类的精细有机化学品,如各种昆虫信息素、绿色除菌及除草农药、乙烷类液晶、新型医药及其中间体、重要的抗生素、有机发光材料和光导体等,都得到了众多的应用,因此越来越受到化学家的重视。

目前,该反应已经成为合成烯烃最重要也最普遍的反应。

1 Wittig反应简介Wittig反应是由叶立德与羰基化合物缩合生成烯烃的反应,是有机化学中最要和最有用的反应之一。

大学本科有机化学07 立体化学-1

大学本科有机化学07 立体化学-1

_ _ _ _ 1 苯基 1,3 戊二烯 _ _ _ _ (1E , 3E) 1 苯基 1,3 戊二烯 反,反
15
含C=N、N=N双键的化合物: 、 双键的化合物: 双键的化合物
CH3 C6H5
:
C=N
CH3 C6 H 5
OH
C=N
OH
:
(Z)
_
苯 乙酮 肟
_ ( E ) 苯 乙酮 肟
HO N=N
11
顺反异构体的命名方法: 顺反异构体的命名方法:
1. 顺/反标记法 反标记法 相同的原子或基团位于双键(或环平面) 相同的原子或基团位于双键(或环平面)的同侧为 顺式” 否则为“反式” “顺式”;否则为“反式”。
a C=C b
a b
a C=C b
b a
a b
a b
a b
b a
_ 顺式 (cis )
22
手性分子: 手性分子:有手性现象的分子
手性碳 —— 手性分子的特征
F H Cl C Br
* * 例: CH CHCHCH 3 3 连有四个不同基团的碳原子 连有四个不同基团的碳原子 手性碳( 手性碳(chiral carbon) carbon) 手性中心 (Chiral center) center)
constitutional
CH3 CH3 HO OH OH CH3 CH3 H3C OH HO cis trans CH3 OH OH OH CH3 OH CH3
C7H14O
OH
CH3 OH
CH2OH
H3C
OH
HO
CH3
CH3 CH3 OH
CH3
configurational
conformational

有机化学专业英语词汇常用前后缀

有机化学专业英语词汇常用前后缀

deca- 十 deci 10-1 -dine 啶 dodeca- 十二
-ene 烯 epi- 表 epoxy- 环氧 -ester 酯 -ether 醚 ethoxy- 乙氧基 ethyl 乙基
fluoro- 氟代 form 仿
-glycol 二醇
hemi- 半 hendeca- 十一 hepta- 七 heptadeca- 十七 hexa- 六 hexadeca- 十六 -hydrin 醇 hydro- 氢或水 hydroxyl 羟基 hypo- 低级的,次 hyper- 高级的,高
1有机化学专业英语词汇常用前后缀acetal醛缩醇acetal乙酰acid酸al醛alcohol醇aldehyde醛alkali碱allyl烯丙基propenyl丙烯基alkoxy烷氧基amide酰胺amino氨基的amidine脒amine胺ane烷anhydride酐anilino苯胺基aquo含水的ase酶ate含氧酸的盐酯atriyne三炔azo偶氮benzene苯bi在盐类前表示酸式盐bis双borane硼烷bromo溴butyl丁基carbinol甲醇carbonyl羰基carboxylicacid羧酸centi10chloro氯代cis顺式condensed缩合的冷凝的cyclo环deca十deci10dine啶dodeca十二21ene烯epi表epoxy环氧ester酯ether醚ethoxy乙氧基ethyl乙基fluoro氟代form仿glycol二醇hemi半hendeca十一hepta七heptadeca十七hexa六hexadeca十六hydrin醇hydro氢或水hydroxyl羟基hypo低级的次hyper高级的高ic酸的高价金属ide无氧酸的盐酰替胺酐il偶酰imine亚胺iodine碘iodo碘代iso异等同ite亚酸盐keto酮ketone酮lactone内酯mega10meta间偏methoxy甲氧基methyl甲基62micro10milli10monomon一单nano10nitro硝基nitroso亚硝基nona九nonadeca十九octa八octadeca十八oic酸的ol醇one酮ortho邻正原ous亚酸的低价金属oxa氧杂oxide氧化合物oxime肟oxo酮oxy氧化oyl酰para对位仲penta五pentadeca十五per高过petro石油phenol苯酚phenyl苯基pico10poly聚多quadri四quinque五semi半septi七sesqui一个半sulfa磺胺sym对称syn顺式同共63912ter三tetra四tetradeca十四tetrakis四个thio硫代trans反式超跨thio硫代tri三trideca十三tris三个undeca十一uni单一unsym不对称的偏位yl基ylene撑二价基价在不同原子上yne炔organiccompounds有机化合物compoundsofcarbon碳化合物hydrocarbonsan

Synthesis of (+)- and (

Synthesis of (+)- and (

CRA of milnacipran
NEt2
Et2N
Et2N
NH~ Et2N
Me
H2N ent-2
NEt2
Me ent-3
NEt
(-)-milnacipran
[(-)-1 ]
(+)-milnacipran
[(+)-1]
im
2
3
We have developed a convenient synthetic method for (+_-)milnacipran [(+)-I] and its derivatives via racemic lactone (+)-4, which was prepared from (+)-epichlorohydrin [(RS)-5] and phenylacetonitrile (6), 5 as the key intermediate. 3 The corresponding optically active lactones 4 and ent-4 were thought to be efficient intermediates for the synthesis of the target compounds. In this reaction, two pathways, path-a and -b, could be considered (Scheme 1). If a nucleophilic attack occurs highly selectively either through path-a or -b, this would provide an efficient method to access both lactone 4 and ent-4 in optically active form, because both (R)- and (S)-epichlorohydrins are available. Burgess and Ho reported that in a similar reaction with an optically active triflate, nearly all of the optical activity of the triflate was transferred to 641

ch8 旋光异构

ch8 旋光异构

CH3
HO
H
COOH
CH3 H COOH
OH
因为这些操作不会改变物质构型。
不允许下列操作,因这些操作改变了物质的构型。 (1)不允许投影式在纸面上旋转90或270度 (2)不允许投影式离开纸面翻转 (3)不允许中心原子上的两个基团经一次或奇次交换
投影式旋转90° 得到另一个分子
COOH ≠
COOH
C6
判别手性分子的依据
具有对称面或对称中心——对称分子,为非手性分子 不具备任何对称因素——不对称分子,为手性分子 只含对称轴——非对称分子,为手性分子 手性分子具有光学活性
手性中心(chiral center):能引起分子具有手性的一个原子 或分子骨架的中心。最常见的手性中心为手性碳原子(chiral carbon),即连接四个不同原子或基团的碳原子。其他杂原子 也可形成手性中心。
C(CH3)3
CH3 C CH3 CH3
CH CH2 (C) (C) CCH HH
试比较下列基团的优先顺序:
NH2
CH2COOH
COCH3
第一节 旋光性与旋光度
一、物质的旋光性与化学结构的关系 1. 平面偏振光
光是一种电磁波,光波的振动方向与光的前进 方向垂直。
光束先进方向
光源
平面偏振光
普通光
Nicol prism
H OH 对调一次 HO
H
CH3
CH3
旋转90度 ≠
翻转

H
H3C
COOH
CH3
H
OH
COOH
OH
如分子中有两个相邻的碳原子都需观察基团的空间 位置关系,可写成费歇尔投影式如下:
CHO

有机化学《立体化学》课件

有机化学《立体化学》课件
Van’t Hoff 认为含有不对称碳的分子具有旋光性。
Stereocenter
优点:使用方便 缺点:很多例外
有些分子中存在不对称碳,但却无手性:
H
H
H
H3C Cl
CH3 Cl
H3C Cl
有些分子中没有不对称碳,但却有手性:
A A
Pc
a
b
5.1.3 Symmetric element
C2
C3
C3
H
4
H
H
H3 2H
H
1H
H
H H
H H
H
H H
H
C2
C3
8
C
对称面
:假如有一个平面可以将分子分割成两部分,而其中一部分正好 是另一部分的镜象,这个平面就是分子的对称面。
H
HCH
H
σ
Four planes of symmetric in the molecule
Br H Br H
5.3.1 Molecule with two same asymmetric carbons
5.3.2 Optical activity and conformation 5.3.3 Molecule with two different
充分且必要
1874 Newzealand Van’t Hoff
The carbon atom linking four different groups or atoms is called an “asymmetric carbon”.
不对称碳原子:与四个互不相同 的一价基团相连接的碳原子。
加“ * ”表示
CO OH
Br Cl H

最新第三章立体化学(Stereochemistry)PPT

最新第三章立体化学(Stereochemistry)PPT

一、不对称碳、手性碳、 手性分子、对映体
1. 不对称碳:饱和碳原子上连有互不相同的 四个原子或原子团(用*表示)。
2. 手性:物质的分子和它的镜像不能重叠。
3. 手性分子:具有手性的分子。
4. 对映体:互为镜像关系,但不能完全重合 的一对异构体,互为对映体。他们都具有 旋光性。
LIYING
2021/1/20
OH L a c tic a c id 乳酸
第三章立体化学(Stereochemistry)
Locating a Stereocenter
Br
* C3HC2HC2HC2HC2HC C2HC2HC2HC3H
H
LIYING
2021/1/20
第三章立体化学(Stereochemistry)
Locating a Stereocenter
1848年
酒 石 酸 钠 铵 晶
巴斯德

LIYING
2021/1/20
Crystals of Sodium Ammonium Tartrate
第三章立体化学(Stereochemistry)
对映体 (Enantisomers)
❖Isomers that are non-superimposable
LIYING
2021/1/20
(+)
表示
[t
cl
右旋, (-) 表示 左旋
:旋光度;[]:比旋光度;t:温 度;:光波长;c:样品浓度,单 位g/ml;l:样品管长度,单位dm
第三章立体化学(Stereochemistry)
第二节 对映异构现象与 分子结构的关系
LIYING
2021/1/20
第三章立体化学(Stereochemistry)

绪论

绪论

苯基环己烷平衡构象计算
3、分子模型 球棒模型:3D关系,分子立体形象,无定量标度; 框架模型(Dreiding模型):键矩、键是正确的, 测非键原子间距离,估计非键原子间的斥力; 空间填充模型:真实分子形状和大小更佳佳的,无法 测原子间距离;
立体化学的重要性: Barton:
戴立信:
Barton写“甾族构象”论文过程的启迪:
2、推算结构(计算方法) 从头计算法——100各原子以下的分子,分子大 小与精确度成反比; 密度泛函数法——最小能量1kcal/mol的精度; 半经验法——多于100个原子的分子; 分子力学法(能量优化法,力场法)—— V总能量= Vγ + Vθ + Vw + Vvb + VE - VS 反1,2-二溴环己烷构象平衡计算
立体化学的两个方面:
静态立体化学(又称分子立体化学) : 计算异构体数目,分子的构型及构象, 物理及光谱性质;能量(稳定性);分 离、鉴定等。 动态立体化学(又称反应立体化 学):构型对化学反应的影响,构象异 构体或拓扑异构体的互变,转化速率、 反应方向、机理联系在一起。
立体化学研究手段:
1.结构测定
1890
1891
1890
1891 1891 1893 1896 1899 1899 1900 1902 1904
A.Hantzcha & A.Werner 含N分子的原子空间排列 H.Sachse 关于六亚甲基衍生物的几何异构体(船 式、椅式构象) “对张力学说异议” C.A.Bischoff 绕单键碳的自由旋转的限制 “提出构想概念” E.Fischer 有化学方法证明葡萄糖的构象和它的异构体 (获1902年Noble 化学奖) J.A.LeBel R1R2R3R4N+X-的光学活性 A.Werner “对无机化合物构成的影响” P.Walden 对映体的化学互变(Walden转化) “第一个提出动态立体化学” W.J.Pope & S.J.Peachey 光学活性R1R2R3R4N+XW.Marckwald 动力学拆分方法 S.J.Peachey 光学活性R1R2R3S+X ; R1R2R3Sn+XW.J.Pope & A.Neville 光学活性R1R2R3Se+XW.Marckwald 不对称合成

有机化学常用英文词汇

有机化学常用英文词汇

英文名汉文名Angular methyl group 角甲基Alkylidene group 亚烷基Allyl group 烯丙基Allylic 烯丙型[的]Phenyl group 苯基Aryl group 芳基Benzyl group 苄基Benzylic 苄型[的]Activating group 活化基团Chromophore 生色团Auxochrome 助色团Magnetically anisotropic group 磁各向异性基团Smally ring 小环Common ring 普通环Medium rimg 中环Large ring 大环Bridged-ring system 桥环体系Spiro compound 螺环化合物Helical molecule 螺旋型分子Octahedral compound 八面体化合物Conjugation 共轭Conjugated-system 共轭体系Acyl cation 酰[基]正离子Benzylic cation 苄[基]正离子Arenirm ion 芳[基]正离子Ketyl radical 羰自由基Radical ion 自由基离子Radical cation 自由基正离子Radical anion 自由基负离子Isomerism 异构[现象]Aci form 酸式Fluxional structure 循变结构Stereochemistry 立体化学Optical activity 光学活性Dextro isomer 右旋异构体Laevo isomer 左旋异构体Tetrahedral configuration 四面体构型Stereoisomerism 立体异构[现象] Asymmetric atom 不对称原子Asymmetric carbon 不对称碳Pseudoasymmetric carbon 假不对称碳Phantom atom 虚拟原子Homotopic 等位[的]Heterotopic 异位[的]Enantiotopic 对映异位[的] Diastereotopic 非对映异位[的] Configuration 构型Absolute configuration 绝对构型Chirality 手性Chiral 手性[的]Chiral center 手性中心Chiral molecule 手性分子Achiral 非手性[的]Fischer projection 费歇尔投影式Neoman projection 纽曼投影式D-L system of nomenclature D-L命名体系R-S syytem of nomenclature R-S命名体系Cahn-Ingold-Prelon sequence 顺序规则Symmetry factor 对称因素Plane of symmetry 对称面Mirror symmetry 镜面对称Enantiomer 对映[异构]体Diastereomer 非对映[异构]体Epimer 差向异构体Anomer 端基[差向]异构体Erythro configuration 赤型构型Erythro isomer 赤型异构体Threo configuration 苏型构型Threo isomer 苏型异构体Trigonal carbon 三角型碳Cis-trans isomerism 顺反异构E isomer E异构体Z isomer Z异构体Endo isomer 内型异构体Exo isomer 外型异构体Prochirality 前手性Pro-R group 前R基团Pro-S proup 前S基团Re face Re面Si face Si面Racemic mixture 外消旋混合物Racemic compound 外消旋化合物Racemic solid solution 外消旋固体溶液Meso compound 内消旋化合物Quasi recemate 准外消旋体Conformation 构象Conformational 构象分析Torsion angle 扭转角Rotamer 旋转异构体Anti conformation 反式构象Bisecting conformation 等分构象Anti periplanar conformation 反叠构象Synperiplanar conformation 顺叠构象Synclinal conformation 反错构象Synclinal conformation 顺错构象Eclipsed conformation 重叠构象Gauche conformation, skew con-formation 邻位交*构象Staggered conformation 对位交*构象Steric effect 空间效应Steric hindrance 位阻Atropismer 阻转异构体Puckered ring 折叠环Conformational inversion 构象反转Chair conformation 椅型构象Boat conformation 船型构象Twist conformation 扭型构象Skew boat conformation 扭船型构象Half-chair conformation 半椅型构象Pseudorotation 假旋转Envelope conformation 信封[型]构象Axial bond 直[立]键Equatorial bond 平[伏]键Cisoid conformation 顺向构象Transoid conformation 反向构象Retention of configuration 构型保持Regioselectivity 区域选择性Regiospecificity 区域专一性Stereocelectivity 立体选择性Stereospecificty 立体专一性Conformer 构象异构体Conformational effect 构象效应Cram’s rube 克拉姆规则Prelog’rule 普雷洛格规则Stereochemical orientation 立体[化学]取向Conformational transmission 构象传递Homolog 同系物Ipso position 本位Ortho position 邻位Meta position 间位Para position 对位Amphi position 远位Peri position 近位Trigonal hybridization 三角杂化Molecular orbiral method 分子轨道法Valence bond method 价键法Delocalezed bond 离域键Cross conjugation 交*共轭Vinylog 插烯物Mesomeric effect 中介效应Resonance 共振Resonance effect 共振效应Hyperconjugation 超共轭Isovalent hyperconjugation 等价超共轭No-bond resonance 无键共振Aromaticity 芳香性Aromatic ***ter 芳香六隅Huckel’rule 休克尔规则Paramagnetic ring current 顺磁环电流Diamagnetic ring cruuent 抗磁环电流Homoaromaticity 同芳香性Antiaromaticity 反芳香性Alternant hydrocarbon 交替烃Non-alternant hydrocarbon 非交替烷Pericyclic reaction 周环反应Electrocyclic rearrangement 电环[化]重排Conrotatory 顺旋Disroatatory 对旋Cycloaddition 环加成Symmetry forbidden-reaction 对称禁阻反应Synfacial reaction 同面反应Antarafacial reaction 异面反应Mobius system 默比乌斯体系Leois structure 路易斯结构Coordinate-covalent bond 配位共价键Banana bond 香蕉键Pauling electronegativity scale 鲍林电负性标度Polarizability 可极化性Inductive effect 诱导效应Field effect 场效应Electrical effect 电场效应tautomerism 互变异构Tautomerization 互变异构化Keto-enol tautomerism 酮-烯醇互变异构Phenol-keto tautomerism 酚-酮互变异构Imine-enamine atutomerism 亚胺-烯胺互变异构Ring-chain tautomerism 环-链互变异构Valence tautomerism 价互变异构Ambident 两可[的]Solvent effect 溶剂效应Acid-base catalyxed reaction 酸性溶剂Basic solvent 碱性溶剂Dielectric constant 介电常数Solvated electron 溶剂化电子Acid-base catalyzed reaction 酸碱催化反应Conjugate base 共轭酸Conjugate base 共轭碱Therm odynamic acidity 热力学酸度Kinetic acidity 动力学酸度Electron donof-acceptor complex,EDAcomplex 电子给[体]受体络合物Host 主体Guest 客体Primary isotope effect 一级同位素效应Secondary isotope effect 二级同位数效应Inverse isotope effect 逆同位素效应Kinetic control 动力学控制Thermodynamic control 热力学控制Substrate 底物Intermediate 中间体Reactive intermediate 活泼中间体Microscopic reversibility 微观可逆性Hammond postulate 哈蒙德假说Linear free energy 线性自由能Non-bonded interaction 非键相互作用Torsional effect 扭转效应Pitzer strain 皮策张力Restricted rotation 阻碍旋转Eclipsing effect 重叠效应Eclipsing strain 重叠张力Small-angle strain 小角张力Large angle strain 大角张力Transannular interaction 跨环相互作用Transannular strain 跨环张力I strain 内张力F strain 前张力B strain 后张力Anomeric effect 端基异构效应Walden inversion 瓦尔登反转Racemization 外消旋化Isoinversion 等反转Isoracemization 等消旋Homochiral 纯手性[的]Mechanism 机理Unimolecular nucleophilic 单分子亲核取代Bimolecular nucleophilic sub-stitution 双分子亲核取代Bimolecular nucleophilic substi-tution(with allylic rearrange-ment) 双分子亲核取代(含烯丙型重排)Internal nucleophilic substiru-tion 分子内亲核取代Aromatic nucleophilic substitu-tion 芳香亲核取代Unimolecular electrophilic sub-stitution 单分子亲电取代Bimolecular electrophilic substi-tution 双分子亲电取代Nucleophile-assisted unimolecu-lar electrophilic substitution 亲核体协助单分子亲电取代Unimolecular elimination 单分子消除Bimolecular elimination 双分子消除Unimolecular elimination through the conjugate base 单分子共轭碱消除Bimolecular elimination through the conjugate base 双分子共轭碱消除Bimolecular elimination with for-mation of a carbonyl group 双分子羰基形成消除Unimolecular acid-catalyzed acyl-oxygen cleavage 单分子酸催化酰氧断裂Bimolecular base-catalyzed acyl-oxygen cleavage 双分子碱催化酰氧断裂Unimolecular acid-catalyzed alkyl-oxygen cleavage 单分子酸催化烷氧断裂Bimllecular base-catalyzed al- kyl-oxygen cleavage 双分子碱催化烷氧断裂π-allyl complex mechanism π烯丙型络合机理Borderline mechanism 边理机理Homolysis 均裂Heterolysis 异裂Heterolytic michanism 异裂机理Counrer[gegen]ion 反荷离子Ion pair 离子对Carbocation 碳正离子Nonclassical carbocation 非经典碳正离子Carbanion 碳负离子Masked carbanion 掩蔽碳负离子Carbenoid 卡宾体Carbene 卡宾Nitrene 氮宾Carbine 碳炔Electrophilic addition 亲电加成Electrophile 亲电体Diaxial addition 双直键加成Markovnikov’s rube 马尔科夫尼科规则Anti-Markovnikov addition 反马氏加成Michael addition 迈克尔加成Substitution 取代Electrophilic substitution 亲电取代Addition-elimination mechanism 加成消除机理Electrophilic aromatic substitu-tion 亲电芳香取代Electron transfer 电子转移Electron-donating group 给电子基团Electron-Withdrawing group 吸电子基团Deactivating group 钝化基团Orinentation 取向Ortho-para directing group 邻对位定位基Meta directing group 间位定位基Ortho effect 邻位效应Partial rate factor 分速度系数Nucleophilic reaction 亲核反应Internal return 内返Nucleophilicity 亲核体Nucleophilicity 亲核性α-effect α-效应Backside attack 背面进攻Inversion 反转Umbrella effect 伞效应Push-pull effect 推拉效应Leaving group 离去基团Electrofuge 离电体Nucleofuge 离核体Phase-transfer catalysis 相转移催化Neighboring group participation 邻基基参与Neighboring proup assistance,anchimeric assistance 邻助作用Neighboring group effect 邻基效应Apofacial reaction 反面反应Briddgehead displacement 桥头取代Aryl action 芳正离子Benzyne 苯炔Zaitsev rule 札依采夫规则Anti-Zaitsev orientation 反札依采夫定向Hofmann’s rule 霍夫曼规则Bredt rule 布雷特规则Initiation 引发Anionic cleavage 负离子裂解Partial bond fixation 键[的]部分固定化02.3有机化学反应Alkylation 烷基化C- alkylation C-烷基化O- alkylation O-烷基化N-alkylation N-烷基化Silylation 硅烷[基]化Exhaustive methylation 彻底甲基化Seco alkylation 断裂烷基化Demethylation 脱甲基化Ethylation 乙基化Arylation 芳基化Acylation 酰化Formylation 甲酰化Carbalkoxylation 烷氧羰基化Carboamidation 氨羰基化Carboxylation 羧基化Amination 氨基化Bisamination 双氨基化Cine substitution 移位取代Transamination 氨基交换Hydroxylation 羟基化acyloxyation 酰氧基化Decarboxylative nitration 脱羧卤化Allylic halogenation 烯丙型卤化Dehalogenation 脱卤Nitration 硝化Decarboxylative nitration 脱羧硝化Nitrosation 亚硝化Sulfonation 磺化Chlorosulfonation 氯磺酰化Desulfonation 脱磺酸基Sulfenylation 亚磺酰化Sulfonylation 磺酰化Chlorosulfenation 氯亚磺酰化Chlorocarbonylation 氯羰基化Diazotization 重氮化Diazo transfer 重氮基转移Coupling reaction 偶联反应Diazonium coupling 重氮偶联Cross-coupling reaction 交*偶联反应1,4-addition 1,4-加成Conjugate addition 共轭加成Dimerization 二聚Trimefization 三聚Additive dimerization 加成二聚sulfurization 硫化Selenylation 硒化Hydroboration 硼氢化Oxyamination 羟氨基化Insertion 插入carbonylation 羧基化Hydroformylation 加氢甲酰基化Hydroacylation 加氢酰化Oxo process 羰基合成Decarbonylation 脱羰Hydrocarboxylation 氢羧基化Homologization 同系化Cyanoethylation 氰乙基化Decyanoethylation 脱氰乙基Ring clsure 环合Diene synthesis 双烯合成Dienophile 亲双烯体Endo addition 内型加成Exo addition 外型加成Diels-Alder reaction 第尔斯-尔德反应Retro Diels-Alder reaction 逆第尔斯-阿尔德反应Ene synthesis 单烯合成Anionic cycloaddition 负离子环加成Dipolar addition 偶极加成- elimination -消除- elimination -消除- elimination -消除-elimination -消除Dehydrohalogenation 脱卤化氢Deamination 脱氨基Pyrolytic elimination 热解消除Elimination-addition 消除-加成Decarboxylation 脱羧Decarboxamidation 脱酰胺Decyanation 脱氰基Alkylolysis,alkyl cleavage 烷基裂解Acylolysis,acyl cleavage 酰基裂解Flash pyrolysis 闪热裂Fragmentation 碎裂Chiletropic reaction 螯键反应Chelation 螯环化Esterification 酯化Transesterification 酯交换Saponification 皂化Alcoholysis 醇解Ethanolysis 乙醇解Cyanomethylation 氰甲基化Aminomethylation 氨甲基化Hydroxymethylation 羟甲基化Hydroxyalkylation 羟烷基化Cholromethylation 氯甲基化Haloalkylation 卤烷基化Transacetalation 缩醛交换Enolization 烯醇化Haloform reaction 卤仿反应Condensation 缩合Aldol condensation 羟醛缩合Cross aldol condensation 交*羟醛缩合Retrograde aldol condensation 逆羟醛缩合Acyloin condensation 偶姻缩合Cyclization 环化Annulation,annelation 增环反应Spiroannulation 螺增环Autoxidation 自氧化Allylic hydroperoxylation 烯丙型氢过氧化Epoxidation 环氧化Oxonolysis 臭氧解Electrochemical oxidation 电化学氧化Oxidative decarboxylation 氧化脱羧Aromatization 芳构化Catalytic hydrogenation 催化氢化Heterogeneous hydrogenation 多相氢化Homogeneous hydrogenation 均相氢化Catalytic dehydrogenation 催化脱氢Transfer hydrogenation 转移氢化Hydrogenolysis 氢解Dissolving metal reduction 溶解金属还原Single electron transfer 单电子转移Bimolecular reduction 双分子还原Electrochemical reduction 电化学还原Reductive alkylation 还原烷基化Reductive acylation 还原酰化Reductive dimerization 还原二聚Deoxygenation 脱氧Desulfurization 脱硫Deselenization 脱硒Mitallation 金属化Lithiation 锂化Hydrometallation 氢金属化Mercuration 汞化Oxymercuration 羟汞化Aminomercuration 氨汞化Abstraction 夺取[反应]Internal abstraction 内夺取[反应] Rearrangement 重排Prototropic rearrangement 质了转移重排Double bond migration 双键移位Allylic migration 烯丙型重排Allylic migration 烯丙型迁移Ring contraction 环缩小[反应]Ring expansion,ring enlargement 扩环[反应] -ketol rearrangement -酮醇重排Pinacol rearrangement 频哪醇重排Retropinacol rearrangement 逆频哪醇重排Semipinacol rearrangement 半频哪醇重排Benzilic rearrangement 二苯乙醇酸重排Acyl rearrangement 酰基重排Migratory aptitude 迁移倾向Transannular insertion 跨环插入Transannular rearrangement 跨环重排Migration 迁移Prototropy 质子转移Cationotropic rearrangement 正离子转移重排Anionotropy 负离子转移Anionotropic rearrangement 负离子转移重排Sigmatropic rearrangement -迁移重排Homosigmatropic rearrangement 同迁移重排Electrophilic rearrangement 亲电重排Photosensitization 光敏化Forbidden transition 禁阻跃迁photooxidation 光氧化Photoisomerization 光异构化Photochemical rearrangement 光化学重排2.4 有机化合物类名Aliphatic compound 脂肪族化合物Hpdrocarbon 碳氢化合物Alkane 烷Wax 蜡Paraffin wax 石蜡Alkene 烯Alkyen 炔Acetylide 炔化物Active hydrogen compounds 活泼氢化合物Carbon acid 碳氢酸Super acid 超酸Diene 双烯Triene 三烯Allene 丙二烯Ccumulene 累积多烯Enyne 烯炔Diyne 二炔Alkyl halide 卤代烷Alcohol 醇Homoallylic alcohol 高烯丙醇Ether 醚Epoxide 环氧化物Cellosolve 溶纤剂Crown ether 冠醚Netro compound 硝基化合物Amine 胺Quaternaryammonium com-pound 季铵化合物Amine oxide 氧化胺Diazoalkane 重氮烷Mercaptan 硫醇Sulfonic acid 磺酸Sulfoxide 亚砜Sulfone 砜Aldehyde 醛Detone 酮Aldehyde hydrate 醛水合物Ketone hydrate 酮水合物Hemiacetal 半缩醛Acetal 缩醛Ketal 缩酮Dithiane 二噻烷Aminal 缩醛胺imine 亚胺Aldimine 醛亚胺Oxime 肟Aldimine 醛肟Oxime 亚硝基化合物aldoxime 硝酮Hydrazone 腙Azine 嗪Semicarbazone 缩氯基脲Cyanohydrin 羟腈Pinacol 频哪醇Enol 烯醇Enol ether 烯醇醚Enol ester 烯醇酯Enamine 烯胺Ynamine 炔胺Mannich base 曼尼希碱Carboxylic acid 羧酸Ester 酯orthoester 原酸酯Acyl halide 酰卤Acyl fluoride 酰氟Acyl chloride 酰氯Acyl rtomide 酰溴Acyl iodide 酰碘Carbobenzoxy chloride 苄氧甲酰氯Acyl tosylate 酰基对甲苯磺酸酐Ketene 乙烯酮Peracid 过酸Perester 过酸酯Acyl peroxide 酰基过氧化物Nitrile 腈Nitrile oxide 氧化腈Isonitrile 异腈Amide 酰胺Imide 二酰亚胺N-bromo compound N-溴化物Hydrazide 酰肼Acyl azide 酰叠氮Amidine 脒Keto ester 酮酸酯Acyl cyanide 酰腈Carbon suboxide 二氧化三碳Glycidic acid 环氧丙酸Carbammic acid 氨基甲酸Carbamate 氨基甲酸酯Urea 脲Cyanamide 氨腈Carbodiimide 碳二亚胺Allophanate 脲基甲酸酯Thioester 硫代酸酯Thiol acid 硫羰酸Lactone 内酯Lactol 内半缩醛Macrolide 大环内酯Amino acid 氨基酸Zwitterions 两性离子Inner salt 内盐Betaine 甜菜碱Lactam 内酰胺Hydantion 乙内酰脲Peptide 肽Glycol 二醇Aldol 羟醛Acyloin 偶姻Carbohydrate 碳水化合物Aldose 醛糖Ketose 酮糖Furanose 呋喃糖Pyranose 吡喃糖Glycoside 糖苷Glucoside 葡[萄]糖苷Aglycon 苷元Saccharide 糖类Oligosaccharide 寡糖Polysaccharide 多糖Alditol 糖醇Osazone 脎Alicyclic compound 脂环化合物Cycloalkene 环烷Spirane 环烯Cage compound 螺烷Propellane 笼型化合物Rotazane 螺桨烷Catenane 轮烷Rused ring 索烃。

高等有机8-消去反应

高等有机8-消去反应

三、E1 Reaction
1. Mechanism
三、E1 Reaction
2. E1 reaction activity

不同类型RX的相对反应活性与碳正离子稳 定性顺序相同: (与SN1反应相同)
3º 苄基型 > 3º 烯丙型 > 2º 苄基型 > 2º 烯丙型 > 3º> 1º 苄基型 ~ 1º 烯丙型 ~ 2º> 1º> 乙烯型
四、E2/E1, S/E竞争问题
2. SN2/E2竞争
(高浓度的好的亲核试剂/强碱条件下) 卤代烃的反应活性: SN2 10 > 20 > 30 E2 30 > 20 > 10 10卤代烃易于取代,较少消去 但是如果进攻试剂体积大或卤代烃的β 碳上取代基多,则消去比率大大增加
四、E2/E1, S/E竞争问题
较不稳定构象
区域选择性也不同
二、E2 Reaction
Problem
Can you predict the product for the following E2 reaction? OH CH3 ? Cl E2 condition
Summary:Mechanism
Reactivity Regiochemistry: Zaitsev’s rule Stereochemistry: anti-periplanar Cyclic Compounds
B 19% 28% 33% 70%
离去基团碱性增加,离去倾向减弱,越容易生成少 取代产物;氟代烃E2反应中的主产物为少取代烯烃
对以上事实的解释: 卤负离子中,随着碱性增强,离去基团越不容易离
去,到氟离子的碱性达到最强,当碱进攻氢时,氟离 碳负离子的稳定性是 30 < 20 < 10 < - CH3

半胱氨酸脲基甲基化 英文

半胱氨酸脲基甲基化 英文

半胱氨酸脲基甲基化英文英文回答:Cysteine carbamylation is a post-translational modification (PTM) in which a carbamyl group is added to the side chain of cysteine residues. This modification can alter the structure and function of proteins, and has been implicated in a variety of diseases, including cancer and neurodegenerative disorders.Cysteine carbamylation is catalyzed by the enzyme carbamyltransferase. This enzyme transfers a carbamyl group from carbamoyl phosphate to the side chain of cysteine residues. Carbamoyl phosphate is a high-energy moleculethat is synthesized from glutamine and bicarbonate.The reaction mechanism of cysteine carbamylation is as follows:1. Carbamoyltransferase binds to carbamoyl phosphateand a cysteine-containing protein.2. Carbamoyltransferase transfers the carbamyl group from carbamoyl phosphate to the side chain of a cysteine residue.3. Carbamoyltransferase releases the carbamylated protein.Cysteine carbamylation can have a variety of effects on the structure and function of proteins. For example, carbamylation can alter the charge of a protein, which can affect its interactions with other proteins. Carbamylation can also alter the stability of a protein, which can affect its function.Cysteine carbamylation has been implicated in a variety of diseases, including cancer and neurodegenerative disorders. For example, cysteine carbamylation has been shown to promote the growth of cancer cells and to contribute to the development of Alzheimer's disease.Cysteine carbamylation is a reversible modification. The enzyme carbamidase can remove the carbamyl group from cysteine residues. Carbamidase is a zinc-dependent enzyme that is expressed in a variety of tissues.Cysteine carbamylation is a complex and dynamic process that plays an important role in a variety of cellular processes. Further research is needed to understand therole of cysteine carbamylation in health and disease.中文回答:半胱氨酸脲基甲基化。

有机化学第八章 立体化学(stereochemistry)

有机化学第八章   立体化学(stereochemistry)

外消旋体可分离成左旋体与右旋体。
8.4 构型的表示、构型的确定、构型的标记
构型的表示
菲舍尔投影式
H H3C CH2CH3 COOH CH3CH2 H COOH CH3 COOH H CH2CH3 CH3 CH3 H COOH CH2CH3
楔形式
CH3 C HO H CH2CH3 HO CH3 C CH2CH3 H HO CH2CH3 C H CH3
COOH H OH H OH COOH COOH HO H HO H COOH




内消旋体(meso):分子内部形成对映两半的化合物。(有平面
对称因数)。 具有两个手性中心的内消旋结构一定是(RS)构型。
COOH H OH H OH
内消旋体无旋光性 (两个相同取代、构型相 反的手性碳原子,处于同一分子中,旋光性
光波振动方向与光束前进方向关系示意图
普通光
平面偏振光
平面偏振光: 通过Nicol棱镜,仅在 一个平面上振动的光。
Nicol prism
普通光
2. 旋光仪、旋光度、比旋光度
a
目镜 单色光源 起偏镜 盛液管 检偏镜
a
旋光性:使偏振光偏振面旋转的能力。
旋光度:使偏振光偏振面旋转的角度。用表示。 旋光方向:右旋(+)、d- ; 左旋(-)、l如何确定一个活性物质是+60o的右旋体还是-300o的左旋体 比旋光度 [] = C(g/ml) l(dm)
COOH C H Cl CH3
H3 C COOH
S
COOH C Cl CH3 H
H
COOH
S
Cl
CH3
H
Cl
动画演示

F.A.Carey-最全最完备的高等有机化学习题 详细解答与分析 完美版

F.A.Carey-最全最完备的高等有机化学习题 详细解答与分析 完美版

Chapter 1 Effect of Substituted in Organic molecule1. 试判断下列各对基团,那一个具有强的-I 效应(即强的吸电子诱导效应):(1) -COOH , -COO -(2) C HN OCH 3 , C H N N(CH 3)2CH 3+(3) C OCH 3 , C CH 2CH 3, (4) SO 2H ,SO 3H(5) OCH 3 , SCH 3 (6) C H C H CH 3 ,C C CH 3(7) N (CH 3)2 , P(CH 3)2 (8) Si(CH 3)3 ,Si(CH 3)2CH 3(9)N(CH 3)3+,NH 2 (10) CN ,CH 2NH 2 (11) SiCH 3 , Cl (12) C C CH 3 ,C H C H CH 3(13),(14)NO 2,NO 2(15) O 2SCH 3, O 2SBr2. 指出下列各对酸中哪一个酸性强(1) H 3NCH 2CH 2COOH , HOCH 2CH 2COOH (2) HC C COOH ,H 2C C H COOH(3) C 6H 5COCH 2COOH , C 6H 5CHOHCH 2COOH(4) C 4H 9CHCOOn,C C CH 3CH 3CH 3CH 3COOHOOC(5) COOH OH, COOH OH(6) BrCH 2CH 2COOH , CH 3CHBrCOOH(7)(H 3C)2CH 2CHCOOH,H 2CC HCH 2COOH(8) HC C COOH , SCOOH(9) CH 2(COOH)2 ,HOOCH CCOOCl(10) CH 3OCH 2CH 2COOH , CH 3SCH 2CH 2COOH (11) CH 3SCH 2COOH ,CH 3SO 2COOH(12)OHCCOOH,COOHCHO(13)OHC(CH 3)3(H 3C)3C,OH3)3CH 3(H 3C)3C(14) H 3COCOOH ,OCH 3COOH(15) C 6H 5CH 2SeH ,H 3CSeH3. 预料以下各对化合物,何者具有更强的酸性? (1) CH 3NO 2 ,(CH 3)2CHNO 2(2) CH 2(SO 2C 6H 5)2 ,CH 2(SOC 6H 5)2(3) H 3CCH(C 6H 5)2,(C 6H 5)2CHCH 2C 6H 5 (4) CH 3COCH 2COOCH 3 ,CH 3COCH 2CONH 2 (5) CH 3COCH 2COCH 2F ,CH 3COCHFCOCH 3(6)NOCH 3,NO H 3C(7)SO 2O 2S ,OO(8) NO 2CH 3CH 3H 3C ,NO 2CH 3H 3CCH 3(9)CH3,CH3(10) CH(C 6H 5)2,CH(C 6H 5)2(11) (CH)3Se , (CH 3)2O(12) ,4. 解释以下现象:(1). 杯烯 (Calcene) 的偶极距很大,μ= 5.6 D.(2). 吡咯 μ = 1.80 D ,吡啶 μ = 2.25 D ,且极性相反,如图:NN H5. 比较下列化合物的碱性的强弱:NN(CH 3)2N(C 2H 5)2NH 2N6. 9,10-二氢蒽-1-羧酸(A )和9,10-乙撑蒽-1-羧酸(B )的酸性取决于8-位上取代基X的性质。

Perfemiker,57-11-4,硬脂酸,技术规格说明书(SDS)

Perfemiker,57-11-4,硬脂酸,技术规格说明书(SDS)
应用:
硬脂酸用于脂肪酸制备。
生化/生理作用:
β-硬脂酸氧化生成8个FADH2(黄素腺嘌呤二核苷酸)和NADH2(烟酰胺腺嘌呤二核苷酸)分子和9个乙酰辅酶A分子。
查询关键词:“57-11-4,硬脂酸,Stearic Acid,Sigma-Aldrich,上海现货”。
硬脂酸参考文献:
[1]. Shen MC et al. Dietary stearic acid leads to a reduction of visceral adipose tissue in athymic nude mice. PLoS One. 2014 Sep 15;9(9):e104083.
英文名称:
Stearic acid
英文别名:
Stearic acid;ACIDUM STEARICUM 50;C18;C18:0 FATTY ACID;CARBOXYLIC ACID C18;CETYLACETIC ACID;FEMA 3035;N-OCTADECANOIC ACID;N-OCTADECYLIC ACID;OCTADECANEDIOIC ACID;RARECHEM AL BO 0157;1-Heptadecanecarboxylic acid;1-Heptadecanecarboxylic acid Ro 5-2807;400JB9103-88;acideoctadecylique;acidestearique;AdekaFattyAcidSA910;Barolub FTA;Octadecanoic acid (Stearic);SILICA GEL HEXANE EXTRACTED MATERIAL;Stearic Acid RG (rubber grade);Stearic Acid TP;STEARIC ACID(P);STEARIC ACID(P) PrintBack;yingzhisuan;F-300, F-1000, F-1500, F-2000, F-3000;groco54;groco55;groco58;groco59;kam1000;naa173;NAA180;pd185;Stearinic acid;Stearophanic acid ;steraic acid;C18:0;NSC 25956;NSC 261168;Stearophanic acid;STA;Octadecanoic acid;湖北硬脂酸生产厂家行情价格;Pearl stearic;Stearex Beads;Stearinsaeure;Octadecansaeure;Vanicol;Century 1240;Industrene R;Glycon TP;Glycon DP;Humko Industrene R;Formula 300;Hydrofol 1895;Hystrene 9718;Hydrofol Acid 150;Hydrofol acid 1655;Tegostearic 254;Hydrofol acid 1855;Tegostearic 272;Tegostearic 255;Hystrene 80;octadecoic acid;Industrene 5016;Emerso

67T.S.Bugni,M.Woolery,C.A.Kauffman,P#..

67T.S.Bugni,M.Woolery,C.A.Kauffman,P#..

Bohemamines from a Marine-Derived Streptomyces sp.Tim S.Bugni,Matthew Woolery,Christopher A.Kauffman,Paul R.Jensen,and William Fenical*Center for Marine Biotechnology and Biomedicine,Scripps Institution of Oceanography,Uni V ersity of California,San Diego,La Jolla,California 92093-0204Recei V ed June 9,2006Investigation of the culture extracts of a marine-derived Streptomyces sp.led to the isolation of three new bohemamine-type pyrrolizidine alkaloids,bohemamine B (1),bohemamine C (2),and 5-chlorobohemamine C (3).The structures were elucidated using NMR methods,and the relative stereochemistry was determined using double-pulsed-field-gradient spin echo (DPFGSE)NOE studies.Because the rate of drug discovery from traditional,soil-derived actinomycetes has diminished over the past decade,we made a considerable effort to explore marine-derived actinomycetes as a source of structurally diverse secondary metabolites and potential leads for drug discovery.The obligate marine actinomycete taxon Salinispora ,for example,is widespread in tropical ocean sediments.1Initial studies of Salinispora tropica cultures led to the isolation of salinosporamide A,2a potent proteasome inhibitor that is currently in phase I clinical trials for the treatment of cancer.As part of our continued studies in this field,our attention was drawn to a chemically rich,marine-derived actinomycte,strain CNQ-583,identified by 16S rRNA gene sequence analysis as a member of the genus Streptomyces .In culture,this strain produced three new pyrrolizidine alkaloids,bohemamine B (1),bohemamine C (2),and 5-chlorobohemamine C (3),as well as two previously reported pyrrolizidine alkaloids,bohemamine (4)and NP25302(5).3-5The structures for 1-3were assigned on the basis of the comparison of their NMR data to those reported for bohemamine (4).5Previously,NMR data were reported for bohemamine (4)in CDCl 3.5However,we found the best 1H signal dispersion was obtained in DMSO-d 6.The improved resonance band resolution was useful for selective NOE studies.Pyrrolizidine alkaloids from numerous plant families exhibit a wide array of structural diversity and have important health implications due to their presence in food products.6Many pyrrolizidine alkaloids are genotoxic and mutagenic and have been shown to cause acute liver toxicity.7Despite the enormous number of pyrrolizidine alkaloids in the literature,the methylation pattern and presence of the amide nitrogen found in the bohemamines make this a rare pyrrolizidine subclass,which has only been isolated from actinomycete bacteria.In fact,there have only been two bohe-mamines,4and 5,reported to date.3-5Additionally,a recent report revised the structures of jenamidines A,B,and C from a piperidoneto a pyrrolizidine ring system,similar to that found in the bohemamines,but the jenamidines lack methyl groups on the ring.8,9Bohemamine B (1)was isolated as a viscous oil that analyzed for the molecular formula C 14H 20N 2O 3,by HREIMS.The UV spectrum (see Experimental Section)was nearly identical to that reported for bohemamine (λmax 248,286,335nm),3but the molecular formula indicated that compound 1contained two additional hydrogen atoms.Since the 1H NMR spectrum showed additional methylene signals (see Table 1)and one additional exchangeable proton,it was clear that compound 1was an alcohol-bearing analogue of bohemamine (4).COSY correlations from H-6R and H-6 to the oxygenated methine proton H-5,in addition to the COSY correlation from H-5to H-4,confirmed the position of both the methylene and hydroxyl groups.The position was also consistent with observed correlations in the HMBC NMR spectrum.The relative stereochemistry of bohemamine B (1)was deter-mined using double-pulsed-field-gradient spin -echo (DPFGSE)1D NOE experiments.10,11Selective excitation of the methyl groups at C-8and C-9provided a starting point for assigning the relative stereochemistry.Excitation of CH 3-9resulted in a strong enhance-ment of the H-6R and H-4signals,while excitation of CH 3-8enhanced H-6 and H-5.The large coupling constant between H-6R and H-5(10.1Hz)suggested a trans -diaxial relationship between the two protons,which was also consistent with the assigned stereochemistry.Since bohemamine C (2)had the same molecular formula as bohemamine B (1),it was most likely the regioisomer of bohe-mamine B (1).The structure of bohemamine C (2)was readily assigned by analysis of the 2D NMR data.More specifically,the COSY spectrum showed correlations from the H-4methine proton to both protons of the adjacent methylene (H-5),which were coupled to an oxygenated methine proton (H-6).The elaboration of the H-4to H-6spin system proved that bohemamine C (2)was the regioisomer of bohemamine B (1).Bohemamine C (2)would presumably have identical stereochemistry to bohemamine B (1)since the biogenesis of both B (2)and C (1)most likely occurs by reduction of the epoxide in bohemamine (4).Nonetheless,the relative stereochemistry was confirmed using DPFGSE NOE experiments.Selective excitation of H-4resulted in a stronger enhancement of H-5 (δ2.57),thereby establishing the relative assignments for H-5 and H-5R .Subsequent irradiation of the H-6oxygenated methine proton showed a much stronger enhancement (2:1)of proton H-5 than proton H-5R ,illustrating that H-4,H-5 ,and H-6are all on the same side of the ring.The presence of one chlorine atom in 5-chlorobohemamine C (3)was obvious from the isotope pattern observed in the mass spectrum.The molecular formula (C 14H 19ClN 2O 3)indicated that compound 3was the chlorohydrin analogue of bohemamine (4).Analysis of the NMR data confirmed that compound 3was indeed a chlorohydrin,and the COSY NMR spectrum showed a correlation*To whom correspondence should be addressed.Tel:8585342133.Fax:8585583722.E-mail:*****************.1626J.Nat.Prod.2006,69,1626-162810.1021/np0602721CCC:$33.50©2006American Chemical Society and American Society of PharmacognosyPublished on Web10/19/2006from the OH proton to H-6,confirming the assignment of the hydroxyl group.The relative stereochemistry of5-chlorobohe-mamine C(3)was also based on DPFGSE NOE experiments. Selective excitation of the H-8methyl group resulted in a strong enhancement of proton H-6and a weak enhancement of proton H-4,while selective excitation of the H-9methyl group resulted in a strong enhancement of H-4,H-5,and the NH protons.5-Chlo-robohemamine C(3)was isolated in small quantities,but larger quantities were readily obtained by stirring bohemamine(4)in a CHCl3emulsion with1N HCl.The reaction proceeded nearly to completion and resulted in only one product,as would be predicted on the basis of C-6being more sterically hindered due to the ring junction methyl group.The product had identical characteristics to the natural product,including its HPLC retention time,indicating that the same stereoisomer had been formed.The selectivity and yield of the reaction led us to question if5-chlorobohemamine C(3)could be an artifact of isolation.Consequently,we performeda time-course study to monitor the production of5-chlorobohe-mamine C(3)over a10-day period.Periodically,small aliquots of the culture were extracted with EtOAc,and the extract was subsequently analyzed by LCMS.Care was taken to avoid both acidic conditions and chlorinated solvents during the time-course investigation.Additionally,the pH(8.5)of the medium was not acidic,which could lead to the chlorohydrin through the presence of chloride in the culture medium.Under all cases,5-chlorobohe-mamine(3)was produced during the time-course study,indicating that the cholorohydrin is not an artifact of isolation.An attempt to determine the absolute stereochemistry using R-and S-MTPA esters was undertaken.Both the R-and S-MTPA esters of5-chlorobohemamine(3)were synthesized and analyzed by1H NMR methods.However,the1H signals at positions4,5,6,and9 were shifted(δS-δR>0),while H-2and H-8had the same chemical shift in each of the two esters.Attempts to make the MTPA ester of bohemamine B(1)resulted in formation of a high molecular weight species(m/z697).Although the product was not fully characterized by2D NMR methods,the mass spectrum indicates that a bis-MTPA ester was formed.We hypothesize that enolization of the ketone could lead to a bis-MTPA ester.This hypothesis was further supported by the observation that proton H-2exchanges slowly in1:1CDCl3/CD3OD.Full exchange was observed after16h,by NMR analysis,and is similar to the rate of exchange observed by Snider et al.8After equilibrating bohemamine B(1)in CHCl3/CH3OH,proton H-2was once again observed in the1H NMR spectrum.Compounds1-4were tested for inhibition of the HCT-116colon carcinoma cell line and antimicrobial activity,but were found to be essentially inactive.Although NP25301and bohemamine were shown to be LFA-1/ICAM-1adhesion inhibitors,we had no access to this bioassay system.Experimental SectionGeneral Experimental Procedures.Optical rotations were mea-sured using a Rudolph Research Autopol III polarimeter.UV spectra were obtained with a Beckman Coulter DU640spectrophotometer.IR spectra were obtained with a Perkin-Elmer1600series FTIR spectro-photometer.All1H and13C spectra were obtained at500and125MHz in the indicated solvent at25°C on a Varian INOVA spectrometer. Proton shifts are reported in parts per million relative to the reference solvent signals of DMSO-d6atδ2.49ppm for1H andδ39.5ppm for 13C.High-resolution mass spectrometric analyses were performed at UC Riverside(compounds1and4)using a VG7070and at The Scripps Research Institute(compounds2and3)using a Micromass Q-Tof micro.Biological Material.Strain CNQ-583was cultured from a marine sediment sample collected using a surface-deployed sediment grab (Kahlsico,El Cajon,CA,model#214WA110)at a depth of82m off the island of Guam on January26,2002.The sediment was air-dried overnight in a laminar flow hood and plated by dilution stamping onto a medium consisting of500mg of soluble seaweed SSE(Ascophyllum nodosum,USA of America,Hudson,FL),100mg of casamino acids, cyclohexamide(100µg/mL),nystatin(50µg/mL),8g of Noble (purified)agar,and1L of seawater.Once obtained in pure culture, the strain was identified as a member of the genus Streptomyces on the basis of98.3%16S rRNA gene sequence identity with the S. luteosporus type strain(NCBI accession number AB184607).CNQ-583also shares between99.6%and99.7%sequence identity with two marine-derived Streptomyces strains(CNR-876and CNR-926)previ-ously isolated from sediments collected off the Republic of Palau, Micronesia(NCBI accession numbers DQ448784and DQ448729, respectively).These two strains also produce new secondary metabolites and are the subject of a separate study.Fermentation,Extraction,and Isolation.A seed culture of isolate CNQ-583was grown for2days in25mL of medium TCG(3g of tryptone,5g of casitone,4g of glucose,1L of seawater)while shaking at230rpm and27°C.Production fermentation was performed in2.8 L Fernbach flasks(20×1L)in medium A1BFe+C(10g of starch, 4g of yeast extract,2g of peptone,1g of CaCO3,40mg of Fe2-(SO4)3‚4H20,100mg of KBr,1L of seawater)while shaking at230 rpm and27°C.After7days of cultivation,Amberlite XAD-7resin (20g/L)was added to adsorb extracellular secondary metabolites.The culture and resin were shaken at215rpm for an additional2h.The resin and cell mass were then collected by filtration through cheesecloth and washed with DI water to remove salts.The resin,cell mass,and cheesecloth were then extracted with4×1.25L of acetone,and the solvent was removed under vacuum to yield58g of crude extract.The crude extract was partitioned using25:34:20CH2Cl2/MeOH/ H2O.The extract was suspended in500mL of the upper aqueous layer and extracted with4×500mL of the lower organic layer to yield 1.64g of organic partition.The organic partition was separated intoTable1.1H NMR Data for Compounds1-4in DMSO-d6position bohemamine B(1)bohemamine C(2)5-chlorobohemamine C(3)bohemamine(4) 12 5.56s 5.40s 5.55s 5.34s34 3.86dq,6.5,6.4 3.92dq,6.7,8.7 4.07dq,6.8,2.4 3.8br q6.75 4.44dddd,10.1,5.9,6.4,3.5R1.75d,13.2 4.21t,2.4 3.73br d,3.42.57ddd,13.2,8.7,3.96R1.55dd,12.2,10.1 3.84t,3.9 3.99ddd,5.0,4.4,1.7 3.60d,3.41.69dd,12.2,5.978 1.13s 1.07s 1.41s 1.20s90.90d,6.5 1.25d,6.7 1.32d,6.8 1.35d,6.71′2′ 5.98dq,1.0,0.9 5.98br s 5.95dq,1.0 5.90dq,1.3,1.0 3′4′ 1.88d,0.9 1.88br s 1.89d,1.0 1.87d,1.0 5′ 2.12d,1.0 2.12br s 2.14d,1.0 2.12d,1.3 NH10.24br s10.24br s10.33br s10.10br s OH 4.82d,3.5 4.92d,3.5 5.82d,5.0two portions using Sephadex LH-20(3.5cm×23cm)using1:1CH2-Cl2/MeOH.The bohemamines were concentrated in the fourth fraction eluting between190and440mL.Final purification was performed using preparative C-18HPLC using isocratic conditions(90%H2O/ 10%CH3CN)for5min followed by a linear gradient to50%CH3CN over55min followed by a gradient to100%CH3CN over5min. Bohemamine B(1)eluted at27.2min;bohemamine C(2)eluted at 28.2min;bohemamine(4)eluted at30.6min;NP25302(5)eluted at 38.2min;and5-chlorobohemamine C(3)eluted at39.2min.Bohemamine B(1):[R]25D-6.8(c1,MeOH);UV(MeOH)λmax (log )250(4.3),284(4.0),332(3.9)nm;IR(NaCl disk)νmax3280, 3185,2970,2925,1715,1640,1620,1580cm-1;1H NMR data,see Table1;13C NMR data,see Table2;HREIMS m/z[M]+264.1474 (calc for C14H20N2O3,264.1473).Bohemamine C(2):[R]25D-12(c0.6,MeOH);UV(MeOH)λmax (log )250(4.2),281(3.7),325(3.4)nm;IR(NaCl disk)νmax3280, 3185,2970,2925,1715,1640,1620,1580cm-1;1H NMR data,see Table1;13C NMR data,see Table2;HRESIMS m/z[M+H]+ 265.1552(calc for C14H21N2O3,265.1543),[M+Na]+287.1366(calc for C14H20N2O3Na,287.1372).5-Chlorobohemamine C(3):[R]25D-14.5(c0.4,MeOH);UV (MeOH)UV(MeOH)λmax(log )250(4.1),281(4.0),330(3.8)nm; IR(NaCl disk)νmax3285,3185,2970,2925,1710,1640,1625,1570 cm-1;1H NMR data,see Table1;13C NMR data,see Table2; HRESIMS m/z[M+H]+299.1169(calc for C14H2035ClN2O3,299.1162), [M+H]+301.1135(calc for C14H2037ClN2O3,301.1132),[M+Na]+ 321.0982(calc for C14H1935ClN2O3Na,321.0982),[M+Na]+323.0952 (calc for C14H1937ClN2O3Na,323.0952).Bohemamine(4):[R]25D+16(c2,MeOH);UV(MeOH)λmax(log )248(4.2),286(4.0),335(3.7)nm;IR(NaCl disk)νmax3285,3185, 2975,2925,1715,1645,1625,1570cm-1;1H NMR data,see Table1; 13C NMR data,see Table2;HREIMS m/z[M+]262.1317(calc for C14H18N2O3,262.1317).Acknowledgment.This work is a result of financial support from the University of California Industry-University Cooperative Research Program(IUCRP,grant BioSTAR10102).P.R.J.and W.F.are scientific advisors to and stockholders in Nereus Pharmaceuticals,the corporate sponsor of the IUCRP award.The terms of this arrangement have been reviewed and approved by the University of California,San Diego,in accordance with its conflict of interest policies.Supporting Information Available:Copies of1H spectra for compounds1-3.This material is available free of charge via the Internet at .References and Notes(1)Mincer,T.J.;Jensen,P.R.;Kauffman,C.A.;Fenical,W.Appl.En V iron.Microbiol.2002,68,5005-5011.(2)Feling,R.H.;Buchanan,G.O.;Mincer,T.J.;Kauffman,C.A.;Jensen,P.R.;Fenical,W.Angew.Chem.,Int.Ed.2003,42,355-357.(3)Doyle,T.W.;Nettleton,D.E.,Jr.;Balitz,D.M.;Moseley,J.E.;Grulich,R.E.;McCabe,T.;Clardy,.Chem.1980,45,1324-1326.(4)Nettleton,D.E.,Jr.;Balitz,D.M.;Doyle,T.W.;Bradner,W.T.;Johnson,D.L.;O’Herron,F.A.;Schreiber,R.H.;Coon,A.B.;Moseley,J.E.;Myllymaki,R.W.J.Nat.Prod.1980,43,242-258.(5)Zhang,Q.;Schrader,K.K.;ElSohly,H.N.;Takamatsu,S.J.Antibiot.2003,56,673-681.(6)Edgar,J.A.;Roeder,E.;Molyneux,R.J.J.Agric.Food Chem.2002,50,2719-2730.(7)Chou,M.W.;Wang,Y.P.;Yan,J.;Yang,Y.C.;Beger,R.D.;Williams,L.D.;Doerge,D.R.;Fu,P.P.Toxicol.Lett.2003,145, 239-247.(8)Snider,B.B.;Duvall,J.R.;Sattler,I.;Huang,X.Tetrahedron Lett.2004,45,6725-6727.(9)Hu,J.-F.;Wunderlich,D.;Thiericke,R.;Dahse,H.-M.;Grabley,S.;Feng,X.-Z.;Sattler,I.J.Antibiot.2003,56,747-754.(10)Stott,K.;Stonehouse,J.;Keeler,J.;Hwang,T.-L.;Shaka,A.J.J.Am.Chem.Soc.1995,117,4199-4200.(11)Stott,K.;Keeler,J.;Van,Q.N.;Shaka,A.J.J.Magn.Reson.1997,125,302-324.NP0602721Table2.13C NMR Data for Compounds1-4in DMSO-d6a position1234 1204.6200.8200.8199.0293.193.394.991.73167.7166.1166.8168.6457.953.863.855.5572.243.170.963.8635.672.478.956.0769.078.876.972.8826.123.524.418.899.819.817.013.91′164.0163.8163.8163.82′117.6117.7117.5117.53′156.4156.0156.6156.74′27.327.227.327.35′20.019.920.020.0a Carbon assignments by HSQC and DEPT NMR methods.。

药学专业英语完整翻译

药学专业英语完整翻译

●symptomolytic 消除症状的●neurotransmitter神经递质●Oosperm 受精卵●prostaglandin 前列腺素●polyethylene 聚乙烯●octadecyl 十八(烷)基●osteoarthritis骨关节炎●dyspepsia 消化不良●pathophysiology 病理生理学●osteoporosis 骨质疏松症●hydrophilic 亲水的●urokinase尿激酶●trachoma沙眼●dysfunction功能紊乱●mucopolysaccharide 粘多糖(类) streptomycin 链霉素●pathophysiology 病理生理学●otorhinolaryngology耳鼻喉科学●phlebostenosis 静脉狭窄●nitroglycerin 硝酸甘油●pyrogen 热原,致热物●pseudocholinesterase拟(或假)胆碱酯酶●thioether 硫醚●somatotype体型●uricemia 尿酸血症●hysteroscopy子宫镜检查●chemoprophylaxis 化学预防●antipsychotic抗精神病的(药)●nephroangiosclerosis 肾血管硬化●bacteriostatic 抑菌的●parasympathomimetic拟副交感神经的(药)●adrenocorticotropin促肾上腺皮质激素●diuretic 利尿的(药)●vagosympathetic迷走交感神经的●alkaloid生物碱●teratogenesis 致畸作用●polioencephalitis 脑灰质炎●tetanotoxin 破伤风毒素●myotonia肌强直●hyperlipemia高脂血症●bronchiectasis支气管扩张●oxidoreductase氧化还原酶●oncology 肿瘤学●euthanasia 安乐死●Myocardial 心肌的●ophthalmoxerosis 干眼病●Vaginomycosis 阴道霉菌病●encephalorrhagia 脑出血●electrophilicity 亲电性●Mitochondria 线粒体●Stereochemistry 立体化学●Pancytopenia 全血细胞减少●streptokinase 链激酶●superinfection 二重感染,重复感染●osteomyelitis 骨髓炎●macromolecular 大分子的●Menopause 更年期; 绝经●Vasodilation 血管舒张●Thromboembolism 血栓栓塞●phytopharmacology 植物药理学●protoplasm 原生质●schizophrenia 精神分裂症●Hemiplegia 偏瘫,半身不遂●Fluorospectrophotometry荧光分光光度法●bradypnea 呼吸缓慢●Diarrhea 腹泻,痢疾●Pharmacodynamics药效学and pharmacokinetics药动学is the twomain areas of pharmacology药理学. The former studies the the effects of the drugs on biological systems, and the latter studies the effects of biological systems on the drugs. When describing the pharmacokinetics properties of a drug, pharmacologists药理学家are often interested in LADME:●Liberation●Absorption●Distribution●Metabolism●Excretion●药效学和药代动力学是药理学的两个主要领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

COOH H C OH CH3
HOOC C HO CH3 H 无净旋转
由单一的对映体组成的光活性样品,我们说它 是100%光学纯的或称它的对映体过量( enantiomeric excess)是100%。 对映体过量的定义为:
%e.e =
[R] - [S] [R] + [S]
100% = %R - %S
2)Fischer投影式
对映体以球棍的立体形式来表示很不方便,一般采用 Fischer投影式。
交叉点 手性碳(位于纸平面上)
对映异构好比人的左手和右手的关系,左手和右手互为 镜像,它们不能重合,就像左手的手套戴在右手上不合 适,为此把实物和镜像不能重合的现象称为手性( chirality);具有手性的分子称为手性分子。 任何化合物都有镜像,但是大多数实物和镜像都能重合;如 果实物和镜像能重合,则实物和镜像为同一物质,它是非手 性的(achiral),无对映体。
B. 构型异构
定义:不是由单键旋转引起的,而是分子本身固有的或在 化学反应过程中形成的原子在空间上的相对位置不同。 构型异构常分为顺反异构和光学(旋光、对映)异构。 不同的构型异构体在(某些)性质上存在着差异,其形 不同的异构体的转化,必须经过化学键的断裂和再生, 成由所经历的特定反应途径(机理)决定; 即通过化学反应才能实现!
对映体过量也可从比旋光度计算:
[a]观察 %e.e = [a]纯品
100%
例如:纯的(+)-乳酸[]D20=+3.82º, 如测得 样品的[]D20=+1.91º 则 %e.e = (+1.91)/(+3.82) = 50% 表明这一混合物中含75%的右旋体和25%的左旋体。
判断一个不对称反应的价值,就需要知道产物的 %e.e,故对 %e.e的测定是立体化学研究的重要问题。
a. 顺反异构
顺反异构是由于共价键的旋转受到阻碍而产生原子 在空间排布的位置不同的异构体。
CH3 H CH3 H CH3 H H CH3
CH3 CH3有不同的物理性质,即不同的熔点、沸点、折 射率、溶解度、密度等;由于顺式的偶极矩大于反式的偶极 矩,故和偶极矩有关的物理性质(沸点、溶解度等)是顺式 大于反式,而与分子对称性有关的物理性质(如熔点)则反 式大于顺式。 顺反异构体的化学性质相似,但不完全相同,并且它们在生 理活性上也有差别。
碳链(碳架)异构 官能团位置异构 构造异构 官能团异构 互变异构 同分异构 顺反异构 构型异构 立体异构 构象异构 光学异构
异构体间 的互变须 经过化学 键的断裂 和重新生 成才能实 现!
1. 构造异构 构造异构是指具有相同的分子式而分子中原子 结合的顺序不同而产生的异构。 构造异构可分为:
碳架异构:CH3CH2CH2CH3 位置异构:CH3CH2CH2Cl 构造异构 官能团异构:CH3OCH3 互变异构:CH2=CHOH CH3 CH3CHCH3 CH3CHCH3 Cl CH3CH2OH CH3CHO
COOH C CH3 H OH COOH H C CH3 HO R-(-)-乳酸
互为实物与镜 对 互为实物与镜

S-(+)-乳酸
[]D20= +3.8o(水) 一对对映体中:
[]D20= -3.8o(水)
体 个立体异构体。 个立体异构体。
影关系,不能 影关系,不能 相互重叠的两 相互重叠的两
使平面偏振光向左旋的为左旋体,用“(–)”表示。 使平面偏振光向右旋的为右旋体,用“(+)”表示。
CH3 H C H OH
H3C C HO H H 无净旋转
从统计学角度上看,待测分子是无旋光的,也就是说,无旋 光不是个别分子的性质,而是一些任意分布的能够互为镜像 分子的性质。 当一束平面偏振光通过手性化合物的单一对映体(例如(+)乳酸或(-)-乳酸的溶液)时情况如何呢?
COOH H C OH CH3
C 2H 5 H C OH CH3 [a]D25 = +13.52
C2H5 HO C H CH3 [a]D25 = -13.52
把手性、对映异构、旋光活性联系起来,可得出以下结论:实 物与镜像不能重合,物质具有手性,有对映异构现象,具有光 学活性;反之实物和镜像能重合,此物质是非手性的,无对映 体,无旋光活性。 可见镜像的不重合性是产生对映异构现象的充分必要条件。
同样可解释偏振光通过(-)-乳酸溶液使偏振光向左旋。 而从酸牛奶中得到的乳酸没有旋光性,因为当偏振光碰 到一分子(+)-乳酸使偏振光向右旋,同时也会碰到取向 是它的镜像的(-)-乳酸使偏振光向左旋,这两种旋转程 度相同方向相反,所以酸牛奶中得到的乳酸无旋光,它 是等摩尔(+)-乳酸和(-)-乳酸的混合物,我们把它叫做 外消旋体。 如果不是等摩尔的左右旋体组成的样品,则≠0
三. 分子的手性和对称因素
1. 手性(Chirality) 实物与其镜影不能重叠的现象。 2. 对称因素
1)对称面():有一个平面可以把分子分割成两部分, 而一 部分正好是另一部分的镜像, 此平面就是分子的对称面。
Cl C H C
H Cl
Cl
Cl C H CH3
具有对称面的分子是对称分子。非手性分子。
2. 立体异构 立体异构是立体化学的一个重要方面。
立体异构是指具有相同的分子式,相同的原子连接顺 序,不同的空间排列方式引起的异构。
立体异构包括: 构型异构(顺反异构和对映异构)和构象异构。
A. 构象异构
定义:由于单键旋转而引起的原子在空间的相对位置不同。
H H CH3 H CH3 H CH3 H CH3 H H H CH3 CH3
二. 偏振光和比旋光度 1. 平面偏振光
光束先进方向
光源
光波振动方向与光束前进方向关系示意图
普通光
平面偏振光:
平面偏振光
通过Nicol棱镜,仅在 一个平面上振动的光。
Nicol prism
普通光
2. 旋光仪、旋光度、比旋光度

目 镜
单色光源
起偏镜
盛液管
检偏镜
旋光性:使偏振光偏振面旋转的能力。 旋光度:使偏振光偏振面旋转的角度。用表示。 旋光方向:右旋(+); 左旋(-)
CH3 H C Cl CH3 Cl
CH3 C H CH3
两个对映体结构差别很小,故它们具有相同的沸点、熔 点、溶解度等,化学性质也基本相同,很难用一般的物 理及化学方法区分。 但对映体对平面偏振光的作用不同,一个可使平面偏振光向右 旋,符号为(+),称为右旋体;另一个可使平面偏振光向左 旋,符号为(-),称为左旋体,其向右和向左旋转的角度基 本相同,因此对映异构也称为旋光异构(optical isomer)。 物质能使平面偏振光旋转的性质称为旋光性或光学活性( optical activity); 具有旋光性的物质称为光学活性物质。
交替对称轴(Sn):如果一个分子绕轴旋转90º,这个轴是 四重轴,再用一面垂直于该轴的镜子将分子反射,所得 的镜像如能与原物重合,该轴即为分子的四重交替对称 轴,用S4表示。
Cl Cl Cl Cl
旋转90
Cl Cl Cl
o
Cl Cl Cl Cl Cl
镜面
具有四重交替对称轴的分子是对称分子。非手性分子。
旋光性是由旋光物质的分子引起的, 与分子的多少有关, 因此旋光仪测定的旋光度的大小与盛液管的长度、溶 液的浓度有关,为排除这些因素的影响,所以我们采用 比旋光度表示旋光物质的特性, 比旋光度与旋光度的关 系如下:
比旋光度
[]t = C(g/mL) l(dm) 旋光度, l 盛液管的长度 c 溶液浓度 t 温度 光源的波长
• 构象异构可通过单键的旋转互相转化,不同的构象异构体之 间存在平衡,并在稳定性上存在着差异,稳定的构象占有较大 的比例;一般在室温下可互相转化,很难分离,实际上代表一 种物质,所以具有相同构型的化合物可以以不同的构象存在。 不同的异构体在性质上存在着差异,化学反应的发生总是在 某一特定的构象下进行,这是研究分子构象的意义所在!
例:乳酸分子无对称面, 无对称中心,所以乳酸有 手性,具有旋光性。
COOH H C CH3 OH HO
COOH C CH3 H
类似的还有:
SO3H I C H Cl Cl SO3H C H I H CH3 C Cl Cl CH3 C C2H5 H
C2H 5
如果碳周围的四个基团都不相同,就找不到对称面和对称中 心,分子有手性,通常称这个碳为手性碳(chiral carbon), 在结构式中常用(*)表示。
b. 对映异构
对映异构是由于分子内碳原子上所连接的四个不同基团 在空间排列顺序不同而产生的异构。
Br CH3 C C2H5 Cl Br H5C2
CH3 C Cl Cl
CH3 C Br C2H5
其中实楔表示指向纸前面 虚楔表示指向纸后面 这两个化合物不能重叠,它们互为实物和镜像的关系,故它们是 一对异构体,互为对映,因此称为对映异构(enantiomerism)。
一般情况下,具有对称面、对称中心或四重交替对称轴的分 子,其实物与镜影重叠,该分子为对称分子,无手性。反之, 若分子不具有对称面、对称中心或四重交替对称轴,其实物与 镜影不能重叠,该分子有手性,为不对称分子。 手性分子具有光学活性。 一般情况下,四重交替对称轴往往和对称面及对称中心是同 时存在的。 具有四重交替对称轴的化合物是少见的,因此如分子没有对 称面和对称中心,就可判断分子有手性。
为什么当一束平面偏振光通过手性物质的溶液,可 使偏振面发生旋转,而偏振光通过非手性物质的溶 液时,则不能使偏振面发生旋转? 从理论上来说,当一束偏振光通过所有手性和非手 性个别分子时,由于光与这个分子的带电粒子(电 子)的相互作用,偏振光的平面是能够发生极微小 的偏转,旋转方向和程度的大小则随着这个分子在 光束中的取向而定。 在大量非手性物质分子的情况下,由于分子的任意 分布,取向也就不同。
相关文档
最新文档