人教版数学九年级下册26.1章前引 言及反比例函数课件

合集下载

26.1.2 反比例函数的图象和性质 第1课时 课件

26.1.2 反比例函数的图象和性质 第1课时 课件

注意: 两个
分支合起来 才是反比例 函数的图象.
y
6 5 4 3 2
1
-6-5-4-3-2-1O -1 -2 -3 -4 -5 -6
y 减y
12
小x
yx增6 大 x
1 2 3 4 5 6x
观察这两个函数图象, 回答问题:
(1) 每个函数图象分 别位于哪些象限? (2) 在每一个象限内, 随着x的增大,y 如何 变化?你能由它们的 解析式说明理由吗?
k 图象
反比例函数 y k (k≠0) x
k>0
k<0
图象位于第一、三象限 图象位于第二、四象限
性质 在每一个象限内,y 随 x 在每一个象限内,y 随x
的增大而减小
的增大而增大
1. 在同一直角坐标系中,函数 y = 2x 与 y 1 的图象大致是 ( D ) x
y
y
y
y
O
x
O
x
O
Ox
x
A
函数图象画法:描点法
列 表
描 点
连 线
例1:画出反比例函数
y6与 x
y
12 x
的图象.
画函数的图象步骤一般分为:列表→描点→连线. 需要注 意的是在反比例函数中自变量 x 不能为 0.
温馨提示:学友主讲,师傅补充和纠正,其他师友进行答疑或点评
解:列表如下:
步骤一:列表
x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 …
3
2 y6
1
x
y 12 x
步骤二:描点
描点:以表中各组对 应值作为点的坐标, 在直角坐标系内描绘 出相应的点.
-6-5-4-3-2-1O 1 2 3 4 5 6 x

人教版初三数学9年级下册 第26章(反比例函数)26.1.1反比例函数 课件(共31张PPT)

人教版初三数学9年级下册 第26章(反比例函数)26.1.1反比例函数 课件(共31张PPT)
宽是5 cm,高是 y cm.
(1)写出用长表示高的函数解析式;
(2)写出自变量 x 的取值范围;
(3)当它的长是8 cm时,求长方体的高.
解: (1)由题意得5xy=100,所以 =
(2)自变量 x 的取值范围是 x>0.
(3)当 x=8时, =
20
8
20
.

= 2.5 ,
所以当长方体的长是8 cm 时,长方体的高是2.5 cm.
m=1
m+1≠0
−2
2 −2
2022 =1
解:因为 = + 1
是反比例函数,
所以 2 − 2 = −1,且 m+1≠0,解得 m=1.
当 m=1时, − 2 2022 = 1 − 2 2022 = −1 2022 = 1.
不要忽略比例系数不能为零
3.已知一个长方体的体积是100 cm3 ,它的长是 x cm,
200

,该函数是反比例函数.
2.下列函数:
①y =2x +3
② =
8


③y=x2 +7x-1
④ =
3
2
其中 y 是 x 的反比例函数的有
⑤y=x-1
⑥Байду номын сангаас=


缺少条
件m≠0
⑦xy= -1
②⑤⑦ . (填序号)
新知探究 知识点2 用待定系数法求反比例函数的解析式
例1 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.


在反比例函数 = (k 为常数,k≠0)中,只有一个待
定系数 k,因此只要给出一组 x,y 的对应值,就可以

人教版数学九年级下《26.1.1反比例函数》ppt课件

人教版数学九年级下《26.1.1反比例函数》ppt课件
变小,灯光就变暗,相反,当 R 变小时,电流 I 变大,
灯光变亮. 你能写出这些量之间的关系式吗?
当杂技演员表演滚钉板的节目时,观众们看到密
密麻麻的钉子,都为他们捏一把汗,但有人却说钉子
越多,演员越安全,钉子越少反而越危险,你认同吗
?为什么?
1. 理解并掌握反比例函数的概念. (重点)
2. 从实际问题中抽象出反比例函数的概念,能根据已知
条件确定反比例函数的解析式. (重点、难点)
导入新课
情境引入
Hale Waihona Puke 欣赏视频: 生活中我们常常通过控制电阻的变化来实现舞台
灯光的效果. 在电压 U 一定时,当 R 变大时,电流 I
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
导入新课 讲授新课 当堂练习 课堂小结
学习目标

人教版九年级数学下册第二十六章:26.1.2 反比例函数的图像和性质 优秀课件

人教版九年级数学下册第二十六章:26.1.2  反比例函数的图像和性质  优秀课件

-4
-6
-8
当k>0时,两支双曲线分 位于第一,三象限内; 当k<0时,两支双曲线分别 位于第二,四象限内;
反比例函数的图象和性质: 1.反比例函数的图象是双曲线; 2.图象性质见下表: k y= K>0 K<0
x
图 象
当k>0时,函数图象 的两个分支分别在第 一、三象限,在每个 象限内,y随x的增大 而减小. 当k<0时,函数图象 的两个分支分别在第 二、四象限,在每个 象限内,y随x的增大 而增大.
一、复习引入
反比例函数的定义:
一般地,形如 (k是常数,k≠0)的函数, 叫做反比例函数。其中, x是自变量,y是函 数.自变量x的取值范围是不等于0的一切实 数.
反比例函数的三种表达式:
① ② ③
1、过点(2,5)的反比例函数的解析 10 式是: y x . 2、一次函数y=2x-1的图象 是 一条直线 ,y随x的增大而 增大. 3、用描点法作函数图象的步骤:
y
4 C(-3,y3)是 y B(5,y2)是反比例函数 x
数形结合

⑴代入求值
y1 y2 y3
A
2
⑵利用增减性
B
5
-3
⑶根据图象判断
x
O
C
7、若点(-2,y1)、(-1,y2)、(2,y3)在
100 反比例函数 y = 的图象上,则( x
B

A、y1>y2>y3
C、y3>y1>y2
B、y2>y1>y3
x
标系中的 图象可能是 D
y o x y o x
:
y o x y o x
(A)
(B)

人教版九年级数学下册第26章反比例函数 26.1.1 反比例函数 课件

人教版九年级数学下册第26章反比例函数 26.1.1 反比例函数 课件

(((((((((((453534434254))))))))))))-yyxyyx3yyxxyyyxyyy121x+1x1212=2xx11x0x21xx
(5)
y
2

x
不具备 y k 的形式,所以y不是x的反
比例函数。 x
可以改写成
y

2 3x
,所以y是x的反
比例函数,比例系数k= 2




⑨ y 1
x2

⑩ y ( 2 3)x1 ⑾

1000 y 0 x

“聚焦”自变量
对于反比例函数 y 1000
x
①当x=50时,y=__2_0__ ②当x=-100时,y=__-_1_0_
③X的值能不能取0?为什么? 函数 y k(k≠0)中,自变量x的取值范围是不为0的一 切实数。x ④某住宅小区要种植一个面积为1000m2的矩形草坪,草 坪的长y(单位:m)随宽x(单位:m)的变化而变化。
4
变式2、已知函数 y = y1 + y2,y1与x 成正比例,y2与x成
反比例,且当x=1时,y=3;当x=2时,y=3。
解((12:))(1求 当)设yx与=y41x时的,k函1xy数,的关y值2 系。式kx2;方将求法两出:组函先值数分代的别入值设所。设y1,的y2函与数x的关关系系式式中,,
x
4.反比例函数 y k 中,当x的值由4增加
x
到6时,y的值减小3,求这个反比例函数的
解析式. y 36 x
“极限”大挑战
5.(1)已知y与z成正比例,z与x成正比例。问y是x
的什么函数?
y与x成正比例

人教版初三数学9年级下册 第26章(反比例函数)26.1.1 反比例函数 课件(共17张ppt)

人教版初三数学9年级下册 第26章(反比例函数)26.1.1  反比例函数 课件(共17张ppt)
复习回顾
➢什么是函数?
一般地,在一个变化过程中,如果有两个 变量x与y ,并且对于x的每个确定的值,y 都有唯一确定的值与其对应,那么我们就
说x是自变量,y是x的函数。
复习回顾
➢我们学习过的函数有哪些?它们的一般形式是什么?
一次函数: y=kx+b (k,b是常数,k≠0)
正比例函数(特殊的一次函数):y=kx (k是常 数,k≠0),其中k为比例系数
v
1463
(3)你能写出 v 关于 t 的解析
t
式吗?
思考: 下列问题中,变量间具有函数关系吗?如
果有,请直接写出解析式.
问题2 某住宅小区要种植一块面积为 1 000 m2的矩形 草坪,草坪的长 y(单位:m)随宽 x(单位:m)的
变化而变化.
y 1 000 x
x y
问题3 已知北京市的总面积为 1.68×104 km2 ,人 均占有面积 S(单位: km2 /人)随全市总人口 n(单 位:人)的变化而变化.
(1)写出 y 关于 x 的函数解析式;
(2)当 x = 4 时,求 y 的值.
(3)当 y =8时,求x的值.
变式训练
已知 y 与 x2 成反比例,并且当 x=3 时,y=4.
(1)写出 y 关于 x 的函数解析式; (2)当 x=1.5 时,求 y 的值;
(3)当 y=6 时,求 x 的值.
规律提炼
课堂小结 反比例函数的定义 一般形式 如何求解析式
拓展提高
1、如果y是z的反比例函数,z是x的反比例函数,那 么y与x具有怎样的函数关系? 2、如果y是z的反比例函数,z是x的正比例函数,且 x≠0,那么y与x具有怎样的函数关系?
二次函数:y ax2 bx c (a≠0,且a,b,c均

26.1.1 反比例函数课件(共22张PPT)

26.1.1  反比例函数课件(共22张PPT)
x
例如:
①y-1与x+1成反比例,则y-1= k ; x和y不是反比例函数
②若y与x2成反比例,则y=
k x2
x1
成反比例关系,x和y不是反比例函数
③反比例函数y= k (k≠0) 必成反比例关系
x
26.1.1 反比例函数
(5) y k (k为常数) 6 xy 123 x 解:(5)k可能为0,不是反比例函数
x1
26.1.1 反比例函数
课堂小结
形如y k (k为常数,k ≠ 0) x ,y均不等于0.
概念
x
其他形式:1. xy = k ; 2. y = kx-1;3. y k
反 比
( k 为常数,k ≠ 0)
x

x, y可以表示单独字母,

x与y成反比例 多项式或单项式
数 成反比例与反
比例函数的区别
7 y - 2 8 y 6
3x
x1
解:(6)是反比例函数,可化为 y
123 x
,自变量x≠0,因变量y≠0
2
解:(7)是反比例函数,可化为 y 3 ,自变量x≠0,因变量y≠0
x
解:(8)不是反比例函数
26.1.1 反比例函数
试一试
根据上面的练习,你能帮小唯唯总结一下反比例函数有哪些形式吗?
一般形式
(
k2

0
),

y
k1
x
1
k2 x
1
.
∵ x = 0 时,y = -3;x = 1 时,y = -1,
∴ -3= -k1+k2
1
1 2
k2
∴k1 = 1,k2 = -2.

人教版数学九年级下册26.1.2反比例函数图象和性质课件

人教版数学九年级下册26.1.2反比例函数图象和性质课件
自变量与因变量的关系
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。

人教版数学九年级下册《 反比例函数的图象和性质》PPT课件

人教版数学九年级下册《  反比例函数的图象和性质》PPT课件
x

则 a___b(填>、=或<).
>
已知点(-1,y1),(2,y2),(3,y3)在反比例函数
k2
y
x
的图象上,则下列结论中正确的是( B )
A.y1>y2>y3
B.y1>y3>y2
C.y3>y1>y2
D.y2>y3>y1
(k≠0)
探究新知
考点 2 利用反比例函数的图象和性质求字母的值
已知反比例函数 y a 1 x


y
描点:以表中各组对应
值作为点的坐标,在直
角坐标系内描绘出相应
的点.
6
5
4
3
2
1
-6 -5-4-3-2-1O
-1
连线:用光滑的曲线顺
-2
-3
次连接各点,即可得函
-4
6
12
-5
y

y



的图象.
-6
x
x
y
y
12
x
6
x
1 2 3 4 5 6 x
y
观察这两个函数
思考:
图象,回答问题:
(1) 每个函数图象分别
增大.
探究新知
反比例函数的图象和性质
形状
由两支曲线组成的.因此称它的图象为双曲线;
位置
当k>0时,两支双曲线分别位于第一、三象限内;
当k<0时,两支双曲线分别位于第二、四象限内;
增减性
图象的发展趋势
对称性
当k>0时,在每一象限内, y随x的增大而减小;
当k<0时,在每一象限内, y随x的增大而增大.

人教版数学九年级下册.章前引言及反比例函数PPT课件

人教版数学九年级下册.章前引言及反比例函数PPT课件

还可表示为:xy=k或 y=kx-1此时x的指数为-1,k≠0
想一想: 反比例函数的自变量x能不能是0?为什么?
自变量不能是零;因为自变量在分母的位置, 而分母不能为零.
活动4 概念辨析
下列哪些关系式中的 y 是 x 的反比例函数?
(1)y=4x;
(2)
y x
=3;
(3)y=-
2 x

(4)y=6x+1; (5)y=x2-1;

二、复习知识
• 1.函数的定义、正比例函数、一次函数、二次函数的定 义.
• 2.反比例关系:小学里我们知道:如果两个变量x、y满 足xy=k(k为常数,k≠0),那么x、y就成为反比例关系.例如 ,速度v、时间t与路程s之间满足vt=s,如果路程s一定,那 么速度v与时间t就成反比例关系.
• 3.分式的定义.
(1)t 2 000 ;(2)h 1 000 ; (3)p 100 .
v
S
S
形成概念
在上面的问题中,像: v 1 463 y 1 000
t
x
S 1.68 104 n
都反映了两个变量之间的某种关系.
★一般地,如果两个变量x,y之间的关系可以表示成:
y k k为常数, k 0
x
的形式,那么称y是x的反比例函数.
B B
②⑤ 3
6.已知y与x2成反比例,并且当x=-2时,y=2, 那么当x=4时,y等于( ) .
• A.-2 B.2 C.
D.-4
• 选择C.
五、布置作业
教科书习题 26.1 第 1,2 题.

1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。

人教版数学九年级下册.章前引言及反 比例函数课件精品课件PPT

人教版数学九年级下册.章前引言及反 比例函数课件精品课件PPT
么我们就说x是自变量,y是x的函数。
人教版数学九年级下册26.1章前引言 及反 比例函数课件
人教版数学九年级下册26.1章前引言 及反 比例函数课件
一、复习回顾
➢什么是一次函数?
一般地,形如y=kx+b(k,b是常数, k≠0)的 函数,叫做一次函数。
➢什么是正比例函数?
一般地,形如y=kx(k是常数,k≠0)的函 数,叫做正比例函数。
人教版数学九年级下册26.1章前引言 及反 比例函数课件
六、布置作业
必做题:习题26.1第1、2、4题 选做题:已知函数y=y1+y2,且y1与x成正比例,y2 与x成反比例,且当x=1时,y=0;当x=2时,y=3
(1)求y与x的函数关系式. (2)当x=-2时,求函数y的值. 检查题:导学与演练(所学内容)
四、例题探究
例2 已知 y 是 x 的反比例函数,并且当 x=2 时,
y=6.
(1)写出 y 关于 x 的函数解析式;
(2)当 x=4 时,求 y 的值. 解:(1)设y与x的函数解析式为: y
k x
∵当x=2时,y=6 ∴ 6 k
解得
k=12
2
因此
y 12 x
( 2 )x 把 4代y 入 1,2 得 y1 23
人教版数学九年级下册26.1章前引言 及反 比例函数课件
§ 26.1.1 反比例函数
人教版数学九年级下册26.1章前引言 及反 比例函数课件
人教版数学九年级下册26.1章前引言 及反 比例函数课件
一、复习回顾
➢什么是函数? 一般地,在一个变化过程中,如果有
两个变量x与y ,并且对于x的每个确定 的值,y都有唯一确定的值与其对应,那
总学生数n 的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) y=3x-1
(3) y= 1 x
(2) y=2x2
(4) y= 2x 3
2、下列哪些是反比例函数,并指出k的值。
(1) y= - 1 x
(3) xy= -0.5
(2) y= - 2 5x
(4) y= 2a (a为常数,且a 0) x
例题分析
【例1】已知y是x的反比例函数,当x=5时,y=10.
y= 24 x
它们具有怎样点?
新课讲解
反比例函数的定义
一般地,如果两个变量y与x的关系可以 表示成:
y = k (k为常数,k 0) x
那么,y是x的反比例函数。 注意:自变量x不能为零,因为分母无意义。 变形: (1) y=kx-1(k 0) (2) xy=k (k 0)
练一练
1、下列函数中哪些是反比例函数?
解:由反比例函数的定义得:
m-10
解得: m1
m -2= -1
m= 1
m= -1
所以,当m= -1时,函数解析式为
y= - 2 x
课堂练习
1、教材第3页,练习1,2,3题。 .
总结
1、反比例函数的定义 2、待定系数法求函数解析式
作业:教材第8页习题26.1 复习巩固 第 1题
(1)写出y与x的函数关系式;
(2)当x=3时,求y的值。
解:(1)因为y是x的反比例函数,所以设
y= k x
因为,当x=5时,y=10,所以有
10=
k 5
解得 k=50
因此 y=50/x
(2)把x=3代入 y= 50,得y= 50
x
3
【例2】当m为何值时,函数 y=(m-1)x m -2 是反比例函数,并求出解析式。
26.1.1 反比例函数
旧知回顾
1、什么是函数?
如果变量y随着变量x而变化,并且对于x所 取的每一个值,y都有唯一的一个值和它对应, 那么称y是x的函数。
其中x叫做自变量,y叫做因变量。
2、什么是一次函数?
一般形式:y kx b ( k,b为常数,k 0 ) y称作x的一次函数。
特别地,当b=0时,称y是x的正比例函数。 即: y=kx(k为常数,k 0)
⑶已知北京市的总面积为16800k㎡,人均占有 面积s(单位:k㎡/人)随全市人口n(单位:人) 的变化而变化
问题⑴中,有两个变量t与v,当变量t变化时, 另一个变量v随着他的变化而变化,而且对于 t的每个确定值,v都有唯一确定的值与其对 应.问题⑵ ⑶也一样.
3、什么是二次函数?
• 一般形式: y=ax²+bx+c
• (其中a,b,c为常数,
且a≠o)y称为x二 次函数
• 它与一元二次方程
一般形式的外形很相 似
新课引入
问题1:
⑴京沪线铁路全长1436km,某次列车的平均 速度v(单位:km/h)随此次列车的全程运行时间 t(单位:h)的变化而变化;
⑵某住宅小区要种植一块面积为1000㎡的矩形 草坪,草坪的长y(单位:m)随宽x(单位:m)的 变化而变化;
v 1463 t
y 1000 x
s 1.68104 n
问题2:
学校课外生物小组的同学准备自己去动 手,用旧围栏建一个面积为24m²的矩形饲养 场,设一边长为x(m),求另一边的长y(m)与x的 函数关系式。
y
y= 24 x
x
由以上实例得到的函数关系式
v 1463 t
y 1000 x
s 1.68104 n
相关文档
最新文档