一种基于压缩图像的反取证方法

合集下载

基于压缩感知算法的图像的特征提取和压缩

基于压缩感知算法的图像的特征提取和压缩

基于压缩感知算法的图像的特征提取和压缩现如今,数字图像成为了信息处理领域的一个重要研究对象,而图像的特征提取和压缩技术则是数字图像处理中的重要研究方向。

图像特征提取能够提供有用的描述和统计信息,使图像处理更加高效和准确,而图像压缩则是在保持图像质量的前提下减小图像数据量的一种必要手段。

在本文中,我们将介绍一种基于压缩感知算法的图像特征提取和压缩技术,并探究其在数字图像处理中的应用。

一、压缩感知算法的原理压缩感知是一种数据压缩和数据采样的新方法,它不仅能够减小数据量,同时还能够完成基于压缩后的数据重建。

压缩感知的核心思想是通过稀疏表示来进行数据压缩和数据还原。

其主要流程如下:(1) 信号采样:在压缩感知过程中,采样是一个非常重要的环节。

相对于传统的采样方式,压缩感知采样是非常低效的,因为它只需对信号进行一小部分采样,就可以对信号进行还原。

(2) 稀疏分解:在信号采样之后,需要对采样的数据进行分解以获取信号的稀疏表达式。

最常用的分解方式是使用小波变换。

(3) 信号重建:通过稀疏分解,可以建立信号的稀疏表达式。

接下来,我们可以使用逆小波变换来还原信号。

二、基于压缩感知算法的图像特征提取基于压缩感知算法的图像特征提取技术主要是通过稀疏表示来获取图像的特征向量,它可以将原始图像的信息压缩到一个较小的特征向量中,并保持对原始图像的完整描述。

图像特征提取的过程可以分为以下几步:(1) 图像分块:将图像切分成一定大小的块。

(2) 小波变换:对每个块进行小波变换,得到稀疏表达式。

(3) 稀疏表示:对每个块的稀疏表达式进行编码,得到特征向量。

(4) 特征向量拼接:将所有块的特征向量进行拼接得到一个全局特征向量。

基于压缩感知算法的图像特征提取技术具有很多优点,包括准确性、鲁棒性和高效性。

它能够准确提取图像的特征,并保证在一定范围内的扰动下依然保持较好的鲁棒性;同时采用基于压缩感知的稀疏表示方法,大大降低了提取特征向量所需的计算复杂度,提高了算法的效率。

04_基于压缩感知的地震反问题方法及在勘探地球物理中的应用

04_基于压缩感知的地震反问题方法及在勘探地球物理中的应用
2 min || Pvec D ji PBlockDiag W1 , W2 , , WM vec G ji m ||2
术, 打破了传统的奈奎斯特 -香农采样定理对采 样频率与信号频率相关的限制,可用更少的测 量来获取或重构目标 [1]。目前已开始应用于遥 感雷达、医学成像、生物传感、光学相机、通 信等各工科领域。压缩感知在勘探地球物理中 的应用也正方兴未艾, 涉及地震数据高效采集、 地震数据处理、反演和解释等诸多方面[2-5]。本 文结合压缩感知理论和框架,给出一个较为通 用的地震反问题表达形式,展示一系列勘探地 球物理方法和应用实例,重点讨论不同稀疏约 束条件和不同优化算法的作用和适用性,并重 点挖Cvec G ji m
(2)
1
其中, P 是采样算子, vec 表示将矩阵排成一个 长的列向量,BlockDiag 表示构建块对角矩阵,
2
基于压缩感知的地震反问题方
k 代表正则化参数,C 代表物理域、差分域或
变换域算子。采样算子的使用一般表明较少的 数据仍然含有格林函数或弹性参数完整的信 息。此外,格林函数或模型的物理域、差分域
difference
constraints.
Geophysics and Engineering , 2013, 10(2): 025001. [5] Yuan, S. Y., Wang, S. X., and Luo, C. M., et al. Simultaneous multitrace impedance inversion with transform-domain sparsity promotion. Geophysics , 2015, 80(2): R71~R80
法原理
地震叠前、叠后数据的正演可用如下方程

一种基于压缩图像的反取证方法

一种基于压缩图像的反取证方法

一种基于压缩图像的反取证方法作者:程格平王毅来源:《计算机时代》2015年第09期摘要:图像处理软件的广泛使用使数字图像的篡改和伪造变得更加容易,这给图像数据的安全性带来严重影响。

数字图像取证是解决这个问题的关键技术,逐渐成为研究热点。

反取证技术能够有效降低或消除取证技术的检测效果,尚没有得到应有的重视。

提出一种针对JEPG压缩的反取证技术,通过在压缩图像的DCT系数中添加适当的噪声移除量化块效应,从而去除图像取证的检测证据。

实验结果表明,所提出的方法能够明显降低JEPG图像取证方法的检测性能。

关键词:压缩图像;图像取证;反取证技术;量化效应;检测性能中图分类号:TP391 文献标志码:A 文章编号:1006-8228(2015)09-12-02Anti-forensic method based on image compressionCheng Geping, Wang Yi(School of Mathematical and Computer Sciences, Hubei University of Arts and Science,Xiangyang, Hubei 441053, China)Abstract: The widespread use of image processing software makes it easy to tamper and counterfeit a digital image, which will lead to serious influence to the security of image data. The digital image forensics is the key technology to solve the problem and is gradually becoming the research focus. Anti-forensics technology can effectively reduce or eliminate the detection effect of the forensics, but it has not been paid due attention. In this paper, an anti-forensics technology is proposed for JEPG compression, which removes the quantization blocking artifacts by adding appropriate noise to the DCT coefficients in a compressed image, so as to eliminate forensic detection evidence of the image. The experimental results show that the proposed method can significantly reduce the detection performance of the JEPG image forensics.Key words: compressed image; image forensics; anti-forensics; quantization artifacts;detection performance0 引言数码相机的迅速普及和多媒体技术的快速发展,使得数字图像的获取、修改和编辑更加简单,同时也对涉及数字图像原始性、真实性和完整性的应用领域带来日趋严重的安全隐患。

压缩感知技术及其在数字图像取证中的应用研究

压缩感知技术及其在数字图像取证中的应用研究

压缩感知技术及其在数字图像取证中的应用研究随着数字图像的广泛应用,数字图像取证技术也变得越来越重要。

在数字图像取证中,压缩感知技术成为了一种被广泛研究和应用的有效手段。

压缩感知技术是一种利用信号的稀疏性来进行数据压缩和重构的新型技术。

它通过在信号采样过程中直接记录其重要信息,而不是对信号进行完整采样,从而实现了高效的数据压缩和重构。

在数字图像取证中,压缩感知技术可以有效地提取和还原图像中的重要信息,对于犯罪证据的分析和提取起到了重要的作用。

首先,压缩感知技术可以帮助提高数字图像取证的效率。

在传统的数字图像取证中,需要对大量的数据进行分析和处理,耗费了大量的时间和资源。

而采用压缩感知技术可以在保证数据完整性的前提下,大幅度减少所需的数据量,从而加快了图像取证的速度和效率。

其次,压缩感知技术可以提高数字图像取证的精度和准确性。

在数字图像取证中,往往需要对图像中的细节进行分析和提取,以获取更多的犯罪证据。

由于压缩感知技术能够有效提取图像中的重要信息,因此可以更准确地分析图像中的细节,从而提高数字图像取证的精度和准确性。

此外,压缩感知技术还可以减少数字图像取证中的数据存储和传输成本。

在数字图像取证中,需要对大量的图像数据进行存储和传输,这既耗费了大量的存储空间,也增加了数据传输的成本。

而采用压缩感知技术可以大幅度减少所需的存储空间和传输带宽,从而降低了数字图像取证的成本。

综上所述,压缩感知技术在数字图像取证中具有重要的应用价值。

它可以提高数字图像取证的效率、精度和准确性,同时还可以降低数据存储和传输成本。

因此,进一步研究和应用压缩感知技术在数字图像取证中的方法和算法,对于提升数字图像取证的能力和水平具有重要的意义。

非侵入式人脸欺骗攻击的取证与反取证技术

非侵入式人脸欺骗攻击的取证与反取证技术

06
CHAPTER
结论与展望
数据集规模较小
目前大多数非侵入式人脸欺骗攻击的研究数据集相对较小,这可能导致模型泛化能力不足,无法很好地应对现实世界中的复杂场景。
单一特征提取方法
许多现有研究仅关注于某一特定的特征提取方法,如纹理、几何形状等,而忽视了其他潜在有用的特征。综合利用多种特征提取方法可能有助于提高取证与反取证技术的性能。
压缩和重采样
02
对图像进行压缩和重采样操作,可以改变图像的统计特性和像素间的相关性,增加取证技术的难度和不确定性。
使用高质量的图像源
03
使用高质量的图像源进行人脸欺骗攻击,可以减少图像质量取证技术的检测效果,因为高质量图像本身的统计特性和像素间的相关性就比较稳定,不易被检测出来。
多模态生物特征融合
加强跨领域合作
在研发过程中,密切关注实际应用场景的需求,确保所研究的取证与反取证技术能够在实际应用中发挥效果。
关注实际应用场景
THANKS
感谢您的观看。
对抗样本的鲁棒性不足
当前的取证与反取证技术在对抗样本攻击下往往表现较差,容易受到恶意扰动的影响。提高模型在对抗样本下的鲁棒性是一个亟待解决的问题。
大规模数据集构建
未来研究可以着力于构建更大规模、更具多样性的非侵入式人脸欺骗攻击数据集,以支持更深入的研究和更强大的模型训练。
多模态特征融合
探索将多种特征提取方法(如纹理、几何形状、时域信息等)进行有效融合,以期在非侵入式人脸欺骗攻击的取证与反取证方面取得更好性能。
采用多模态生物特征融合技术,将多个生物特征进行融合,以增加欺骗攻击的复杂度和真实性,使得生物特征取证技术难以判断哪些特征是真实的,哪些是伪造的。
对抗样本攻击

基于DCT压缩的图像检索方法说明书

基于DCT压缩的图像检索方法说明书

The image retrieval based on transformdomainWei-bin FuHainan UniversityCollege of Information Science and TechnologyHaikou Hainan, China***************Jing-bing Li*Hainan University,College of Information Science and TechnologyHaikou Hainan, China**************************Meng-xing HuangHainan UniversityCollege of Information Science and TechnologyHaikou Hainan, China*****************Yi-Cheng LIHainan University,College of Information Science and TechnologyHaikou Hainan, China***************Abstract—Due to the most of popular algorithms based on image retrieval have a large calculation. While the method of DCT domain have less calculation, and compatible with international popular standard of data compression (JPEG、MPEG、H261/263). So this paper proposes an image retrieval method based on DCT compression. First, we can extract the feature vector of the image through the DCT transform, and then set up characteristic databases, finally through matching the feature vector of the normalized correlation coefficient (NC) to realize the image retrieval. The results show that this method can not only reduce the database storage space occupied, but also can effectively resist the conventional attacks and geometrical attacks, has strong robustness.Keywords-image retrieval; DCT; feature vector; normalized correlation coefficient; robustness.I.INTRODUCTIONWith the rapid development of Internet, multimedia technology, and computer technology, people began to use a variety of advanced technology to gather and produce various types of multimedia data, including text, images, sound, video, etc. Image as a rich content multimedia data, has become an irreplaceable important network information resources, it contains more information than the text. In the face of huge amounts of image data, how to better implement quickly and accurately to retrieve the information that users need, has become the urgent problem to solve [1][2].In the 80 s, although the multimedia technology is developing rapidly, and the image acquisition, creation, compression, storage technology has made remarkable achievements, but the management of the image information has not been given enough attention. In the early 90 s, with the emergence of large-scale digital image library makes the image data is growing fast. And the image data is transmitted through the network to all over the world. Therefore, how rapidly and efficiently from the vast amounts of image data to retrieve the information you need is a current important problem in many applications [3].The traditional information retrieval is based on the numerical/character. It does not objectively reflect the diversity of image content. Its mathematical model, system structure, such as inquiry mode and the user interface also does not have effective management and the ability to retrieve the image data [4]. In order to realize automatic and intelligent Image query and management mode, and achieve a single intervention management work. A new image retrieval technology, content-based Image Retrieval technology (CBIR, Content - -based Image Retrieval) was proposed and developed rapidly. CBIR based on computer vision and image understanding theory, combining the artificial intelligence, object-oriented technology, cognitive psychology, database and other multi-disciplinary knowledge. Image content description is no longer rely on manual annotation, but with the help of visual features of automatically extracted from the image, the retrieval process is no longer a keyword matching, but the similarity matching between the visual features[5][6][7].However, the current problems still existing in content-based image retrieval are as follow:(1)The image retrieval Based on image color feature index of the characteristics of the main problems is a person of color visual perception and consideration is still not enough.(2)The image retrieval Based on image texture feature index of the main problems is that a variety of methods to choose texture feature set depends on the specific texture image.(3) While the image retrieval based on shape feature, automatic extraction of shape boundary has been the main problem in image processing field for many years. In the present retrieval systems mostly adopt the way of manual outline. To extract shape feature is a very heavy work, and mass image data for this problem will appear more prominent.(4) At present most popular algorithms, they all have the shortcomings of great amount of calculation.In view of the above problems, this paper proposes an image retrieval method based on DCT compression.International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2015)First, we can extract the feature vector of the image through the DCT transform, and then set up characteristic databases, finally through matching the feature vector of the normalized correlation coefficient (NC) to realize the image retrieval. The algorithm is simple, and can greatly reduce the database storage space, has a certain ability to resist conventional and geometric attacks[8][9][10].II.B ASIC THEORYA.Two-dimensional discrete cosine and reversetransformation formulaA M×N matrixA two-dimensional discrete cosine transform (DCT) is formula is as follows:(2)Two-dimensional discrete cosine transformation (IDCT) formula is as follows:(4)The x, y is the sampling value for space domain; u, v is the samples values for the frequency domain. In the digital image processing, digital image usually expressed in pixel phalanx, namely, M = N.III.A LGORITHM PROCESSWe choose an image with black box as the original image, and black border is to ensure that conservation of energy when the original image geometry transform. The original image to remember: F={f(i,j)|f(i,j)∈R;1≤i ≤N1,1≤j≤N2 .F (i, j) is the pixel gray value of the original image. In order to facilitate the operation, we assume that the N1=N2=N.A.The characteristics of the original image vectorselection methodFirst of all, we put the original image to global DCT transform, and get the DCT coefficient matrix FD (i, j). Then take in the DCT coefficient matrix of F (1, 1) ~ F (1, 10) ten low intermediate frequency coefficient. We found that when the image is under the geometric attacks, the size of the low part of the DCT intermediate frequency coefficient changed but the symbols (on behalf of the component or 180 ° in the direction of the phase) basically didn’t change. We use “1” to express the positive DCT coefficients, and use “0” to express the negative coefficient (including the zero), as shown in table 1 coefficient of symbol sequence, we observed the column can be found that regardless of conventional attacks or geometric attacks, the symbol can maintain similar sequences and the original image sequence of symbols, and the original symbol sequence correlation coefficient is larger (see last column here took 10 DCT coefficient symbol)T ABLE11 FULL ORIGINAL IMAGE DCT TRANSFORM COEFFICIENT OF LOW FREQUENCY PART AND DIFFERENT ATTACKS AFTER THE CHANGE OF THEVALUEFor different original image get coefficients of image sequences through the above mentioned methods, and each image is obtained by symbolic operation sequence of the low intermediate frequency DCT symbols (taking the former 32-bit), and characteristic vector, as shown in table 2 indicate different between the original image, feature vector is large, less relevant, and less than 0.5.T ABLE 2 DIFFERENT ORIGINAL IMAGE FEATURE VECTORCORRELATION COEFFICIENT (WITH NO BLACK BOX)As a result, the DCT coefficient of image symbol sequence can be used as its visual feature vector.B.Establishing database of image featuresStep1: An image feature vector obtained by the DCT transforms.We let each of the original image in the global DCT transform, and get the DCT coefficient matrix FD (i, j), then to Zig - Zag scanning of DCT coefficient matrix, from low to high frequency DCT coefficients obtained sequence Y(j), and then choose the former L value, and the visual characteristics of the original image is obtained by symbolic operation vector V(n), L is the number of transform coefficient, this paper is 32.(5)(6)(7)Step2: Putting the original image feature vector in the original image feature database C.To implement image retrievalStep3: To obtain the retrieve image feature vector by DCT transform.Set to retrieve images to F '(i, j), through global DCT transform, get the DCT coefficient matrix FD' (i, j), according to the above Step1, seeks to retrieve image visual feature vector V’.(8)(9)(10)Step4: Use the peak signal-to-noise ratio (PSNR) evaluation to retrieve image quality after the attack. Peak signal to noise ratio PSNR of the formula is:(11)I (i, j), I '(i, j) are the original image and retrieve images. In (i, j) this pixel values, M and N represent the image of the row and column, for the convenience of operation, usually digital image in pixels square, namely, M = N. Peak signal to noise ratio is a power signal is possible and destructive affected the accuracy of his said noise power ratio engineering terms, usually adopt peak signal-to-noise ratio as an objective evaluation standard of image quality.Step5: Matching all visual feature vector V (n) in the database with retrieve image visual feature vector V ',and get the normalized correlation coefficient NC (n). The normalized correlation coefficient formula NC (n) is :(12)Step6: Put the picture of the NC (n) is greater than 0.5 presses from big to small order, and supply the user to select pictures.Fig .1 is the flow chart of the algorithm.Figure 1 flow chart of the image retrieval algorithm based on DCTtransform domainIV. T HE EXPERIMENTAL RESULTSWe are using Matlab2010a simulation platform. The original image is shown in Fig .2 (a), the original image is expressed as F (i, j), 1≤i ≤128,1≤j ≤128; The DCT transform coefficient matrix is the FD (i, j), 1≤i ≤128,1≤j ≤128. Through the coefficient of low frequency part of its symbolic operation to get the image visual feature vector. Considering the robustness and the time complexity of the algorithm, we take the former 32 coefficient in the low intermediate frequency (a plural has a real part and imaginary part of two coefficient). We judge the retrieve images which is user wanted bycalculating the normalized correlation coefficient (NC)(a).original image (b). detector responseFigure 2 No attack on the similarity of the original image detectionFig . 2(b) for no attack on the similarity of the original image detection, we can see the NC = 1.0, you can retrieve the original image. A. Conventional attack 1) Gaussian noiseLabel to the original texture image with Gaussian noise interference, noise intensity was 20%. At this point, the image PSNR = 9.95 dB, by observing the Fig .3 (a) can be found that images have become blurred; Can see from Fig .3 (b), can still detect the label for the originaltexture image, NC = 1.0.(a). Gaussian noise (b). detector response intensity was 20%Figure 3 Gaussian noise intensity of 20% retrieval image andsimilarity detection T ABLE 3 G AUSSIAN NOISE INTERFERENCE EXPERIMENT DATANC 1.0 1.0 1.0 1.0 1.0 1.0 1.0To observe the experimental data can be seen in table 3, when Gaussian noise intensity is as high as 90%, NC = 1.0, still can pass the test judging is the original image. It indicates that the algorithm has a good ability to resist Gaussian noise interference. 2) JPEG compressionOriginal image to JPEG compression, when the compression quality is 4%, the image appears square effect, as shown in Fig .4 (a). See from Fig .4 (b) still can retrieve the original image, NC = 1.0.(a). JPEG compression (b). detector response quality of 4%Figure 4 JPEG compression quality of 4% for detecting andsimilarity retrieval imagesT ABLE 4 JPEG COMPRESSION EXPERIMENT DATAquality(%) 2 4 8 10 20 40 PSNR(dB)25.87 27.78 31.49 32.62 36.05 39.25 NC1.01.01.01.01.01.0Observe the experimental data in table 4, when the compression quality is 4%, with NC = 1.0, still can accurately retrieve the original image. As a result, the algorithm has a very ideal JPEG attack resistance. B. Geometric attacks 3) Rotation transformationThe original image is 3 degrees clockwise, as shownin Fig .5 (a), Fig .5 (b) as the similarity of detector response, this time the sex ratio of the image is very low,TABLE PSNR = 15.61dB, but NC = 0.76, still can accuratelydetect for the original image.(a). Clockwise 3 ° (b). detector response Figure 5 5 ° clockwise to retrieve images and similarity detectionT ABLE V R OTATION TRANSFORM TO THE EXPERIMENTAL DATAdegree(clockwise) 1° 3° 5° 7° 9° PSNR(dB) 20.23 15.61 13.86 12.79 12.13 NC0.940.760.690.630.58By the experimental data in table 5, we observed rotation degrees up to 9 degrees, NC = 0.58, still can be more accurate to detect for the original image. Therefore, the presented algorithm has stronger ability to resist rotation attack.4) The scaling attackTo reduce 0.5 times as the original image, clear image decreases a lot, as shown in Fig .6 (a). From Fig .6 (b) you can get, NC = 1.00, can be accurately detected forthe original image.(a). narrow the (b). detector response image 0.5 times Figure 6 Images of the scaling factors of 0.5 and similaritydetectionVI S CALING ATTACK EXPERIMENTAL DATAfactor 0.4 0.5 0.8 1.2 2.0 4.0 NC1.001.001.001.001.001.00According to table 6 experimental data shows that when the scaling factor is 4.0 can be detected as the original image, NC = 1.00. Therefore, this algorithm has strong ability of anti scaling attack.V.C ONCLUSIONThis paper puts forward a kind of image retrieval algorithm based on transform domain. It combines visual feature vector, symbolic operation and database technology. The experiment results show that the algorithm can resist some regular attack and geometric attack ability, and has strong robustness. In addition, the algorithm is realized in the database storage features vector instead of the original image, greatly reduces the storage space. Therefore, this method has good practicality in the process of practical application.ACKNOWLEDGEMENTThis work is supported by the National Natural Science Foundation of China (No:61263033) and the Institutions of Higher Learning Scientific Research Special project of Hainan Province (Hnkyzx2014-2) and the Key Science and Technology Project of Hainan (No: ZDXM20130078).R EFERENCE[1] eklund Yi. The combination of SIFT features and PGH imageretrieval method research [D]. Chongqing university, 2013.[2] Sun Jun. Content-based image retrieval technology research [D].Xi 'an university of electronic science and technology, 2005. [3]Xiang-lin Huang, Zhao zhongxu. Content-based image retrievaltechnology research [J]. Journal of electronics, cut flower production potentials of 2002:1065-1071.[4]Flickner M.,Sawhney H.,Niblaek W.,etal.,Query by image andvideo content: The QBIC System.IEEE ComPuter,1995,28(9):23一32.[5] Smith J.R.,Chnag5.F.,VisualSEEK:a fully automated content-based image query system.Pore.ACM Multimedia Nov.1996,PP.87一98.[6] Cllad C.,Segre B.,Hayit.,et al.Bloekworid:image segmentationusing Expectation-maximization and its application to image querying.IEEE Trans on PAMI,2002,24(8):1026一1038.[7]Xu Qing, Yang Weiwei, Chen Shengtang. Content-based imageretrieval technology [J]. Computer technology and development, 2008,01: + 131 126-128.[8] Cox I, Kilian J, Leighton T, Shamoon T, “Secure spread spectrumwatermarking for multimedia ,” IEEE Transactions on Image Processing,6(12),pp.1673-1687,1997.[9] Ester Yen and Li-Hsien Lin,"Rubik’s cube watermark technologyfor grayscale images", Vol 37(6), pp 4033-4039, Jun. 2010. [10] Alar Kuusik, Enar Reilent, Ivor Loobas, Marko Parve, "SoftwareArchitecture for Modern Telehealth Care Systems", AISS, Vol. 3, No. 2, pp. 141 ~ 151, 2011.。

基于压缩感知的图像特征抽取算法详解

基于压缩感知的图像特征抽取算法详解

基于压缩感知的图像特征抽取算法详解随着数字图像的广泛应用,图像特征抽取成为计算机视觉领域的重要研究方向之一。

而基于压缩感知的图像特征抽取算法,作为一种新兴的方法,近年来备受关注。

压缩感知是一种从稀疏信号中进行高效采样和重构的理论框架。

在图像特征抽取中,传统方法通常采用基于采样的方式,需要大量的样本数据和计算资源。

而基于压缩感知的算法则能够通过少量的样本数据和简单的计算,实现对图像特征的准确抽取。

首先,基于压缩感知的图像特征抽取算法利用稀疏表示的思想。

稀疏表示是指将一个向量表示为另一组基向量的线性组合,其中只有少数几个系数非零。

在图像特征抽取中,我们可以将图像表示为一个稀疏向量,其中每个系数对应于某个特定的特征。

其次,基于压缩感知的图像特征抽取算法利用稀疏重构的原理。

稀疏重构是指通过少量的测量数据,恢复出稀疏信号的过程。

在图像特征抽取中,我们可以通过对图像进行稀疏重构,得到其对应的特征向量。

基于压缩感知的图像特征抽取算法主要包括以下几个步骤:1. 采样:首先,对原始图像进行采样,得到少量的测量数据。

采样可以采用随机矩阵或者稀疏矩阵进行。

2. 稀疏表示:利用采样得到的测量数据,将图像表示为一个稀疏向量。

这一步可以通过优化算法,如L1范数最小化或者迭代阈值算法来实现。

3. 稀疏重构:通过稀疏表示得到的稀疏向量,利用稀疏重构算法,恢复出原始图像的特征向量。

4. 特征抽取:最后,通过对特征向量进行进一步处理,提取出图像的特征。

这一步可以采用传统的特征提取方法,如主成分分析(PCA)或者小波变换等。

基于压缩感知的图像特征抽取算法具有以下优点:1. 高效性:相比传统的图像特征抽取方法,基于压缩感知的算法能够通过少量的样本数据和简单的计算,实现对图像特征的准确抽取。

2. 稳健性:基于压缩感知的算法对于图像的噪声和失真具有较好的鲁棒性,能够在一定程度上提高图像特征的准确性和稳定性。

3. 可扩展性:基于压缩感知的图像特征抽取算法可以与其他图像处理方法相结合,实现更加复杂的图像分析任务。

基于JPEG图像压缩的痕迹盲取证算法

基于JPEG图像压缩的痕迹盲取证算法

基于JPEG图像压缩的痕迹盲取证算法胡永;王聪华;王东【摘要】相机的普及以及图像处理软件的广泛应用,数字图像正面临着被随意篡改和伪造的威胁.针对模糊润饰、拼接篡改操作后的数字图像,提出一种利用块效应和相关性相结合进行定位检测数字图像盲取证方法.数字图像经过模糊润饰、拼接篡改等操作后的区域的块效应和相关性与未篡改区域的块效应和相关性不一致.通过提取块效应特征以及相关性特征来定位篡改区域.实验结果表明,该算法能够有效地对模糊润饰、拼接篡改操作的图像进行检测和定位并且具有很好的鲁棒性.【期刊名称】《科学技术与工程》【年(卷),期】2014(014)026【总页数】4页(P269-272)【关键词】伪造图像;块效应;相关性【作者】胡永;王聪华;王东【作者单位】西藏民族学院信息工程学院,咸阳712082;西藏民族学院信息工程学院,咸阳712082;西藏民族学院信息工程学院,咸阳712082【正文语种】中文【中图分类】TP391.41数字图像盲取证技术是一个新的研究领域,国内外研究人员对其进行了深入研究,其中双重JPEG压缩篡改操作最为常见。

Fan 等[1]认为双重JPEG压缩篡改操作使图像篡改数据区域的块效应发生改变。

块效应主要包括两部分:在频域内DCT 系数经过量化取整后产生的块效应,在时域内双重JPEG压缩产生的块效应。

并提出一种新的抖动算法来消除上述块效应的影响,从而对数字图像进行反取证[2]。

同理,利用频域与时域块效应的改变检测图像是否经过伪作操作也同样是一种非常有用的方法。

对于数字图像双重JPEG 压缩操作检测,很多学者通过对图像第一次压缩量化表[3—5]的估计来定位篡改区域;骆伟祺等[6]则利用JPEG 错误分析方法定位检测数字图像篡改。

Chen 等[7]利用像素之间的相关性检测图像是否经过模糊篡改、拼接篡改以及二次JPEG 压缩等;Tsomko 等[8]用线性高斯模糊来检测模糊图像;最近Fan 等[9]利用EXIF 与原图像特征向量存在密切的关系来检测图像篡改操作;Chen 等[10]分析中值滤波的特性检测图像部分区域是否经过此操作;Popescu 等[11]用EM 方法检测图像是否经过重采样。

图像压缩算法及其在二维条码证件防伪中的应用的开题报告

图像压缩算法及其在二维条码证件防伪中的应用的开题报告

图像压缩算法及其在二维条码证件防伪中的应用的开题报告一、选题背景随着科技的不断发展,二维条码证件越来越普及,这也引发了越来越多的防伪需求。

目前,二维码的防伪主要通过在二维码上加密信息,以及使用不同的编码方式实现防伪。

但是,这种方式虽然能够在一定程度上保护证件的安全性,但却无法完全避免对证件的篡改和伪造。

因此,需要寻找一种更加有效的技术手段,来保证证件的真实性和安全性。

图像压缩算法是一种常用的技术,能够将大量的数据压缩成较小的文件,从而节省存储空间和传输带宽。

同时,在二维条码证件防伪中,图像压缩算法可以有效地保护证件的安全性,防止证件的盗用和伪造。

二、研究目的和意义本项目旨在利用图像压缩算法研究二维条码证件防伪技术,并探索其应用。

通过对不同的图像压缩算法的比较与分析,找到最适合二维条码证件防伪的算法,并将其应用到实际中。

这能够为证件防伪提供一种更加有效和安全的保障。

三、研究内容和方法1. 分析不同的图像压缩算法,包括无损压缩算法和有损压缩算法,并筛选出最适合二维条码证件防伪的算法。

2. 通过程序模拟,对所选定的图像压缩算法进行模拟测试。

主要考察其压缩效率和还原精度等指标。

3. 说明图像压缩算法在二维条码证件防伪中的应用。

通过案例分析,说明该技术在实际场景中的应用。

四、预期成果1. 程序代码。

包括图像压缩算法的实现和测试程序。

2. 技术报告。

介绍图像压缩算法的特点、防伪应用以及实验结果。

3. 学术论文。

在国内外相关领域期刊、会议上发表具有较高学术水平的论文。

五、进度安排1. 前期工作准备(一个月):文献调研、程序、实验平台的准备。

2. 图像压缩算法模拟测试(两个月):选取不同算法进行模拟测试。

3. 图像压缩算法在二维条码证件防伪中的应用(两个月)。

4. 撰写报告与论文(一个月):撰写技术报告和学术论文。

六、参考文献[1] 许理,王峰. 基于图像压缩的证件防伪算法研究[J]. 计算机与数字工程,2015(2).[2] 程飞,郭昊辰. 基于小波变换和图像压缩的二维码证件防伪技术[J]. 通信技术,2017(9).[3] Ebrahimi T, Pourazad M T. Image compression using wavelet transforms[M]. Springer Science & Business Media, 2002.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 ・
Co mp u t e r Er a No . 9 2 01 5

种 基 于压 缩 图像 的反 取 证 方 法★
程 格 平 。王 毅
( 湖北文理学院数 学与计算机科学学院,湖北 襄阳 4 4 1 0 5 3 )
摘 要 :图像 处理软件 的广泛使 用使 数 字图像 的篡 改和伪造 变得 更加容 易 , 这给 图像 数据 的安 全性 带来严重影响 。数
关 键 词 :压 缩 图像 ;图像 取 证 ;反 取 证 技 术 ;量 化 效 应 ;检 测 性 能
中图分类号 : T P 3 9 1编号: 1 0 0 6 — 8 2 2 8 ( 2 0 1 5 ) O 9 — 1 2 一 O 2
An t i . f o r e ns i c m e t hod ba s e d o n i ma g e c o m pr e s s i o n
f o r e n s i c s ,b u t i t h a s n o t be e n p a i d d u e a t t e n t i o n .I n t hi s pa p e r ,a n a n t i — f o r e ns i c s t e c no h l o g y i s p r o po s e d f o r J EP G c o mp r e s s i o n ,
Ch e n g Ge pi n g ,W a n g Yi
( S c h o o l o f Ma t h e ma t i c a l a n d C o m p u t e r S c i e n c e s ,H u b e i U n i v e r s i t y o f A r t s a n d S c i e n c e ,X i a n g y a n g ,Hu b e i 4 4 1 0 5 3 ,C h i n a )
字图像取 证是解决这 个问题 的关键技 术 , 逐 渐成为研 究热点。反取证技术 能够有效降低 或 消除取证技 术的检测效果 , 尚
没有得到 应有 的重视 。提 出一种针对 J E P G压缩 的反取证技 术 , 通过在压 缩图像 的 D C T系数 中添加适 当的噪 声移 除量化 块 效应 , 从 而去除 图像取证 的检测证据 。实验 结果表 明 , 所提 出的方法能够明显降低 J E P G图像取证 方法的检 测性 能。
a s t o e l i mi n a t e f o r e n s i c d e t e c t i o n e v i d e nc e o f he t i ma g e .Th e e x p e r i me n t a l r e s ul t s s h o w t h a t t h e p r o po s e d me t ho d c n s a i g n i ic f a n t l y r e d u c e t he de t e c t i o n p e fo r r ma n c e of t h e J EP G i ma g e f o r e n s i c s .
wh i c h r e mo v e s t h e q ua n t i z a t i o n b l o c ki n g a r t i f a c t s b y a d d i n g a p p r o p r i a t e n o i s e t o t he DCT c o e ic f i e n t s i n a c omp r e s s e d i ma g e ,s o
Ke y wo r d s :c o mp r e s s e d i ma g e; i ma g e f o r e ns i c s ;a nt i - f o r e n s i c s ;q u a n t i z a t i o n a r t i f a c t s ;d e t e c t i o n p e r f o r ma nc e
i s g r a d u a l l y b e c o mi ng t h e r e s e a r c h f o c u s .An t i — f o r e ns i c s t e c h no l o g y c a n e f f e c t i v e l y r e d u c e o r e l i mi n a t e t h e d e t e c t i o n e fe c t o f t h e
l e a d t o s e io r u s i nf l ue n c e o t t h e s e c u r i t y o f i ma g e d a t a .Th e d i s i t a l i ma g e f o r e n s i c s i s t h e ke y t e c h n o l o g y o s t o l v e t h e p r o b l e m a n d
Abs t r a c t : Th e wi d e s pr e a d us e o f i ma g e p r o c e s s i n g s o f t wa r e m a k e s i t e a s y t o t a mp e r a nd c o u n t e fe r i t a d i g i t a l i ma g e , wh i c h wi l l
相关文档
最新文档